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PART 01

The challenge of building fast, cost-
| efficient and reliable inference.

Running Al models in production isn’'t the same as building a demo. The shift to
production adds strict requirements for latency, uptime, and cost. When those
requirements aren’t met, applications feel slow or unreliable, and ultimately, end-users
suffer.

Spinning up a GPU with an inference framework (like vLLM or TensorRT-LLM) will get you
decent performance but moving from decent to excellent is hard. Excellent means low,
predictable latency under load, and at a price that makes sense at scale. Many systems
stumble here.

Closing this gap takes calibration on every layer of inference, from the models, to the
hardware to the many layers of software connecting them. The Baseten Inference Stack
bundles those optimizations into a single platform, combining the best of open-source
with our own proprietary enhancements. Every model or compound system you deploy on
Baseten inherits these benefits by default.

In this guide, we'll cover:

1. The challenges that limit large-scale inference.

2. The infrastructure and runtime techniques that solve them.

3. How Baseten applies these techniques—plus modality-specific optimizations—in our
Inference Stack.

4. How we enable cloud agnosticism to run the Baseten Inference Stack in our cloud,
yours, or both.
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PART 02

Why building performant
| inference at scale is challenging

In production, performant inference means low latency, model performance, high
throughput, and maximal reliability.

First, inference must be fast to ensure your product feels instant. Whether you're building
code completion tools or dictation-driven applications, optimizing time to first byte and
overall latency coupled with model performance directly impacts end-user experience.

But that’s not enough. Inference must stay fast irrespective of the complexity of your
workload, magnitude or variability of incoming traffic, and capacity (or reliability) of your
cloud provider, all without compromising your economics.

New performance research is published at breakneck speed. Often, techniques are used
in production that were introduced just weeks or months prior, like when DeepSeek V3
and R1 introduced Multi-head Latent Attention (MLA) to reduce KV cache demands on
VRAM. When new models like DeepSeek drop, running them efficiently in production
requires day-zero support for these techniques.

In short, it's nearly impossible to keep up with new techniques to support state-of-the-art
model performance, in addition to reliability, and cost-efficiency without dedicated
performance research and distributed infrastructure teams.

% ba S e‘te N baseten.com | hi@baseten.com © BASETEN 2025. ALL RIGHTS RESERVED.


https://arxiv.org/abs/2502.07864

PART 02

Challenge 1: Speed

There are many metrics used to measure inference speed across modalities: total request
latency, time to first token (TTFT), time to first byte (TTFB), inter-token latency (ITL), and
perceived tokens per second (TPS).

To make inference fast, you need to be strategic about regional workload placement to ensure
that the servers are as close as possible to the caller and that you appropriately apply a number
of techniques from recent model performance research, including but not limited to:

« Low-level optimizations like kernel fusion, memory hierarchy optimization, attention kernels,
asynchronous compute, and PDL.
« Speculation strategies like draft-target speculative decoding, Medusa, and Eagle self-

speculation.
« KV cache re-use and offloading to avoid recomputing large prefixes.

« Disaggregated serving to scale, prefill and decode on separate hardware with different

runtimes.
« Post-training quantization in floating-point precisions with negligible gains to perplexity.

« Sending requests to geographically proximate GPUs and routing to warm KV and LoRA
caches.

While each technique is powerful individually, it takes a combination to be viable in production

as each optimization only targets part of the problem. For example, KV cache re-use improves
TTFT tremendously but does little for inter-token latency.
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PART 02

Challenge 2: Reliability

High uptime (99.99% or better) is necessary but not sufficient for a reliable inference service.
While avoiding downtime is essential, ensuring that your users always get access and see
consistent performance is critical. In addition, the model outputs must consistently have low
latencies as well. Many SLAs are based on p90 or p99 latency, or the idea that 90% or 99% of all
requests are faster than a given target and it is not acceptable.

Achieving strong reliability metrics requires building robust infrastructure with:

« Autoscaling to increase capacity in response to traffic spikes.

« Active-active reliability and cross-cloud orchestration to fail over if nodes, zones, regions, or
cloud providers go down.

« Strong alerting and automatic failure handling to mitigate hardware, networking, or driver
failures from downstream vendors.

« Appropriate handling of multiple protocols (HTTPS/WebSocket/gRPC) to reliably support all
modalities and traffic patterns.

Building this infrastructure requires rigorous and consistent abstractions to smooth over the
numerous variations between cloud service providers.
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PART 02

Challenge 3: Cost-efficiency

If you had infinite resources, you could overprovision your systems to be safe when traffic
increases. However, overprovisioning is enormously expensive and wasteful at scale.
Utilization is the key metric to track to ensure sufficient headroom without unnecessary
overprovisioning.

Inference is cost-efficient in production when you:

Deploy models on hardware that fits their requirements.

Scale different models independently as needed.

Have access to enough resources to scale up confidently.

Automatically scale back down as needed, without manual monitoring or intervention.
Scale quickly (fast cold starts), even from zero, while keeping incoming requests safely
queued.

A compounding challenge is that GPUs, especially in-demand recent-generation GPUs like
B200s, must be acquired from cloud service providers via long-term reservations in blocks of
nodes. Having the flexibility to leverage a hybrid infrastructure (proprietary cloud or Baseten)
that gives the option to access additional compute resources when scale is needed can be a
game changer in terms of cost optimization while maintaining high uptime and performance.
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PART 03

'Key requirements of a production-
' ready inference service

To be production-ready, an inference service needs a unified approach to everything from
the major pillars of infrastructure and runtime down to each millisecond-level
implementation detail.

At Baseten, our Inference Stack is the cumulation of years of work on scalable, cloud-
agnostic, fault-tolerant infrastructure paired with highly performant runtimes for every

model and modality, wrapped in a cohesive developer experience. With the Baseten
Inference Stack, you can:

Build real-time Al applications with low-latency model inference.

Access compute across multiple cloud providers for flexible capacity and economics.
Maintain consistent performance across regions and clouds while retaining 99.99%
uptime or better at scale.

Take complete control of your inference infrastructure with file-based configuration
and programmatic control—we don’t believe in black boxes.

Our obsession with production shows up in every component of our Inference Stack,
which powers everything on Baseten from our Model APIs to enterprise customers’ self-

hosted deployments while maintaining the highest standards of performance, reliability,
and cost-effectiveness.
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' PART 04

Baseten Inference Stack:
Combining infrastructure and runtime optimizations

The Baseten Inference Stack consists of
two tightly integrated layers:

I 1. Inference Runtime:
This layer focuses on how models
actually run, including runtime
optimizations, custom kernels,
speculation engines, and more.

INFERENCE RUNTIME

1 é,\'@’o
D QQ'\:O
|2. Inference-optimized Infrastructure: . \Qs?‘
q q . S
This layer includes request routing, : Q,\f-;‘ <
; i : 1 Q/QQ}
autoscaling, and multi-cloud capacity : e

management to ensure end users are
reliably connected to the right
resources.

o
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PART 04

Runtime optimizations sit on top of your inference infrastructure,
and at the heart of our performance differentiation.

We use a combination of custom kernel optimizations, decoding strategies, modality-
specific runtimes, and hand-picked features to squeeze every drop of performance out
of models of every size and modality.

Custom kernels

Al model inference executes on GPUs, and kernels are the building blocks of GPU
execution. Each kernel is a piece of low-level code that performs a specific computation.
Poor kernel performance slows down the entire inference process, especially for high-
throughput workloads.

We use custom kernel optimizations and select from state-of-the-art inference
frameworks like TensorRT-LLM and SGLang to optimize specific models and workloads
along with the hardware they run on. Specifically, we leverage techniques like:

« Kernel fusion:
Reduces overhead by combining multiple operations (e.g., matrix multiplication, bias
addition, activation functions) into a single GPU kernel. This minimizes memory reads/
writes between operations and reduces kernel launch overhead.

« Memory hierarchy optimization:
Ensures tensors are stored and accessed in the most efficient layer of GPU memory,
prioritizing registers and shared memory over slower global memory.

« Attention kernels:
Workload tailored attention kernels optimized to address speed, memory footprint,
context length, and scalability.

« Asynchronous compute and PDL:
Allows concurrent execution and uses kernel launch patterns supported by the recent
Hopper and Blackwell architectures for better GPU utilization (relevant for workloads
running on H100s and H200s).

CONTINUED >
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First, we benchmark frameworks like TensorRT-LLM, SGLang, and vLLM to select the best-
performing framework based on workload characteristics and target hardware. Then, we
build on top of what these frameworks provide, fixing bugs and extending functionality to
support specialized inference workloads. Optimizing kernels gives us higher tokens per
second (TPS), faster time to first token (TTFT), and improved performance numbers
overall.

Speculation engine

The decode phase, where tokens are generated autoregressively, is often the slowest and
most expensive part of inference. Decode generates tokens one-by-one and is generally
bottlenecked on VRAM bandwidth.

Speculative decoding refers to a broad range of strategies around a common idea: what if
the model could generate more than one token per forward pass. This would massively
improve ITL and give users a better experience with lower total request latency and higher
perceived TPS.

The classic approach to speculative decoding is a draft-target system. In this approach, a
smaller draft model "guesses" several tokens ahead. The full (target) model then verifies
these guesses. Because verification is cheaper than generation, this strategy can double
or triple TPS if the draft model is good at guessing tokens.

Input Tokens  Draft tokens
1. Draft model generates four

draft tokens ... XY Z ABED

) Input Tokens  Draft tokens
2. Target model validates

draft tokens ... XYZ| ABED

3. Target model generates Input Tokens  Draft tokens
oneltoken after accepted XY Z ABC
prefix

CONTINUED >
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Speculative decoding performance in the wild varies massively by model, by topic, and by
prompt. Our speculation engine supports numerous speculation strategies and can
dynamically adjust parameters based on live traffic.

Supported speculative decoding methods include:

« Eagle3
Our most advanced draft model.

« Lookahead decoding
Predicts next tokens based on previous context.

o Medusa
A self-speculative strategy created by fine-tuning and grafting additional decode
heads onto the target model.

« Draft-based decoding
Implementations of draft-target speculative decoding optimized for specific use cases.

Speculative decoding shines at low batch sizes when there's spare GPU compute. At high
batch sizes, it's dynamically turned off because verification becomes costly under
compute saturation.

Optional quantization

Due to native training precision, by default most Al models run in FP16 or BFLOAT16, both
16-bit floating point number formats. In FP16, each parameter of model weights takes 2
bytes of VRAM to store and load, and the compute runs on Tensor Cores built for 16-bit
numbers.

GPUs support other quantizations. Lovelace and Hopper GPU architectures introduced
support for FP8, an 8-bit floating point format, while Blackwell added FP4, cutting the size
in half again. These number formats offer a higher dynamic range than integer-based
formats from previous generations.

Post-training quantization changes the precision of model weights, and optionally other
values like KV caches. Quantized models require less VRAM to store, less VRAM
bandwidth for decode, and offer higher FLOPS on Tensor Core compute for faster prefill.

CONTINUED >
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However, quantization runs the risk of affecting model output quality. To mitigate this risk, we:
« Defaulting to floating point formats like FP8 and FP4 which preserve model quality thanks to
their high dynamic range.
« Carefully selecting the optimal quantization scheme per model and GPU type.
« Benchmark models after quantization to ensure that perplexity and eval benchmark scores
have only negligible change.
« Spot-check these benchmarks against real-world inference samples.

Model quantization on Baseten is always completely optional and transparent. We never quantize
your models without permission and you retain full control over your model server configuration.

KV cache optimizations

In LLMSs, a lot of inference time is spent during the prefill phase—processing the prompt before
generation begins. The key-value (KV) cache stores this prefill state, so it can be reused in
subsequent requests with similar context, like a long system prompt or an entire codebase.

Baseten introduces several enhancements to improve the usefulness of KV caches:

« KV cache-aware routing
Automatically routes requests to replicas that have the necessary context cached.

« KV cache availability
Reuses cache for shared prompts like “You are a helpful assistant”

« CPU offloading
Moves unused cache blocks to CPU RAM to reduce GPU memory pressure.

- Disk-based cache
Uses InfiniBand to distribute cache offloading across nodes—parallel disk reads perform nearly
at CPU speeds.
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Topology-aware parallelism

When serving large models on multiple GPUs and across nodes, model parallelism strategies like
tensor parallelism (TP) and expert parallelism (EP) minimize communication overhead. Our runtime
blends TP and EP along with other parallelism techniques to serve large models efficiently.

TENSOR PARALLELISM

I
---------------------------
---------------------------

o) [ ) ) ) ) (o) ) o) ) o)) o) ) ]
---------------------------
---------------------------

I

EXPERT PARALLELISM

| H1:00 \ \ H1:00 \ \ Hl:OO \ \ H1:00 \ | H1:00 | \ H1:00 \ \ H1:00 \ \ H1:00 \
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Request prioritization

For workloads that don’t use disaggregated serving to separate prefill and decode onto
different hardware, there’s still a way to improve TTFT at the runtime layer: request
prioritization.

Our runtime prioritizes prefill steps over decode, improving perceived speed with lower
TTFT. As new requests come in, compute is allocated in favor of prefill. For example, if you
have a request come in with 100,000 input tokens, prioritizing the compute cycles
required for prefill ahead of decode steps from other requests in the batch ensures low
TTFT (especially with KV cache reuse) while only minimally affecting ITL in bandwidth-
constrained decode.

Continuous batching

Traditional batching waits for requests to arrive before processing them together. This
introduces unacceptable latency, especially for real-time applications.

Our Inference Runtime uses the industry gold standard: continuous token-level batching.
Instead of waiting for full requests, we batch at the token level.

This means:
« Requests canjoin an active batch mid-stream
« Latency is minimized without compromising throughput
« Noidle time is spent waiting for request alignment

The result is higher GPU utilization and better average response times, especially under
bursty traffic.

Structured outputs and tool use

Structured outputs, or returning LLM output based on a pre-determined schema, is
essential for enterprise use cases. They enable programmatic interactions and
composability with APIs, unlocking agentic workflows built on models that support tool
use.

CONTINUED >
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LLMs can be prompted to generate structured output, like JSON objects, but this is
unreliable. Our Inference Runtime gives 100% guaranteed schema adherence for
structured output by biasing logits according to a state machine generated prior to
decode, ensuring no reduction in inter-token latency. This means your agents and tool
calls always receive valid outputs from LLMs running on Baseten.

Modality-specific runtimes

When Al engineers talk about model performance, we often default to talking about LLM
inference. From KV caching to speculative decoding, many of the most important
techniques were developed with LLM inference in mind. However, there are many other
modalities of generative Al models that can benefit from faster production inference.

The Baseten Inference Stack supports high-performance inference for every modality,
including:

Large language models like Llama, Qwen, and DeepSeek.

Automatic Speech Recognition (ASR) models like Whisper.

Speech synthesis models like Orpheus TTS.

Embedding, reranking, classification, and reward models like Nomic Embed Code.
Image and video generation models like FLUX.

One key insight in our modality-specific approach is that many non-LLM models, like TTS
and embedding, have an LLM backbone. And some that don't, like Whisper for ASR, are
still autoregressive transformers-based models which can be optimized with similar tools
and techniques. Others, like diffusion-based image and video models, require entirely
different approaches.

Large language models

Every aspect of the Baseten Inference Stack is built with LLMs in mind. LLMs are among
the largest and most demanding of inference workloads, and benefit from nearly every
technique and feature used in our Inference-optimized Infrastructure and Inference
Runtime.

CONTINUED >
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LLMs—often hundreds of gigabytes in size—benefit at the infrastructure layer from our
cold start optimizations and active-active reliability. Once running, intelligent request
routing improves KV cache and LoRA cache hit rate while balancing traffic across
replicas. The largest models also need multi-node inference and disaggregated serving,
both of which are provided by our infrastructure layer.

The runtime layer is designed to run the largest LLMs with low latency and high
throughput for large scale deployments. KV cache re-use and request prioritization ensure
fast TTFT for large inputs, while windowed attention extends that support to long context
models. Quantization and our speculation engine provide low inter-token latency, keeping
the user’s perceived tokens per second high.

With support for every major LLM architecture and features like structured output and tool
use, the Baseten Inference Stack is the best choice for LLM inference in production.

Speech-to-text models
Speech to text (aka automatic speech recognition) models are the foundation of

transcription and dictation products as well as an essential component of voice pipelines.

The Baseten Inference Stack includes the world’s fastest ASR runtime.

The main performance metrics for this modality are:

« Speed factor, or how many times faster than real time a transcript is generated. For
Whisper, a powerful open-source ASR model, we achieve a speed factor of over 1,000.

« Round-trip latency, or how quickly a single chunk (up to 30 seconds) of audio can be
transcribed and returned. For Whisper, we process these chunks in less than 200
milliseconds.

« Quality, as measured by WER (word error rate) for accurate transcripts that are usable
in-product.

CONTINUED >
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Speed factor is relevant for use cases like podcast transcription where users upload large
files, while round-trip latency matters for real-time use cases like dictation.

We achieve state-of-the-art performance in both speed factor and round-trip latency
using a combination of a TensorRT-LLM-based runtime and a proprietary chunking
algorithm that supports retries for failed chunks, improving quality. Together, these
techniques provide not only the fastest but also the most accurate ASR runtime as

measured by word error rate

Whisper transcription speed factor (higher is better)

10

Times faster

Flash

OpenAL Attention

? baseten

Faster
Whisper

Torch
Compile

WhisperS2T

baseten.com | hi@baseten.com
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Text-to-speech models

On the other side of the speech pipeline, TTS (text-to-speech, aka speech synthesis)
models are the voice behind voice agents. For TTS models, the main latency metric is
TTFB, or the time it takes to generate the first byte of audio. This is important for online use
cases like real-time conversation agents. The main throughput metric is simultaneous
streams, or how many real-time users a single GPU can support (improving economics for
production deployments).

Speech synthesis models like Orpheus TTS are built on an LLM backbone. By adapting
our LLM tooling from within the Baseten Inference Stack and combining it with streaming
protocols like WebSockets, we're able to achieve best in class latency and throughput for
TTS models.

Time to first byte with Orpheus TTS

200ms

Base TRT-LLM (H100 MIG) TRT-LLM (H100)

Thanks to this performance and throughput combined with Baseten’s reliability, the
foundation model lab behind Orpheus TTS selected Baseten as their preferred inference
partner for running Orpheus in production.
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Embedding models

Efficient embedding inference must support both high-throughput batch processing—
such as vectorizing an entire corpus—and low-latency, single-query inference for real-
time applications. That said, optimizing for one often degrades the other. Large token
inputs risk out-of-memory (OOM) errors, small batch sizes leave GPU throughput
untapped, and traditional runtimes struggle to balance performance across variable
workloads.

Baseten Embedding Inference (BEI) is built from the ground up to meet these demands. At
the core is a TensorRT-LLM-based engine designed to balance latency and throughput by
dynamically packing tokenized inputs based on sequence length rather than request

count. This allows BEI to maximize GPU utilization without triggering out-of-memory
errors, even under large or uneven workloads.

To further improve performance, BEI incorporates quantization to reduce memory
requirements while maintaining model accuracy. It also uses fused transformer layers and
optimized attention kernels to minimize memory bandwidth usage and reduce compute
overhead. These optimizations make BEI well-suited for both batch-heavy ingestion
workloads and millisecond-scale interactive applications.

At the infrastructure layer, BEI benefits from autoscaling to process large corpora of
documents in parallel, along with strong queueing primitives that ensure requests aren’t
lost while scaling.

As aresult, BEl is the most performant embeddings solution on the market: over 2x higher
throughput than the previous-leading solution, with 10% lower latency. BEI supports real-
time applications like RAG and search, while also scaling up to process entire corpora
efficiently. Whether you're embedding documents or reranking outputs, BEI delivers the
performance needed to systems fast and cost-effective.

CONTINUED >
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Image and video generation models

Image and video generation models require a very different runtime than other modalities
as the runtime must support diffusors. For these models, the main performance metric is
end-to-end request latency to generate an image or video.

Diffusors requires its own set of custom kernels, from torch compilation and efficient
attention to post-training quantization. Most of the gains in image model inference come
from this low-level CUDA work.

However, one unique thing about image and video models is that they have much more
latitude than LLMs and similar models in trading off small quality losses for big speed
gains. Techniques like latent consistency for few-step inference, along with more
traditional approaches like distillation, can yield major performance gains. And there are
plenty of prompt-level adjustments, from image resolution to diffusion step count, to
dynamically trade off between speed and quality.

Baseten’s Inference Runtime supports compilation and the latest kernel optimizations for

image and video models across both popular open-source inference frameworks and
custom servers.
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PART 04

Runtime optimizations matter when your model executes; your
infrastructure gets you to that starting line. With every hop, there is
room for latency and failures to slip into your system.

Intelligent request routing

Most load balancers assume that any request can be handled on any machine with the
same performance. Baseten’s load balancers go a step further by relying on KV caches
and model adapters to achieve both latency and quality goals.

Serving requests on hardware that is physically closer to the requests’ origin, or already
has useful information loaded into memory, can make a huge difference in inference
speed. To route requests intelligently, we leverage techniques like geo-aware load
balancing with KV cache-aware and LoRA-aware routing.

Geo-aware load balancing

Geo-aware load balancing is critical for latency-sensitive workloads that are globally
distributed. It reduces network latency by sending requests to the most proximate
compute. Otherwise, data has to travel longer physical distances through multiple network
hops, significantly increasing transmission time and the chance of congestion or packet
loss.

For instance, if a request comes to your model from Germany, and you have model
replicas running in US East, US West, and London, geo-aware load balancing would send
the request to London. This is especially important for real-time workloads, like Al phone
calling and agents.
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KV cache-aware routing

The Key-Value (KV) cache stores key and value tensors from the attention layers of a
transformer during inference. Instead of recomputing past context for each new token, the
model reuses this cached data to generate the next token faster. It's essential for low-
latency text generation for model families like Llama, DeepSeek, and Qwen.

KV cache-aware routing involves sending requests to replicas that already hold relevant
context, like the cached prompt. For instance, if you have 10 different replicas, sending
your requests to the replica that has recently seen similar requests increases the chances
of a cache hit.

This can dramatically reduce prefill latency, especially for chatbot-like workloads. For

example, the latest messages (requests) would ideally be sent to the same replica that
processed the previous requests. Otherwise, the new replica will also have to load the
missing context into memory.

LoRA-aware routing

Similar to KV cache-aware routing, LoRA-aware routing involves sending requests to
replicas that have a particular LoRA (low-rank adaptation, similar to a fine-tuned model
head) loaded into memory.

LoRA-aware routing is often relevant forimage generation and LLM use cases, which can
leverage hundreds to thousands of LoRAs in production. Sometimes, in these cases, only
a subset of the LoRAs can fit into memory; LoRA-aware routing ensures each request is
directed to a replica with the correct adapter pre-loaded. Otherwise, the replica has to first
download the relevant LoRA to serve the request.

Protocol flexibility

Different protocols are better suited for different workloads. In addition to the typical HTTP
request-response paradigm, we leverage WebSockets and gRPC support for workloads
on a case-by-case basis to improve performance.

CONTINUED >
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In contrast to HTTP—which has the additional overhead of opening and closing a new
connection per request—WebSockets enable a continuous client-server connection.
WebSockets are useful for transmitting unstructured and real-time data (like audio), where
the server receiving the request can parse it and process it downstream. They’re
particularly relevant for use cases requiring real-time streaming, like Al phone calls.

Similar to WebSockets, gRPC also enables bi-directional streaming support, but for
structured data. Requests transmitted via gRPC should follow a predefined schema,
which takes away the load of having to parse the input. This additional validation layer
makes gRPC slightly slower than WebSockets, but is especially useful for use cases that
involve translating mediums across a request (like going from text to video).

Autoscaling

The importance of performant autoscaling cannot be overstated. It determines:
1. How quickly you can scale to meet a burst in traffic
2. How cost-efficient your hardware usage is when traffic slows down

Whether spinning up a new model replica takes five minutes or 30 seconds makes a huge
difference in terms of your P99 and P90 latency (and, of course, your end-user
experience). We use a combination of in-house cold start optimizations and expert tuning
to set parameters for optimal performance with awareness of customers’ target SLAs.

SLA-aware autoscaling

Hitting latency and cost-effectiveness targets requires configuring your autoscaling
settings accordingly. That said, determining these parameters often requires implicit
knowledge about how they suit different types of workloads.

Settings you have to configure include the:
« Minimum and maximum number of replicas (the lowest and highest number of active
replicas)
« Autoscaling window (the time window for traffic analysis before replicas are scaled up
or down)
« Scale down delay (waiting period before unused replicas are removed)
« Concurrency target (hnumber of requests a replica should handle before scaling)

CONTINUED >
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Within these boundaries, our autoscaler is optimized to dynamically adjust the number of
active replicas to handle variable traffic and meet your SLAs (while minimizing idle
compute costs).

Baseten provides guidance on the right parameters for specific workloads and
programmatically exposes all autoscaling settings so power users have full control to tune
as they see fit.

Fast cold starts

A “cold start” is the entire time it takes to provision GPU resources, load model weights,
images, and other dependencies onto the GPU, activate the model on the GPU, and begin
serving traffic. During this process, you also need to hold excess requests in a queue and
release them as replicas become available.

With new GPUs like B200s offering much larger VRAM, models are getting larger in turn.
DeepSeek-R1 weighed in at 671B parameters—that’s 720 GB of model weights in FP8—and
Llama 4 Behemoth promising to top 2 trillion parameters, cold start optimizations are
more important than ever. Without substantial engineering effort at each stage of the
process, cold starts for these incredibly large models can take hours.

Instead, we want to measure cold starts on the scale of seconds. Fast cold starts let you
spin up new model replicas quickly, minimizing latency spikes during traffic surges.
Knowing that cold start times are fast also lets you overprovision less and scale down
more aggressively, improving utilization and thus cost.

To optimize cold start times, we use a combination of:
« Network acceleration via parallelized byte-range downloads.
« Specialized pods that accelerate loading times.
« Caching of model weights, builds, dependencies, and data at both the cluster and
node level.

As aresult, we're able to cold start most models in seconds and the largest models in a
handful of minutes.
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Independent component scaling

Al applications are increasingly built on multi-model, multi-stage compound Al workloads
where several inference steps need to be run in a coordinated fashion. If you have two or
more models, they are likely to have different hardware and scaling needs.

In this situation, provisioning resources as a monolith results in either bottlenecks or
overprovisioning. Instead, we decomposed autoscaling to scale individual processes
independently. This enables us to:

« Right-size resources per step, running each Al model on best-fit GPUs and business
logic on cheap CPU instances.

« Remove processing bottlenecks by enabling independent replica counts for each step
in a pipeline.

« Ensure cost efficiency by avoiding overprovisioning steps that have lower demand.

For instance, when running a transcription workload, you can separate audio chunking (a
processing step) from the actual transcription (which uses an Al model). The first step can
be run on aless-expensive CPU, and the second step can scale independently to
accommodate the larger number of audio chunks. This lowers costs by:

« Preventing idle GPUs, since chunking is run in parallel, preventing bottlenecks.
« Using the correct hardware per step (i.e., using more powerful GPUs only for the steps
requiring them).

We built an entire SDK and toolkit for ultra-low-latency compound Al systems on top of
this design: Baseten Chains. Chains is what enabled us to build the fastest, most cost-
efficient Whisper transcription on the market.
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Disaggregated prefill and decode phases for LLMs

LLM inference has two phases:
« Prefill phase:
Loads the context (including the full input prompt and communication history) and
builds an initial Key-Value (KV) cache.
« Decode phase:
Generates the response token-by-token, using the KV cache for faster token prediction.

Prefill and decode have different resource needs (prefill is generally compute-bound while
decode is generally bandwidth-bound) and benefit from different kernel optimizations.

Disaggregating prefill and decode by running each phase on separate GPUs reduces
latency through independent scaling. For instance, you can assign more GPUs to prefill to
reduce TTFT. And inference is overall faster thanks to runtime enhancements from phase-
specific optimization as well as the elimination of competition for resources between the
two phases.

Multi-cloud capacity management

Multi-cloud capacity management is a set of automations, tools, and practices around
provisioning and operating compute resources across multiple cloud service providers
(CSPs) and regions in a standardized and repeatable manner.

Baseten’s multi-cloud capacity management efforts:

Ensures high uptime (99.99%) through active-active reliability
Enables the lowest possible latency through flexible compute allocation

Supports data residency and sovereignty requirements

« Unlocks an optimal customer cost-performance ratio
Our north star is to deliver consistent performance regardless of CSP, region, or unique
customer requirements.

CONTINUED >
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Active-active reliability and GPU failover

Active-active reliability refers to a system architecture where multiple replicas or regions
are live and serving traffic simultaneously. If one fails or degrades, the others continue
handling requests without disruption, ensuring high availability and fault tolerance via
seamless failover.

Active-active reliability improves both uptime and economics by:
« Insulating against provider, region, and node-level outages (e.g. if AWS us-east-1 goes
down, your service stays up)
« Balancing workloads across compute to provide the right cost profiles and SLA
guarantees.
« Gaining access to more compute by spreading your workloads across multiple
providers.

Baseten’s Inference-optimized Infrastructure handles the key challenge of active-active
reliability—determining optimal workload placement timing and location—to ensure that
you get all of these benefits for every deployment.

Cross-cloud and multi-cluster orchestration
Cross-cloud orchestration is the “how” behind active-active reliability, GPU failover, and
multi-cloud scaling.

Broadly, it's the practice of building consistent abstractions across CSPs so that resource
provisioning and allocation is identical from provider to provider. Each CSP has its own
unique wrinkles, from its networking stack to its exact resource SKUs for GPUs and
associated CPU, RAM, and storage. The ultimate goal in cross-cloud orchestration is to be
able to treat a given GPU from any CSP as a fungible commodity while retaining high
uptime SLAs.

CONTINUED >
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Cross-cloud orchestration ensures global resilience, protecting against provider-level and
regional failures. It also provides greater access to compute, especially in-demand
resources like B200 GPUs, as you can buy compute from anywhere.

Baseten’s Inference-optimized Infrastructure supports latency-sensitive workloads and
workloads with regulatory or data sovereignty constraints across any region or cloud
provider thanks to our cross-cloud capabilities.

Multi-node inference
Every infrastructure challenge is built around the assumption that models run on up to
eight GPUs, or a single node. However, some models are so large that they need more
than eight GPUs to run efficiently. For these cases, our Inference Stack supports multi-

node inference.

FIRST NODE

FIRST H100

Multi-node adds two challenges at the infrastructure layer:

INFINIBAND

SECOND NODE

FIRST H100

« Provisioning and lifecycle management for multiple, physically interconnected GPU
nodes adds complexity to capacity management.
« Different cloud providers use different interconnect and networking technologies, from
NVIDIA's Infiniband to custom solutions, with varying bandwidths.

Baseten’s Inference-optimized Infrastructure abstracts away these challenges and
enables serving extremely large models on multi-node resources.

? baseten
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PART 05

| Security and compliance for inference

For Al models to power mission-critical applications, they need to be secure and
compliant on top of being fast and reliable. That's why security and compliance are baked
into every layer of the Baseten Inference Stack.

Companies around the world trust us with their most sensitive workloads. We're equipped
to meet the unique compliance needs of highly regulated industries, and we maintain
compliance with SOC 2 Type I, HIPAA, and GDPR.

Baseten’s Inference-optimized Infrastructure helps developers build compliant services.
Our geography-based routing enables compliance with data sovereignty laws, and all
requests are sent directly to workload planes without going through any intermediary
control plane.

We're in the business of providing Al inference infrastructure, not using customer data. By
default, we never store model inputs, outputs, or weights (if a user chooses to send async
requests, the associated inputs are temporarily stored for up to 24 hours in a secure queue
and requests are permanently deleted after inference occurs). Caching weights is
optional, and they can be permanently erased at any time.

Additionally, we implement robust security features to protect your data and workloads,
including data encryption, container security, network and access controls, workload
isolation, and extensive penetration testing. We ensure the necessary isolation to protect
your workloads with container security, network security, and strict privilege management.

For enterprises with even more extensive security and compliance needs, we offer single-
tenant environments and self-hosted deployments that provide enhanced control over
regulatory adherence, data localization, and customization of their inference
infrastructure. We discuss hosting options in more detail below.

Note: If the user chooses to use async, then the model's output is never stored
but the input is temporarily stored for async function to work, and then it's
permanently deleted.
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PART 06

| The Baseten Inference Stack in our
| cloud or yours

We built Baseten from day one to be Kubernetes-native and cloud-agnostic.
This philosophy has made it possible for us to go multi-cloud early.

BASETEN CLOUD

@ BASETEN INFRA

<
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PART 06

Baseten Cloud

Baseten Cloud offers fully-managed inference infrastructure with all the performance

benefits of the Baseten Inference Stack. Today, we sit across 7+ public clouds and are
constantly adding new regions and capacity. Unlike single-cloud solutions, Baseten Cloud
is architected to run across providers and regions, giving the flexibility to avoid vendor
lock-in while optimizing for latency, GPU availability, and cost.

The flexibility in our infrastructure lets us offer our customers flexibility in where they run
their workloads. Baseten can deploy workloads supported by our entire Inference Stack
into your VPC, and optionally spill over excess traffic back to infrastructure in a Hybrid
deployment. This standardized and systematic cross-cloud capability is unique among
inference providers.

Basten Cloud is designed to meet the needs of teams scaling Al-native products, with
massive cross-cloud autoscaling, global compute availability, and the flexibility to region-
lock workloads as needed for compliance. We're SOC 2 Type Il certified, HIPAA and GDPR
compliant, and we never store model inputs or outputs.

<

<> BASETEN CLOUD
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PART 06

Baseten Self-hosted

For teams with strict data security, privacy, or infrastructure requirements, Baseten Self-
hosted provides full access to our platform within your own cloud environment. You get all
the advantages of the Baseten Inference Stack—kernel and runtime performance, routing,
autoscaling, and observability—while maintaining complete control over your data,
compute, and networking.

Self-hosting ensures that no data ever leaves your environment. You know exactly where
your data is processed, how it flows, and who has access. Inputs and outputs are never

stored or shared, offering peace of mind for teams working with sensitive IP or regulated
workloads.
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PART 06

Baseten Hybrid

While self-hosting can be necessary for many teams with data residency or compliance
requirements, self-hosting alone often can't accommodate traffic spikes or sudden scale.
The result is a trade-off between control and flexibility that’s hard to manage without over-
provisioning.

Baseten Hybrid removes this constraint by combining self-hosted control with optional,

elastic spillover to Baseten Cloud. You define where your workloads run—whether entirely
in your cloud or with dynamic routing to Baseten Cloud when demand spikes. It's the
same Baseten experience, with no engineering effort required to manage infrastructure,
compliance, or scaling logic.

Baseten Hybrid is especially appealing to customers with large pre-existing commitments
or favorable GPU allocation and pricing from cloud providers, letting them spend down
existing commits while accessing flex capacity as needed. Whether you’re meeting
compliance requirements or managing cost-efficient scale, Baseten Hybrid delivers cloud
elasticity with the control of self-hosting.
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PART 07

‘The future of high-performance
| Al inference

Consistently achieving demanding targets for latency, model performance, uptime, and
cost in production requires a holistic view of inference across applied performance
research and distributed infrastructure.

The Baseten Inference Stack combines our Inference Runtime based on years of model
performance optimizations on top of our Inference-optimized Infrastructure that we built
from day one for scale, flexibility, and security. It powers every model of every modality
deployed on Baseten.

Achieving similar performance and reliability from scratch requires a team of specialized
engineers working full-time to apply solutions like request routing, autoscaling, and
capacity management alongside runtime optimizations, custom kernels, and speculation
engines across regions and cloud providers.

The Baseten Inference Stack gives you all of these capabilities out of the box, while

leaving you with full visibility and control over how your model inference and infrastructure
is configured.

Most importantly, we continue to evolve our stack with day-zero support for new models,
improved runtimes for each generation of GPU hardware, the latest performance research
techniques, and new Al engineering patterns like compound Al. These constant
improvements keep your models current with the state of the art so that you never fall
behind despite the pace of the Al industry.

If your Al product is starting to hit a scale that exposes the limitations of off-the-shelf
models, other inference providers, or homegrown solutions, talk to our engineers about
how Baseten can support your models in production.
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