Solving AP
Security with
Automated
Methodologles

datatheorem

Prevent AppSec Data Breaches




-
1

What are APIs and how are they used?

Application Programming Interfaces (APIs) are endpoints that enable communication
between different technologies, such as a home security camera and the Cloud. This
technology is not new as computers have been able to talk to each other for several
decades. Until about 10 years ago, APl use was expensive and difficult to manage,
requiring custom-coded or proprietary connectors.

Next-generation APIs are built with free and open standards that make it possible for
an application to interoperate easily and inexpensively with virtually any other piece of
software or data source. People use APIs in their everyday lives. When someone looks
up the weather through an app on their phone, the app is calling on weather APIs to
get the requested data in real-time. APIs are the backbone of mobile applications, web
applications, and all internet-connected software (including many loT devices).
Companies now need to protect their RESTful APIs in a way that allows thousands of
devices to access them.

Some APIs are built and maintained by companies directly, some are from partner
organizations or third party SDKs (Software Development Kits). SDKs include open
source tools for developers that make it easier to create an app. On average, one
mobile app includes twelve to eighteen third party SDKs. While the iOS and Android
security models have some safety measures on applications, there is no separation
coverage for embedded third-party software. So the risk is that some developers are
unknowingly allowing these third party SDKs to have full access to your app's data or
they may carry malicious code. So while software development has sped up with the
use of APIs, the act of securing them remains problematic.



Why is Securing APIs Important?

APls are the new standard way to communicate between two entities, so it must be
secured. Gone are the days where file transfer happens over FTP, as it happens on port
443 (TLS) via an API (either Box, Dropbox, or your inhouse storage cloud). Gone all the
days where web apps have a client (thick browser) and application server, as it happens
via a thin browser client and a server side API. Plus, that server side API is also serving
other clients such as mobile apps, |oT apps, and web applications, using a one-size fits all
model. So if all communication is happening over TLS (port 443 through firewalls) via
APIls, the APl must be locked down in terms of authentication, authorization, and
encryption.

In our weather app example, it's up to each weather app provider to make sure they
share the public weather modeling and prediction data while securing private data of
the users at the same time. For example, a hacker could create an API call that extracts
data from users of the weather app because the API is not configured to stop that from
happening, nor does the app owner have an alert system to tell anyone that it has
happened.

Gartner analysts have sounded the alarm that API security is a looming threat. Exposed
APls today account for 40% of attack surface area, but by 2021, Gartner predicts that 90%
of web-enabled applications will have more surface area for attacks. Gartner also
predicts that by 2022, API abuses will become the most frequent, resulting in data
breaches for enterprise web applications.

Challenges With Securing APIs

The cloud is one factor in securing APIs correctly. While any APIs can be insecure if not
managed properly, at least on-premises there is a more trackable process to develop
and deploy an API. In the cloud, developers can quickly throw APIs up on cloud
platforms using serverless, containers or microservices. Furthermore, developers may
just store assets in the cloud and once those assets become attached to APIs, they
create vulnerabilities and the data will need to be compliant. This creates several security

problems.



One is the complexity of the environment, which may make it hard to determine how
secure any given API is at a moment in time. Also, anyone can spin resources up and
down so quickly and easily that it becomes hard to keep track of the APIs being hosted
in the cloud. These are known as “shadow APIs.” How do you track these around the
clock among several cross-functional teams that share data with numerous web and
mobile apps?

A second factor is the speed of software development and the ability to secure APIs as
they are created and deployed. The risk of an API getting deployed without any access
controls or monitoring becomes inevitable as companies adopt a continuous
integration/continuous deployment (CI/CD) cycle. This cycle enables software
development and updates to occur at a rapid clip. This pace of development is simply
too fast for traditional application security techniques to work.

A

A third complexity is that the underlying data store for many APIs is an unauthenticated
cloud storage bucket. These buckets are often open by default, which can result in the
data being deleted or modified, inappropriate content could be uploaded to the bucket,
or the bucket could be deleted at any time by someone outside of the organization.
Given these potential consequences, it's important to know more about this threat and
how to stop data from being publicly exposed. So having a security program that
constantly scans for these kinds of vulnerabilities is also critical.

Finally, APIs are the connective tissue that runs through all of your mobile, web, and
cloud applications and these all have broad permissions. This means attacks through the
APl can basically give bad actors visibility into everything within the application
infrastructure. API calls are also prone to the usual web request pitfalls such as
injections, credential brute force, parameter tampering, and session snooping.



How to Fail at API Security

According to Verizon, 56% of companies are taking months or longer to find a breach.
Everyone has had the experience of receiving an email notification of a data breach, only
to find out that the breach occurred months, if not years prior. The delay may be due to
the ineffective ways that companies test their security posture.

In the past, an acceptable security strategy was to conduct pen testing and manual
audits. This is now considered a temporary strategy given that APIs change constantly.
There are also potential blind spots considering many companies don’'t know that some
of their assets are in the cloud, even if they think they are only on premises. In that case,
APIs may still be making calls to confidential information while accessing those assets.

Companies have also tried to secure these APIs with gateways. Companies assume that
an API gateway can handle many forms of code all commmunicating through APIs, with
hundreds of thousands of APIs in one enterprise. Also API gateways cannot be deployed
to all platforms, so developers eventually find ways to avoid forcing everything through
an arbitrary chokepoint. It's not scalable for them, nor cost effective for the company.

The most common API authentication strategy is OAUTH (Open Authorization), which is
a token authorization system. After a user enters credentials, it then relays that user to a
page on the destination server where they can enter their credentials, and then returns
to the API client an access token for that user. This is effective for tracking APls, but
there are some gaps that can be hacked.

There are a lot of approaches and options, depending on the use case, when it comes to
implementing authentication in an APIl: OAuth, JWT, API keys, etc. Because so many
options are available, and due to the complexity of each approach, it is easy for
developers to make mistakes when setting up authentication. However, any mistake can
have drastic consequences, such as allowing anyone on the Internet to exercise the API
and access unauthorized data.

Additionally, nothing is "set in stone" when it comes to deploying modern APIs in the
cloud: code and configuration changes can happen several times a day, and any bad
update could result in exposure.



Automation makes effective API security possible

A new approach today involves continuous follow up with dynamic, run-time analysis
that can uncover real security problems in your entire application architecture. Done
right, automated analysis identifies critical issues with a clear path to remediation for
mobile apps, cloud apps on containers or serverless, web apps, and their associated APIs.
Once a problem is uncovered, the developer can address it as a software “bug,” in the
form of a JIRA ticket that includes secure code samples and recommendations to make
the remediation straightforward. This can all be achieved by connecting the multiple
cloud and on-premise environments to a single aggregator that acts as the source of
truth, enabling automated discovery and monitoring of assets so that your visibility is
always up to date.

Here is how Data Theorem evaluates your current API security posture and helps you
ensure a security posture that can withstand attacks:

Alert and

Discover APls Group APls Define Policy Remediate

l.Inventory APIs & Discover Shadow Assets:

The old adage is still true, you can secure what you can't see. To begin the program, you
will need to start with a full mapping of how many APIs you have, who has access to
them, where they live in the cloud/on premises, and whether they are working through
web apps that may leave you vulnerable . Then you'll want to group them according to
how you want to set policies that will be enforced. For example, an internal API will be
secured much differently than an external API.



2. Inspect APIs for Data Leaks

Next you'll want to analyze all internet-facing APIs that require authentication. Should
any APl move from “authentication required” to “anonymous & publicly accessible”, that
is a leaky API!. Believe it or not, the root cause for many AppSec data breaches is due to
developer changes that left APIs open (leaky) on the Internet, not due to an elaborate
SQL Injection attack by a malicious hacker.

3. Hack and Extract

While leaky APIs might be the root cause of most of your AppSec data breaches, hackers
are still trying to break in. Thus, you must mimic attacker behavior by testing your
authentication and authorization controls on each API, preferably on a daily basis (just
like hackers do)! Should a hacker bypass any of your authentication or authorization
control, parse any data for Non-public Private Information (passwords, credit card
numbers, social security numbers, geolocations and other sensitive information
categories such as PIl, PHI, and/or PFl).

4. Injection

In addition to hacking your APIs, you must test them for Injection attacks. Ensure all
apps, including partner APIs, Serverless, and Single Page WebApps are tested for
Internet accessible injection points (e.g RESTful APl with GET, POST or PUT methods).
Once detected, perform injection attacks on each one on a daily basis, just like attackers
do! Alert & Remediate After security issues are found, it is important your AppSec
program is part of the solution. Gone are the days where you can hand over a bag of
issues to the engineering team and pray they prioritize the tickets ahead of the feature
request. Thus, ensure you have some ability, via your Cloud provider and AppSec tool, to

auto-remediate selected issues that should never be vulnerable in “real-time”. Examples
include, but not limited to, KMS Keys , Pll exposure, open storage buckets, SQS Injection,
among many others. This should close the loop on the most important aspect of
keeping your data safe.




Finally, based on the reporting and current security posture you will want to establish an
API security policy, along with your broader application security strategy. This will
require your team to create clear guidelines and best practices so that APIs are scanned
in pre-production to avoid any breaches or leaky data. Normally, multiple people are
hired to fulfill all of these needs for an API security program. However, our automated,
continuous solution provides monitoring and remediation across all of your modern
application attack layers.

If you have questions about Automated API security, please drop us a line
datatheorem.com/contact.

Copyright © 2020 Data Theorem, Inc. All rights reserved.

Data Theorem is a leading provider of modern application security. Its core mission is to analyze and secure any
modern application anytime, anywhere. The Data Theorem Analyzer Engine continuously scans APIls and mobile
applications in search of security flaws and data privacy gaps. Data Theorem products help organizations build
safer applications that maximize data security and brand protection. The company has detected more than 400
million application eavesdropping incidents and currently secures more than 4,000 modern applications for its
Enterprise customers around the world.



