
PROACTIVE MOBILE APPSEC:
A 2020 GUIDE
 



Challenges with mobile application security
Limitations of traditional approaches
Automation for mobile SDLC
Customer case study

Table of Contents
 

 
In this white paper, we will discuss the various challenges teams will encounter when
trying to start or run an application security program so that budgets, teams, and the
software releases are optimized. According to the Verizon data breach report, 56% of
data breaches took "months or longer" to discover. With this knowledge, is it possible
to create proactive mobile appsec programs that continuously discover potential
issues, without extra staff to manage them, and won't slow down software
development?

WHITE PAPER

Page 1



WHITE PAPER

Page 2

Challenges with Mobile Application Security
 
The first challenge in working with a security product, vendor or program is to agree on
how to prioritize solving the most important issues first. But security and development
teams use different vernacular when assessing the risk level of security issues - whether
they use a scale, story points, or list of exploits. Establishing a shared standard is the first
challenge. To prioritize the highest vulnerabilities, we recommend a non-subjective
approach in very clear terms of fixing or non-fixing. For first priority items, we refer to
these as P1 vulnerabilities. P1 vulnerabilities are any issue that allows a remote attacker
to export data from an app. The key to getting development and security teams to agree
on a P1 vulnerability is to anticipate how an attack might come from a remote attacker
and what data could be compromised. Then teams would agree to check those P1
vulnerabilities everyday, with every release. 
 
Challenge number two is working with the app store itself. We have a two-party system
- Apple and Google. In the United States, they control what is on Google Play and in the
App Store and that affects development as well as security. They also have low and
inconsistent security requirements that have to be met before they will allow the release
of apps or updates. If requirements are not met, they can legally remove apps from the
app store and potentially halt your business. 
 
The third challenge is one of the biggest - SDK and open source software. In modern
mobile applications, it is common practice to use a sandbox. So when you download an
app on your iOS device or your Android device, it is isolated from the other apps as well
as its data, memory and all other components. For SDKs and libraries, these are unvetted
business partners that have full control over your app, its data, its permissions, its
network layer, everything. Your code in the third-party code sits next to each other in the
app. That third-party code can do anything your code can do. So those SDKs within the
apps must be vetted before they start causing problems or you run the risk that some
nefarious character will get 10, 100 or a million developers to use the SDK for free,  then
they will monetize the data collected. On average, each app will have around 12 to 18
SDKs so the probability of having this data hacked is fairly high. Security will need to
monitor any changes regularly. 
 
Challenge number four is completely non-technical, considered the least interesting,
and the one most often ignored:

How do we keep our company name out of the 
data breach headlines?



WHITE PAPER

Page 3

Avoiding breaches is the main reason that security leaders spend money on an
information security program or the staff to support it. When a data breach is
publicized, it hurts the company as a whole. Customers’ brands are damaged, jobs are
lost, and the stock prices drop. It is also hurtful to employees’ reputations after they
leave a company, even if their role had zero influence on security. 
 
It is important to stay focused on the first three challenges, but this fourth challenge is
what you need to stay ahead of. These four challenges could be considered unit tests
that should be considered on every single release that extends to the enterprise as well.
The first enterprise challenge is regulatory compliance. Companies need to make sure
they are compliant on a regular basis. There are old and new mobile privacy laws - the
FTC, GDPR, CCPA, and more privacy legislation has been proposed by other U.S. states.
Privacy is nothing new to mobile, but now there are giant compliance issues that did
not exist years ago. For example, is your app collecting geolocations? How are you
storing it and who are you sharing it with? Let us assume you are using the data for a
legitimate business purpose, but you are accidentally storing that data with an
analytics SDK that is housed in Florida. Now as a European Union-based app, you are
not compliant with GDPR. GDPR guidelines state that the geolocation or trackers
cannot be sent to a third-party outside of the EU. So while geolocation data collection is
very common and has been around for years, the use of it is now highly regulated. 
 
Another risk in security is data-at-rest and data-in-transit. Some of the biggest attack
surfaces for mobile apps are not necessarily data-at-rest, but data-in-transit. At some
point your users may end up on a hostile network using your app. What can your app
do to be fully secure on an untrusted network? The key thing is making sure things like
TLS is not only working, but also enforced. There are obviously tools like SSL pinning.
SSL pinning is a disaster on web apps, but SSL pinning is very achievable on mobile
apps. One example of this is our open source project called TrustKit.  This is a free tool
that you can use at any time to enforce TLS and it has assisted in avoiding over 400
million attacks in the past two years.

 
 



Limitations of Traditional Approaches
 
Next, we will explore two ways that organizations have managed mobile application
security in the past and how these approaches have evolved or are failing. If you are
reading this white paper, penetration testing (or pen testing) may already be a
strategy of the past for you. But just in case it is not, let us review why this strategy
should be abandoned. Pen testing was a reliable strategy to evaluate app security
before major releases. But software development today requires updates 30 times a
month, week, or day. This is why the development world has now moved on to
DevSecOps strategies in which apps are scanned and tested automatically and
updates are released non-stop. 
 
A DevSecOps approach gives users the best-performing, most-secure app experience
and companies remain compliant. The second way companies have managed mobile
app security in the past is by measuring success from a security perspective instead of
from a developer perspective. Referring back to unit tests, these are a level of software
testing where individual units or components of software are tested. The purpose is to
validate that each unit of the software performs as designed. If something fails, that
means that the release should not proceed. Security is managed the opposite way. The
more issues the better. More issues show progress in quality. The best approach that
we recommend to our customers is to avoid a tool that alerts you to code quality issues
or nice-to-have issues. What is most critical is to keep quality high by keeping alerts
low. You will still have issues to attend to in security, but the most important issues get
alerts and those are the issues where you would stop a build from going into
production. The best solution for this is to automate so that the prioritization is done
for you and you don’t fatigue the development team with lower priority issues,
allowing them to focus on overall quality and ease of use on the app.

WHITE PAPER

Page 4



Automation for mobile software development lifecycle (SDLC)
 
Show in the image above are lists of tests that are ideal for your application security
program. This is not exclusive to Data Theorem; most mobile application security
companies are scanning for similar vulnerabilities. At a bare minimum, static and
dynamic analysis is essential. The key indicators are at the bottom. Ideally, you would
have code scanning (which is on the left), a unit test (in the middle), and then you have
compliance status, API discovery, and malicious scans (on the right). Overall, the goal
for a mobile app is to check its status and see green check marks across the board.
These results are what developers are used to reading and security can understand
and prioritize. When looking at compliance, you can see we found four alerts in this
scan and each would warrant a different approach to resolve them. 
 
Depending on what is important for your app and business, you might not want to
block certain updates going into production. For example, if you're not taking credit
cards, a PCI (Payment Card Industry) violation is not something you have to consider.
Similarly, if you are not a healthcare company, HIPAA (Health Insurance Portability and
Accountability Act) is not a guideline that is applicable to you. This framework is
something you should have baked into your mobile application security program. You
will aspire to have all green levels and remain compliant. But because the work has
been automated to prioritize the right alerts, they know it is serious when they see red
and will act to remediate.

WHITE PAPER

Page 5



Your solution to having superior and efficient mobile application security is to
automate what machines can do, instead of asking your staff to take on things like unit
tests.  Use an automated analyzer engine that discovers and conducts continuous
security assessments, identifies vulnerabilities, and delivers secure code to fix issues in
a language that developers understand.  Your staff is valuable and you will want to
bring security to their level in order to make it a part of the CI/CD cycle, and to ensure
that security scales the way your business does.

WHITE PAPER

Page 6

Customer Case Study: Large Global Investment Bank 
 
To understand further how this all works, we would like to share an example of how
one customer is leveraging automation to overcome and help scale their limited
security team. The first challenge for this organization was to enable the ability to fix
any application that had vulnerabilities and be able to continuously identify and
address those at the rate in which their development teams were producing code. The
second was to make it possible to identify blockers that did not allow them to publish a
release in an app store and how they could remediate the blocker quickly. The third
challenge was how to unite app teams that were organized across multiple product
teams. This is a common obstacle for organizations that have many mobile
applications, as opposed to just one or two. These product teams all use different tools,
especially when it comes to their development cycles. Their CI/CD tools vary, as well as
things like their bug repository.



The security team needed to work with a variety of different integration points and
tools to be able to create their audit process and make sure that it is working within
those development programs. Lastly, our customer was a financial institution so they
had a certain level of compliance and government regulatory agencies, like the FTC to
deal with. In the past, they worked with manual audits. As discussed, this is hard to
scale, especially when you have to do internal scripting in order to work with different
development teams. Eventually the manual processes become a bottleneck for the
modern-day release cycle and create tension between security and development
teams.

Our customer was faced with all of these challenges and we partnered with them to
bring in an automated solution. We had to provide the ability to integrate into the
multiple CI/CD pipelines, do a continuous evaluation of each of their different product
and app teams, and build indicators that would keep up with their nightly build cycle.
To address the compliance issues, we had to help them move away from manual
reporting. During our on-boarding, the customer realized that they needed to start
providing reporting for their customers to prove compliance and not just industry
regulators. As a result, they had to begin scanning all of their apps in pre-production
(before they ever make it to a production release). In their first 90 days, they were able
to close out over 75 security issues, and identified 51 compliance and regulatory issues.
Today, multiple product and security teams within the company use our tools to be
proactive against data breaches instead of reacting to issues on a daily basis.

WHITE PAPER

Page 7



 
 
Copyright © 2020 Data Theorem, Inc. All rights reserved.
 
Data Theorem is a leading provider of modern application security. Its core
mission is to analyze and secure any modern application anytime, anywhere.
The Data Theorem Analyzer Engine continuously scans APIs and mobile
applications in search of security flaws and data privacy gaps. Data Theorem
products help organizations build safer applications that maximize data
security and brand protection. The company has detected more than 400
million application eavesdropping incidents and currently secures more
than 4,000 modern applications for its Enterprise customers around the
world.
 

WHITE PAPER

Page 8

Summary
 
It is crucial for every company that the top-priority data
vulnerabilities and app store blockers can be resolved in
a way that is swift and accurate before data is exposed.
The best way to avoid this is to provide a simple tool that
developers can use to implement an automated strategy
into every software release cycle.  
 
Data Theorem offers a tool that security and operations
teams can both leverage to find and resolve critical
security vulnerabilities across their entire mobile
application tech stack by performing continuous
dynamic runtime analysis on each release.

Percentage of Apps
Scanned including Pre-

Production

Overall Security Issues 
Resolved and Closed

Regulatory Compliance
Issues 

Identified and Resolved

100%

75

51

P1 and App Store Blockers
that did not make it into

production

7

AppSec Program Results:


