
Model Guide

Deepseek



Table of Contents

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Part 01

Part 02

Part 03

Part 04

Part 05

Introduction



What are the cDeepSeek models?


Why deploying DeepSeek is challenging


Deploying, optimizing, and scaling DeepSeek in production


Conclusion

� What makes DeepSeek unique?


� Popular DeepSeek models


� DeepSeek in the LLM landscape



� Infrastructure challenges


� DeepSeek model parallelism


� Serving DeepSeek on B200s and H200s


� Serving DeepSeek on H100s


� B200 vs. H200 vs. H100 for DeepSeek model serving


� Model performance challenges


� DeepSeek inference metrics to track


� Quantization


� Inference frameworks


� Caching


� Decoding strategies



� Deploying DeepSeek in production


� DeepSeek security and compliance


� Scaling DeepSeek in production


� Optimizing DeepSeek in production





The complete DeepSeek model guide: 
Deploying, scaling, and optimizing DeepSeek in production

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

When DeepSeek V3 and R1 dropped, they showed AI builders that they can get the quality 

of closed-source models—comparable to GPT-5, GPT-4o, and Claude 3—at a fraction of 

the cost, and with more control over what happens with their data. But while DeepSeek 

closed the gap on open-source vs. closed-source model quality, it left another one: how to 

deploy, scale, and optimize the DeepSeek models in production.



In this guide, we'll cover exactly that. 



We’ll start by looking at what makes the DeepSeek models special, yet difficult to serve. 

We’ll look at the core challenges facing DeepSeek deployments at the infrastructure and 

runtime layers, as well as the different tools and techniques you can use to solve them. 

Finally, we’ll cover what a production-ready setup looks like for serving DeepSeek 

performantly, reliably, and securely at scale.
 

Part 01



Part 02

What are the DeepSeek Models?

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

DeepSeek is a model family of open-source large language models (LLMs). The DeepSeek 

model family became extraordinarily popular with the release of DeepSeek V3, their flagship 

model, and DeepSeek R1, a fine-tuned version of V3 optimized for reasoning and chat. 



Part of the innovation behind DeepSeek V3 and DeepSeek R1 is how they’re built, using a 

Mixture of Experts (MoE) architecture. MoE is an architecture where the larger model is 

composed of many smaller “expert” models, each specialized in a different task. A 

lightweight router network determines which experts are most relevant to a given request 

and activates them accordingly. 
 

request

output

aggregator

expert 1 expert 2 expert 3 expert 4 expert 5 expert 6 expert 7 expert 8

router

continued



Part 02

What are the DeepSeek Models?

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

While DeepSeek didn’t invent MoE, they certainly popularized it. So while the full model is 

huge (671B), only a fraction of it is typically used during inference (like 37B parameters). 

That said, at large batch sizes more experts get activated; given a high amount of request 

diversity in a batch, all of the experts could realistically get activated during inference.



DeepSeek V2 was the company’s first large-scale MoE model (236B total parameters, ~21B 

active), showcasing strong performance for its time but not yet reaching closed-source 

quality. DeepSeek V3 expanded the architecture with 671B total parameters, a 128K 

context window (the number of words or characters it can retain when generating a 

response), better expert balancing, and higher overall quality.
 



Model What it is Use cases Comparable 

closed models Notable variants

DeepSeek-V3

DeepSeek-R1

R1-Distill Models

DeekSeek-Coder

High-performance 
general LLM

Fine tuned from V3 for 
reasoning and chatbot 

alignment

Lightweight, open-
source reasoning 

models distilled from R1

Trained specifically for 
code use cases

Chat, math, translation, 
and tool use 

Assistant-style tasks 

and reasoning-heavy 

applications

Cost-sensitive and 

edge use cases

Code gen and 
debugging across 300+ 
programming languages

V3-0324

March ‘25: Improved 
function calling and 
overall performance

R-0528

May ‘25: Improved 

reasoning, coding, and 
reduced hallucinations

Qwen

1.5B/7B/14B/32B


Llama 8B/70B

Coder v1


Coder v2

dense 1.3B-33B


MoE, 128 context 
236B total

GPT-40


Claude 3.5

Sonnet

OpenAI o1 and o3

Gemini 2.5 Pro

N/A

GPT-4 Turbo


Claude 3

Sonnet


CodeWhisperer

Part 02

What makes DeepSeek unique?

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

DeepSeek’s claim to fame was its ability to offer closed-source performance (competitive with 

GPT-5, o3, and Claude 4 Sonnet) at a fraction of the price. The cost savings mainly come from 

its efficient MoE architecture and the fact that, by being totally open-source, you can host it 

yourself without paying a closed-source markup. 



Since the release of V3 and R1, enterprises and startups have started building their AI 

strategies around using these models.
 

When we refer to DeepSeek, we’re referring to the flagship models (V3/R1) unless otherwise specified.



Part 02

DeepSeek in the LLM landscape

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

DeepSeek in the LLM landscape



In terms of comparable closed-source models, the latest releases of DeepSeek V3.1-0324 

outperforms GPT-4o on various benchmarks, with comparable performance to Claude 4 

Sonnet. DeepSeek R1 performs neck-to-neck on various benchmarks compared to OpenAI o1, 

with the R1-0528 update achieving comparable performance to o3 and Gemini 2.5 Pro.



In the open-source landscape, V3 and R1 outperform leading models like Llama 3 70B and 

Qwen3 225B while maintaining a larger context window of 128K tokens. R1-0528 is competitive 

with models like Kimi K2 and GLM-4.5 on code generation and agentic tasks. DeepSeek V3.1 

delivers broader reasoning depth with strong coding results compared to GLM-4.5, although 

the latter may be more cost-effective given its smaller size (355B total, 32B active).



To provide a more efficient alternative to the full-fledged 671B models, DeepSeek also released 

several distilled models; smaller, open-source models trained to replicate the reasoning 

abilities of DeepSeek-R1. These models are fine-tuned on top of existing, popular open-source 

models like the Qwen model family and Llama model family, with sizes ranging from 1.5B to 70B 

parameters.



For longer context windows, Llama 4 Scout (10M token context) and Maverick (1M token 

context) are good alternatives. That said, the DeepSeek models are excellent all-rounders for 

deeper reasoning and tool use. 



However, achieving this level of performance (while having full control over your data) first 

requires serving DeepSeek in production. While the MoE architecture makes the large models 

more efficient, they’re still difficult to load into memory, and making their performance 

acceptable for user-facing applications takes a lot more than just raw GPUs. 
 

https://github.com/deepseek-ai/DeepSeek-V3/blob/main/figures/benchmark.png
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/figures/benchmark.jpg
https://huggingface.co/deepseek-ai/DeepSeek-R1-0528


Part 03

Why deploying DeepSeek is 
challenging

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

At 671 billion parameters, the size of DeepSeek V3 and R1 makes them difficult to deploy for 

two reasons:



�� You need enough GPU memory to load the models


�� You need to use different optimizations to get performance good enough to be user-facing



The first is an infrastructure issue; the second is a runtime issue.
 

Infrastructure challenges

First: the memory requirements. In FP8, each parameter requires 1 GB of VRAM to load. Plus, 

you’ll want to reserve a substantial amount of GPU memory for the KV cache (a few 100 GB 

extra). 



Even on the latest Blackwell-series GPUs (B200s), DeepSeek V3 and R1 can’t fit on a single 

GPU. To run DeepSeek across a single GPU node (consisting of 8 GPUs), you’ll need to 

leverage model parallelism techniques.

DeepSeek model parallelism



Model parallelism splits a single AI model across multiple GPUs. Two such techniques are 

tensor and expert parallelism:



� Tensor parallelism splits tensor operations (like matrix multiplications) across GPUs to 

enable faster computation for large layers.


� Expert parallelism distributes different MoE experts across GPUs, so only part of the weights 

need to be loaded per GPU.

continued



Part 03

Infrastructure challenges

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

tensor parallelism

E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15E0 E1 E2

expert parallelism

E2 E3E0 E4 E6 E8 E10 E12 E14E1 E5 E7 E9 E11 E13 E15

h100 h100 h100 h100 h100 h100 h100 h100

h100

h100

h100

h100

h100

h100

h100

h100

So while expert parallelism puts different experts on specific GPUs, tensor parallelism takes 

tensors (like from the model weights) and splits them across multiple GPUs. With large models 

like DeepSeek, matrix multiplications can become a bottleneck—tensor parallelism addresses 

this bottleneck by throwing more compute at the problem, helping lower latency. 



While tensor parallelism improves latency, it does introduce some overhead since matrix 

multiplications require additional cross-GPU communication. Expert parallelism improves 

throughput, making it useful for workloads with high batch volume. For instance, on an 8-GPU 

node, you can use tensor parallelism to run eight concurrent matrix multiplications in parallel. 

Similarly, you can split DeepSeek V3.1 and R1’s 256 total expert models so that you have 32 

experts loaded per GPU. 

 
 



Part 03

Infrastructure challenges

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

We decide when and how to leverage these model parallelism techniques based on target 

metrics and requirements on a per-deployment basis. These model parallelism techniques 

introduce some orchestration overhead, especially in terms of load balancing, routing (tokens 

to experts), and inter-GPU communication. But once implemented, using these techniques, 

you can serve DeepSeek on more powerful Blackwell- and Hopper-series GPU nodes.



Serving DeepSeek on B200s and H200s



Ideally, you’d use B200 GPUs to deploy DeepSeek (that’s what we typically use at Baseten). With 

B200s, you easily have enough memory to load DeepSeek within a single node, and they give 

the best performance out of the box — with over 3x higher throughput compared to H200s.



B200s are technically more expensive than alternatives (H200s and H100s), but the 

performance improvements they offer make them much more cost-efficient (if you can process 

twice as many requests with B200s, you’ll only need half as many for your workload). That said, 

B200 GPUs are not easy to come by. While we can source B200s across clouds due to our 

Multi-cloud Capacity Manager (MCM), typically they’re very limited in supply; without 

something like MCM, scaling DeepSeek on B200s can be difficult or impossible.



Because of this, many people use H200s or H100s to deploy DeepSeek. A single H200 has 141 

GB of memory, meaning a node (8 H200s) has 1.13 TB of VRAM — plenty to fit DeepSeek V3 or 

R1. H200s aren’t as performant as B200s, but they’re still performant enough for most use 

cases.
 
 

Serving DeepSeek on H100s



Between B200s, H200s, and H100s, H100s are the easiest to come by. But with only 80 GB per 

GPU (640 GB per node), DeepSeek won’t fit on a single node. To run DeepSeek on H100s, you’ll 

need to leverage multi-node inference, which splits the model across two 8xH100 nodes.
 
 

https://developer.nvidia.com/blog/nvidia-blackwell-delivers-world-record-deepseek-r1-inference-performance/
https://www.baseten.co/products/multi-cloud-capacity-management/


first node

first h100

sixth h100

fifth h100

seventh h100

eighth h100

second h100

third h100

fourth h100

second node

first h100 fifth h100

sixth h100

seventh h100

eighth h100

second h100

third h100

fourth h100

infiniband

B200

H200

H100

1.5TB

1.13TB

640GB

Most performant

Good performance

Easiest to source

Cheapest option

192GB

141GB

80GB

Yes

Yes

No

Hardest to source

Difficult to source

Least performant

Multi-node inference

GPU type Memory per GPU Memory per node DeepSeek fits on 

a single node? Advantages Disadvantages

Part 03

Infrastructure challenges

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Multi-node inference introduces additional challenges around ensuring efficient 

communication between nodes and provisioning GPUs with high-bandwidth interconnects 

between nodes. That said, if you want to serve DeepSeek on H100 GPUs, multi-node inference 

is the only way to do it. 



You can find a summary of GPU choices for DeepSeek deployments in the table below.



B200 vs. H200 vs. H100 for DeepSeek model serving
 
 
 

Once you have the infrastructure to deploy and scale DeepSeek, you’ll need to turn your 

attention to its performance. DeepSeek performance is influenced not only by hardware choice 

but by factors like the model quantization, inference framework, caching, and decoding 

approach.



But to know how effective these techniques are, you’ll first need to be tracking the right metrics.

https://www.baseten.co/blog/how-multi-node-inference-works-llms-deepseek-r1/#expert-parallelism-for-deepseek-models


Part 03

Infrastructure challenges

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

DeepSeek inference metrics to track



For production applications like chat, agents, and code generation, the most important 

inference metrics to track will be latency and throughput. Specifically:



� Time to first token (TTFT): Measures the delay between input submission and the first token 

generated from the response. Typically measured in milliseconds.


� End-to-end latency: Total time from prompt input to full response output. Typically 

measured in milliseconds.


� Throughput: Average output speed measured in tokens per second.



TTFT is important for perceived latency because users can already see the response being 

generated. Throughput determines how many tokens per second your system can generate 

across requests, which affects how many concurrent users you can serve without degrading 

latency.



Quantization



Given how large DeepSeek V3 and R1 are, quantization is crucial for improving DeepSeek 

model performance. Quantization maps the model weights to a number format that uses fewer 

bytes per parameter, reducing their memory footprint.



DeepSeek V3 and R1 are originally in FP16 precision, but the current best practice is to use FP4 

quantization for the model weights and FP8 for the attention (key-value, or KV) layer. During the 

prefill phase, the model builds up context in the KV cache, and during decoding, that cached 

context is used to generate output tokens. The attention (or KV) layer sits between the prefill and 

decoding, determining which experts get activated. Using FP8 for this layer preserves a higher 

precision for routing and decoding, while using FP4 for the remaining weights significantly 

reduces the overall memory footprint.
 
 
 
 

continued

https://www.baseten.co/blog/introduction-to-quantizing-ml-models/
https://www.baseten.co/resources/guide/the-baseten-inference-stack/#disaggregated-prefill-and-decode-phases-for-llms


Part 03

Model Performance Challenges

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Full FP4 quantization is not currently supported by NVIDIA’s TensorRT-LLM package, but if 

added in future releases, it could lead to further speed gains (assuming a negligible impact on 

model quality). Until then, this mixed scheme provides the best balance between accuracy and 

performance for large MoE inference, leading to a lower TTFT and end-to-end latency and 

higher model throughput.



Inference frameworks: SGLang vs. TensorRT-LLM vs. vLLM for 

DeepSeek model serving



The inference framework you use will affect model throughput, end-to-end latency, and TTFT.


SGLang and TensorRT-LLM support DeepSeek V3 and R1 out of the box, although initial 

support took about two weeks from their initial release. Both packages offer several 

integrations tailored to their MoE architecture, including support for mixed-precision FP8/FP4 

quantization and expert routing.



TensorRT‑LLM is specialized for NVIDIA GPUs, and our team has worked closely with NVIDIA 

to contribute patches improving performance for DeepSeek. As a result, we’ve found TensorRT-

LLM to be the most robust option for serving DeepSeek models on Hopper- and Blackwell-

series GPUs. TensorRT-LLM also includes custom kernels and advanced speculation support 

for additional performance gains. 



vLLM has limited support for DeepSeek’s full feature set (like max context length, expert 

parallelism, and tool calling) and lower performance, so we don’t recommend using vLLM to 

serve DeepSeek in production.

https://github.com/NVIDIA/TensorRT-LLM
https://github.com/sgl-project/sglang
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/vllm-project/vllm


Part 03

Model Performance Challenges

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Caching



Caching is critical to optimizing DeepSeek inference performance, particularly for reducing 

TTFT. 



The central caching mechanism we use is KV cache reuse, where prefilled key/value attention 

blocks from previous requests are reused for new requests that share the same input prefix. 

This eliminates the need to re-run the prefill phase, which is one of the most expensive stages 

in inference for long prompts, thereby significantly reducing TTFT.



To maximize the effectiveness of this caching strategy across distributed hardware systems, 

you can use KV cache-aware routing, where incoming requests are routed to the same node 

that previously served a similar (or identical) prefix. This is especially beneficial in RAG 

pipelines, chat systems with repeated instruction headers, or for prompt templates reused 

across sessions.



Decoding strategies



Speculative decoding is a technique used to speed up LLM inference by using a smaller, faster 

draft model to predict multiple tokens in parallel, which the larger, more accurate LLM then 

verifies.



For DeepSeek, we use speculative decoding along with multi-token prediction (MTP), 

implemented via an MTP head attached to the end of the model. The MTP head predicts a 

configurable number of candidate tokens per pass (versus just generating one token per 

forward pass, as is otherwise standard). Even if some tokens must later be verified or corrected 

(e.g., via speculative decoding), the net cost is typically much lower than fully decoding one 

token at a time, since it reduces the number of total forward passes through the model.



Speculative decoding and MTP lead to lower end-to-end latency and GPU overhead, as well as 

higher throughput, especially for longer outputs. 
 

https://www.baseten.co/resources/guide/the-baseten-inference-stack/#kv-cache-aware-routing
https://www.baseten.co/blog/a-quick-introduction-to-speculative-decoding/


Part 04

Deploying, optimizing, and scaling 
DeepSeek in production

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

To deploy, scale, and optimize the 

DeepSeek models for production, you’ll 

need a combination of runtime and 

infrastructure optimizations to address 

these challenges and make them 

performant, reliable, and cost-efficient. 



This is exactly what the Baseten 


Inference Stack is built for. 



The Baseten Inference Stack abstracts 

away the complexity of deploying massive 

open-source models like DeepSeek by 

combining and packaging dozens of 

optimizations at the infrastructure and 

runtime layers. This enables teams to 

focus on their product and user 

experiences, instead of the inference 

optimizations needed to run powerful 

open-source models in production.



We’ll break down the different tools and 

techniques the Baseten Inference Stack 

uses as an example of what it takes to run 

the DeepSeek models in production—

performantly, reliably, and cost-efficiently 

at scale.
 
 

Rou
tin

g

Sca
lin

g

Mul
tic

lou
d M

ana
gem

ent

Run
tim

e O
pti

miz
ati

ons

Cus
tom

 Ke
rne

ls

Spe
cul

ati
on 

eng
ine

inference-optimized infrastructure

baseten cloud

Inference Runtime

https://www.baseten.co/resources/guide/the-baseten-inference-stack/
https://www.baseten.co/resources/guide/the-baseten-inference-stack/


Part 04

Deploying DeepSeek in production

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

We deploy DeepSeek V3 and R1 primarily on B200s to handle their 671B parameter MoE 

architecture while maintaining high model performance. We distribute DeepSeek’s 256 experts 

across 8 GPUs (32 per GPU), and apply tensor parallelism to shard large matrix operations. This 

setup provides a performant foundation at the infrastructure level for DeepSeek deployments. 



This is also the infrastructure foundation we use for our DeepSeek Model APIs, which run on 

B200 GPUs and offer on-demand DeepSeek V3 and R1 deployments (which consistently rank 

as the lowest latency and highest throughput DeepSeek models on OpenRouter, and include 

built-in support for streaming, structured outputs, and tool calling).
 

DeekSeek security and compliance



When DeepSeek V3 and R1 were first released, enterprises and startups were rushing to use 

them in production, only to face barriers in terms of security and compliance. To use DeepSeek 

securely in production—especially for sensitive industries, like healthcare and financial 

services—you need to know exactly where your data goes, and be able to control where it is and 

what it’s used for.



That’s why our DeepSeek Dedicated Deployments can be region-locked (e.g., so that they only 

run within the USA or EU). They can also be run in our cloud, which leverages compute from 9+ 

cloud providers (with SOC 2 Type II, HIPAA, and GDPR compliance by default), or can be self-

hosted on your VPC (on any cloud provider) for full control.
 

https://app.baseten.co/model-apis/create
https://openrouter.ai/provider/baseten
https://www.baseten.co/products/dedicated-deployments/


multi-cloud capacity manager

cloud 2

cloud 1

cloud 3

cloud 4

Part 04

Scaling DeepSeek in production

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

To scale DeepSeek effectively, we rely on a combination of Multi-cloud Capacity Management, 

intelligent request routing, SLA-aware autoscaling, and optimized cold starts. 



Multi-cloud capacity management (MCM) is essential for scaling DeepSeek on B200 GPUs. We 

partner with 9+ cloud providers in dozens of regions globally to unlock almost unlimited 

capacity for our customers. That means that by using MCM, we can tap into a global supply of 

B200s to scale DeepSeek reliably across clouds (while respecting any region or cloud provider 

limitations).
 

Without MCM, you would have siloed resources and need to manually scale DeepSeek on 

different clouds and clusters when facing capacity constraints or hardware failures. Plus, you 

would need to make multi-year commitments to CSPs for always-on (and therefore 

overprovisioned) resources to accommodate traffic bursts or increasing scale. 
 

continued

https://www.baseten.co/products/multi-cloud-capacity-management/
https://www.baseten.co/resources/guide/the-baseten-inference-stack/#inference-optimized-infrastructure
https://www.baseten.co/resources/guide/the-baseten-inference-stack/#sla-aware-autoscaling
https://www.baseten.co/resources/guide/the-baseten-inference-stack/#fast-cold-starts


Optimizing DeepSeek in production

Part 04

Scaling DeepSeek in production

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

We use geo-aware load balancing to route requests to the nearest available replicas, lowering 

network round-trip time. Our geo-aware routing is also KV-cache-aware and LoRA-adapter-

aware, meaning we prioritize sending similar requests to replicas with a warm KV state or the 

correct LoRA adapters already in memory. These routing techniques further improve end-to-

end latency and time to first token (TTFT).



Finally, to meet SLAs reliably (i.e., to ensure high performance is consistent at scale), we 

custom-tune autoscaling settings per workload and optimize cold starts through various 

techniques. Without cold start optimizations, spinning up new replicas of large models can 

take up to an hour or more (imagine downloading nearly 700 GB of weights!). Fast cold starts let 

you spin up new model replicas quickly, minimizing latency spikes during traffic surges. 

Knowing that cold start times are fast also lets you overprovision less and scale down more 

aggressively, improving utilization (and therefore also cost).



These optimizations ensure we can horizontally scale DeepSeek with high availability and low 

variance in performance, even as traffic patterns evolve.
 

In addition to the foundational performance gains achieved through the infrastructure and 

routing optimizations outlined, we use a combination of model performance optimizations at 

the runtime level to optimize DeepSeek latency and throughput in production.



At the runtime level, we apply model quantization (FP4 for the weights and FP8 for the attention 

layer), speculative decoding (with multi-token prediction), KV cache reuse, and continuous 

batching. We’ve found TensorRT-LLM to be the most performant inference runtime, so we use it 

and its corresponding kernel optimizations. Our optimized DeepSeek model runtime also 

supports structured outputs out of the box.



All of these optimizations are part of our LLM model runtime, and the performance benefits 

they bring carry over to other model families, including Kimi, Llama, and Qwen.

https://www.baseten.co/resources/guide/the-baseten-inference-stack/#geo-aware-load-balancing
https://www.baseten.co/resources/guide/the-baseten-inference-stack/#fast-cold-starts
https://www.baseten.co/resources/guide/the-baseten-inference-stack/#fast-cold-starts
https://www.baseten.co/blog/continuous-vs-dynamic-batching-for-ai-inference/
https://www.baseten.co/blog/continuous-vs-dynamic-batching-for-ai-inference/
https://www.baseten.co/library/family/kimi/
https://www.baseten.co/library/family/llama/
https://www.baseten.co/library/publisher/qwen/


Part 05

Conclusion

Contributors

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

The DeepSeek models are powerful tools for AI applications, from chatbots and assistants 

to RAG pipelines and agents. That said, achieving the performance, reliability, and cost-

efficiency necessary for consumer-facing applications requires a lot more than just an 

inference framework and some GPUs. 



DeepSeek’s massive size makes it challenging to deploy, scale, and optimize for 

production. To do so, you’ll need to leverage tools and techniques at the infrastructure and 

model runtime layers, like cross-cloud capacity management, tensor and expert 

parallelism, KV caching, and decoding techniques.



We package all of these optimizations in the Baseten Inference Stack as part of our 

DeepSeek LLM runtime, which powers dedicated deployments of DeepSeek as well as 

our production-ready Model APIs. If you want to use pre-optimized DeepSeek in your 

product or application, you can get started with our Model APIs, or talk to our engineers 

about a dedicated DeepSeek deployment that can autoscale to meet higher demand.

A big shout out and thank you to our contributors:


Rachel Rapp


Tri Dao


Mahmoud Hassan 

https://app.baseten.co/model-apis/create
https://www.baseten.co/talk-to-us/
https://www.linkedin.com/in/rachelrapp/
https://www.linkedin.com/in/tri-dao-03/
https://www.linkedin.com/in/mahmoudhas/

	Cover.pdf
	Table of Contents.pdf
	Intro.pdf
	Page 2.pdf
	Page 3.pdf
	Page 4.pdf
	Page 5.pdf
	Page 6.pdf
	Page 7.pdf
	Page 8.pdf
	Page 9.pdf
	Page 10.pdf
	Page 11.pdf
	Page 12.pdf
	Page 13.pdf
	Page 14.pdf
	Page 15.pdf
	Page 16.pdf
	Page 17.pdf

