
Inference Stack

Table of Contents

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Part 01

Part 02

Part 03

Part 04

Part 05

Part 06

Part 07

The challenge of building fast, reliable, production inference

Why building inference at scale is challengin�

Key requirements of a production ready inference service

The Baseten Inference Stack: Combining infrastructure and
runtime optimizations in productio�

Security and compliance for inference

The Baseten Inference Stack in our cloud and your�

The future of high performance AI inference

� Challenge 1: Spee�

� Challenge 2: Reliabilit�

� Challenge 3: Cost-ef f iciency

� Inference optimized infrastructur�

� Inference runtime

� Baseten Clou�

� Baseten Self-hoste�

� Baseten Hybrid

Part 01

The challenge of building fast, cost-
efficient and reliable inference.

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Running AI models in production isn’t the same as building a demo. The shift to

production adds strict requirements for latency, uptime, and cost. When those

requirements aren’t met, applications feel slow or unreliable, and ultimately, end-users

suffer.

Spinning up a GPU with an inference framework (like vLLM or TensorRT-LLM) will get you

decent performance but moving from decent to excellent is hard. Excellent means low,

predictable latency under load, and at a price that makes sense at scale. Many systems

stumble here.

Closing this gap takes calibration on every layer of inference, from the models, to the

hardware to the many layers of software connecting them. The Baseten Inference Stack

bundles those optimizations into a single platform, combining the best of open-source

with our own proprietary enhancements. Every model or compound system you deploy on

Baseten inherits these benefits by default.

In this guide, we’ll cover�

�� The challenges that limit large-scale inference�

�� The infrastructure and runtime techniques that solve them�

�� How Baseten applies these techniques—plus modality-specific optimizations—in our

Inference Stack�

�� How we enable cloud agnosticism to run the Baseten Inference Stack in our cloud,

yours, or both.

https://github.com/vllm-project/vllm
https://github.com/NVIDIA/TensorRT-LLM

Part 02

Why building performant
inference at scale is challenging

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

In production, performant inference means low latency, model performance, high

throughput, and maximal reliability.

First, inference must be fast to ensure your product feels instant. Whether you’re building

code completion tools or dictation-driven applications, optimizing time to first byte and

overall latency coupled with model performance directly impacts end-user experience.

But that’s not enough. Inference must stay fast irrespective of the complexity of your

workload, magnitude or variability of incoming traffic, and capacity (or reliability) of your

cloud provider, all without compromising your economics.

New performance research is published at breakneck speed. Often, techniques are used

in production that were introduced just weeks or months prior, like when DeepSeek V3

and R1 introduced Multi-head Latent Attention (MLA) to reduce KV cache demands on

VRAM. When new models like DeepSeek drop, running them efficiently in production

requires day-zero support for these techniques.

In short, it’s nearly impossible to keep up with new techniques to support state-of-the-art

model performance, in addition to reliability, and cost-efficiency without dedicated

performance research and distributed infrastructure teams.
 

https://arxiv.org/abs/2502.07864

Part 02

Challenge 1: Speed

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

There are many metrics used to measure inference speed across modalities: total request

latency, time to first token (TTFT), time to first byte (TTFB), inter-token latency (ITL), and

perceived tokens per second (TPS).

To make inference fast, you need to be strategic about regional workload placement to ensure

that the servers are as close as possible to the caller and that you appropriately apply a number

of techniques from recent model performance research, including but not limited to�

� Low-level optimizations like kernel fusion, memory hierarchy optimization, attention kernels,

asynchronous compute, and PDL�

� Speculation strategies like draft-target speculative decoding, Medusa, and Eagle self-

speculation�

� KV cache re-use and offloading to avoid recomputing large prefixes�

� Disaggregated serving to scale, prefill and decode on separate hardware with different

runtimes�

� Post-training quantization in floating-point precisions with negligible gains to perplexity�

� Sending requests to geographically proximate GPUs and routing to warm KV and LoRA

caches.

While each technique is powerful individually, it takes a combination to be viable in production

as each optimization only targets part of the problem. For example, KV cache re-use improves

TTFT tremendously but does little for inter-token latency.
 

https://ieeexplore.ieee.org/document/5724850
https://arxiv.org/abs/2410.19135
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2401.10774
https://arxiv.org/abs/2503.01840
https://developer.nvidia.com/blog/5x-faster-time-to-first-token-with-nvidia-tensorrt-llm-kv-cache-early-reuse/
https://arxiv.org/abs/2408.08147
https://arxiv.org/abs/2402.16775
https://arxiv.org/abs/2208.09225

Part 02

Challenge 2: Reliability

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

High uptime (99.99% or better) is necessary but not sufficient for a reliable inference service.

While avoiding downtime is essential, ensuring that your users always get access and see

consistent performance is critical. In addition, the model outputs must consistently have low

latencies as well. Many SLAs are based on p90 or p99 latency, or the idea that 90% or 99% of all

requests are faster than a given target and it is not acceptable.

Achieving strong reliability metrics requires building robust infrastructure with�

� Autoscaling to increase capacity in response to traffic spikes�

� Active-active reliability and cross-cloud orchestration to fail over if nodes, zones, regions, or

cloud providers go down�

� Strong alerting and automatic failure handling to mitigate hardware, networking, or driver

failures from downstream vendors�

� Appropriate handling of multiple protocols (HTTPS/WebSocket/gRPC) to reliably support all

modalities and traffic patterns.

Building this infrastructure requires rigorous and consistent abstractions to smooth over the

numerous variations between cloud service providers.
 

Part 02

Challenge 3: Cost-efficiency

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

If you had infinite resources, you could overprovision your systems to be safe when traffic

increases. However, overprovisioning is enormously expensive and wasteful at scale.

Utilization is the key metric to track to ensure sufficient headroom without unnecessary

overprovisioning.

Inference is cost-efficient in production when you�

� Deploy models on hardware that fits their requirements�

� Scale different models independently as needed�

� Have access to enough resources to scale up confidently�

� Automatically scale back down as needed, without manual monitoring or intervention�

� Scale quickly (fast cold starts), even from zero, while keeping incoming requests safely

queued.

A compounding challenge is that GPUs, especially in-demand recent-generation GPUs like

B200s, must be acquired from cloud service providers via long-term reservations in blocks of

nodes. Having the flexibility to leverage a hybrid infrastructure (proprietary cloud or Baseten)

that gives the option to access additional compute resources when scale is needed can be a

game changer in terms of cost optimization while maintaining high uptime and performance.
 

Part 03

Key requirements of a production-
ready inference service

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

To be production-ready, an inference service needs a unified approach to everything from

the major pillars of infrastructure and runtime down to each millisecond-level

implementation detail.

At Baseten, our Inference Stack is the cumulation of years of work on scalable, cloud-

agnostic, fault-tolerant infrastructure paired with highly performant runtimes for every

model and modality, wrapped in a cohesive developer experience. With the Baseten

Inference Stack, you can�

� Build real-time AI applications with low-latency model inference�

� Access compute across multiple cloud providers for flexible capacity and economics�

� Maintain consistent performance across regions and clouds while retaining 99.99%

uptime or better at scale�

� Take complete control of your inference infrastructure with file-based configuration

and programmatic control—we don’t believe in black boxes.

Our obsession with production shows up in every component of our Inference Stack,

which powers everything on Baseten from our Model APIs to enterprise customers’ self-

hosted deployments while maintaining the highest standards of performance, reliability,

and cost-effectiveness.
 

Part 04

Baseten Inference Stack:  
Combining infrastructure and runtime optimizations

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

The Baseten Inference Stack consists of

two tightly integrated layers�

�� Inference Runtime:  

This layer focuses on how models

actually run, including runtime

optimizations, custom kernels,

speculation engines, and more�

�� Inference-optimized Infrastructure:  

This layer includes request routing,

autoscaling, and multi-cloud capacity

management to ensure end users are

reliably connected to the right

resources.

Rou
tin

g

Sca
lin

g

Mul
tic

lou
d M

ana
gem

ent

Run
tim

e O
pti

miz
ati

ons

Cus
tom

 Ke
rne

ls

Spe
cul

ati
on

eng
ine

inference-optimized infrastructure

baseten cloud

Inference Runtime

Part 04

Inference Runtime

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

Runtime optimizations sit on top of your inference infrastructure,
and at the heart of our performance differentiation.

We use a combination of custom kernel optimizations, decoding strategies, modality-
specific runtimes, and hand-picked features to squeeze every drop of performance out
of models of every size and modality.
 

Custom kernels

AI model inference executes on GPUs, and kernels are the building blocks of GPU

execution. Each kernel is a piece of low-level code that performs a specific computation.

Poor kernel performance slows down the entire inference process, especially for high-

throughput workloads.

We use custom kernel optimizations and select from state-of-the-art inference

frameworks like TensorRT-LLM and SGLang to optimize specific models and workloads

along with the hardware they run on. Specifically, we leverage techniques like�

� Kernel fusion:  

Reduces overhead by combining multiple operations (e.g., matrix multiplication, bias

addition, activation functions) into a single GPU kernel. This minimizes memory reads/

writes between operations and reduces kernel launch overhead�

� Memory hierarchy optimization:  

Ensures tensors are stored and accessed in the most efficient layer of GPU memory,

prioritizing registers and shared memory over slower global memory�

� Attention kernels:  

Workload tailored attention kernels optimized to address speed, memory footprint,

context length, and scalability�

� Asynchronous compute and PDL:  

Allows concurrent execution and uses kernel launch patterns supported by the recent

Hopper and Blackwell architectures for better GPU utilization (relevant for workloads

running on H100s and H200s).
 
 

�� Draft model generates four
draft tokens

Input Tokens

Input Tokens

Input Tokens

Draft tokens

Draft tokens

Draft tokens

�� Target model validates
draft tokens

�� Target model generates
one token after accepted
prefix

... X Y Z

... X Y Z

... X Y Z

A B E D

A B DE

A B C

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

First, we benchmark frameworks like TensorRT-LLM, SGLang, and vLLM to select the best-

performing framework based on workload characteristics and target hardware. Then, we

build on top of what these frameworks provide, fixing bugs and extending functionality to

support specialized inference workloads. Optimizing kernels gives us higher tokens per

second (TPS), faster time to first token (TTFT), and improved performance numbers

overall.
 

Speculation engine

The decode phase, where tokens are generated autoregressively, is often the slowest and

most expensive part of inference. Decode generates tokens one-by-one and is generally

bottlenecked on VRAM bandwidth.

Speculative decoding refers to a broad range of strategies around a common idea: what if

the model could generate more than one token per forward pass. This would massively

improve ITL and give users a better experience with lower total request latency and higher

perceived TPS.

The classic approach to speculative decoding is a draft-target system. In this approach, a

smaller draft model "guesses" several tokens ahead. The full (target) model then verifies

these guesses. Because verification is cheaper than generation, this strategy can double

or triple TPS if the draft model is good at guessing tokens.
  
 

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Speculative decoding performance in the wild varies massively by model, by topic, and by

prompt. Our speculation engine supports numerous speculation strategies and can

dynamically adjust parameters based on live traffic.

Supported speculative decoding methods include�

� Eagle 3  

Our most advanced draft model�

� Lookahead decoding  

Predicts next tokens based on previous context�

� Medusa 

A self-speculative strategy created by fine-tuning and grafting additional decode

heads onto the target model�

� Draft-based decoding 

Implementations of draft-target speculative decoding optimized for specific use cases.

Speculative decoding shines at low batch sizes when there's spare GPU compute. At high

batch sizes, it's dynamically turned off because verification becomes costly under

compute saturation.
 

Optional quantization

Due to native training precision, by default most AI models run in FP16 or BFLOAT16, both

16-bit floating point number formats. In FP16, each parameter of model weights takes 2

bytes of VRAM to store and load, and the compute runs on Tensor Cores built for 16-bit

numbers.

GPUs support other quantizations. Lovelace and Hopper GPU architectures introduced

support for FP8, an 8-bit floating point format, while Blackwell added FP4, cutting the size

in half again. These number formats offer a higher dynamic range than integer-based

formats from previous generations.

Post-training quantization changes the precision of model weights, and optionally other

values like KV caches. Quantized models require less VRAM to store, less VRAM

bandwidth for decode, and offer higher FLOPS on Tensor Core compute for faster prefill.

continued

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

However, quantization runs the risk of affecting model output quality. To mitigate this risk, we�

� Defaulting to floating point formats like FP8 and FP4 which preserve model quality thanks to

their high dynamic range�

� Carefully selecting the optimal quantization scheme per model and GPU type�

� Benchmark models after quantization to ensure that perplexity and eval benchmark scores

have only negligible change�

� Spot-check these benchmarks against real-world inference samples.

Model quantization on Baseten is always completely optional and transparent. We never quantize

your models without permission and you retain full control over your model server configuration.

KV cache optimizations

In LLMs, a lot of inference time is spent during the prefill phase—processing the prompt before

generation begins. The key-value (KV) cache stores this prefill state, so it can be reused in

subsequent requests with similar context, like a long system prompt or an entire codebase.

Baseten introduces several enhancements to improve the usefulness of KV caches�

� KV cache-aware routing  

Automatically routes requests to replicas that have the necessary context cached�

� KV cache availability  

Reuses cache for shared prompts like “You are a helpful assistant.�

� CPU offloading  

Moves unused cache blocks to CPU RAM to reduce GPU memory pressure�

� Disk-based cache  

Uses InfiniBand to distribute cache offloading across nodes—parallel disk reads perform nearly

at CPU speeds.

tensor parallelism

E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15E0 E1 E2

expert parallelism

E2 E3E0 E4 E6 E8 E10 E12 E14E1 E5 E7 E9 E11 E13 E15

h100 h100 h100 h100 h100 h100 h100 h100

h100

h100

h100

h100

h100

h100

h100

h100

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Topology-aware parallelism

When serving large models on multiple GPUs and across nodes, model parallelism strategies like

tensor parallelism (TP) and expert parallelism (EP) minimize communication overhead. Our runtime

blends TP and EP along with other parallelism techniques to serve large models efficiently.

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Request prioritization

For workloads that don’t use disaggregated serving to separate prefill and decode onto

different hardware, there’s still a way to improve TTFT at the runtime layer: request

prioritization.

Our runtime prioritizes prefill steps over decode, improving perceived speed with lower

TTFT. As new requests come in, compute is allocated in favor of prefill. For example, if you

have a request come in with 100,000 input tokens, prioritizing the compute cycles

required for prefill ahead of decode steps from other requests in the batch ensures low

TTFT (especially with KV cache reuse) while only minimally affecting ITL in bandwidth-

constrained decode.

Continuous batching

Traditional batching waits for requests to arrive before processing them together. This

introduces unacceptable latency, especially for real-time applications.

Our Inference Runtime uses the industry gold standard: continuous token-level batching.

Instead of waiting for full requests, we batch at the token level.

This means�

� Requests can join an active batch mid-strea�

� Latency is minimized without compromising throughpu�

� No idle time is spent waiting for request alignment

The result is higher GPU utilization and better average response times, especially under

bursty traffic.

Structured outputs and tool use

Structured outputs, or returning LLM output based on a pre-determined schema, is

essential for enterprise use cases. They enable programmatic interactions and

composability with APIs, unlocking agentic workflows built on models that support tool

use.

 

continued

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

LLMs can be prompted to generate structured output, like JSON objects, but this is

unreliable. Our Inference Runtime gives 100% guaranteed schema adherence for

structured output by biasing logits according to a state machine generated prior to

decode, ensuring no reduction in inter-token latency. This means your agents and tool

calls always receive valid outputs from LLMs running on Baseten.

Modality-specific runtimes

When AI engineers talk about model performance, we often default to talking about LLM

inference. From KV caching to speculative decoding, many of the most important

techniques were developed with LLM inference in mind. However, there are many other

modalities of generative AI models that can benefit from faster production inference.

The Baseten Inference Stack supports high-performance inference for every modality,

including�

� Large language models like Llama, Qwen, and DeepSeek�

� Automatic Speech Recognition (ASR) models like Whisper�

� Speech synthesis models like Orpheus TTS�

� Embedding, reranking, classification, and reward models like Nomic Embed Code�

� Image and video generation models like FLUX.

One key insight in our modality-specific approach is that many non-LLM models, like TTS

and embedding, have an LLM backbone. And some that don’t, like Whisper for ASR, are

still autoregressive transformers-based models which can be optimized with similar tools

and techniques. Others, like diffusion-based image and video models, require entirely

different approaches.

Large language models

Every aspect of the Baseten Inference Stack is built with LLMs in mind. LLMs are among

the largest and most demanding of inference workloads, and benefit from nearly every

technique and feature used in our Inference-optimized Infrastructure and Inference

Runtime.
 
 

continued

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

LLMs—often hundreds of gigabytes in size—benefit at the infrastructure layer from our

cold start optimizations and active-active reliability. Once running, intelligent request

routing improves KV cache and LoRA cache hit rate while balancing traffic across

replicas. The largest models also need multi-node inference and disaggregated serving,

both of which are provided by our infrastructure layer.

The runtime layer is designed to run the largest LLMs with low latency and high

throughput for large scale deployments. KV cache re-use and request prioritization ensure

fast TTFT for large inputs, while windowed attention extends that support to long context

models. Quantization and our speculation engine provide low inter-token latency, keeping

the user’s perceived tokens per second high.

With support for every major LLM architecture and features like structured output and tool

use, the Baseten Inference Stack is the best choice for LLM inference in production.

Speech-to-text models

Speech to text (aka automatic speech recognition) models are the foundation of

transcription and dictation products as well as an essential component of voice pipelines.

The Baseten Inference Stack includes the world’s fastest ASR runtime. 

The main performance metrics for this modality are�

� Speed factor, or how many times faster than real time a transcript is generated. For

Whisper, a powerful open-source ASR model, we achieve a speed factor of over 1,000�

� Round-trip latency, or how quickly a single chunk (up to 30 seconds) of audio can be

transcribed and returned. For Whisper, we process these chunks in less than 200

milliseconds�

� Quality, as measured by WER (word error rate) for accurate transcripts that are usable

in-product.

https://www.baseten.co/blog/the-fastest-most-accurate-and-cost-efficient-whisper-transcription/

Whisper transcription speed factor (higher is better)

OpenAI Flash
Attention

Faster
Whisper

Torch
Compile WhisperS2T Baseten

0

2

4

6

8

10

12

Ti
m

es
 f

as
te

r

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Speed factor is relevant for use cases like podcast transcription where users upload large

files, while round-trip latency matters for real-time use cases like dictation.

We achieve state-of-the-art performance in both speed factor and round-trip latency

using a combination of a TensorRT-LLM-based runtime and a proprietary chunking

algorithm that supports retries for failed chunks, improving quality. Together, these

techniques provide not only the fastest but also the most accurate ASR runtime as

measured by word error rate  

continued

Time to first byte with Orpheus TTS

Base TRT-LLM (H100 MIG) TRT-LLM (H100)

350ms

200ms

150ms

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Thanks to this performance and throughput combined with Baseten’s reliability, the

foundation model lab behind Orpheus TTS selected Baseten as their preferred inference

partner for running Orpheus in production.

Text-to-speech models

On the other side of the speech pipeline, TTS (text-to-speech, aka speech synthesis)

models are the voice behind voice agents. For TTS models, the main latency metric is

TTFB, or the time it takes to generate the first byte of audio. This is important for online use

cases like real-time conversation agents. The main throughput metric is simultaneous

streams, or how many real-time users a single GPU can support (improving economics for

production deployments).

Speech synthesis models like Orpheus TTS are built on an LLM backbone. By adapting

our LLM tooling from within the Baseten Inference Stack and combining it with streaming

protocols like WebSockets, we’re able to achieve best in class latency and throughput for

TTS models. 

https://www.baseten.co/blog/canopy-labs-selects-baseten-as-preferred-inference-provider-for-orpheus-tts-model/
https://www.baseten.co/blog/canopy-labs-selects-baseten-as-preferred-inference-provider-for-orpheus-tts-model/

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Embedding models

Efficient embedding inference must support both high-throughput batch processing—

such as vectorizing an entire corpus—and low-latency, single-query inference for real-

time applications. That said, optimizing for one often degrades the other. Large token

inputs risk out-of-memory (OOM) errors, small batch sizes leave GPU throughput

untapped, and traditional runtimes struggle to balance performance across variable

workloads.

Baseten Embedding Inference (BEI) is built from the ground up to meet these demands. At

the core is a TensorRT-LLM-based engine designed to balance latency and throughput by

dynamically packing tokenized inputs based on sequence length rather than request

count. This allows BEI to maximize GPU utilization without triggering out-of-memory

errors, even under large or uneven workloads.

To further improve performance, BEI incorporates quantization to reduce memory

requirements while maintaining model accuracy. It also uses fused transformer layers and

optimized attention kernels to minimize memory bandwidth usage and reduce compute

overhead. These optimizations make BEI well-suited for both batch-heavy ingestion

workloads and millisecond-scale interactive applications.

At the infrastructure layer, BEI benefits from autoscaling to process large corpora of

documents in parallel, along with strong queueing primitives that ensure requests aren’t

lost while scaling.

As a result, BEI is the most performant embeddings solution on the market: over 2x higher

throughput than the previous-leading solution, with 10% lower latency. BEI supports real-

time applications like RAG and search, while also scaling up to process entire corpora

efficiently. Whether you’re embedding documents or reranking outputs, BEI delivers the

performance needed to systems fast and cost-effective.
 

continued

https://www.baseten.co/blog/introducing-baseten-embeddings-inference-bei/

Server

To
ke

n
s

p
er

 s
ec

on
d

Mistral-7B — Vector DB Throughput

BEI-fp8

13K

26K

39K

52K

BEI TEI TEI-fa3 vLLM Infinity Ollama

0

5

10

15

20

25

Server

BEI-fp8 BEI TEI vLLM Infinity Ollama

Id
le

 l
at

en
cy

 (
m

s)

Mistral-7B — Idle Latency (ms)

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Image and video generation models

Image and video generation models require a very different runtime than other modalities

as the runtime must support diffusors. For these models, the main performance metric is

end-to-end request latency to generate an image or video.

Diffusors requires its own set of custom kernels, from torch compilation and efficient

attention to post-training quantization. Most of the gains in image model inference come

from this low-level CUDA work.

However, one unique thing about image and video models is that they have much more

latitude than LLMs and similar models in trading off small quality losses for big speed

gains. Techniques like latent consistency for few-step inference, along with more

traditional approaches like distillation, can yield major performance gains. And there are

plenty of prompt-level adjustments, from image resolution to diffusion step count, to

dynamically trade off between speed and quality.

Baseten’s Inference Runtime supports compilation and the latest kernel optimizations for

image and video models across both popular open-source inference frameworks and

custom servers.
 

Part 04

Inference-optimized Infrastructure

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Runtime optimizations matter when your model executes; your
infrastructure gets you to that starting line. With every hop, there is
room for latency and failures to slip into your system.

Intelligent request routing

Most load balancers assume that any request can be handled on any machine with the

same performance. Baseten’s load balancers go a step further by relying on KV caches

and model adapters to achieve both latency and quality goals.

Serving requests on hardware that is physically closer to the requests’ origin, or already

has useful information loaded into memory, can make a huge difference in inference

speed. To route requests intelligently, we leverage techniques like geo-aware load

balancing with KV cache-aware and LoRA-aware routing.

Geo-aware load balancing

Geo-aware load balancing is critical for latency-sensitive workloads that are globally

distributed. It reduces network latency by sending requests to the most proximate

compute. Otherwise, data has to travel longer physical distances through multiple network

hops, significantly increasing transmission time and the chance of congestion or packet

loss.

For instance, if a request comes to your model from Germany, and you have model

replicas running in US East, US West, and London, geo-aware load balancing would send

the request to London. This is especially important for real-time workloads, like AI phone

calling and agents.
 
 

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

KV cache-aware routing

The Key-Value (KV) cache stores key and value tensors from the attention layers of a

transformer during inference. Instead of recomputing past context for each new token, the

model reuses this cached data to generate the next token faster. It’s essential for low-

latency text generation for model families like Llama, DeepSeek, and Qwen.

KV cache-aware routing involves sending requests to replicas that already hold relevant

context, like the cached prompt. For instance, if you have 10 different replicas, sending

your requests to the replica that has recently seen similar requests increases the chances

of a cache hit.

This can dramatically reduce prefill latency, especially for chatbot-like workloads. For

example, the latest messages (requests) would ideally be sent to the same replica that

processed the previous requests. Otherwise, the new replica will also have to load the

missing context into memory.

LoRA-aware routing

Similar to KV cache-aware routing, LoRA-aware routing involves sending requests to

replicas that have a particular LoRA (low-rank adaptation, similar to a fine-tuned model

head) loaded into memory.

LoRA-aware routing is often relevant for image generation and LLM use cases, which can

leverage hundreds to thousands of LoRAs in production. Sometimes, in these cases, only

a subset of the LoRAs can fit into memory; LoRA-aware routing ensures each request is

directed to a replica with the correct adapter pre-loaded. Otherwise, the replica has to first

download the relevant LoRA to serve the request.

Protocol flexibility

Different protocols are better suited for different workloads. In addition to the typical HTTP

request-response paradigm, we leverage WebSockets and gRPC support for workloads

on a case-by-case basis to improve performance.
 
 

continued

https://arxiv.org/abs/2106.09685

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

In contrast to HTTP—which has the additional overhead of opening and closing a new

connection per request—WebSockets enable a continuous client-server connection.

WebSockets are useful for transmitting unstructured and real-time data (like audio), where

the server receiving the request can parse it and process it downstream. They’re

particularly relevant for use cases requiring real-time streaming, like AI phone calls.

Similar to WebSockets, gRPC also enables bi-directional streaming support, but for

structured data. Requests transmitted via gRPC should follow a predefined schema,

which takes away the load of having to parse the input. This additional validation layer

makes gRPC slightly slower than WebSockets, but is especially useful for use cases that

involve translating mediums across a request (like going from text to video).

Autoscaling

The importance of performant autoscaling cannot be overstated. It determines�

�� How quickly you can scale to meet a burst in traffi�

�� How cost-efficient your hardware usage is when traffic slows down

Whether spinning up a new model replica takes five minutes or 30 seconds makes a huge

difference in terms of your P99 and P90 latency (and, of course, your end-user

experience). We use a combination of in-house cold start optimizations and expert tuning

to set parameters for optimal performance with awareness of customers’ target SLAs.

SLA-aware autoscaling

Hitting latency and cost-effectiveness targets requires configuring your autoscaling

settings accordingly. That said, determining these parameters often requires implicit

knowledge about how they suit different types of workloads.

Settings you have to configure include the�

� Minimum and maximum number of replicas (the lowest and highest number of active

replicas�

� Autoscaling window (the time window for traffic analysis before replicas are scaled up

or down�

� Scale down delay (waiting period before unused replicas are removed�

� Concurrency target (number of requests a replica should handle before scaling)
 
 

continued

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Within these boundaries, our autoscaler is optimized to dynamically adjust the number of

active replicas to handle variable traffic and meet your SLAs (while minimizing idle

compute costs).

Baseten provides guidance on the right parameters for specific workloads and

programmatically exposes all autoscaling settings so power users have full control to tune

as they see fit.

Fast cold starts

A “cold start” is the entire time it takes to provision GPU resources, load model weights,

images, and other dependencies onto the GPU, activate the model on the GPU, and begin

serving traffic. During this process, you also need to hold excess requests in a queue and

release them as replicas become available.

With new GPUs like B200s offering much larger VRAM, models are getting larger in turn.

DeepSeek-R1 weighed in at 671B parameters—that’s 720 GB of model weights in FP8—and

Llama 4 Behemoth promising to top 2 trillion parameters, cold start optimizations are

more important than ever. Without substantial engineering effort at each stage of the

process, cold starts for these incredibly large models can take hours.

Instead, we want to measure cold starts on the scale of seconds. Fast cold starts let you

spin up new model replicas quickly, minimizing latency spikes during traffic surges.

Knowing that cold start times are fast also lets you overprovision less and scale down

more aggressively, improving utilization and thus cost.

To optimize cold start times, we use a combination of�

� Network acceleration via parallelized byte-range downloads�

� Specialized pods that accelerate loading times�

� Caching of model weights, builds, dependencies, and data at both the cluster and

node level.

As a result, we’re able to cold start most models in seconds and the largest models in a

handful of minutes.
 
 
 

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Independent component scaling

AI applications are increasingly built on multi-model, multi-stage compound AI workloads

where several inference steps need to be run in a coordinated fashion. If you have two or

more models, they are likely to have different hardware and scaling needs.

In this situation, provisioning resources as a monolith results in either bottlenecks or

overprovisioning. Instead, we decomposed autoscaling to scale individual processes

independently. This enables us to�

� Right-size resources per step, running each AI model on best-fit GPUs and business

logic on cheap CPU instances�

� Remove processing bottlenecks by enabling independent replica counts for each step

in a pipeline�

� Ensure cost efficiency by avoiding overprovisioning steps that have lower demand.

For instance, when running a transcription workload, you can separate audio chunking (a

processing step) from the actual transcription (which uses an AI model). The first step can

be run on a less-expensive CPU, and the second step can scale independently to

accommodate the larger number of audio chunks. This lowers costs by�

� Preventing idle GPUs, since chunking is run in parallel, preventing bottlenecks.�

� Using the correct hardware per step (i.e., using more powerful GPUs only for the steps

requiring them).

We built an entire SDK and toolkit for ultra-low-latency compound AI systems on top of

this design: Baseten Chains. Chains is what enabled us to build the fastest, most cost-

efficient Whisper transcription on the market.

https://docs.baseten.co/development/chain/overview
https://www.baseten.co/blog/the-fastest-most-accurate-and-cost-efficient-whisper-transcription/

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Disaggregated prefill and decode phases for LLMs 

LLM inference has two phases�

� Prefill phase:  

Loads the context (including the full input prompt and communication history) and

builds an initial Key-Value (KV) cache�

� Decode phase:  

Generates the response token-by-token, using the KV cache for faster token prediction.

Prefill and decode have different resource needs (prefill is generally compute-bound while

decode is generally bandwidth-bound) and benefit from different kernel optimizations.

Disaggregating prefill and decode by running each phase on separate GPUs reduces

latency through independent scaling. For instance, you can assign more GPUs to prefill to

reduce TTFT. And inference is overall faster thanks to runtime enhancements from phase-

specific optimization as well as the elimination of competition for resources between the

two phases.
 
 

Multi-cloud capacity management

Multi-cloud capacity management is a set of automations, tools, and practices around

provisioning and operating compute resources across multiple cloud service providers

(CSPs) and regions in a standardized and repeatable manner.

Baseten’s multi-cloud capacity management efforts�

� Ensures high uptime (99.99%) through active-active reliabilit�

� Enables the lowest possible latency through flexible compute allocatio�

� Supports data residency and sovereignty requirement�

� Unlocks an optimal customer cost-performance ratio

Our north star is to deliver consistent performance regardless of CSP, region, or unique

customer requirements.  

continued

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

Active-active reliability and GPU failover

Active-active reliability refers to a system architecture where multiple replicas or regions

are live and serving traffic simultaneously. If one fails or degrades, the others continue

handling requests without disruption, ensuring high availability and fault tolerance via

seamless failover.

Active-active reliability improves both uptime and economics by�

� Insulating against provider, region, and node-level outages (e.g. if AWS us-east-1 goes

down, your service stays up�

� Balancing workloads across compute to provide the right cost profiles and SLA

guarantees�

� Gaining access to more compute by spreading your workloads across multiple

providers.

Baseten’s Inference-optimized Infrastructure handles the key challenge of active-active

reliability—determining optimal workload placement timing and location—to ensure that

you get all of these benefits for every deployment.

Cross-cloud and multi-cluster orchestration

Cross-cloud orchestration is the “how” behind active-active reliability, GPU failover, and

multi-cloud scaling.

Broadly, it’s the practice of building consistent abstractions across CSPs so that resource

provisioning and allocation is identical from provider to provider. Each CSP has its own

unique wrinkles, from its networking stack to its exact resource SKUs for GPUs and

associated CPU, RAM, and storage. The ultimate goal in cross-cloud orchestration is to be

able to treat a given GPU from any CSP as a fungible commodity while retaining high

uptime SLAs.

  

first node

first h100

sixth h100

fifth h100

seventh h100

eighth h100

second h100

third h100

fourth h100

second node

first h100 fifth h100

sixth h100

seventh h100

eighth h100

second h100

third h100

fourth h100

infiniband

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Cross-cloud orchestration ensures global resilience, protecting against provider-level and

regional failures. It also provides greater access to compute, especially in-demand

resources like B200 GPUs, as you can buy compute from anywhere.

Baseten’s Inference-optimized Infrastructure supports latency-sensitive workloads and

workloads with regulatory or data sovereignty constraints across any region or cloud

provider thanks to our cross-cloud capabilities.

Multi-node inference

Every infrastructure challenge is built around the assumption that models run on up to

eight GPUs, or a single node. However, some models are so large that they need more

than eight GPUs to run efficiently. For these cases, our Inference Stack supports multi-

node inference.
 

Multi-node adds two challenges at the infrastructure layer�

� Provisioning and lifecycle management for multiple, physically interconnected GPU

nodes adds complexity to capacity management�

� Different cloud providers use different interconnect and networking technologies, from

NVIDIA’s Infiniband to custom solutions, with varying bandwidths.

Baseten’s Inference-optimized Infrastructure abstracts away these challenges and

enables serving extremely large models on multi-node resources.
 

Part 05

Note: If the user chooses to use async, then the model's output is never stored
but the input is temporarily stored for async function to work, and then it's
permanently deleted.

Security and compliance for inference

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

For AI models to power mission-critical applications, they need to be secure and

compliant on top of being fast and reliable. That’s why security and compliance are baked

into every layer of the Baseten Inference Stack.

Companies around the world trust us with their most sensitive workloads. We're equipped

to meet the unique compliance needs of highly regulated industries, and we maintain

compliance with SOC 2 Type II, HIPAA, and GDPR.

Baseten’s Inference-optimized Infrastructure helps developers build compliant services.

Our geography-based routing enables compliance with data sovereignty laws, and all

requests are sent directly to workload planes without going through any intermediary

control plane.

We're in the business of providing AI inference infrastructure, not using customer data. By

default, we never store model inputs, outputs, or weights (if a user chooses to send async

requests, the associated inputs are temporarily stored for up to 24 hours in a secure queue

and requests are permanently deleted after inference occurs). Caching weights is

optional, and they can be permanently erased at any time.

Additionally, we implement robust security features to protect your data and workloads,

including data encryption, container security, network and access controls, workload

isolation, and extensive penetration testing. We ensure the necessary isolation to protect

your workloads with container security, network security, and strict privilege management.

For enterprises with even more extensive security and compliance needs, we offer single-

tenant environments and self-hosted deployments that provide enhanced control over

regulatory adherence, data localization, and customization of their inference

infrastructure. We discuss hosting options in more detail below.
 

Part 06

The Baseten Inference Stack in our
cloud or yours

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

We built Baseten from day one to be Kubernetes-native and cloud-agnostic.
This philosophy has made it possible for us to go multi-cloud early.

Your cloud on

your models

baseten infra

baseten cloud

80 TPS

401/4010 replicas

3413 RPM

Part 06

Baseten Cloud

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Baseten Cloud offers fully-managed inference infrastructure with all the performance

benefits of the Baseten Inference Stack. Today, we sit across 7+ public clouds and are

constantly adding new regions and capacity. Unlike single-cloud solutions, Baseten Cloud

is architected to run across providers and regions, giving the flexibility to avoid vendor

lock-in while optimizing for latency, GPU availability, and cost.

The flexibility in our infrastructure lets us offer our customers flexibility in where they run

their workloads. Baseten can deploy workloads supported by our entire Inference Stack

into your VPC, and optionally spill over excess traffic back to infrastructure in a Hybrid

deployment. This standardized and systematic cross-cloud capability is unique among

inference providers.

Basten Cloud is designed to meet the needs of teams scaling AI-native products, with

massive cross-cloud autoscaling, global compute availability, and the flexibility to region-

lock workloads as needed for compliance. We’re SOC 2 Type II certified, HIPAA and GDPR

compliant, and we never store model inputs or outputs.
 

baseten cloud

3413 Requests/m

78 TPS

124ms TTFT

https://www.baseten.co/deployments/baseten-cloud/

Part 06

Baseten Self-hosted

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

For teams with strict data security, privacy, or infrastructure requirements, Baseten Self-

hosted provides full access to our platform within your own cloud environment. You get all

the advantages of the Baseten Inference Stack—kernel and runtime performance, routing,

autoscaling, and observability—while maintaining complete control over your data,

compute, and networking.

Self-hosting ensures that no data ever leaves your environment. You know exactly where

your data is processed, how it flows, and who has access. Inputs and outputs are never

stored or shared, offering peace of mind for teams working with sensitive IP or regulated

workloads.
 

Your VPC

baseten infra

99.999% uptime

40% lower TCO

Requests

Your cloud on

https://www.baseten.co/deployments/baseten-self-hosted/
https://www.baseten.co/deployments/baseten-self-hosted/

Part 06

Baseten Hybrid

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

While self-hosting can be necessary for many teams with data residency or compliance

requirements, self-hosting alone often can’t accommodate traffic spikes or sudden scale.

The result is a trade-off between control and flexibility that’s hard to manage without over-

provisioning.

Baseten Hybrid removes this constraint by combining self-hosted control with optional,

elastic spillover to Baseten Cloud. You define where your workloads run—whether entirely

in your cloud or with dynamic routing to Baseten Cloud when demand spikes. It’s the

same Baseten experience, with no engineering effort required to manage infrastructure,

compliance, or scaling logic.

Baseten Hybrid is especially appealing to customers with large pre-existing commitments

or favorable GPU allocation and pricing from cloud providers, letting them spend down

existing commits while accessing flex capacity as needed. Whether you’re meeting

compliance requirements or managing cost-efficient scale, Baseten Hybrid delivers cloud

elasticity with the control of self-hosting.
 

Your VPC

baseten infra

99.999% uptime

40% lower TCO

Requests

Your cloud on

baseten cloud

https://www.baseten.co/deployments/baseten-hybrid/

Part 07

The future of high-performance
AI inference

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Consistently achieving demanding targets for latency, model performance, uptime, and

cost in production requires a holistic view of inference across applied performance

research and distributed infrastructure.

The Baseten Inference Stack combines our Inference Runtime based on years of model

performance optimizations on top of our Inference-optimized Infrastructure that we built

from day one for scale, flexibility, and security. It powers every model of every modality

deployed on Baseten.

Achieving similar performance and reliability from scratch requires a team of specialized

engineers working full-time to apply solutions like request routing, autoscaling, and

capacity management alongside runtime optimizations, custom kernels, and speculation

engines across regions and cloud providers.

The Baseten Inference Stack gives you all of these capabilities out of the box, while

leaving you with full visibility and control over how your model inference and infrastructure

is configured.

Most importantly, we continue to evolve our stack with day-zero support for new models,

improved runtimes for each generation of GPU hardware, the latest performance research

techniques, and new AI engineering patterns like compound AI. These constant

improvements keep your models current with the state of the art so that you never fall

behind despite the pace of the AI industry.

If your AI product is starting to hit a scale that exposes the limitations of off-the-shelf

models, other inference providers, or homegrown solutions, talk to our engineers about

how Baseten can support your models in production.
 

https://www.baseten.co/talk-to-us/

Contributors
Contributors are listed in alphabetical order by last name.

Ke Bao, Bryce Dubayah, Michael Feil, Pankaj Gupta, Mahmoud Hassan, Matt Howard, Phil

Howes, Philip Kiely, William Lau, Zhang Lu, Colin McGrath, Rachel Rapp, Abu Qader, Ujjwal

Sarin, Phillippe Siclait, Helen Yang, Bryan Zhang, Yineng Zhang

