
01Breaking monolithic barriers: Apollo GraphOS and the journey to microservices driven innovation


TRANSITION AT  
YOUR OWN PACE
A unified API composition layer that 
connects APIs across any cloud, 
orchestrator, platform, or protocol and 
easily integrates and orchestrates new  
and legacy services across clients.

MAXIMIZE DEVELOPER 
EFFICIENCY
Speed up feature delivery and safely 
migrate away from the monolith 
architecture with decoupled frontend  
and backend development.

REDUCE TOTAL 
OPERATIONAL COST  
AND OVERHEAD
Maximize efficiency and lower operational 
expenses by minimizing extensive backend 
coding, and optimizing resource allocation 
through a modern, modular architecture.

Key Benefits Introduction

Application modernization is imperative for 
organizations looking to enhance agility,  
improve scalability, and foster innovation. At the 
heart of the modernization initiative lies the  
essential process of refactoring monolithic 
applications into microservices. Unlike monolithic 
architecture where components are tightly coupled, 
microservices architecture breaks an application  
into smaller, loosely coupled services, allowing 
scalability, resilience, ease of deployment, and 
technology diversity. This transition from monolithic 
architectures to microservices is not just a trend  
but has become a necessity. In fact a survey  
finds 92% of enterprises are working on or  
planning an app modernization project. And yet  
70% of application modernization projects fail.  


Why?

SOLUTION BRIEF

Breaking monolithic barriers:  
Apollo GraphOS and the journey  
to microservices driven innovation


https://vfunction.com/resources/report-wakefield-why-app-modernization-projects-fail/
https://www.mckinsey.com/capabilities/transformation/our-insights/common-pitfalls-in-transformations-a-conversation-with-jon-garcia


One major challenge contributing to these failures is 

the complexity associated with managing a growing 

number of Application Programming Interfaces 

(APIs). A recent Postman survey indicated that  

49% of respondents said most of their organization's 

development effort was spent working with APIs.  

In a microservices architecture, each service 

communicates through these API contracts, which 

can number in the hundreds or even thousands for  

a single application. A single client request may 

require hundreds of API calls to different services, 

making the frontend teams face the daunting task  

of aggregating, orchestrating, and composing APIs.



The highly distributed and dynamic nature of the 

microservices architecture has necessitated a shift 

in how teams operate. Developers can now build 

services in various programming languages, 

protocols and using different data storage 

technologies. While this flexibility allows developers 

to tailor solutions to meet the needs of customers 

and organizations, each option brings its own set of 

APIs and interaction protocols, complicating the 

integration and consistent API management across 

different services. Cross-cutting concerns, such as 

security, governance, and monitoring need to be 

applied to each microservice, and the functionality

must be replicated for each language used in  

the application. This often leads to redundant 

implementations and inconsistencies between 

services, forcing developers to write extensive  

code changes to ensure seamless connectivity 

between old and new services. This added  

effort makes it increasingly difficult to iterate  

and deliver new features rapidly. 



Moreover, modernization is not an overnight 

transformation. For successful modernization, 

organizations need a resilient API strategy that 

meets their modern architectural requirements while 

supporting their legacy environments.

02 1 “Why App Modernization Projects Fail.” vFunction, 2022, https://vfunction.com/resources/report-wakefield-why-app-modernization-projects-fail/

Exploring API strategies

While enterprise API programs have matured in  

terms of stability, security, and discoverability 

through tools like API gateways, the true value 

emerges when these APIs are effectively utilized 

across various frontend applications. To deliver on 

this half of the equation, developers are on the hook 

for the hard work to aggregate, orchestrate, and 

compose APIs into something that is useful and 

discoverable for client teams – the last mile of APIs.

8% 28% 16% 34% 14%
don’t plan on 

modernizing at all
plan to modernize, 

but haven’t 
started yet

have just started 
to modernize

have made 
moderate progress

have made 
significant 
progress

Figure: The State of Modernization1

No Modernization Modernization

https://www.postman.com/state-of-api/a-day-week-or-year-in-the-life/#api-development-effort
https://www.apollographql.com/resources/design-a-resilient-api-strategy-with-graphql
https://vfunction.com/resources/report-wakefield-why-app-modernization-projects-fail/


03Breaking monolithic barriers: Apollo GraphOS and the journey to microservices driven innovation


Traditional approaches like backends-for-frontends (BFFs) or Experience APIs aim to abstract backend 

complexity for frontend teams, but they often lead to duplicated effort, inconsistencies across 

frontends, as well as technical debt, ultimately hindering innovation.

G
at

ew
ay

Figure: GraphQL platform – an API composition layer

Figure: Experience APIs or backends-for-frontends

Apollo GraphOS: The API platform for the modern stack

Media

CMS

Price

3rd Party

Stats

Native

Apps

Web

Venue

TV

Clients Graph Platform Services

FAN

TICKET VIDEO

VENUE

PLAYER

TEAM

gRCP

SOAP
gRPC

REST



04Breaking monolithic barriers: Apollo GraphOS and the journey to microservices driven innovation


Future-proof your API strategy while 
magnifying your existing API investments



Platform engineering is an emerging trend intended to 
modernize enterprise software delivery, and provides 
immense benefits including self-service, automation, 
standardization, centralized security, and composability. 
This enables software teams to ship features faster and 
support any number of modernization initiatives with less 
work. Apollo GraphOS plays a critical role in  extending 
these benefits at the API layer by introducing a 
composable abstraction layer. Rather than delivering 
APIs as a barrage of new endpoints to manage, a 
federated GraphQL architecture (Apollo Federation) 
powered by Apollo GraphOS provides a unified API 
experience. 



The GraphOS platform can meet you wherever you  
are on your modernization journey as it empowers teams 
to use GraphQL to build an API composition layer that 
sits on top of REST, SOAP, or any other legacy services, 
helping magnify an organization's existing API 
investments. This composable abstraction layer helps 
map data in a consistent and flexible way, regardless of 
who manages it and what kind of infrastructure or  
API protocol is working behind the scenes. This  
technology-agnostic approach simplifies integration, 
allows easier adoption of new technologies, and  
reduces dependency risks.



Maximize developer efficiency

The modular, federated GraphQL architecture also helps 
to decouple frontend and backend development. It 
enables backend teams to choose the best technology to 
build a service by providing the ability to connect their 
APIs across any cloud, orchestrator, platform, or protocol 
and make them available via a single endpoint. The 
decoupled architecture empowers backend teams to 
safely and predictably migrate away from the monolith, 
without impacting clients – ultimately reducing tech debt. 
Frontend teams can work independently, designing 
queries that suit their UI requirements without direct 
dependencies on backend changes. Eliminating friction 
between frontend and backend teams helps deliver 
features faster and fosters a culture of experimentation, 

allowing frontend developers to prioritize user needs 
over API versioning and data stitching concerns.

Reduce operational costs and overhead

Apollo GraphOS enables organizations to efficiently 
decouple the complexity of legacy systems by shifting 
the logic of aggregating data and managing BFF layers 
into a declarative approach with GraphQL. This means 
that the data aggregation, orchestration, and 
composition logic, typically hardcoded on the client  
side or in BFFs, can now be seamlessly managed  
through GraphQL’s powerful and flexible architecture. 
This approach reduces the need for additional coding, 
simplifies the overall architecture, and enhances 
maintainability by centralizing the logic in a more 
manageable and scalable manner. Apollo GraphOS 
decouples the connectivity concerns from the 
application developer’s workflow so they can focus  
on building new features, optimizing their development 
efforts, and cost.

Case study: PayPal

PayPal, a pioneer in digital payments, has significantly 
enhanced its service delivery by adopting Apollo's  
Graph Platform, transforming the digital payment 
landscape for over 300 million users worldwide.  
Faced with challenges in developer productivity and  
end-user performance using traditional REST APIs, 
PayPal's engineering team adopted GraphQL,  
achieving remarkable improvements. This strategic  
move reduced unnecessary data fetching complexities, 
enabling developers to focus more on user interface 
creation and less on backend data management. A graph 
was also incredibly straightforward to implement.  
PayPal built the graph at the edge of their stack that 
leveraged existing core REST APIs. There was nothing  
to rip-and-replace, and they could migrate away from 
legacy infrastructure over time.



As PayPal expanded its use of the graph — not only 
supporting more products, but also integrating with 
internal systems and processes such as authentication 
and authorization — the team quickly realized that they 
needed a team and proper tooling to manage the graph. 

https://www.gartner.com/en/articles/what-is-platform-engineering
https://www.gartner.com/en/articles/what-s-new-in-the-2023-gartner-hype-cycle-for-emerging-technologies
https://www.apollographql.com/graphos
https://www.apollographql.com/docs/federation/
https://www.apollographql.com/blog/from-monolith-to-federation
https://www.apollographql.com/customers/paypal


They began using the Apollo GraphOS to streamline  
data integration and management across more  
than 50 products, simplifying operations without 
compromising performance. A central team manages 
PayPal’s graph with Apollo, ensuring it’s protected, 
monitored and managed. 



This modernization initiative supported by Apollo 
GraphOS has positioned PayPal at the forefront of 
financial technology, delivering faster, more reliable 
payment solutions that enhance user satisfaction and 
drive business growth.


Case study: Expedia

Expedia Group, a leading travel platform managing over 
200 booking sites and 25 brands, faced challenges due 
its complex technology stack. The company struggled 
with the task of delivering a seamless experience for 
travelers using multiple touchpoints during their planning, 
shopping, and traveling journeys. Seeking to improve 
customer experiences and streamline their development 
process, Expedia embarked on a journey to adopt a 
unified graph approach with GraphQL and Apollo. This 
transformation was driven by the realization that their 
existing architecture, comprising multiple traditional 
REST services, led to bottlenecks, duplication of effort, 
and slowed down feature delivery. By transitioning to a 
federated GraphQL architecture powered by Apollo 
GraphOS, Expedia aimed to create cohesive customer 
experiences across various client platforms while 
reducing complexity and accelerating innovation. 



The adoption of Apollo Federation enabled Expedia to 
centralize their data and services into a single graph, 
facilitating collaboration between teams and providing a 
unified interface for accessing data. With a common 
entry point for clients, teams were freed from the

Apollo GraphQL is the maker of Apollo GraphOS, a platform  

that enables API platform teams to connect their APIs and deliver 

a self-service graph that can power any number of applications. 

Apollo is backed by Insight Partners, Andreessen Horowitz, 

Matrix Partners, and Trinity Ventures and based in San Francisco. L X U F
www.apollographql.com 

requirement to directly connect to multiple services, 
resulting in improved efficiency and faster development 
cycles. The Apollo GraphOS platform enabled developers 
to seamlessly monitor, detect, and prevent schema 
breaks, ensuring the reliability and scalability of their 
graph infrastructure. This enabled developers to focus 
more on enhancing customer experiences rather than 
managing APIs, leading to a significant reduction in code 
complexity and technical debt. 



By funneling all their digital capabilities into one central 
federated architecture powered by Apollo GraphOS, 
Expedia was able to condense several disparate tech 
stacks into one, build the trips experience 3x faster than 
their old approach and create a unified user experience 
across 25 brands.


Summary

In the digital era, organizations must embrace application 
modernization to remain competitive and deliver 
exceptional customer experiences. Apollo GraphOS 
emerges as a powerful solution, enabling businesses to 
accelerate their modernization journey while magnifying 
their existing API investments. By providing a unified yet 
modular architecture, Apollo GraphOS empowers 
organizations to increase developer productivity, reduce 
technical debt, and minimize operational costs and 
overhead. Apollo GraphOS not only supports present 
technological needs but also prepares organizations for 
future challenges, ensuring sustained competitive edge 
in an API-first world.



Connect with experts at Apollo today to learn how your 
organization can break the barriers to innovation and 
modernization with Apollo GraphOS.

https://www.apollographql.com/customers/expediagroup
https://www.linkedin.com/company/apollo-graphql
https://twitter.com/apollographql
https://www.youtube.com/@ApolloGraphQL
https://www.facebook.com/apollographql
http://www.apollographql.com
https://www.apollographql.com/contact-sales?referrer=nav-contact-sales

