
Model Inference

Embedding



Table of Contents

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Part 01

Part 02

Part 03

Part 04

Part 05

Part 06

Introduction

What are embeddings?

State-of-the-art open-source embedding models

What makes embedding inference uniquely challenging?

How Baseten built the fastest embedding inference stack

Conclusion



Introduction

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Embedding models are the connective tissue of modern AI systems, powering semantic 

search, retrieval-augmented generation (RAG), recommender systems, and compound AI 

agents. From indexing millions of documents to handling a single high-value query in real 

time, embedding inference performance directly shapes product quality. 



When embeddings are slow, search results feel stale. When throughput is low, ingestion 

pipelines stall. The challenge is clear: deliver both high throughput and low latency in 

production, without overspending on infrastructure.
 

This guide shows how to meet those demands, and how Baseten provides the fastest 

embedding model runtime in production today.
 

Part 01



Part 02

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

An embedding model transforms a variable-length chunk of text – or another modality of 

input like an image – into a fixed-length vector representation that captures the semantic 

meaning of the input. By encoding content into this shared semantic vector space, you can 

compare similarity between items with simple math.



The output vectors from embedding models vary in dimensionality, or the count of numbers 

in the vector, ranging from a few hundred to a few thousand dimensions. Higher-

dimensionality vectors store more data, while lower-dimensionality vectors are faster and 

cheaper to store and process. Most modern embedding models use Matryoshka 

Representation Learning to enable a single model to encode information at various 

dimensionalities while retaining as much data as possible in smaller dimensions.



Embedding models are used for more than just RAG. These models and their outputs quietly 

power everything from upgrading legacy ML systems to building cutting-edge agents. 



Embeddings are useful for:



Context: The “R” in “RAG” is retrieval, and embeddings let you retrieve meaningful 

context for LLM prompts and agentic actions.


Memory: Interface efficiently with memory by shifting information from the context 

window to a vector store.


Personalization: Build user profiles by embedding data and activity.


Search: Quickly scan massive corpuses for relevant results.


Classification: Categorize items based on semantic similarity, or detect anomalies.


Recommender systems: Recommend similar content or products.
 

continued

What are embeddings? 



Part 02

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Building these systems takes more than just an embedding model. Once you have 

generated the embeddings, you need infrastructure to store and query them efficiently. 

That’s where vector databases come in as specialized systems that support fast nearest-

neighbor search across billions of vectors. There are a number of excellent vendor options 

on the market, from purpose-built vector databases like Chroma, Pinecone, Qdrant, and 

Weaviate, to vector support within larger ecosystems like AWS, MongoDB, PostgreSQL, and 

many others.



Just like you need a specialized database for storing and using embeddings, you also need 

specialized infrastructure for running the models. Previously, ML engineers trained 

regression and tree-based models for classification and recommendation, and AI engineers 

relied on techniques like fuzzy string matching and knowledge graph traversal for search.



But with the rise of models like BERT in 2018, language model-based embedding systems 

took over many of these workloads thanks to their increased accuracy and flexibility. Today, 

embedding models are often built from the same neural networks that power large language 

models like Mistral and Qwen, ranging from one to eight billion parameters. But unlike LLMs, 

embedding models are generally deterministic, taken directly from hidden states rather than 

sampling for inference.
 

These larger embedding models require more powerful hardware, especially for high-

volume production inference. Where before a tree-based classifier may have run on a 

modestly-specced CPU, today’s embedding models require GPUs like H100 or B200 for fast 

inference.

What are embeddings? 

BERT-based models

(100M-1B params)

LLM-based models

(1B-8B params)



Part 03

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Embedding models are among the smallest generative AI models by parameter count. This 

makes them relatively cheap to train, leading to a proliferation of open-source models 

available on the market.



AI engineers choose open-source models for a wide range of reasons. It often comes down 

to domain-specific quality, consistently low latency, strong unit economics, and zero 

platform risk. That last point is especially important for embedding models, where the output 

of one model is not compatible with other models. So if you build on a closed-source model 

but lose access due to a deprecation, you’ll have to go through the time and expense of re-

generating all of your previous embeddings in a new model.



On quality, open-source embedding models are up to par with closed-source options from 

vendors like OpenAI and Google Gemini. On top of strong out-of-the-box performance, 

embedding models’ small size and straightforward architecture make them a great 

candidate for fine-tuning to improve domain-specific quality. Some teams even train their 

own frontier embedding models to power search or retrieval within their domain.
 

Strong starting points in the world of open-source embedding models include:



Qwen: The open-source AI research lab within Alibaba consistently releases excellent 

general-purpose embedding models in a range of sizes.


Gemma: Embedding models from Google’s open-source Gemma lab offer frontier 

performance at small sizes.


BGE: The BGE family of embedding models by BAAI (Beijing Academy of Artificial 

Intelligence) includes reranking in addition to embedding.


Open-source options from startups like Nomic, Jina, MixedBread, and ZeroEntropy, 

which release multi-modal models and models for specific domains like coding.
 

State-of-the-art open-source 
embedding models

continued



Part 03

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

While closed-source embedding models from labs like OpenAI are a great way to get started 

and are cost-effective for low-traffic prototypes and side projects, production applications 

are better served by open-source models. However, to unlock the benefits of consistent low 

latency and cost-effective large-scale inference, you need an optimized model serving 

solution for your open-source or fine-tuned embedding model. 

State-of-the-art open-source 
embedding models



Part 04

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Embedding inference workloads have unique characteristics compared to serving other 

models like LLMs. Firstly, embedding inference systems need to support two very different 

traffic profiles:



High-throughput backfills: Bulk operations like indexing millions of documents, 

updating product catalogs, or even preparing data for LLM pre-training.


Low-latency lookups: Individual user-facing queries for search, retrieval, or 

recommendation, where every millisecond affects user experience.



Generally, inference performance optimization is discussed in terms of trading off latency for 

throughput or vice versa. But embedding jobs combine:



High concurrency (thousands of simultaneous requests)


Small input size but high frequency (short text, but lots of it)


Small model size (1-8 billion parameters, but very large memory requirements for 

batching)


Tight SLAs (especially for search and recommender systems)



While you can build systems that serve this dual profile, let’s first consider how to optimize 

for each individually.
 

Why embedding inference is uniquely 
challenging



Part 04

Optimizing for offline throughput

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

If you’re configuring a model deployment only for throughput — for example, to support a 

database backfill by embedding an entire corpus — you mostly care about stability and cost. 

These “offline” or non-latency-sensitive jobs involve processing billions, or even trillions, of 

tokens of input data, and their runtime is generally measured in GPU hours rather than wall-

clock time.



Some examples of offline embedding model workloads include:



Large-scale search index creation


Document corpus embedding for future retrieval


Synthetic data processing for LLM pre-training


Classification on massive datasets



Throughput optimization is the engineering work required to process this many requests 

without losing data, as cost-effectively as possible. This includes:



Provisioning sufficient hardware to run the job in a reasonable amount of wall clock time.


Batching requests intelligently to combine as many inputs as possible into each forward 

pass.


Queueing requests and load balancing across GPUs to ensure that requests are not lost 

and GPUs don’t crash.


Recovering from any issues that do occur and re-processing any missed requests.


Writing efficient and highly parallel client code to ensure that the inference system is 

receiving as much traffic as it can handle.



These large offline workloads can take hundreds or thousands of GPU hours for extremely large 

corpora, so even modest throughput gains can yield huge cost savings. 



Part 04

Optimizing for online latency

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

In contrast, other embedding workloads must be optimized for online latency, where the 

user-facing time between request and response is essential. Throughput still matters, as you 

may need to support many concurrent users, but consistently low P90/P99 latency is key for 

online workloads.



Some applications where latency matters most include:



Multi-step AI agents using embeddings as part of real-time actions


Real-time semantic search in customer-facing apps


Live content recommendations



Where latency-sensitive LLM requests are generally measured in the hundreds of 

milliseconds, embedding inference budgets are often just tens of milliseconds, including 

network latency. Achieving these instant responses requires:



Runtime optimizations to use the most performant engines and kernels for inference.


Model quantization to reduce load on the GPU during inference (done in floating point 

number formats to avoid loss in quality).


Autoscaling infrastructure to keep latencies low when usage spikes.



At Baseten, we’ve seen all kinds of embedding workloads and developed tooling and 

expertise on handling everything from large-scale offline jobs to high-concurrency online 

requests. With the Baseten Inference Stack, we’ve developed the fastest and most scalable 

platform for running inference on open source, fine-tuned, and custom-built embedding 

models.



Part 05

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Solving for both latency and throughput requires end-to-end optimizations across the stack, 

from eliminating client code bottlenecks to building performant infrastructure to on-GPU 

model performance work.



At Baseten, our Inference Stack draws upon years of work on scalable, cloud-agnostic, fault-

tolerant infrastructure and runtime optimizations. Together, four pieces of the stack deliver 

the world’s fastest and highest-throughput embedding inference service:



Baseten Inference-optimized Infrastructure: The core set of technologies powering 

cloud-agnostic and scalable infrastructure across all model deployments.


Baseten Embeddings Inference (BEI): Our best-in-class embedding-specific runtime 

with support for leading open source model architectures.


Baseten Performance Client: An open-source client library designed to avoid 

bottlenecks in running high-throughput embedding workloads.


Baseten Chains: Our framework for writing multi-step, multi-model compound AI 

pipelines and reducing latency overhead between steps.



With these tools, you can serve embeddings inference for any volume of traffic with 

incredibly tight latency budgets.
 

How Baseten built the fastest 
embedding inference stack



Baseten embedding inference (bei)

request http
batches

request

numerical outputs

sentence

model server

Input/output

multi-worker 
tokenizer

tokenizer tokenizer

tokenizer tokenizer

batch manager

token output

tensor rt-llm

inference

Part 05

Baseten Embedding Inference (BEI)

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

continued

Baseten Embedding Inference (BEI) is the world’s most performant runtime for LLM-based 

embeddings models. In a benchmark, BEI on B200s achieved 3.3x higher throughput than 

vLLM and 3.6x higher throughput than TEI running on H100s.



BEI uses TensorRT-LLM’s advanced kernels, FP8 quantization capabilities, and advanced 

batching with support for both Hopper and Blackwell GPU architectures to achieve the 

highest possible performance.
 

BEI has four main components:



The model server processes inputs and outputs and handles any errors. BEI uses the 

Rust-based frontend service from text-embeddings-inference for this task.


The tokenizer is a multi-core system responsible for turning requests into tokenized 

sentences.


The batch manager packs individual tokenized sentences into batches up to a 

maximum sequence size, using a scheduling policy to maximize GPU utilization, 

minimize tail effects, and preserve request order. 


The TensorRT-LLM inference engine runs inference in C++ using tokenized batches and 

creates embeddings.



Each request flows through all four components on the way in, but skips the tokenizer on the 

way out as embedding and classification outputs are numerical.



Part 05

Baseten embeddings inference (BEI)

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

On the infrastructure side, BEI integrates seamlessly with Baseten’s traffic-based autoscaling 

and async inference queueing, ensuring smooth handling of traffic spikes, efficient resource 

use, and graceful spin-down of replicas. This combination of throughput, concurrency, and 

low latency makes BEI a Pareto improvement for embedding, reranking, classification, and 

reward models.



Part 05

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

At the infrastructure layer, embedding performance is generally based on three factors: 

hardware provisioning, geo-aware load balancing, and request queueing. In short, we need 

to ensure that there is a GPU ready to process the request, that the request goes to the right 

GPU, and that in high-throughput cases, the request can wait if the GPU is full.
 

Multi-cloud capacity management



Multi-cloud capacity management (MCM) is a set of automations, tools, and practices 

around provisioning and operating compute resources across multiple cloud service 

providers (CSPs) and regions in a standardized and repeatable manner.



Baseten’s multi-cloud capacity management product:



Ensures high uptime with optional active-active reliability


Supports the lowest possible latencies with multi-region deployments for geographic 

proximity to all end users


Adheres to data residency and sovereignty requirements with region-locked 

deployments.


Unlocks an optimal customer cost-performance ratio.



MCM makes siloed compute completely fungible: different clusters, regions, and cloud 

providers become one elastic, universal cloud. It’s built on years of engineering work to 

make resource provisioning and allocation identical from provider to provider, despite the 

unique wrinkles that each CSP has, from networking stacks to exact resource SKUs.



At the core of MCM is a globally consistent orchestration layer built on top of Kubernetes 

with a global scheduler and a hub-and-spoke model.
 
 

Baseten Inference-optimized 
Infrastructure

continued



GCPAWS azure

workload plane

workload plane

workload plane

workload plane

workload plane

workload plane

workload plane

workload planeGlobal control plane

Part 05

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Baseten inference-optimized 
infrastructure

continued

We use MCM to route traffic across 10+ clouds and dozens of regions, optimizing for the 

closest resources while ensuring uptime. An H100 in us-east-1 on AWS becomes equivalent 

to an H100 in us-west4 on GCP.



Autoscaling with fast cold starts



Autoscaling is essential to systems like embeddings models with variable traffic. 

Autoscaling determines:



How quickly you can scale to handle a spike in traffic


How cost-efficient your hardware usage is when traffic slows back down



Part 05

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

To keep latencies low as traffic scales, we need to dynamically allocate additional GPUs as 

the number of requests exceeds the batch size configured on the model server. For example, 

if you’re serving Qwen3 Embedding on an H100 GPU with a batch size of 32 requests, but are 

now seeing 50 requests at a time coming in, you’d want to scale horizontally to a second 

GPU to avoid queue time increasing request latencies. Of course, when traffic settles back 

down, you’ll want to automatically spin down that extra replica.



Baseten’s Inference-optimized Infrastructure includes a traffic-based autoscaling system 

that holds requests in a queue while a new GPU is spun up, then routes those requests 

across the expanded profile of compute resources. A key component of this system is fast 

cold starts. New GPU resources need to be online in seconds to smoothly scale against 

sudden traffic spikes.



Large queue support



When processing a large corpus, we generally need to scale past a single replica. In a traffic-

based autoscaling system, we might run in a steady state with a handful of replicas serving 

production traffic, then get hit with a huge corpus to process.



Baseten’s Inference-optimized Infrastructure includes a queueing system to appropriately 

handle backpressure to keep everything running, enqueue additional requests as more 

replicas spin up (with fast cold starts), and distribute load evenly among the system as more 

replicas come online. Of course, the replicas will need to be gracefully spun down after the 

spike in usage.



The infrastructure system also supports asynchronous inference for queue processing. With 

asynchronous inference, you get a response as soon as the request is enqueued. Once the 

inference output is ready, it’s returned via webhook. This asynchronous setup is ideal for 

many high-volume offline workloads.
 
 

Baseten inference-optimized 
infrastructure

continued



Time (minutes)

Processing time for 2 million embeddings (lower is better)

OpenAI Client SDK

Baseten Performance Client

0 2 4 6 8 10 12 14

12x faster

Part 05

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

Baseten Performance Client



With a high-performance, high-throughput model server, client code can end up being the 

bottleneck in embedding system performance, especially in offline batch jobs. The Baseten 

Performance Client is a Python library written in Rust that overcomes these bottlenecks by 

properly parallelizing requests on the client side. The Baseten Performance Client is fully 

OpenAI-compatible and is a drop-in replacement for the OpenAI SDK, but delivers up to 12x 

better throughput for large batch embedding workloads. 
 

Traditional Python clients are constrained by the Global Interpreter Lock (GIL), which 

serializes execution and limits CPU utilization in I/O-heavy scenarios. Even asynchronous 

approaches like asyncio cannot fully harness multi-core systems at scale. The Baseten 

Performance Client removes this bottleneck by using Rust and PyO3 to release the GIL 

during network-bound tasks. Embedding requests execute on a global Tokio runtime (a 

high-performance async executor in Rust), allowing true parallelism across CPU cores. The 

GIL is reacquired only to return results, minimizing Python overhead.
 
 

Baseten inference-optimized 
infrastructure

continued

https://www.baseten.co/blog/your-client-code-matters-10x-higher-embedding-throughput-with-python-and-rust/
https://www.baseten.co/blog/your-client-code-matters-10x-higher-embedding-throughput-with-python-and-rust/


Part 05

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

In benchmarks with over 2 million parallel inputs, the Performance Client completed 

embedding in 1:11 vs. 15+ minutes for the AsyncOpenAI client. It also achieved ≈280% CPU 

utilization on a 16-core machine, compared to 100% on a single core with Python clients.


Using the Baseten Performance Client, you can ensure that every step of your embedding 

inference pipeline is fully optimized.



Baseten Chains



Many use cases for embedding models, like agentic memory and RAG, use an embedding 

model as part of a multi-step, multi-model pipeline. Baseten Chains is a framework for 

deploying these compound AI workloads on co-located infrastructure with independent 

component scaling, reducing network overhead in system-wide latency and preventing 

bottlenecks in autoscaling.



For example, an agent with a memory function that relies on embedding-based retrieval 

would ordinarily need to wait for the network overhead between the language model, 

business logic server, and embedding model service. With Chains, each of these 

components is co-located with appropriate resource allocation, saving dozens or even 

hundreds of milliseconds of latency and simplifying deployment.
 
 

Baseten inference-optimized 
infrastructure



Embedding models are no longer a niche capability, they are the foundation of modern AI 

applications, powering semantic search, RAG pipelines, personalization engines, 

recommender systems, and agent memory. But as their importance has grown, so too has 

the complexity of deploying them in production. The dual demands of high-throughput 

offline processing and low-latency online inference push traditional infrastructure to its 

limits.



Baseten’s Inference Stack was purpose-built to meet these challenges. By combining 

cutting-edge runtime optimizations (BEI), cloud-agnostic multi-region infrastructure, 

intelligent autoscaling, and high-performance client libraries, Baseten enables 

organizations to serve embeddings at scale with unparalleled speed, reliability, and 

efficiency. Whether embedding billions of documents for indexing or delivering 

millisecond-level results in customer-facing applications, Baseten delivers the fastest 

runtime and the most cost-effective path to production.



As AI systems evolve toward more complex, multi-step agents and compound pipelines, 

embeddings will only become more critical. With Baseten, teams can confidently adopt 

open-source and fine-tuned models, unlock frontier-level performance, and future-proof 

their applications against platform risk. The result: scalable semantic infrastructure that 

keeps pace with the speed of innovation.



If you want to learn more about how to run embedding model inference at scale with 

Baseten, you can talk to our engineers.
 

Part 06

Conclusion

Contributors

© Baseten 2025. all rights reserved.baseten.com | hi@baseten.com

A big shout out and thank you to our contributors:


Philip Kiely


Michael Feil

https://www.baseten.co/talk-to-us/
https://www.linkedin.com/in/philipkiely/
https://www.linkedin.com/in/michael-feil/

