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SUMMARY
Despite successful clot retrieval in large vessel occlusion stroke,�50% of patients have an unfavorable clin-
ical outcome. The mechanisms underlying this functional reperfusion failure remain unknown, and therapeu-
tic options are lacking. In the thrombin-model of middle cerebral artery (MCA) stroke in mice, we show that,
despite successful thrombolytic recanalization of the proximal MCA, cortical blood flow does not fully
recover. Using in vivo two-photon imaging, we demonstrate that this is due to microvascular obstruction
of �20%–30% of capillaries in the infarct core and penumbra by neutrophils adhering to distal capillary seg-
ments. Depletion of circulating neutrophils using an anti-Ly6G antibody restores microvascular perfusion
without increasing the rate of hemorrhagic complications. Strikingly, infarct size and functional deficits are
smaller in mice treated with anti-Ly6G. Thus, we propose neutrophil stalling of brain capillaries to contribute
to reperfusion failure, which offers promising therapeutic avenues for ischemic stroke.
INTRODUCTION

Stroke remains the primary cause of disability worldwide

(Benjamin et al., 2019; GBD 2016 Neurology Collaborators,

2019). To date, intravenous thrombolysis with recombinant tis-

sue plasminogen activator (t-PA) and catheter-based mechani-

cal thrombectomy are the pillars of acute stroke therapy (Camp-

bell et al., 2019). Recanalization of occluded vessels enhances

oxygen and nutrient delivery to affected tissue, thus facilitating

functional recovery from stroke (Panni et al., 2019). However,

there is accumulating evidence that clot removal and vessel

recanalization do not always go along with tissue reperfusion,

a phenomenon called ‘‘no-reflow’’ (Dalkara and Arsava, 2012;

Espinosa de Rueda et al., 2015; Soares et al., 2010). No-reflow

in stroke refers to microvascular reperfusion failure and tissue

damage despite successful recanalization of the larger occluded

artery. The no-reflow phenomenon has not only been described

in stroke, but also occurs in ischemic heart disease, representing

a major obstacle to tissue and functional recovery (Allencherril

et al., 2019; del Zoppo and Mabuchi, 2003). Why microvascular

no-reflow occurs in stroke even after successful recanalization is

poorly understood, and strategies to counteract this perfusion

failure do not exist.

Here, we measured distal capillary flow after recanalization in

mice subjected to stroke to identify the extent and the underlying

mechanisms of the no-reflow phenomenon. We used a thrombin

model of stroke and thrombolysis (El Amki et al., 2012; Orset
C
This is an open access article under the CC BY-N
et al., 2007) where a fibrin rich clot is induced in the MCA, which

is later dissolved by intravenous t-PA infusion, closely mimicking

the clinical scenario of ischemic stroke and intravenous

thrombolysis.

RESULTS

No-Reflow in the Thrombin Model of Stroke
To characterize the degree and timing of reperfusion and no-

reflow after thrombolysis, we monitored cortical perfusion using

laser speckle contrast imaging (LSI) during stroke and thrombol-

ysis with either t-PA or saline (control treatment) for 2 h (Figures

1A–1L). Thrombolysis was administered at 30 min after ischemia

onset, which resembles an early treatment time window with

high chances of successful recanalization (Orset et al., 2016).

Thrombin injection led to successful occlusion of the MCA at

its M2 segment bifurcation. At the end of the 2-h observation

time, complete recanalization was achieved with t-PA in all

treated mice (Figure 1C). None of the saline-treated mice

showed complete clot dissolution: partial recanalization

occurred in 77.7%, whereas the MCA remained completely

occluded in 22.3% (Figure 1C). Clot formation induced a steep

drop in perfusion within the core of the lesion, and moderate hy-

poperfusion in the penumbra. Although there was some degree

of spontaneous reperfusion in controls, t-PA treatment signifi-

cantly raised reperfusion level to 61% ± 4.9% compared to

44% ± 3.5% in the core region (Figures 1G–1I) and 71% ±
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Figure 1. No-Reflow in the Thrombin Model of Stroke

(A) Schematic view of thrombin injection into the middle cerebral artery (MCA)-M2 segment.

(B) Representative images showing the MCA occluded by a clot (left) and recanalized after clot dissolution (right).

(C) Quantitation of MCA clot dissolution at 2 h after stroke in control (saline, left) and t-PA-treated (right) mice (n = 9/group).

(D) Timeline of laser speckle imaging (LSI) experiments.

(E) Schematic drawing of the LSI view on pial vessels and regions of interest (ROIs) used for analyses in (G)–(L).

(F) Representative LSI images showing cortical perfusion from control and t-PA mice at different time points after stroke. The small window (bottom) depicts the

MCA branch and surrounding tissue at 120 min after stroke. The color bar indicates perfusion in arbitrary units (a.u.).

(G) LSI recordings for the core ROI compared to baseline in controls or t-PA mice, n = 9/group, *p < 0.05, two-tailed Mann-Whitney U-test.

(H and I) Single values of residual CBF (% of baseline level) in the core ROI for time points 0 and 120 min are shown with violin plots. The thick horizontal line

indicates the median value and the dashed horizontal line indicates the quartile values. n = 9/group, *p < 0.05, two-tailed t test.

(J) LSI recordings for the penumbra ROI compared to baseline in controls or t-PA mice, n = 9/group, *p < 0.05, two-tailed Mann-Whitney U-test.

(K and L) Single values of residual CBF (% of baseline level) in the penumbra ROI for time points 0 and 120 min are shown with violin plots. n = 9/group, *p < 0.05,

two-tailed t test.

(M) Timeline of two-photon experiments. The position of the cranial window is depicted with the black square in the schematic, covering the core and penumbra

ROIs. Scale bar, 200 mm. On the right are a micrograph and in vivo two-photon image over the cranial window. Scale bar, 100 mm.

(N) Representative two-photon images depicting the main trunk of the MCA for a control and t-PA-treated mouse, recorded pre-stroke, at 30 and 120 min post-

stroke. White (diameter) and yellow (velocity) lines indicate the respective paths for line scans. Scale bar, 50 mm.

(O and P) Quantification of RBC velocity and diameter change at 120min post-stroke compared to the pre-stroke measurement (% change) are shown with violin

plots. n = 6 for controls and n = 4 for t-PA mice; *p < 0.05; two-tailed t test.
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7.9% versus 47% ± 2.7% in the penumbra (Figures 1J–1L).

Notably, even with thrombolysis and complete clot dissolution,

tissue reperfusion was far from complete. Considerable no-

reflow was evident beyond the core of the lesion, extending

into the penumbra.

To identify changes in vessel diameter and blood flow under-

lying the no-reflow phenomenon, we imaged the affected distal

(pial) MCA segments, using two-photon imaging, and confirmed

a profound reduction in red blood cell (RBC) velocity along with a

vasoconstriction to 46% ± 11.2% of pre-stroke diameter in sa-
2 Cell Reports 33, 108260, October 13, 2020
line-treated controls (Figure 1N-P). In t-PA-treated animals,

RBC velocity within the distal MCA segment was restored to

80% ± 6.9% of baseline, whereas ischemia-induced MCA diam-

eter reduction was attenuated (74% ± 10%).

We further analyzed cortical vascular networks to identify po-

tential obstacles to reperfusion within the more distal capillary

bed in the lesion core as well as the penumbra. To eliminate

the possibility that capillary stalls are simply due to adjacent

large vessel occlusion, we confirmed that the occluding clot in

the MCA-M2 was completely resolved before starting the
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measurements (60 min after t-PA; Figures S1A and S1B). We

identified patent and stalled capillaries using two-photon micro-

scopy by the presence or absence of streaking RBCs (Figures 2A

and 2B; Video S1). Unbiased sampling of cortical vasculature in

12 mice without stroke for 2 h revealed that spontaneous

obstruction of capillaries was relatively rare (14 in 2,245 capil-

laries; �0.64%, see Figures S1C–S1E).

Capillaries Remain Stalled after Recanalization of the
MCA
We observed that after stroke and despite thrombolysis (no ob-

structions in arterioles), �35% of capillaries in the core and

�15% of capillaries in the penumbra remained stalled (Figures

2D and 2E). We found stalled capillary segments of 4–10 mm

diameter throughout a cortical depth of 300 mm. As cause of

capillary stalling after stroke, we identified cells of 8–10 mmdiam-

eter resembling neutrophils, as confirmed by dual staining with

Rhodamine 6G and Hoechst 33342 (Figure 2G; Video S1 and

S4). Neutrophils started to drift along arterioles and venules

immediately after ischemia induction, clogging smaller capil-

laries, thus leading to flow arrest (Videos S2 and S3). Stall points

with neutrophils were counted as points where the first cell

blocking the flow in an occluded capillary was a neutrophil (Fig-

ures 2G–2I; Video S4). Due to labeling and the direct visualization

of stall morphology, in addition to stalls caused specifically by

neutrophils, we were also able to discriminate between platelet

aggregates or RBCs (Figures 2G–2J and S2). We found that after

stroke, capillary stalls could be due to neutrophils, RBCs, and

even platelet aggregates (Figures 2P and 2Q). Interestingly, after

thrombolysis, themajority of stalled capillary segments were due

to neutrophil clogging (�75% in the core and �60% in the pen-

umbra) (Figures 2P and 2Q).

Depletion of Neutrophils with Anti-Ly6G Antibody
Reduces Capillary Stalls after Recanalization
To prove that neutrophils stalling capillaries contributed signifi-

cantly to the no-reflow phenomenon, we applied the monoclonal

anti-Ly6G antibody, which specifically depletes neutrophils (Da-

ley et al., 2008), to a separate group of mice 24 h before stroke

induction. Flow cytometry analysis confirmed that antibody

treatment diminished circulating neutrophils by 97.5% (Figures

3A and 3B). In anti-LyG6-treated mice, we found fewer capillary

stall points within the core (5.1%) and the penumbra (2.7%) after

stroke (Figure 3C). Strikingly, anti-Ly6G reduced capillary stalls

caused by neutrophils and RBCs (Figures 3D–3G). We observed

that in the few remaining stalled capillaries after anti-Ly6G treat-

ment, the majority was caused by RBCs (Figures 3J and 3K).

We then tested whether depleting neutrophils improved capil-

lary flow and tissue perfusion, thereby reducing tissue damage.

Treatment with anti-Ly6G antibody and t-PA thrombolysis signif-

icantly increased tissue reperfusion confirming the causal link

between capillary stall and no-reflow (Figures 4A–4D). There

was no difference in MCA constriction, but RBC velocity

improved in the distal branches of the MCA (Figures 4E and

4F). Importantly, we found reduced ischemic tissue damage at

day 7 after stroke in mice treated with anti-Ly6G antibody

compared to control mice (Figure 4G). Finally, we evaluated

whether mice that received the anti-Ly6G treatment showed a
favorable outcome. Indeed, sensorimotor function assessed by

sticky tape test was better after stroke in Ly6G-treatedmice (Fig-

ures 4I–4L), while there was a trend for better performance in the

neurological score (Figures 4M and 4N). Hemorrhagic transfor-

mation of ischemic stroke is a complication associatedwith large

infarctions, which is more frequent after systemic thrombolysis

(Emberson et al., 2014). Although all animals treated with t-PA

showed some evidence of hemorrhagic infarct transformation

in their brains after reperfusion, this was strongly reduced in an-

imals pre-treated with anti-Ly6G (28.5%) (Figures 4H and S3). To

exclude a systemic effect of the antibody on stroke severity inde-

pendent of thrombolysis, we treated another group of mice sub-

jected to stroke but no t-PA with the anti-Ly6G antibody. We

found no improvement in cerebral blood flow, lesion volume, or

neurological outcome (Figure S4) in anti-Ly6G pre-treated mice

without thrombolysis, suggesting that neutrophils, specifically,

are associated with reflow and capillary stalls after

recanalization.
DISCUSSION

Fast and efficient recanalization strategies for stroke patients

have evolved over the last years (Campbell et al., 2019). Howev-

er, themicrovascular no-reflow is amajor problem for successful

tissue reperfusion and recovery from stroke.

Using LSI and two-photon imaging, we confirm that microvas-

cular no-reflow impairs tissue reperfusion after stroke in mice.

Despite successful large vessel recanalization through throm-

bolysis, stalling of�20%–30%of capillaries in the distal vascular

network by neutrophils limited tissue reperfusion to only �60%

of baseline. Therefore, intravenous thrombolysis with t-PA only

partially restores perfusion of brain tissue distal to the occlusion

site. We found areas with no-reflow extending beyond the

severely hypoperfused (core) area reaching into the ischemic

border zone (penumbra).

The no-reflow of brain microvascular networks after ischemia

was already described in 1968 (Ames et al., 1968). It is likely that

multiple mechanisms contribute to the microvascular no-reflow

phenomenon, including endothelial cell dysfunction, emboliza-

tion of clot fragments into more distal vessel segments, or death

in ‘‘rigor’’ of pericytes (El Amki and Wegener, 2017; Hall et al.,

2014; Hartings et al., 2017; Ito et al., 2011; Wiseman et al.,

2014; Yemisci et al., 2009; Zhang et al., 1999). In the 1980s,

leukocyte plugs were first observed in capillaries and smaller

post-capillary venules after stroke ex vivo, but the functional

role in stroke pathophysiology was not clear (Aspey et al.,

1989; del Zoppo et al., 1991). Subsequent studies reported

leukocyte rolling and accumulation in brain venules, arterioles,

and capillaries after ischemia/reperfusion in filament models of

stroke using intravital fluorescence microscopy (Ishikawa et al.,

1999; Ritter et al., 2000) and suggested that leukocyte adhesion

and rolling could contribute to reperfusion failure after stroke (del

Zoppo et al., 1991). In a recent study, Erdener et al. (2020) de-

tected an increased number of stalled capillaries in peri-infarct

regions in a model of mechanical, distal MCA occlusion using

optical coherence tomography, which confirms our findings.

However, it was not possible to differentiate between different
Cell Reports 33, 108260, October 13, 2020 3



Figure 2. Capillaries Remain Stalled after Recanalization of the MCA

(A) Two-photon microscopy angiogram of the cortex with a penetrating arteriole branch of the MCA, shown as maximum Z-projection. Scale bar, 100 mm. Below,

the reconstructed 3D vascular network from the z stack (2403 2403 300 mm3) of the angiogram following image segmentation (x,y,z image), with vessels color-

coded based on classification (red, arteries; blue, veins; green, capillaries).

(B) Representative two-photon images of capillary segments either patent or stalled (white arrowhead points to a stall). Flow in capillaries was identified by black

streaks generated by passing RBCs. Scale bar, 20 mm.

(C) Tracing of capillaries within the 3D vascular network after exclusion of arteries and veins. Left: control. Right: t-PA-treated mouse.

(D and E) Quantification of capillary stalls in the core and penumbra ROIs, comparing pre-stroke (�6,700 capillaries; n = 11mice), control (�1,850 capillaries; n = 5

mice), and t-PA (�1,430 capillaries; n = 4 mice)-treated groups. *p < 0.05, two-tailed t test.

(F) Representative two-photon images of capillary segments either stalled (white arrowheads) or patent. Scale bar, 50 mm. Flow in capillaries was identified by

streaks generated by passing RBCs and is confirmed by line scan measurements (yellow lines, 1 is stalled and 2 patent; most right panels). Dual staining with

Rhodamine 6G (green) and Hoechst 33342 (blue) allows for the differentiation between neutrophils and platelets.

(G, J, and M) Representative images of a stall caused by neutrophils (G), RBCs (J), or platelets (M) distinguished by fluorescence labels and morphology. Scale

bar, 20 mm.

(H, I, K, L, N, and O) Quantification of neutrophil stalls (H and I), RBC stalls (K and L), and platelet stalls (N and O) in the core and penumbra ROIs for pre-stroke,

control, and t-PA groups, displayed as violin plots. Individual points show % of stall points per sub-stack (240 3 240 3 20 mm3). *p < 0.05, two-tailed t test.

(P and Q) Percentages of capillaries stalled specifically with neutrophils, RBCs, or platelets in the core and penumbra ROI for control (n = 5) and t-PA-treatedmice

(n = 4). (P) From the total number of stalled capillaries in the core of control mice (66% stalled capillaries shown in D), neutrophils were responsible for 47% of the

stalls, RBCs were responsible for 43% of stalls, and platelets aggregates were responsible for 10% of the stalls. In the 33% of stalled capillaries in the core of

t-PA-treated mice shown in (D), neutrophils were responsible of 67% of the stalls, and RBCs were responsible for 33% of the stalls, whereas none of the

capillaries were stalled because of platelets. (Q) From the stalled capillaries in the penumbra of control mice (62%), 53%of the stalls were due to neutrophils, 37%

due to RBCs, and 10% due to platelets aggregates. From the stalled capillaries in the penumbra of t-PA mice (16%), 54% of the stalls were due to neutrophils,

44% due to RBCs, and 2% due to platelets aggregates.

4 Cell Reports 33, 108260, October 13, 2020
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Figure 3. Depletion of Neutrophils with Anti-Ly6G Antibody Reduces Capillary Stalls after Recanalization

(A) Flow cytometry gating for blood neutrophils. Representative flow cytometry dot plots demonstrating the gating strategy to detect neutrophils (Ly6G+ CD11b+

population) from n = 14 mice 24 h after treatment with anti-Ly6G antibody or control isotope (iso) antibody. Numbers above the quadrants indicate percentage of

gated events.

(B) Quantification of flow cytometry data for mice treated with anti-Ly6G and isotope antibody. Data from individual mice are plotted, n = 8 for the isotope control

group and n = 6 for the anti-Ly6G antibody group, *p < 0.05, unpaired Student’s t test.

(C) Upper row: tracing of the vascular network of isotope + t-PA-treated mice (left) and anti-Ly6G + t-PA-treated mice (right), showing stalled capillaries in black.

Lower row: quantification of capillary stalls in the core (left) and penumbra (right) ROI, comparing isotope + t-PA-treated groups (�1,750 capillaries; n = 5) and

anti-Ly6G + t-PA-treated groups (�2,280 capillaries; n = 4).

(D, F, andH) Violin plots depicting stall points in the core ROI, caused by neutrophils (D), RBCs (F), and platelets (H) in isotope control + t-PA- and anti-Ly6G +t-PA-

treated groups. ***p < 0.001, two-tailed Mann-Whitney test.

(E, G, and I) Violin plots depicting stall points in the penumbra ROI, caused by neutrophils (E), RBCs (G), and platelets (I) in isotope control + t-PA- and anti-Ly6G +

t-PA-treated groups. ***p < 0.001, two-tailed Mann-Whitney test.

(J and K) Percentages of capillaries stalled specifically with neutrophils, RBCs, or platelets in the core and penumbra ROI for isotope control + t-PA-

(n = 5) and anti-Ly6G + t-PA-treated groups (n = 4). (J) From the total number of stalled capillaries in the core of t-PA-treated mice (15% stalled capillaries), 58%

of the stalls were due to neutrophils and 42% due to RBCs. In the 5% of stalled capillaries in the core of anti-Ly6G + t-PA-treated mice, neutrophils

were responsible of 10% of the stalls, and RBCs were responsible for 59% of the stalls, whereas 31% of the capillaries were stalled because of platelets. (K)

From the stalled capillaries in the penumbra of t-PA-treated mice (20%), 59% of the stalls were due to neutrophils, 40% due to RBCs, and 1% due to platelets

aggregates. From the stalled capillaries in the penumbra of anti-Ly6G + t-PA-treated mice (2%), 6% of the stalls were due to neutrophils and 94% were due

to RBCs.
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Figure 4. Cortical Reperfusion, Ischemic Damage, and Behavioral Assessment

(A) Representative LSI images showing the cortical perfusion from isotope antibody (iso) + t-PA- and anti-Ly6G + t-PA-treated mice pre-stroke, at 30 min (just

before t-PA treatment) and at 120min. The small window (right) depicts theMCA branch and surrounding tissue after treatment. The color bar indicates perfusion

in arbitrary units (a.u.).

(B) Graphs showing LSI recordings for the respective ROIs compared to baseline over time; n = 7 mice/group, **p < 0.01, two-tailed Mann-Whitney U-test.

(C andD) Individual values of residual CBF (%of baseline level) for timepoints 0 and 120min are shownwith violin plots (n = 7mice/group). **p < 0.01, two-tailed t test.

(E and F) Bar plots for the quantification of line scan measurements. RBC velocity changes (E) and diameter change of the MCA (F). Values for the isotope

antibody + t-PA (n = 4) and anti-Ly6G + t-PA (n = 4) were compared to the pre-stroke measurements (2–3measurements/mouse). *p < 0.05 in nestedmodel t test.

(G) Bar graph depicting infarct volumes from individual mice at day 7. Mice treated with isotope + t-PA (n = 5) and or anti-Ly6G antibody + t-PA (n = 7), *p < 0.05 in

two-tailed Mann-Whitney U-test. On the right, two representative TTC-stained brain sections showing lesions (pale) in a mouse with prior isotope (upper) or anti-

Ly6G (lower) treatment.

(H) Fraction of mice with intracerebral hemorrhage detected on TTC-stains within 7 days after stroke in isotope- or anti-Ly6G-treated groups.

(I–N) Sticky tape removal and neurological score assessment in isotope antibody + t-PA-treatedmice (n = 5) and Ly6G antibody + t-PA-treatedmice (n = 7) at days

1, 3, and 7 after stroke. (I, K, and M) *p < 0.05, **p < 0.01, one-way Kruskal-Wallis ANOVA with post hoc Dunn’s multiple-comparison correction to compare

between groups. Data are mean ± SD (J, L, and N). *p < 0.05, **p < 0.01, two-tailed t test.
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sources of capillary stalls or to evaluate their role in thrombolysis,

which is a key reperfusion treatment in stroke patients.

The ability to map capillary patency across the cortex during

t-PA induced reperfusion allowed the in vivo demonstration of

microcirculatory stalling and reperfusion failure, in line with previ-

ous histological reports (Hallenbeck et al., 1986; Zhang et al.,

1999). Rapid upregulation of endothelial adhesion molecules

(VCAM1, ICAM1, and P-selectin) during cerebral ischemia is likely
6 Cell Reports 33, 108260, October 13, 2020
involved, leading to an increased endothelium-neutrophil interac-

tion and prolonged adhesion (Reglero-Real et al., 2016).

When MCA occlusion is permanent, adhesion molecules are

expressed in both core and penumbra (Gauberti et al., 2013).

However, in transient stroke models, the increase of VCAM-1

expression may be restricted to the core (C57Bl6 mice) or involve

the penumbra (Swiss mice), depending on the extent of collateral

network, which is critical for maintaining blood flow in penumbral
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areas (El Amki et al., 2018; Zhang and Faber, 2019). BALB/c mice

with their poor leptomeningeal collaterals are likely to have a

similar inflammatory penumbral phenotype, which may further

booster leucocyte stalls.

Recently, clinical studies have provided evidence that elevated

blood neutrophil count on admission is a biomarker for unfavor-

able outcome in stroke patients receiving thrombolysis (Chen

et al., 2018;Malhotra et al., 2018). This implies that indeed, neutro-

philsmight be involved in amplifying tissue injury in stroke patients

and in other neurological diseases, where chronic hypoperfusion

augments neural decay (Cruz Hernández et al., 2019).

When we depleted neutrophils by targeted antibody treatment,

tissue reperfusion was substantially improved in both core and

penumbra. Importantly, anti-Ly6G treatment led to a pronounced

attenuation of stroke-induced damage in our model of thrombin-

occlusion and thrombolysis. It resulted in smaller stroke lesion vol-

umes as well as less functional impairment at 7 days after stroke.

The beneficial effect of anti-Ly6G treatment was not observed in

mice without recanalization (stroke without t-PA thrombolysis),

confirming that neutrophil depletion works through enhancement

of microvascular perfusion, which requires that flow in the prox-

imal arteries is reinstalled. Given the fact that neutrophils

affect the coagulation cascade (Kambas et al., 2012), it is

reassuring that, even when treatment was combined with t-PA,

we found no increase in hemorrhagic complications or mortality.

While complete depletion of neutrophils is not a feasible treat-

ment option for stroke patients due to their important andmultiple

roles in neuro-inflammation and repair, our results support the

development of therapeutic strategies geared against neutrophil

adhesion in stroke. Notably, our data suggest that such treatment

concepts appear to be beneficial even in the hyper-acute phase of

stroke and combined to the current reperfusion strategies.

Because it requires 24 h to achieve neutrophil depletion with the

anti-Ly6G antibody (Erdener et al., 2020), this approach is not

suited as an acute post-stroke treatment. Furthermore, Ly6G is

expressed in mice and not in humans. Therefore, more research

is required to identify translational therapeutic drug targets that

counteract neutrophil stalling in stroke patients.

One limitation of our proof-of-concept study was inclusion of

young animals without co-morbidities present in many stroke

patients. In addition, we included only male mice to compare

our results to previous work done in this stroke model. We are

aware of the neuroanatomical, neurochemical, and develop-

mental differences between sexes. Therefore, sex-related differ-

ences in no-reflow after stroke, thrombolysis and anti-Ly6G

treatment deserve further investigations.

Taken together, our data provide in vivo evidence that by clog-

ging capillaries, neutrophils contribute to stroke morbidity, even

after successful thrombolysis and recanalization of the occluded

artery. Future concepts that aim to integrate inhibition of neutro-

phil adhesion to capillaries with thrombolytic approaches are a

promising avenue for ischemic stroke therapy.
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anti-Ly6G antibody BD PharMingen Cat #551459

rat IgG2a Thermo Fisher Cat #02-9688

anti-CD45.1-AF488 Biolegend Cat #110718

anti-CD11b-BV510 Biolegend Cat #101245

anti Ly-6G-FITC Biolegend Cat #127606

Chemicals, Peptides, and Recombinant Proteins

fentanyl Sintetica Cat #699811

midazolam Roche Cat #M-908-1ML

medetomidine Orion Pharma Cat # 520370

human alpha-thrombin Haematologic Technologies Cat #HCT-0020

2,3,5-triphenyltetrazolium chloride Sigma-Aldrich Cat #T8877

Texas red Dextran Life Technologies Cat #D-1864

Rhodamine 6G Sigma Aldrich Cat #252433

Hoechst 33342 Sigma Aldrich Cat #B2261

Deposited Data

CHIPS toolbox for MATLAB https://github.com/EIN-lab/CHIPS GitHub

Experimental Models: Organisms/Strains

BALB/c mice Charles Rivers 627BALB/cByJ

Software and Algorithms

ImageJ version 1.41 ImageJ Software https://imagej.nih.gov/

ScanImage Pologruto et al., 2003 N/A

Radon algorithm Schmid et al., 2019 N/A

MATLAB Mathworks N/A

3D slicer v4.10.2 3D slicer Software https://www.slicer.org/

GraphPad Prism v8.0 GraphPad Software https://www.graphpad.com/
RESOURCE AVAILABILITY

Lead Contact
Further information and request for resources and reagents should be directed to and will be fulfilled by Lead Contact Susanne We-

gener (Susanne.Wegener@usz.ch).

Materials Availability Statement
This study did not generate new unique reagents.

Data and Code Availability
CHIPS toolbox for MATLAB is freely available on GitHub (https://github.com/EIN-lab/CHIPS) (Barrett et al., 2018).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal experiments were approved by the local veterinary authorities in Zurich and conformed to the guidelines of the Swiss

Animal Protection Law, Veterinary Office, Canton of Zurich (Act of Animal Protection 16 December 2005 and Animal Protection Ordi-

nance 23 April 2008, animal welfare assurance numbers ZH165/19 and ZH224/15). For all experiments, male BALB/c mice (Charles

Rivers, no. 028), three to four months old were used. The mice had free access to water and food and an inverted 12-hour light/dark
e1 Cell Reports 33, 108260, October 13, 2020

mailto:Susanne.Wegener@usz.ch
https://github.com/EIN-lab/CHIPS
https://github.com/EIN-lab/CHIPS
https://imagej.nih.gov/
https://www.slicer.org/
https://www.graphpad.com/


Report
ll

OPEN ACCESS
cycle to perform experiments during the dark (active) phase. Testing during the light phase induces a pronounced behavioral inhi-

bition and rodents perform better during the active phase (Benstaali et al., 2001; Schaar et al., 2010). More specifically, Zeitgeber

Time (ZT0) corresponds to the start of the light period, and ZT 12 refers to the start of the dark period. Experiments were performed

during the day at ZT 16 to ZT 20 (mid-day). All testing procedures were carried out during the same period for all groups. All animals

were randomized for all stroke studies and procedures. All experiments were blinded; the operators responsible for experimental

procedure and data analysis were blinded and unaware of group allocation throughout the experiments.

METHOD DETAILS

Anesthesia
For head-post and cranial window implantation, animals were anesthetized intraperitoneally with a mixture of fentanyl (0.05 mg/kg

bodyweight; Sintenyl, Sintetica), midazolam (5 mg/kg bodyweight; Dormicum, Roche), and medetomidine (0.5 mg/kg bodyweight;

Domitor, Orion Pharma). A facemask provided 100% oxygen at a rate of 300 ml/min. For stroke induction and two-photon imaging,

anesthesia was induced with isoflurane 4%, maintained at 1.2% with continuous supply of 300 ml/min 100% oxygen. Core temper-

ature of the animals was kept constant at 37�C using a homeothermic blanket heating system during all surgical and experimental

procedures (Harvard Apparatus). The animal‘s head was fixed in a stereotaxic apparatus and the eyes were kept wet with ointment

(vitamin A eye cream; Bausch & Lomb).

Head-Post Implantation
A bonding agent (Gluma Comfort Bond; Heraeus Kulzer) was applied to the cleaned skull and polymerized with a handheld blue light

source (600 mW/cm2; Demetron LC). A custom-made aluminum head post was connected to the bonding agent with dental cement

(EvoFlow; Ivoclar Vivadent AG) for stable and reproducible fixation in the microscope setup. The skin lesion was treated with

antibiotic ointment (Neomycin, Cicatrex; Janssen-Cilag AG) and was closed with acrylic glue (Histoacryl, B. Braun). After surgery,

animals were kept warm and received analgesics (buprenorphine 0.1 mg/kg bodyweight; Sintetica).

Cranial window surgery
A 43 4mm craniotomy was performed above the somatosensory cortex (centered above the left somatosensory cortex�3mm from

Bregma and 3.5�4mm lateral) using a dental drill (Bien-Air). A square coverslip (33 3mm, UQGOptics) was placed on the exposed

dura mater and fixed to the skull with dental cement (Holtmaat et al., 2009).

Antibody treatment
Purified anti-Ly6G antibody (BD PharMingen, catalog number 551459) and isotope control antibody rat IgG2a (Thermo Fisher, cat-

alog number 02-9688) were injected intraperitoneally at a dose of 4 mg/kg bodyweight, 24 hours before imaging.

Flow cytometry analysis of blood cells
Flow cytometry staining was performed in staining buffer at 4�C. 200 ml blood was collected from the left cardiac ventricle and stored

in heparin-coated vials. RBC were lysed by incubating the blood sample in blood lysis buffer (RBC lysis buffer, eBiosciences) for

15 min at room temperature. Samples were centrifuged (2000 g) for 15 min and the supernatant was discarded. Remaining blood

cells were washed twice with PBS. Then, cells were resuspended in cryosolution containing: RPMI, 40% FBS and 10% DMSO

and stored at �80�C before FACS analysis. For neutrophils staining, the following antibodies were used: anti-CD45.1-AF488,

anti-CD11b-BV510 and anti Ly-6G-FITC (Biolegend). As controls, we used isotope-matched antibodies from Sigma-Aldrich. Acqui-

sition was performed on a BD FACSVerse Analyzer (BDBiosciences) and data were analyzedwith FlowJo (TreeStar). Blood and bone

marrow leukocyte staining samples were fixed with BD Cytofix (BD Biosciences) and analyzed within 24 h.

Thrombin stroke model
We induced focal cerebral ischemia as described previously (El Amki et al., 2012, 2018; Orset et al., 2007). In brief, mice were fixed in

a stereotactic frame, the skin between the left eye and ear was incised and the temporal muscle retracted. After craniotomy and dura

excision, a glass pipette (calibrated at 15 mm/ml; Assistant ref. 555/5; Hoechst, Sondheim-Rhoen, Germany) was introduced into the

lumen of the MCA and one ml of purified human alpha-thrombin (1UI; HCT-0020, Haematologic Technologies Inc., USA) was injected

to induce the formation of a clot in situ. The pipette was removed 10 min after thrombin injection. Ischemia induction was considered

stable when CBF rapidly dropped to at least 50% of baseline level in the MCA territory (El Amki et al., 2012; Sekhon et al., 1995) and

remained below 50% for at least 30 min. Animals without stable ischemia induction were excluded from further experiments.

Laser Speckle Cortical Imaging
Cortical perfusion was monitored before and during ischemia, and throughout the recanalization phase for 120 min with a Laser

speckle imaging monitor (FLPI, Moor Instruments, UK). The LSC images are generated with arbitrary units in a 16-color palette by

the MoorFLPI software.
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T-PA administration
Thirty minutes after induction of ischemia, thrombolysis was initiated via tail vein (200 ml, 1 mg/ml in 0.9% saline) of human t-PA

(10 mg/kg, Actilyse, Boehringer Ingelheim) according to previous data (El Amki et al., 2012; Maysami et al., 2016). Ten % were given

as a bolus and 90% were perfused at a rate of six ml/min. Control groups received saline instead of t-PA.

Quantification of lesion volume and hemorrhages
After completion of the experiments (day 7), micewere euthanized by receiving an overdose i.p. injection of pentobarbital (200mg/kg)

followed by decapitation. Brains were extracted and cut into 1 mm thick coronal slices from 6.5 to 0.5 mm anterior to the inter-aural

line and placed in 2% 2,3,5-triphenyltetrazolium chloride (TTC, cat. #T8877, Sigma-Aldrich, St. Louis, MO) for 10 min at 37�C to

delineate infarcts which appear pale in the staining. Infarct areas were determined by a blinded investigator using an image analysis

system (ImageJ version 1.41). To correct for brain swelling, each infarct area was multiplied by the ratio of the surface of the intact

(contralateral) hemisphere to the infarcted (ipsilateral) hemisphere at the same level. Total volume of damaged tissue, expressed as

cubicmillimeters, was calculated by linear integration of the corrected lesion areas (El Amki et al., 2019). The presence of hemorrhage

was recorded from TTC- stained brain slices at the time of premature death or sacrifice at day 7. Microscopic, macroscopic and total

hemorrhagic scores were visually quantified on each level, from TTC- stained brain slices, as previously described (Haddad et al.,

2008).

Two-photon imaging
After cranial window implantation, mice were allowed to recover for two weeks prior to two-photon imaging. Imaging was performed

using a custom-built two-photon laser scanning microscope (2PLSM) (Mayrhofer et al., 2015) with a tuneable pulsed laser (Chame-

leon Discovery TPC, Coherent Inc.) equipped with either a 20x (W-Plan-Apochromat 20x/1.0 NA, Zeiss) or 25x (W-Plan-Apochromat

25x/1.0 NA, Olympus) water immersion objective. During measurements, the animals were head-fixed and kept under anesthesia as

described above. To visualize the vasculature, Texas red Dextran (5%w/v, 70,000 kDa mw, 50 ml, Life Technologies catalog number

D-1864) was injected intravenously in the tail vein. White blood cells were stained with Rhodamine 6G (100 ml of 1.0 mg/ml solution in

saline, Sigma Aldrich, catalog number 252433). Nuclei were further stained by Hoechst 33342 (50 ml of 4.8 mg/ml in saline, Sigma

Aldrich catalog number B2261). All dyes were injected intravenously 10 minutes before imaging and were excited at 900 nm. Emis-

sion was detected with GaAsP photomultiplier modules (Hamamatsu Photonics) fitted with 475/64, 520/50 nm and 607/70 band pass

filters and separated by a 506, 560 and 652 nm dichroic mirrors (BrightLine; Semrock). The microscope was controlled by a custom-

ized version of ScanImage (r3.8.1; Janelia Research Campus (Pologruto et al., 2003)).

Imaging ROIs were in the areas corresponding to LSI: for the core ROI within the area supplied by the frontal MCA and showing

severe CBF drop and for the penumbra ROI showing moderate hypoperfusion within the ACA-supplied regions. Z stacks (x,y,z im-

ages) were recorded in the respective areas with 1 mm step size, 512x512 pixels, 0.74 Hz, covering roughly a volume of 2403 2403

300 mm3. Line scan acquisitions were performed at 11.84 Hz, 0.55 mm/pixel and for 12.7 s. Baseline measurements were performed

90 min before induction of ischemia.

Quantification of capillary stalls
The researchers producing these quantifications were blinded to treatment groups. Image analysis of z stacks was performed using

ImageJ (NIH, version 1.41). Vessel segments were classified as surface and penetrating arterioles and capillaries, or as ascending

and surface venules. All vessels smaller than 10 mm were classified as capillaries. Large-surface arterioles were distinguished

from large-surface venules based on morphology: arteries were of smaller diameter, had smoother walls and less tortuosity and

tended to branch more symmetrically and in Y-shaped junctions compared to veins (Cruz Hernández et al., 2019). In each z stack,

vessel segments visible for 20 frames (30 s) were assessed as to whether RBC streaking occurred. To confirm blockage of a capillary

segment, highermagnification frame scans and line scans of the respective vessel segment were acquired. Cells within blood vessels

were characterized by morphology and staining with Rhodamine 6G and Hoechst 33342. Blockage by RBCs appeared as black hol-

lows, platelets as accumulation of small green particles, while only neutrophils were cells double stained with Rhodamine 6G and

Hoechst 33342 (Cruz Hernández et al., 2019).

Line scans were processed with a custom-designed image processing tool box for MATLAB (Cellular and Hemodynamic Image

Processing Suite [Barrett et al., 2018]; R2014b; MathWorks). Vessel diameters were determined at full width half maximum

(FWHM) from aGaussian fitted intensity profile drawn perpendicular to the vessel axis. Capillary flowwas determined with the Radon

algorithm (Schmid et al., 2019). The same vessels were evaluated before stroke, after stroke and throughout the experiment.

Reconstruction of 3D vascular networks and tracing of capillaries
An example z stack was loaded into 3D slicer (3D Slicer 4.10.2) (Fedorov et al., 2012). The ‘Segment Editor’ module was used to

segment the vessels from the whole image by applying an Otsu threshold. Vessels were classified into three groups; arteries/arte-

rioles, veins/venules and capillaries, by both size of vessel (as described above) and area of image acquisition. A separate file was

created for each type vessel and the appropriate vessels weremanually segmented and assigned a specific color. Default smoothing

effects were applied to all segmentations and a volume rendering of each file provided the 3D image of the segmented data. The

example 3D tracing of the capillaries was createdwith the ‘VascularModeling Toolkit’, specifically using the ‘Centerline Computation’
e3 Cell Reports 33, 108260, October 13, 2020
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option of this module. 3D rendering of example stacks were loaded and an ‘origin seed’ was placed on the surface of any vessel. The

centerlines for each individual vessel was computed from the ‘origin seed’, creating the line network. Arteries and veins were

excluded from the final 3D tracing.

Motor scoring and behavioral assessment
Sensorimotor function was assessed by an investigator blinded to treatment groups using the adhesive tape removal test as well as a

composite observational neurological score before stroke and on days 1,3 and 7 thereafter. For the adhesive tape removal test, two

strips of tape (rectangular 0.33 0.4 cm) were applied to both forepaws in random order. The time the animals took to contact (sen-

sory function/neglect) and remove (motor function) the tape on both sides (left and right) was recorded. Before stroke, animals were

trained to remove both tapes within 10 s (Baumgartner et al., 2018). The neurological score was obtained using a composite grading

score as described before (El Amki et al., 2019). A lower score indicates larger neurological deficits, while a score of 13 points indi-

cates no neurological deficit.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data in all groups was tested for normality using D’Agostino-Pearson omnibus normality test. Parametric statistics were used only if

the data in all groups in the comparison were normally distributed. Statistical analysis was performed using the GraphPad Prism

(version 8.0; GraphPad Software La Jolla, CA, USA). All statistical tests and group size (n) are indicated in the figure legends. To

account for multiple observations within the imaged mouse, results from each group were compared using univariate nested model

t tests before proceeding with the discriminant analysis. Results were expressed either as mean ± s.e.m. (standard error of mean), or

median (interquartile range) in violin plots. Significance (p < 0.05) between two groups was calculated using unpaired Student’s t test

or paired t test for normally distributed data, or with the Mann–Whitney test for data with non-normal distribution.
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