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SUMMARY

Avoidance of environmental dangers depends on
nociceptive topognosis, or the ability to localize pain-
ful stimuli. This is proposed to rely on somatotopic
maps arising from topographically organized point-
to-point connections between the body surface
and the CNS. To determine the role of topographic
organization of spinal ascending projections in
nociceptive topognosis, we generated a conditional
knockoutmouse lacking expression of the netrin1 re-
ceptor DCC in the spinal cord. These mice have an
increased number of ipsilateral spinothalamic con-
nections and exhibit aberrant activation of the so-
matosensory cortex in response to unilateral stimula-
tion. Furthermore, spinal cord-specificDcc knockout
animals displayed mislocalized licking responses to
formalin injection, indicating impaired topognosis.
Similarly, humans with DCC mutations experience
bilateral sensation evoked by unilateral somatosen-
sory stimulation. Collectively, our results constitute
functional evidence of the importance of topographic
organization of spinofugal connections for nocicep-
tive topognosis.

INTRODUCTION

Acute pain functions as a warning about existing or potential tis-

sue damage. Nocifensive behaviors rely on accurate stimulus

localization, or topognosis, which has been proposed to be
Cell Rep
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mediated by somatotopically organized neural connections

that allow the nervous system to link stimulus quality to its loca-

tion (Kenshalo and Isensee, 1983). Ascending pathways that

connect the spinal cord to the brain have been proposed to be

a major component of such circuits, but because their molecular

and genetic handles remain elusive, the extent of their contribu-

tion to nociceptive topognosis remains unknown.

Somatotopic maps are characterized by topographically orga-

nized neuronal connections linking sensory neurons innervating

adjacent locations on the surface of the body, with neural circuits

located in adjacent regions of the thalamus (Mountcastle and

Henneman, 1952) and the cortex (Penfield and Boldrey, 1937).

One fundamental organizing principle of such maps is that

sensory information from one side of the body is processed

by rostral neural circuits contralateral to it, as a result of sec-

ond-order ascending connections crossing the nervous system

midline. In the case of nociception, for instance, spinothalamic

commissural neurons postulated to relay topognostic informa-

tion innervate the contralateral somatotopically organized

ventral posterolateral nucleus (VPL) of the thalamus (Davidson

et al., 2010; Guilbaud et al., 1980). Whether such commis-

sural organization contributes to normal nociception remains

unresolved.

Commissural axon guidance at the level of the spinal cord is

an extensively well-studied subject (Chédotal, 2014). Among

others, netrin1 signaling via its receptor DCC has been impli-

cated in promoting the growth of axons across themidline (Fazeli

et al., 1997; Keino-Masu et al., 1996). We have thus hypothe-

sized that manipulating Dcc expression would allow us to

change somatosensory circuit topographic organization at the

level of commissural connectivity, allowing us to make infer-

ences about the functional relevance of such organization. To
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this end, we created mice lacking Dcc expression exclusively

in the spinal cord (DccSpKO), which exhibited increased numbers

of ipsilateral spinothalamic projections. Such mice also showed

changes in both the extent and timing of somatosensory cortex

activation following peripheral noxious stimulation. Furthermore,

although DccSpKO mice displayed grossly normal nocifensive

behaviors, these were directed toward somatotopically inappro-

priate locations, indicating a deficit in nociceptive topognosis.

Extending these data, we also found that humans with DCC

mutations exhibit sensory mirroring. Together, our findings pro-

vide a genetic handle on the relationship between topographic

organization of spinofugal connections and topognosis.

RESULTS

Increased Ipsilateral Spinothalamic Connectivity in
Spinal Cord-Specific Dcc Mutant Mice
We crossed the brain-sparing Hoxb8::Cre driver to the null

and Cre-excisable alleles of Dcc (Dcc� and Dccf, respectively)

to produce Hoxb8::Cre; Dccf/� (DccSpKO) as well as control

Dccf/+, Dccf/�, and Hoxb8::Cre;Dccf/+ littermates (Fazeli et al.,

1997; Krimpenfort et al., 2012; Witschi et al., 2010). By embry-

onic day (E) 11.5, we observed a complete loss of DCC protein

in the lumbar spinal cord ofDccSpKO embryos, but its expression

was spared in the upper cervical spinal cord, where Hoxb8::Cre

is not expressed (Figure 1A). At E14.5, when commissural axons

have normally completed their midline crossing, we observed a

42.6% reduction in the thickness ofDccSpKO ventral commissure

bundle compared to controls (p < 0.01). There were no changes

in spinal cord thickness in the dorsoventral axis, but ventral

funiculus thickness was significantly reduced (p = 0.68 and

p = 0.013, respectively; Figures 1B and 1C), suggesting impaired

midline crossing. The extent of commissure reduction was com-

parable with that reported in Dcc null mice (Xu et al., 2014).

DccSpKO mice were viable and grossly normal but displayed a

hopping gait, as reported for theDcc hypomorphic mutation (un-

published data; Finger et al., 2002).

We next focused our attention on the mostly commissural spi-

nothalamic neurons that are proposed to relay topognostic infor-

mation (Davidson et al., 2010; Guilbaud et al., 1980). Hoxb8::Cre

expression has been reported to initiate at E9.5, which precedes

the birth of the earliest born spinothalamic neurons (Beal

and Bice, 1994). Moreover, we confirmed in adult animals that

Hoxb8::Cre is expressed in virtually all lumbar spinothalamic

neurons during their development (Figure S1). To assess

whether spinothalamic neurons rely on DCC to innervate the

contralateral thalamus, we labeled them in adult DccSpKO and

control mice by unilateral injection of FluoroGold (FG) targeting

the VPL, the main target of spinothalamic neurons (Figures 1D

and 1E). In the upper cervical spinal cord, we observed the

same proportion of ipsilateral versus contralateral spinothalamic

neurons in controls and mutants (Figures 1F and 1G). However,

at lumbar levels of DccSpKO mice, 36.5% of labeled spino-

thalamic neurons were located ipsilateral to the injection site,

compared with only 3% in controls (p < 0.01; Figures 1H and 1I).

Nociceptive stimuli may also activate low-threshold recep-

tors, which could be potentially involved in topognosis. Low-

threshold mechanoceptive signals are relayed to the VPL con-
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tralaterally and in a somatotopic fashion via the dorsal column-

medial lemniscal pathway (Ma et al., 1986). Unilateral retrograde

tracer injection into the thalamus did not reveal any abnormal

thalamic innervation of dorsal column nuclei (DCN) neurons in

DccSpKO, in agreement with lack of Hoxb8::Cre expression in

the brainstem (Figure S2).

Normal Spinal Nociception in DccSpKO Mice
We next examined the spinal nociceptive circuitry and spinal-

mediated nociceptive reflexes ofDccSpKOmice. We investigated

the central connectivity of peripheral mechanonociceptors by

labeling them with isolectin B4 and of thermonociceptors by

immunostaining for calcitonin gene-related peptide (CGRP)

(Molliver et al., 1995). Except for a mild disorganization in the

medial dorsal horn similar to that reported previously in Dcc

knockout (Figure 2A, arrow; Ding et al., 2005), the innervation

of lamina I by CGRP+ axons and that of lamina II by IB4+ axons

did not differ between control and DccSpKO animals (Figure 2A).

Furthermore, the total number of NeuN+ neurons, Lmx1b+ excit-

atory neurons, or Pax2+ inhibitory neurons was not significantly

different between DccSpKO and control mice (Figure 2B), sug-

gesting that loss of Dcc does not influence nociceptive circuit

development at the spinal level.

We then assessed the functionality of nociceptive spinal cir-

cuits in DccSpKO mice. To do this, we analyzed the upregulation

of Fos expression in the lumbar dorsal horn of control and

DccSpKO animals in response to intraplantar hindpaw injection

of 5% formalin (Hunskaar et al., 1985). The number of neurons

with upregulated Fos expression on the injected side was not

different between DccSpKO and control animals, suggesting

that the functionality of afferent sensory connections and local

nociceptive spinal circuits were not affected by the loss of

DCC (Figure 2C). Also, nociceptive reflex response thresholds

to von Frey fiber mechanical stimulation (Chaplan et al., 1994)

and radiant heat stimulation (Hargreaves et al., 1988) were un-

changed in DccSpKO mice compared with controls (Figure 2D),

suggesting that loss of spinal Dcc expression does not change

the sensitivity of mice to noxious stimuli applied to the hindlimb.

Abnormal Noxious Stimulus-Evoked Cortical Activity in
DccSpKO Mice
We next used intrinsic optical imaging (IOI) in the somatosensory

cortex to map changes in cortical encoding of painful stimuli in

DccSpKO mice (Figures 3A and 3B; Table S1). In control animals,

noxious electrical hindpaw stimulation evoked robust activation

of the contralateral primary somatosensory cortex (S1; p < 0.001

compared with the ipsilateral hemisphere signal; Figures 3C and

3D). In contrast, DccSpKO animals showed reduced contralateral

S1 activation with no significant difference in integrated IOI

signal between both hemispheres (p = 0.08; Figures 3C and

3D). This resulted in a reduced difference between contralateral

and ipsilateral S1 in DccSpKO animals compared with control

mice (p < 0.001; Figure 3E).

Because IOI signals primarily reflect action potential firing

(Polley et al., 1999b), it is possible that the contralateral signal is

being reduced in DccSpKO by inhibitory inputs originating from

the hemisphere ipsilateral to the stimulus (Palmer et al., 2012).

In order to elucidate the mechanism underlying this reduction,
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Figure 1. DccSpKO Mice Have Reduced Ventral Spinal Commissures and Bilateral Spinothalamic Innervation
(A) DCC immunofluorescence in the cervical and lumbar spinal cord of E11.5 embryos. Inverted fluorescent signal. Arrows, commissural axons lacking DCC

expression in DccSpKO embryos. n = 3 embryos per group. Scale bar, 200 mm.

(B) Neurofilament M expression in mutant and control E14.5 lumbar spinal cord. Bottom, magnification of the ventral commissure (square brackets) and the

ventral funiculus (curly brackets). Scale bar, 500 mm.

(C)Measurement of ventral spinal commissure and ventral funiculus thickness.Mean ±SD. *p < 0.05; ns, not significant; Student’s t test; n = 4 embryos per group.

(D) Thalamic injection of retrograde tracer FluoroGold (FG) and labeled spinothalamic neurons.

(E) A thalamic FG injection site. Outline, ventral posterior complex. Scale bar, 3 mm.

(F) FG+ cells in the cervical spinal cord at C1–C2 (inverted fluorescent signal). Left micrographs are sample sections, right panels are overlays of five sections.

Scale bar, 100 mm.

(G) Quantification of labeled ipsilateral and contralateral cell numbers and percentage of contralaterally versus ipsilaterally projecting neurons.Mean ±SD. ns, not

significant; Student’s t test; n = 3 mice per group.

(H) Images from the animals in (F), showing FG-labeled spinothalamic neurons in the L4 segment (inverted fluorescent signal). Right, overlays of eight sections.

Scale bar, 100 mm.

(I) Similar quantifications as in (G) for lumbar sections. Mean ± SD. *p < 0.05; ns, not significant; Student’s t test; n = 3 mice per group.
we assessed cortical activation using fast voltage-sensitive dye

imaging (VSDi) to measure stimulus-evokedmembrane potential

dynamics (Figure 3F; Table S2). In both control and DccSpKO

mice, VSDi revealed that unilateral noxious hindpaw stimulation
triggered a rise in membrane voltage in both contralateral and

ipsilateral S1 (Figures 3G and 3H). However, whereas control

mice featured early activity exclusively in contralateral S1

(auc30ms contralateral versus ipsilateral, p = 0.002), DccSpKO
Cell Reports 22, 1105–1114, January 30, 2018 1107
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(legend continued on next page)
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mice showed nearly simultaneous bilateral activation (auc30ms

contralateral versus ipsilateral, p = 0.2). In control mice, hindpaw

stimulation evoked activation of contralateral S1 after a mean

post-stimulus latency of approximately 20 ms (Figure 3H; see

Experimental Procedures), followed by significantly delayed ipsi-

lateral activation (p < 0.001; Figure 3I). In contrast, in DccSpKO

mice, the activation latency of each hemisphere upon unilateral

stimulationwasnot significantly different (p=0.2; Figure 3I), again

indicating the presence of simultaneous inputs into both hemi-

spheres. Consequently, the interhemispheric latency following

unilateral noxious hindpaw stimulation was significantly shorter

in DccSpKO mice compared with control animals (p = 0.002; Fig-

ure 3J). Altogether, our results indicate that the increasednumber

of ipsilateral spinothalamic projections in DccSpKO mice leads

to a premature activation of the ipsilateral S1, which, via callosal

axons, could inhibit the S1 cortex contralateral to the stimulus,

resulting in IOI signal decrease.

DccSpKO Mice Have Reduced Topognostic Accuracy
To study how the anatomical and functional changes observed in

DccSpKO mice relate to nociceptive topognosis, we injected 5%

formalin into the plantar surface of one hindpaw and saline into

the opposite paw and recorded the location of licking behavior

over 50 min (Figure 4A; Movies S1 and S2). This behavior has

been proposed to depend on the transmission of nociceptive in-

formation from the spinal cord to the brain via spinofugal projec-

tions, and thus we expected its impairment in DccSpKO mice.

The total licking time over the recorded period did not differ

between DccSpKO and control mice, suggesting that DccSpKO

mice perceived the stimulus to be as aversive as control mice

(p = 0.66; Figure 4B). However, whereas control animals almost

exclusively licked the formalin-injected compared with the sa-

line-injected paw (91% and 1.8% of total time, respectively),

DccSpKOmice spent significantly less time licking the formalin-in-

jected paw and more time licking the saline-injected paw (61%

and 13% of total time, respectively), as well as the trunk (15%)

and genitals (8.7%; p values in Figures 4B and 4C). This behav-

ioral change is unlikely attributed to defects in motor circuits,

because Dcc deletion is restricted to the spinal cord and did

not impair the movement of the head and forelimbs (see Movies

S1 and S2). We can therefore conclude that the observed

changes in licking location are a result of an impaired perception

of the stimulus, rather than a motor phenotype. Altogether, this

experiment suggests thatDccSpKOmice perceive noxious stimuli

with the same intensity as control mice but have an impaired

ability to localize them.

DCC Mutation Impairs Topognosis in Humans
To complement the DccSpKO mouse analyses, we examined

whether DCC mutations also impair topognosis in humans.

Human DCC mutations result in ‘‘mirror movements’’ (MMs),

characterized by voluntary movements of one side of the body
(C) Fos expression in L4 dorsal horn sections of animals stimulated with 5% int

Student’s t test; n = 3 mice per group.

(D) Response thresholds to mechanical (von Frey) or thermal (Hargreaves) noxio

group (von Frey test) and n = 6 control and 4 DccSpKO mice (Hargreaves test). S
accompanied by involuntary movements of the opposite side

(Srour et al., 2010;Welniarz et al., 2017), aswell as isolated agen-

esis of the corpus callosum (ACC; Marsh et al., 2017). We as-

sessed the perception of mechanical stimuli using von Frey

filaments in individualswith heterozygousDCCmutations and re-

corded their reported sensation (Figure 4D). We assessed a total

of ten individuals with MMs, seven of whom belonged to two

different Australian families (Marsh et al., 2017) and three to a

French-Canadian family (Srour et al., 2010). These individuals

had varying levels of MMs with or without ACC, ranging from

mild to strong phenotype (Table S3). When stimulated, four of

ten subjects reported a sensation in the analogous contralateral,

non-stimulated site (Figure 4D). This sensation ranged from

barely perceptible to identical to stimulated side, depending on

the subject and the body part stimulated. Curiously, some pa-

tients experienced such mirrored sensations only for particular

body parts, such as the left thumb (patient 2-II-1) or right ankle

(patient 4:7). Also of interest, the individuals presenting sensory

mirroring had the most severe MM functional effects among all

the tested individuals (Table S3), suggesting thatmirrored sensa-

tion and MMs may depend on DCC function in a similar manner.

DISCUSSION

Pain is a complex experience, composed of sensory-discrimi-

native and motivational-affective components (Casey and Mel-

zack, 1968) thought to be relayed by two different ascending

pathways: the lateral spinothalamic (or neospinothalamic) and

the medial spinothalamic (paramedial) pathways, respectively

(Lima, 2008). DccSpKO mice display quantitatively normal noci-

fensive behaviors but directed toward somatotopically inappro-

priate locations, implying a dissociation of the sensory-discrim-

inative and affective-motivational components of pain. Because

Dcc mutation affects the laterality of spinofugal connections,

we reasoned that the function of pathways with a low degree

of lateralization is unlikely to be changed by Dcc mutation. For

example, spinoparabrachial neurons, arguably the best studied

spinofugal nociceptive population, do not follow an obvious

commissural organization (Cameron et al., 2015; Feil and Her-

bert, 1995; Kitamura et al., 1993), whereas their parabrachial

nucleus targets show only a crude topographic organization

and have large receptive fields (Bourgeais et al., 2001). In fact,

mounting evidence implicates this nucleus in processing the

motivational-affective aspect of pain as well as coordination of

autonomic responses (Campos et al., 2017; Gauriau and

Bernard, 2002; Han et al., 2015). In contrast, loss of laterality

of the neospinothalamic pathway is likely to affect its ability

to encode stimulus location. Although without a specific manip-

ulation of the spinothalamic neurons we cannot ascribe the

observed behavioral defects exclusively to a particular pathway,

we predict that a change in proportion of commissural versus

ipsilateral projections would primarily affect the function of
raplantar hindpaw formalin or saline injection. Mean ± SD. ns, not significant;

us stimulation. Mean ± SD. ns, not significant; Student’s t test; n = 9 mice per

cale bars, 200 mm.
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(A) Experimental setup used for bilateral imaging of stimulus-evoked cortical intrinsic optical signals.

(B) Circles at left show approximate regions of interest (ROIs) used for signal extraction in the contralateral (blue) and ipsilateral (red) hindpaw area of S1. Time

sequences show the observed relative changes in intrinsic optical signals evoked by right hindpaw stimulation. Vertical gray bars represent electrical stimulation.

Time stamps are relative to stimulus onset.

(C) Average stimulus-evoked changes in total hemoglobin (HbT) signal over time. Contralateral signals are shown in blue, ipsilateral signals in red. Horizontal

dashed lines indicate baseline. Solid lines and shaded areas represent mean and SEM, respectively, and stimulation is illustrated by vertical gray bars.

(legend continued on next page)
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neospinothalamic connections, while sparing the paramedial

system.

Our retrograde labeling experiments suggest that in DccSpKO

mice, spinothalamic axons from each body side converge on

the same VPL nucleus, raising the question of whether somato-

topic maps representing each body side can coexist in one

thalamic hemisphere and how this might affect their function.

A recent study showed that trigeminothalamic (TT) axons lacking

Robo3 innervate the thalamus in a bilateral manner (Renier et al.,

2017): TT afferents originating from each side of the body segre-

gated into distinct domains of both ventral posteromedial (VPM)

nuclei, similar to ocular dominance columns (Hubel and Wiesel,

1969) or retinotectal input segregation in three-eyed frogs

(Constantine-Paton and Law, 1978). It would be reasonable to

assume that this might also be the case for lumbar spinothalamic

neuron innervation of the VP thalamus in DccSpKO animals. In

view of this, one possible explanation for the erosion of nocicep-

tive topognosis precision in DccSpKO mutants is that the body

maps in each thalamic or cortical hemispheres become frag-

mented, with a limited number of neurons processing pain

localization, whose numbers now fall below a critical threshold

required for accurate localization.

Direct functional insights into the connectivity and function of

nociceptive circuits in DccSpKO mice are provided by our two

complementary in vivo S1 cortex imaging experiments. S1 is a

part of the pain matrix, encoding for sensory stimulus location

and intensity and is acutely activated by noxious stimulation

(Bushnell et al., 1999; Gross et al., 2007; Cichon et al., 2017).

Using IOI in anesthetized mice, we observed predominantly

contralateral S1 activation elicited by noxious stimulation in con-

trol mice, in line with reports of optical hemodynamic imaging the

cortical representation of sensory stimuli in rodents (Devor et al.,

2008; Ma et al., 2016) and humans (Sato et al., 2002). Because

hemodynamic signals are thought to arise following presynaptic

action potential firing and postsynaptic integration (Logothetis

et al., 2001; Polley et al., 1999a), the strong reduction in

interhemispheric signal difference in DccSpKO mice may reflect

similar levels of spinothalamic input to both hemispheres.

Results from VSD imaging experiments reveal noxious stim-

ulus-evoked initial contralateral S1 activation, followed by de-

layed ipsilateral S1 activation. This sequence of bilateral S1 acti-

vation resembles cortical activation evoked by innocuous touch

observed with VSD imaging in behaving mice (Ferezou et al.,

2007) but differs from functional imaging and somatosensory-

evoked magnetic field studies in awake, attentive humans, in

whom essentially only a contralateral S1 activation has been
(D) Scatterplots showing the distribution of integrated HbT signal magnitudes. n =

##p = 0.002; ns, not significant. Data are presented as mean ± SD.

(E) Differences in integrated HbT signal between contralateral and ipsilateral h

mean ± SD.

(F) Schematic of bilateral imaging of stimulus-evoked changes in membrane volt

colored in green.

(G) Exemplary time courses depicting cortical activation triggered by right hindp

(H) Example traces extracted from the S1 hindpaw area. Horizontal double arrow

signal rise. Insets, higher magnification to illustrate the interhemispheric latency

(I) Scatterplot of post-stimulus latencies. n = 4 animals per group. ***p < 0.001; n

(J) Scatterplot showing differences in interhemispheric latencies between genoty
described (Omori et al., 2013; Talbot et al., 1991). Unilateral

noxious stimulation of DccSpKO mutant mice also results in

bilateral activation of S1, but in contrast to controls, the ipsilat-

eral activation follows the contralateral activation more rapidly.

Given the increased incidence of ipsilateral spinothalamic con-

nections in DccSpKO mutants, the bilateral S1 signal can be

explained by bilateral and simultaneous activation of thalamo-

cortical afferents. Furthermore, we propose that in DccSpKO

mice, interhemispheric communication is also changed at

cortical levels. Bilateral sensory stimulation potently inhibits

pyramidal cell activity initially evoked only in contralateral S1

via commissural GABAergic signaling (Palmer et al., 2012).

The decreased interhemispheric latency in DccSpKO mice could

likewise lead to effective cross-inhibition within a shorter time

window, in line with the overall lower IOI amplitudes in DccSpKO

mutants.

In contrast to DccSpKO mice, DCC mutant humans perceive

the stimulus in the somatotopically appropriate location but on

both sides of the body. What is evident from our analysis is

the variability of penetrance of mirrored sensation whereby

two individuals carrying the same mutation show remarkably

different phenotypic severity (patients 2-II-1 and 2-III-3, for

example) (Marsh et al., 2017). Callosal agenesis also does not

apparently correlate with somatosensory mirroring: some of

the patients with complete ACC were still able to localize

noxious stimuli normally, suggesting that this structure is irrele-

vant for nociceptive topognosis. On the other hand, there ap-

pears to be a correlation between the severity of MMs and

mirrored sensations, suggesting a shared mechanism of devel-

opment between motor and sensory circuits. Conducting func-

tional imaging experiments in humans with mirrored sensation

might also extend lesion studies that highlight the importance

of specific brain structures in different aspects of nociception.

For example, blindtouch, in which somatosensory stimuli are

perceived but not localized, is caused by thalamic lesions

arguing for the importance of this structure for human topogno-

sis (Halligan et al., 1997; Rossetti et al., 1995).

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Mouse Colony Management and Maintenance

All experiments involved mice from both sexes. Animal usage protocols

were reviewed and approved by the Animal Care Committee of Institut de

Recherches Cliniques de Montréal (IRCM) and by the veterinary office of the
4 animals per group. ***p < 0.001 between groups; ###p < 0.001 to baseline;

emispheres. n = 4 animals per group. ***p < 0.001. Data are presented as

age. Early VSD signals observed in S1 following hindpaw stimulation are false-

aw stimulation. Time stamps are relative to stimulus onset.

s indicate latency between stimulation (vertical gray arrow) and half-maximal

(horizontal double arrows) following unilateral hindpaw stimulation.

s, not significant. Data are presented as mean ± SD.

pes. n = 4 animals per group. **p < 0.01. Data are presented as mean ± SD.
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A
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D

Control

Licking Location

Right forelimb
Left forelimb
Right hindlimb
Left hindlimb
Trunk

Grooming

Trunk
Genitals

Right Forelimb

Left Hindlimb
Right Hindlimb

Left Forelimb

Control

Time post injection (s) Time post injection (s)
200010000

Grooming

Trunk
Genitals

Right Forelimb

Left Hindlimb
Right Hindlimb

Left Forelimb

Genitals

200010000

Sensory Mirroring 
Score

0

1
2
3
4

2-II-1 2-III-3 4-III-1 4:7Patient Code

Control Dcc p

Right Forepaw 1.54 ± 1.45 3.76 ± 3.64 ns

Left Forepaw 2.46 ± 3.22 14.07 ± 2.55 ns

Right Hindpaw 693.68 ± 416.36 389.29 ± 318.84 *

Left Hindpaw 13.37 ± 10.63 83.52 ± 109.42 *

Trunk 45.76 ± 13.29 95.35 ± 40.41 *

Genitals 5.16 ± 2.52 56.02 ± 38.31 *

TOTAL 761.98 ± 412.77 642 ± 408.25 ns

Licking Time (s)

Right Side Left Side

Fingers 2 Fingers 1
Hands 1 Hands 1
Wrists 1 Wrists 1

Right Side Left Side

Fingers 3 Fingers 3
Hands 3 Hands 3
Wrists 3 Wrists 3

Right Side Left Side

Fingers 2 Fingers 1
Hands 3 Hands 2
Wrists 2 Wrists 2

Right Side Left Side

Fingers 2 Fingers 2
Hands 2 Hands 2
Wrists 1 Wrists 1

Forearms 1 Forearms 1
Toes 1 Toes 1

MM Severity 
Score

Evoked Sensations by Contralateral Mechanical Stimulation (Frontal View)

Complete ACC UnknownCorpus Callosum Complete ACC Partial ACC

DCC Mutation p.Val793Gly p.Val793Gly p.Gly805Glu p.Val329Glyfs*15

DccSpKO

SpKO
DccSpKO

*

*

*

*

R L

Figure 4. Impaired Nociceptive Topognosis in DccSpKO Mice and Somatosensory Defects in DCC Mutant Individuals with MMs

(A) Tracking of licking behavior in response to right hindpaw 5% formalin injection and left hindpaw saline injection in two representative animals. Each vertical

line indicates a licking event.

(B and C) Average behavior times as mean ± SD (B) and a graphical representation of the average time spent licking each body part (circle area proportional to

licking time) (C). *p < 0.05; ns, not significant; one-way ANOVA followed by Bonferroni post hoc paired comparison. n = 5 mice per group.

(D) Diagrams representing intensity of mirrored perception upon stimulation of contralateral side in human subjects bearing DCC mutations. Sensory mirroring

scoring: 0, none; 1, barely discernible but present; 2, present but weaker than stimulated side; 3, strong but not complete; 4, completely mirrored. The MM

severity score was based on the Woods-Teuber scale (Woods and Teuber, 1978).
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Canton of Zurich, Switzerland. Mice were considered adult at an age of

2–6 months.

Human Subjects

The Royal Children’s Hospital Human Research Ethics Committee approved

the experiments conducted with Australian patients (project 28097). Four

members of family 2 (II-1, a 50-year-old woman, III-1, an 18-year-old boy,

III-2, a 16-year-old boy and III-3, a 15-year-old boy, all Caucasian) and three

members of family 4 (II-1, a 45-year-old woman, III-1, a 12-year-old boy and

III-2, a 14-year-old girl, all Caucasian) (Marsh et al., 2017) were assessed.

The McGill University Heath Center Research Ethics Committee approved

the experiments involving Canadian patients. Informed consent was obtained

from subjects. Three subjects were tested initially, all belonging to the same

French-Canadian family (Srour et al., 2010): 3:3, a 66-year-old man, 3:14,

a 54-year-old woman and 4:7, a 26-year-old man. All three individuals have

congenital MMs (Woods-Teuber scale 3; Woods and Teuber, 1978) and

bear the same DCC mutation.

Quantification and Statistical Analysis

Statistical analyses were performed using either Microsoft Excel or GraphPad

Prism 6.0.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, three tables, and two movies and can be found with this article

online at https://doi.org/10.1016/j.celrep.2018.01.004.
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P., and Chédotal, A. (2017). A mutant with bilateral whisker to barrel inputs

unveils somatosensory mapping rules in the cerebral cortex. eLife 6, e23494.

Rossetti, Y., Rode, G., and Boisson, D. (1995). Implicit processing of somaes-

thetic information: a dissociation between where and how? Neuroreport 6,

506–510.

Sato, K., Nariai, T., Sasaki, S., Yazawa, I., Mochida, H., Miyakawa, N.,

Momose-Sato, Y., Kamino, K., Ohta, Y., Hirakawa, K., and Ohno, K. (2002).

Intraoperative intrinsic optical imaging of neuronal activity from subdivisions

of the human primary somatosensory cortex. Cereb. Cortex 12, 269–280.

Srour, M., Rivière, J.B., Pham, J.M., Dubé, M.P., Girard, S., Morin, S., Dion,
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