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Abstract
Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability
of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded
calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that
different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer
examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks
within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more
synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling
(Ip3r2−/−) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are
also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation
over several months, but that the location of the response within processes may vary. These previously unknown
characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal
circuit activity.
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Introduction
Astrocytes, the primary glial cell type in the cortex, may influ-
ence synaptic environments, neuronal metabolism, and local
blood flow. However, debate exists over the astrocytic contribu-
tion to these mechanisms, particularly in vivo (Takata et al.
2011; Navarrete et al. 2012; Nizar et al. 2013; Bonder and
McCarthy 2014; Otsu et al. 2015). Central to this debate is the
physiological role of astrocyte intracellular calcium fluctuations
that are considered a measure of astrocyte activity and are

potentially linked to the modulation of neuronal function
(Volterra et al. 2014).

Classical studies of astrocyte calcium signaling in vivo have
used calcium indicator dyes, which primarily detect calcium
surges within astrocyte somata (Wang et al. 2006; Takata and
Hirase 2008; Nizar et al. 2013) but not fine processes (Shigetomi
et al. 2013). Recently, in vivo calcium imaging has been greatly
improved by the development of genetically encoded calcium
indicators (GECIs), such as the GCaMP family, which can be
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specifically expressed in astrocytes and label the entire cellular
structure (Shigetomi et al. 2013; Gee et al. 2014; Kanemaru et al.
2014). This labeling of cortical, olfactory bulb, and hippocampal
astrocytes has revealed spontaneous calcium signals that are
diverse in their cellular localization (endfoot, soma, and pro-
cess) and signal characteristics (Bonder and McCarthy 2014;
Gee et al. 2014; Kanemaru et al. 2014; Asada et al. 2015; Otsu
et al. 2015; Srinivasan et al. 2015; Tang et al. 2015). However,
the relevance of this signal heterogeneity to astrocyte brain
function remains unclear (Volterra et al. 2014).

Cortical astrocyte calcium signaling also occurs in response
to sensory stimulation (Wang et al. 2006; Takata et al. 2011; Gee
et al. 2014), and may encode neuronal responses to different pat-
terns of sensory input (Volterra et al. 2014). Fine astrocyte pro-
cesses are closely associated with synapses, and could respond
to synaptic activity with discrete calcium signals that are con-
fined to the local structure. Also, astrocyte calcium signals can
be synchronized between different cellular compartments and
neighboring cells (Takata and Hirase 2008). This synchronicity
could be essential for astrocyte integration of activity from a cor-
tical network. Additionally, astrocytes have been shown to have
different levels of spontaneous activity between cortical layers
(Takata and Hirase 2008), suggesting astrocyte populations may
also have unique layer cyto-architectures similar to cortical
neuronal networks (Petersen 2007).

Here, we investigated how astrocyte calcium signal hetero-
geneity may encode synaptic activity by examining astrocyte
calcium signals evoked by sensory input in order to determine if
subcellular regions (endfeet, somata, and processes) have simi-
lar responses, temporal synchronicity, and long-term stability.
We imaged GCaMP6s in somatosensory astrocytes in vivo and
developed novel analysis tools that enabled us to discriminate
between spontaneous and sensory-evoked activity within the
astrocyte population, characterize distinct peak types, and
monitor astrocyte calcium signals over several months. Our
results indicate that active regions within somatosensory astro-
cytes respond to sensory input with calcium signals of a par-
ticular shape, that these regions become more synchronized
upon stimulation, and that the response varies between cortical
layers. Furthermore, the overall response in all subcellular com-
partments was stable over several months. This work provides
new insight into how calcium signaling in different astrocytic
compartments may reflect local synaptic activation evoked by
sensory stimulation.

Materials and Methods
Cloning and Virus Production

The GCaMP6s gene from pGP-CMV-GCaMP6s (a gift from Douglas
Kim; Addgene plasmid #40 753; Chen et al. 2013) was cloned into
a plasmid backbone containing AAV2 inverted terminal repeats,
a short glial fibrillary acidic protein (GFAP) promoter (Gfa-ABC1D
or sGFAP; Lee et al. 2008), a β-globin intron, and poly adenylation
signal (Mächler et al. 2016). This plasmid was packaged into
adeno-associated virus (AAV) serotype 9 (AAV9-sGFAP-GCaMP6s)
by the University of North Carolina Vector Core.

Animals

All experimental procedures were approved by the local veter-
inary authorities, conforming to the guidelines of the Swiss
Animal Protection Law, Veterinary Office, Canton Zurich (Act of
Animal Protection 16 December 2005 and Animal Protection
Ordinance 23 April 2008). Mice were housed under an inverted

12-h light/dark cycle. Ip3r2 mice were maintained as a hetero-
zygous line and genotypes were determined using previously
reported mutant allele-specific primers (Li et al. 2005). Female
C57BL/6 J (Charles River) or Ip3r2−/− mice with wild-type (WT)
littermates (Ip3r2+/+; Li et al. 2005; Di Castro et al. 2011) were
surgically prepared at 8–10 weeks of age.

Head Post Implantation

Surgery was conducted as previously described (Mayrhofer
et al. 2015). Under isoflurane (4% for induction, 1–2% for main-
tenance), animals were fixed in a stereotaxic frame and an inci-
sion was made along the midline to expose the skull. After
cleaning the bone, a bonding agent (Prime & Bond) and several
layers of light-cured dental cement (Tetric EvoFlow) were
applied to the skull and polymerized with blue light. An alumi-
num head post was attached to the cement at the back of the
head. The skull over the left somatosensory cortex was left
exposed for later craniotomy and virus injection.

Intrinsic Optical Imaging

Intrinsic optical imaging (IOI) was used to map the somatosensory
areas for proper localization of the virus injection and subsequent
2-photon imaging. Two days following the head post-surgery,
the skull over the left cortex was moistened with a water-based
gel to increase bone transparency, and covered with a glass
coverslip. Under 630 nm illumination, images were acquired
using a 12-bit CCD camera (Pixelfly VGA, PCO Imaging) focused
0.4mm below the cortical surface. Whisker (10 Hz) or hindpaw
stimulation (400 µA, 1ms, 4 Hz, 5 s) elicited increased blood flow
to the corresponding sensory area, which was observed as
increased light absorption. IOI measurements were repeated
2 weeks after surgery through the cranial window to create a
somatotopic map that was used for appropriate localization
during 2-photon imaging.

Virus Injection and Chronic Window Implantation

Under midazolam (5mg/kg), fentanyl (0.05mg/kg), and medeto-
midine (0.5mg/kg) anesthesia, a craniotomy was cut over the
primary sensory cortex using the IOI map as a reference. A pip-
ette and hydraulic pump were used to inject AAV9-GFAP-
GCaMP6s virus (300 nL of 3.2 × 1012 particles/mL at 50 nL/min)
into the hindpaw and/or whisker barrel areas at a depth of
350–400 µm. A square coverslip (3 × 3mm) was lightly pressed on
the exposed brain and fixed with dental cement to the head cap.

Two-Photon Imaging

Imaging commenced 3 weeks after virus injection using a
custom-built 2-photon laser-scanning microscope. A ×20 water
immersion microscope objective was used (W Plan-Apochromat
20×/1.0 DIC VIS-IR, Zeiss). GCaMP6s was excited at 940 nm with
a Ti:sapphire laser (Chameleon Ultra II; Coherent or InSight
DeepSee; Spectra-Physics) with power between 10 and 30mW.
Fluorescence emission was detected with a GaAsP photomulti-
plier module (Hamamatsu Photonics) with a band-pass filter
BrightLine HC 520/50 and a short pass filter BrightLine 750/sp
(Semrock). The 2-photon laser-scanning microscope was con-
trolled by a customized version of “ScanImage” (r3.8.1; Janelia
Research Campus).

All imaging was conducted under isoflurane anesthesia
(1–1.5%). Detailed anatomical images (512 × 512 pixels) of each
field of view were collected at 0.74 frames per second. Images
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(256 × 256 or 128 × 128 pixels) were acquired at a frequency of
1.48–2.96 frames per second. Multiple fields of view in both cor-
tical layer 1 (depth ~30–100 μm) and cortical layer 2/3 (depth
~150–250 μm) were recorded in each animal. Single whiskers
were threaded into a glass capillary attached to a custom-built
piezoelectric stimulator (T223-H4CL-303X; Piezo Systems) and
deflected at different frequencies of stimulation (10, 20, 40, and
90Hz; 1 or 8 s duration) during imaging. The contralateral hind-
paw was electrically stimulated by a 4Hz (1ms pulse), 400 µA
current for 5 s. Given that all mice had a chronic cranial win-
dow implanted, we were able to conduct multiple imaging ses-
sions for each animal.

Image Analysis and Statistics

Image analysis was performed using ImageJ (Schneider et al.
2012) and MATLAB R2014b (MathWorks). For each field of view,
all images were aligned using a 2D convolution engine to
account for x – y drift in time. Background noise was defined as
the bottom fifth percentile pixel value in each frame and was
subtracted from every pixel. Regions of interest (ROIs) were
selected by 2 methods: our customized implementation of an
activity-based algorithm (Ellefsen et al. 2014) and manual selec-
tion in ImageJ of somata and endfeet ROIs using high reso-
lution (512 × 512 pixel) anatomical images. In the activity-based
algorithm, a 2D spatial Gaussian filter with σxy = 3 pixels
(2.86 µm) and a temporal moving average filter with a width of
3 frames were applied to all images to reduce noise. A moving
threshold for each pixel was defined in the filtered stack as the
mean intensity plus 7 times the standard deviation of the same
pixel during the preceding 30 frames. Using this sliding box-car
approach, active pixels were identified as those that exceeded
the threshold. Active pixels were grouped within a radius of 5
pixels (4.75 µm) in space and 2 frames in time. The 3D mask of
active pixels was summed along the temporal dimension, nor-
malized, and thresholded at θ = 0.3 to make a 2D activity ROI
mask. Raw image data from pixels within each 2D ROI were
statistically compared with pixels surrounding the ROI (P < 0.05
by one-way ANOVA) to exclude false positives. Activity ROI
masks and manually selected ROI masks (somata and endfeet)
were compared and overlapping regions were excluded from
the activity mask to ensure each ROI was unique. When com-
paring different stimulation conditions in each field of view,
ROI masks were combined to measure the same ROIs in all con-
ditions. A signal vector (dF/F) was calculated relative to the
baseline fluorescence in the first 5 s of the trial. This vector was
low-pass filtered using a moving average filter with a cut-off
frequency of ~0.03 Hz to locate plateau peaks and measure their
features, such as maximum amplitude and duration (findpeaks
function; MATLAB). Singlepeak and multipeak signals were
identified by applying a digital band-pass filter with passband
frequencies f1 = 0.0286 Hz and f2 = 0.1 Hz to the dF/F signal vec-
tor before running MATLAB findpeaks function. We also used a
seed-based correlation analysis to correlate the signal vector
(dF/F) for each ROI with the vectors from all other ROIs in the
same field of view and examined the mean Pearson’s correl-
ation coefficient across trials. For chronic recordings, animals
were imaged over 2 months at 4 different time points. The dis-
tance between ROI centroids from different imaging days was
calculated and ROIs were considered to be the same where this
distance was less than the radius of the mean ROI area.

All statistics were performed in R (version 3.1.2) using the
lme4 package (Bates et al. 2015) for linear mixed-effects models.
As fixed effects, we used stimulus condition (with/without

stimulation), ROI type (endfoot, soma, or process), and cortical
layer and also tested the interaction of these effects. As ran-
dom effects, we had intercepts for individual animals, fields of
view, and ROIs. Likelihood ratio tests comparing models with
fixed effects against models without fixed effects were used to
determine the model with the best fit while accounting for the
different degrees of freedom. Visual inspection of residual plots
did not reveal any obvious deviations from homoscedasticity or
normality. All data were reported and plotted as uncorrected
means and standard error of the means (SEM). P values for dif-
ferent parameter comparisons were obtained using the
lsmeans or multcomp (Hothorn et al. 2008) packages with
Tukey post hoc tests.

Immunohistochemistry

Mice were anesthetizedwith pentobarbital (>50mg/kg) and trans-
cardially perfused with 2% paraformaldehyde (PFA). Brains were
post-fixed in 4% PFA for 3 h and cryoprotected with 30% sucrose
in phosphate buffered saline for 24 h. Free-floating sections
(40 µm)were cut with a freezingmicrotome. Slices were incubated
with rabbit anti-GFAP antibody (Z0334; DakoCytomation, DK), rab-
bit anti-ionized calcium binding adapter molecule 1 (Iba1)
(WAKO) or anti-rat CD68 (MCA1957GA, Serotec) together with
chicken anti-GFP antibody (GFP-1020, Aves Labs). Secondary
antibodies for red and green (goat anti-rabbit Alexa Fluor 660
and goat anti-chicken Alexa Fluor 488; Life Technologies) were
then added. Images of the sections were collected with a Zeiss
LSM710 confocalmicroscope.

Results
Astrocyte Subcellular Regions are Spontaneously Active
and Exhibit Distinct Signaling Characteristics

To visualize astrocyte cytosolic calcium signals in the mouse
somatosensory cortex, we injected AAV9-sGFAP-GCaMP6s
virus, implanted a chronic cranial window, and imaged the ani-
mals by 2-photon microscopy 3 weeks later while under isoflur-
ane anesthesia (Fig. 1A). To analyze the GCaMP6s calcium
signals recorded during 2-photon imaging, we developed a
semi-automated image analysis where active ROIs were identi-
fied in time and space (Ellefsen et al. 2014) and condensed into
a 2D mask (Fig. 1B). Somata and endfeet regions were selected
by hand from visible structures in baseline images. The major-
ity of ROIs identified by the automated analysis were located in
the fine cellular processes, but those that overlapped with
manually selected somata and endfeet ROIs were excluded to
ensure each ROI was distinct. Process ROIs had a greater num-
ber of spontaneous signals per minute (0.65 ± 0.02 signals/min;
P < 0.0001; Fig. 1D) and a larger mean amplitude (0.35 ± 0.01-
fold; P < 0.0001; Fig. 1E) than endfeet or somata ROIs. However,
the mean duration of spontaneous signals from somata ROIs
(9.58 ± 0.32 s) was greater than processes (P = 0.0175) and end-
feet (P = 0.0255; Fig. 1F). A previous study comparing Oregon
Green BAPTA-AM labeled rat astrocytes in different cortical
layers showed layer 1 somata were more spontaneously active
with larger signal amplitudes than layer 2/3 cells (Takata and
Hirase 2008). Overall, we did not observe significant differences
in spontaneous signal amplitude, duration, or number of sig-
nals per minute between layers; however, layer 1 somata
tended to have more signals per minute than layer 2/3 somata
(Supplementary Fig. S1A–C). Notably, there was also no differ-
ence in the number of ROIs per area (mm2) between different
layers (Supplementary Fig. S1D).
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Based on their shape, GCaMP6s signal peaks were also
divided into 3 different classes: singlepeaks, multipeaks, and
plateaus (Fig. 1G; Bonder and McCarthy 2014). These peak types
were classified based on band-pass (singlepeaks andmultipeaks)
and low-pass filtering (plateaus) of the signal fluorescence

vector. Singlepeaks were identified as short, individual peaks,
while multipeaks were oscillating signals with multiple maxima
close together in time. Plateau signals were identified as long,
slower signals that had a small slope (<0.0015 DF/s) at the
peak maximum (Fig. 1G). Of all spontaneous peaks, 21% were
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Figure 1. Astrocyte subcellular calcium domains exhibit distinct spontaneous signaling characteristics. (A) Left: AAV9-sGFAP-GCaMP6s virus was injected into the

mouse somatosensory cortex. Middle: example image of the chronic cranial window showing GCaMP6s expression in the whisker (WH) and hindpaw (HP) areas

3 weeks post-injection. Scale bar is 500 µm. Right: images from anesthetized animals without stimulation were collected by 2-photon microscopy and analyzed in

MATLAB. (B) End foot (green) and soma (red) ROIs were selected manually based on visible structures. Active calcium ROIs were identified algorithmically and primar-

ily localized in astrocyte processes (blue). Scale bar is 30 µm. (C) Example traces of spontaneous activity from each ROI type. (D–F) Mean number of signals per minute,

amplitude, and duration of signals per ROI (endfeet: n = 167 ROIs; somata: n = 393 ROIs; processes: n = 501 ROIs; 12 mice). (G) Example traces of the 3 peak types: sin-

glepeaks, multipeaks and plateaus. (H) Mean number of each peak type per minute per ROI (n = 1061 ROIs; 12 mice). (I, J) Mean amplitude and duration of the different

peak types (singlepeaks: n = 1018 signals; multipeaks: n = 2283 signals; plateaus: n = 1538 signals; 12 mice). (K) Relative percentages of each peak type within the dif-

ferent ROI types. Example traces were smoothed with a 5-point moving average. Bar graphs are uncorrected mean ± SEM. *P < 0.05, ***P < 0.001. Statistics calculated

using linear mixed models. See also Supplementary Fig. S1.
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singlepeaks, 47.2% were multipeaks, and 31.8% were plateaus
(n = 4839 signals; 12 mice). Multipeaks were the most frequent
peak type when considering the overall number of peaks per
minute per ROI (P < 0.0001; Fig. 1H). Multipeaks also had the lar-
gest mean amplitude (0.71 ± 0.02-fold; P = 0.0335 vs. single-
peaks), while plateaus had a smaller mean amplitude (0.24 ±
0.01-fold) compared with both multipeaks (P < 0.0001) and sin-
glepeaks (0.62 ± 0.03-fold; P < 0.0001; Fig. 1I). Plateau peaks had
the longest mean duration (27.83 ± 0.42 s; P < 0.0001), while mul-
tipeaks (18.12 ± 0.11 s) were longer than singlepeaks (15.1 ±
0.12 s; P < 0.0001; Fig. 1J). The distribution of peak types within
individual ROI groups was also different with endfeet and
somata favouring plateaus (endfeet: 47.7% of 587 signals; soma-
ta: 53.6% of 1556 signals; 12 mice) and processes favouring mul-
tipeaks (59.3% of 2696 signals; 12 mice; Fig. 1K). Process ROI
peaks had different shapes compared with endfeet and somata
peaks, with larger mean amplitudes (Supplementary Fig. S1E)
and significantly greater duration for multipeaks and plateaus
(Supplementary Fig. S1F).

These calcium signals were recorded from healthy astro-
cytes, since GCaMP6s expression co-localized with astrocyte
dye, SR101, 90min after intravenous dye injection (Fig. 2A;
Appaix et al. 2012). Also, cortical virus injections did not induce
reactive astrogliosis or microglial activation, as GFAP and Iba1
labeling was similar within the injection site and in the contra-
lateral (non-injected) hemisphere (Fig. 2B–E). Additionally, we
did not detect an increase in CD68 staining, further supporting
a lack of microglial activation (Supplementary Fig. S2).

Astrocytes Respond to Sensory Stimulation

In order to study the local astrocyte response to somatosen-
sory activation, we used 2 different stimulation paradigms:
electrical hindpaw stimulation (400 μA at 4 Hz for 5 s, Movie 1)
and single whisker deflection (1 s duration) at different fre-
quencies known to mimic “stick-slip” events from whisking on
textured surfaces (Movie 2; Wolfe et al. 2008; Jadhav et al. 2009;
Mayrhofer et al. 2015). We directly compared trials with sen-
sory stimulation to trials without stimulation to identify
stimulus-evoked responses. This was done by running the
semi-automated ROI selection on each group of trials inde-
pendently and then combining the ROIs to make an overall ROI
mask that included endfeet, somata, and process ROIs. In
Figure 3B, process ROI masks were generated for the same field
of view from trials with 1 of 5 frequencies of whisker stimula-
tion: 0 Hz (no stimulation), 10, 20, 40, and 90 Hz. The final com-
bined mask (sum of all process masks, plus the manually
selected endfeet and somata mask) was then applied to all
images to collect signal information from the same ROI popu-
lation for each stimulus condition. When considering the
entire ROI population (endfeet, somata, and processes
together), 90 Hz whisker stimulation (P = 0.0025) and hindpaw
stimulation (P < 0.0001) increased the mean number of signals
per minute per ROI compared with trials without stimulation
(Fig. 3C). Lower frequencies of whisker stimulation (10–40 Hz)
did not increase the number of peaks per ROI. We attributed
the absence of whisker stimulation-evoked responses at these
frequencies to the high degree of spontaneous activity within
many ROIs. Therefore, we defined a ROI as “responding” if it
contained peaks in the 30 s following the onset of sensory
stimulation in any trial (“activity window”); ROIs that did not
meet this criterion were defined as “spontaneous”. In the hind-
paw area, ~80% of the 297 ROIs (5 mice, including endfeet,
somata, and processes) showed a response in the activity

window following electrical stimulation, while ~44% of 492 bar-
rel cortex ROIs (5 mice) responded to single whisker deflection
of any frequency (10−90 Hz). The time to peak maximum after
the onset of stimulation was similar at 12.95 ± 0.28 s for hind-
paw stimulation (n = 804 peaks from 5 mice) and 13.89 ± 0.32 s
for whisker deflection (n = 769 peaks from 5 mice; P = 0.668).
When averaging the data from all trials, responding ROIs had
more signals per minute (Fig. 3D) and greater mean signal
amplitudes (Fig. 3E) and duration (Fig. 3F) during both types of
stimulation (hindpaw and various whisker deflection frequen-
cies) compared with no stimulation trials. In a recent study, we
characterized the neuronal population response to different
frequencies (0, 10, 40, 90, and 110 Hz) of whisker stimulation
through neuronal calcium imaging (Mayrhofer et al. 2015). We
observed that the calcium signal amplitude and response prob-
ability increased sublinearly with increasing stimulation fre-
quency; however, different stimulation frequencies elicited
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Figure 2. Astrocytic GCaMP6s expression in vivo. (A) Images of GCaMP6s
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taken 90 min after intravenous SR101 injection. Scale bar is 30 µm. (B)
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similar cortical network activation in the same neuronal popu-
lations (Mayrhofer et al. 2015). In the present study, astrocytes
did not demonstrate a sublinear, graded response to increasing
whisker stimulus frequency, but 90 Hz stimulation elicited the

largest mean amplitude, duration, and number of signals per
minute (Fig. 3D–F) in responding ROIs. We also calculated the
response probability for each astrocyte ROI (i.e., the fraction of
trials with a signal in the activity window) and found that the
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from 4 ROIs (gray) for each frequency of stimulation. Lines below indicate stimulus. (C) Mean number of signals per minute per ROI from the total population (endfeet,

somata, and processes) following hindpaw (400 µA; 1ms; 4 Hz; for 5 s) or whisker stimulation (10, 20, 40, 90 Hz; 1 s). (D) Mean number of signals per minute per ROI

from responding ROIs with and without hindpaw (P < 0.0001; 237 ROIs; 5 mice) or whisker stimulation (all comparisons to no stim: P < 0.0001; 218 ROIs; 5 mice). (E)

Mean amplitude for responding ROIs comparing hindpaw (P < 0.0001; 237 ROIs; 5 mice) or whisker stimulation (10 Hz: P = 0.0065; 20Hz: P = 0.0418; 40Hz: P < 0.0001;
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(all comparisons to no stim: P < 0.0001). (G) Mean response probability (i.e., the fraction of trials with a peak in the activity window) following hindpaw or whisker
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lated using linear mixed models. See also Supplementary Movies 1 and 2 and Supplementary Fig. S3.
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mean probability was less than 1.0. This suggests astrocytes
did not respond to the stimulus in every trial, but they
responded on average in ~30% of whisker trials and ~55% of
hindpaw trials (Fig. 3G). Sensory stimulation did not elicit a
global astrocytic response, as no change in number of signals
per minute, amplitude, or duration was detected in responding
whisker barrel ROIs during hindpaw stimulation and respond-
ing hindpaw ROIs during whisker stimulation (Supplementary
Fig. S3). Since whisker deflection is non-noxious and more
physiological than hindpaw stimulation and 90 Hz stimulation
evokes a strong neuronal response (Mayrhofer et al. 2015), we
used 90 Hz whisker stimulation for 8 s to evoke the maximal
response in the remaining experiments.

Astrocyte Subcellular Compartments Respond
Differentially to Stimulation

We also investigated the stimulus-evoked response in different
astrocyte subcellular compartments. In the entire ROI popula-
tion, whisker (90 Hz for 8 s) stimulation-evoked responses in
endfeet and somata were masked by spontaneous activity
and only processes showed a significant increase in the num-
ber of signals per minute compared with no stimulation trials
(P = 0.003; Fig. 4A). To better study stimulus-evoked responses,
responding ROIs with a peak in the activity window were iden-
tified in the endfoot, soma, and process subpopulations. We
first compared the mean ROI area (µm2) for responding and
spontaneous ROIs (Fig. 4B). Endfeet and somata were selected
based on cellular structure, and we did not observe differences
in the area of spontaneous or responding ROIs (P = 0.999).
However, process ROIs were selected based on activity and
responding processes had a larger mean area than spontan-
eous processes (P < 0.0001; Fig. 4B), similar to light-evoked
astrocyte calcium signals in the visual cortex (Asada et al.
2015). Processes also reportedly have an earlier calcium signal
onset time after stimulation (Wang et al. 2006; Gee et al. 2014).
When considering only the responding ROIs in each subcellular
compartment, we found processes had the fastest mean time
to reach peak maximum after 90Hz whisker stimulation (14.41 ±
0.35 s), but there was no significant difference (P = 0.999 for all
comparisons) between process, endfoot (14.73 ± 0.75 s), and
soma (15.07 ± 0.51 s) peak times. Responding processes showed
an increase in mean signal amplitude upon whisker stimulation
(P < 0.0001), while we did not observe a change in amplitude in
responding endfeet (P = 0.2285) or somata (P = 0.3613; Fig. 4D).
The number of signals per minute (Fig. 4C) and mean signal dur-
ation (Fig. 4E) increased in all responding ROI types upon 90Hz
whisker stimulation (P < 0.0001). We also observed a similar
mean response probability for responding endfeet, somata, and
process ROIs (Fig. 4F).

Sensory Stimulation Induces Layer-Dependent Changes
in the Relative Number, Not the Nature, of Different
Peak Types

To investigate the underlying changes driving the overall
increase in signal frequency, amplitude, and duration in the
different responding subcellular compartments, we further
separated the responses by peak type and cortical layer. Upon
sensory stimulation, the shape of the peak types (singlepeaks,
multipeaks, and plateaus) did not change in amplitude or dur-
ation in any of the subcellular compartments (Supplementary
Fig. S4). When considering the number of different peak types,
the number of singlepeaks per minute remained unchanged in

all responding ROI types (endfeet, somata, or processes) and
layers (Fig. 5A–C). However, somata in layer 2/3 (P = 0.0014;
n = 94 ROIs; 10 mice) and processes in both cortical layers
(P < 0.0001, layer 1, n = 248 ROIs; P < 0.0001, layer 2/3, n = 174
ROIs; 10 mice) had a higher number of multipeaks per minute
during stimulation trials (Fig. 5E,F). Plateau signals were also
prominent in responding layer 2/3 somata during whisker
deflection trials (P < 0.0001; n = 94 ROIs; 10 mice; Fig. 5H). There
was some evidence of an increased number of multipeaks in
layer 1 endfeet (P = 0.0654; n = 41 ROIs; 10 mice; Fig. 5D) and an
increased number of plateaus in layer 1 somata (P = 0.1752;
n = 114 ROIs; 10 mice; Fig. 5H), but they were not significantly
different from trials without stimulation.

Astrocytes from Ip3r2−/− Mice also Respond to Sensory
Stimulation

Previous studies have shown that inositol-1,4,5-trisphosphate
(IP3)-dependent calcium release from the endoplasmic reticulum
(ER) is important for astrocyte calcium signaling (Petravicz et al.
2008; Nizar et al. 2013; Takata et al. 2013; Srinivasan et al. 2015).
We examined the involvement of this pathway in sensory
stimulation-evoked astrocyte responses by expressing GCaMP6s
in astrocytes from Ip3r2−/− mice and WT littermate controls (Li
et al. 2005) and selecting subcellular ROIs in the same manner as
previous experiments (manual selection for endfeet and somata
ROIs and automated detection for processes). Ip3r2−/− astrocytes
were less spontaneously active, as we detected fewer process
ROIs in each field of view and these ROIs tended to have a smal-
ler area (Supplementary Fig. S5A,B). We also detected fewer
spontaneous singlepeaks and multipeaks in Ip3r2−/− mice
(Supplementary Fig. S5C). The shape of different spontaneous
calcium signal peaks was not significantly different between WT
and knockouts, other than a slightly decreased duration of plat-
eau signals in Ip3r2−/−cells (Supplementary Fig. S5D,E). Upon
90Hz whisker stimulation, we were able to identify responding
endfeet, somata, and process ROIs in Ip3r2−/− and WT astrocytes
based on our previous criteria (peak in the activity window fol-
lowing stimulation; Fig. 3). Ip3r2−/− responding ROIs had an
increased number of signals per minute and longer mean signal
duration compared with trials without stimulation (P < 0.0001;
Fig. 6A, C). The mean signal amplitude in responding Ip3r2−/−

ROIs also tended to increase, but was not significantly different
between trials with and without stimulation (P = 0.1673; Fig. 6B).
When comparing stimulus-evoked responses from WT and
Ip3r2−/− ROIs, the mean amplitude and duration were not signifi-
cantly different (P = 0.1365 and P = 0.5836, respectively; Fig. 6B, C),
and WT and Ip3r2−/− ROIs responded to stimulation with a
similar probability (P = 0.4456; Fig. 6D). However, Ip3r2−/− ROIs
had fewer signals per min than WT ROIs (P = 0.0043; Fig. 6A).
When considering individual peaks, the mean time to reach
peak maximum after 90 Hz whisker stimulation was similar for
WT (15.77 ± 0.35 s) and Ip3r2−/− (15.79 ± 0.42 s) signals (P =
0.1124). Overall, peaks from each genotype that occurred during
stimulation trials had a similar peak shape (no appreciable
change in amplitude or duration; data not shown). Furthermore,
WT and Ip3r2−/− displayed a similar number of stimulus-evoked
singlepeaks and plateaus in each cellular compartment and cor-
tical layer (data not shown); however, whisker deflection evoked
fewer multipeaks in Ip3r2−/− astrocyte subcellular compart-
ments particularly in layer 2/3 (endfeet: WT vs. Ip3r2−/−,
P = 0.0017; somata: WT vs. Ip3r2−/−, P = 0.0004; processes: WT
vs. Ip3r2−/−, P < 0.0001; Fig. 6E–G).
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Astrocyte Regions Become More Correlated in Response
to Sensory Stimulation

To characterize the temporal dynamics of the GCaMP6s calcium
signals, we conducted a pairwise correlation analysis on the
fluorescence signal (dF/F), where traces for each ROI were com-
pared with traces from all other ROIs in the same field of view
(Fig. 7A). Overall, ROIs were weakly correlated in trials without
stimulation (Pearson coefficient, ρ = 0.17 ± 0.0008; n = 27 956 pairs

from 10 mice). The mean correlation increased upon whisker
stimulation (ρ = 0.20 ± 0.0008; P < 0.0001; Fig. 7C), as shown by a
shift in the cumulative fraction (Fig. 7B), suggesting an increase
in network synchronicity. When we considered responding ROIs
and spontaneous ROIs, we created 3 pair groups—spontaneous
vs. spontaneous ROIs, spontaneous vs. responding ROIs, and
responding vs. responding ROIs. All pair groups showed an
increase in correlation in trials with whisker stimulation
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Figure 4. Astrocyte processes respond differently than endfeet and somata to sensory stimulation. (A) Mean number of signals per minute per ROI for all endfoot

(n = 166 ROIs), soma (n = 403 ROIs), and process (n = 820 ROIs) ROIs following 90Hz whisker deflection for 8 s (12 mice). (B) Mean ROI area (µm2) for spontaneous and

responding ROIs from endfeet, somata, and processes. (C) Mean number of signals per minute for responding endfeet (P = 0.0224; n = 85 ROIs), somata (P = 0.0029; n =

208 ROIs), and processes (P < 0.0001; n = 420 ROIs) with or without whisker stimulation (90 Hz; 8 s). (D–F) Mean amplitude, duration, and response probability for

responding ROIs (endfeet, somata, and processes) with or without whisker stimulation. Bar graphs are uncorrected mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

Statistics calculated using linear mixed models.
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compared with trials without stimulation (P < 0.0001); however,
responding ROI pairs were significantly more correlated in stimu-
lation trials than spontaneous pairs or spontaneous vs. respond-
ing pairs (P < 0.0001, Supplementary Fig. S6A).

We also considered the pairwise signal correlations of respond-
ing ROIs separated by ROI type. Endfeet and somata pairs (endfeet
vs. endfeet, somata vs. somata, and endfeet vs. somata) were
more correlated overall than process pairs (processes vs. pro-
cesses, processes vs. somata, and processes vs. endfeet; P <
0.0001; Supplementary Fig. 6B) in both no stimulation and
stimulation trials. Upon whisker stimulation, all responding
ROI pairs showed an increase in correlation compared with no
stimulation trials (Supplementary Fig. 6B).

Long-term Stability of Endfeet and Somata Responses

Previously, our group has shown that a neuronal subpopulation
consistently responds to whisker stimulation over several

months (Mayrhofer et al. 2015), and we examined if astrocytes
have a similar stability by imaging the same astrocyte popula-
tion at different time points. Images from each session were
spatially aligned to the images from the first time point (Day 0)
to ensure that the field of view was the same for ROI selection
across all time points (Fig. 8A). The corrected images were used
to generate automated activity ROI masks for each time point,
and the distances between ROI centroids from each imaging
day were compared to find ROIs with multiple occurrences
(overlapping ROIs, Fig. 8B). We grouped ROIs of particular types
(endfeet, somata, and processes) with multiple occurrences
based on the number of days within the 4 different time
points that they showed a response to stimulation (Fig. 8C).
Spontaneous ROIs did not respond to stimulation on any day
(0 days group). ROIs that responded to stimulation only on
1 day (Day 0, 4, 18, or 67) were included in the 1 day group. ROIs
that demonstrated a response at 2 or 3 different time points
(2 and 3 days group) could occur on consecutive days (e.g., Day 0
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Figure 5. Responding ROIs have more signal peaks during sensory stimulation trials. (A–I) Mean number of peaks per minute, averaged across trials from each
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Statistics calculated using linear mixed models. See also Supplementary Fig. S4.
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and Day 4) or inconsecutive days (e.g., Day 0 and Day 18). ROIs
within the 4 days group responded to stimulation at every time
point (Day 0, 4, 18, and 67; Fig. 8C). Endfeet and somata were
more stable with many ROIs responding to whisker stimulation
on 3 (endfeet: ~31%, somata: ~16%) or 4 (endfeet: ~5%, somata:
~2%) imaging days. Processes were less stable with ~46% of
ROIs responding only on 1 day and no ROIs responding on all
4 days. Responding ROIs from each time point and ROI type had
a similar mean number of signals per minute across days
(Fig. 8D; P < 0.0001 for each no stim to whisker comparison over
all ROI types). Furthermore, the number of peak types (single-
peaks, multipeaks, and plateaus) per minute was also consist-
ent across time points (Supplementary Fig. S7A–C).

Discussion
Heterogeneous astrocyte calcium signals have been identified
in vivo (Bonder and McCarthy 2014; Srinivasan et al. 2015); how-
ever, the nature of these signals in response to local synaptic

activity remains unclear. We sought to characterize astrocyte
calcium signaling in different subcellular compartments in
terms of long-term stability and temporal synchronicity using
chronic in vivo 2-photon imaging of GCaMP6s during sensory
stimulation and innovative analysis tools. These tools com-
bined anatomical information (somata and endfeet) and
activity-based region of interest selection (processes) to identify
spontaneous and stimulus-evoked activity in different compart-
ments, measured over several months. We found that a rela-
tively large subset of astrocyte regions responded to brief,
physiologically relevant sensory stimulation (Figs 3 and 4); how-
ever, these changes were driven by deviations in the relative
frequency of different peak types (Fig. 5) rather than changes in
the shape of individual peaks (Supplementary Fig. S4).
Knockout of IP3 receptor 2 (IP3R2), which is known to reduce cal-
cium release from the ER, revealed a decreased number of pro-
cess ROIs and multipeak signals evoked by stimulation, but did
not affect the astrocytic response to stimulation as a whole
(Fig. 6 and Supplementary Fig. S5). Signal synchronicity also
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increased upon stimulation (Fig. 7 and Supplementary Fig. S6).
When we monitored long-term stability of astrocyte responses
in the same field of view, the overall response was constant
across several months; however, different process regions were
activated on different days (Fig. 8 and Supplementary Fig. S7).
These results suggest that astrocytes may stably encode local
neuronal activation through distinct calcium signal peak types
and coordinated activity throughout the astrocytic network, but
that the location of this activity within ramified astrocyte struc-
tures may change with time.

GECIs have revolutionized astrocyte calcium imaging by
providing better labeling of fine process structures compared
with calcium indicator dyes that primarily label the soma
(Shigetomi et al. 2013); however, the characteristics of calcium
signals that have been described vary depending on the GECI
used. Early GECIs, such as Yellow Cameleon 3.60 and GCaMP3,
have modest signal-to-noise ratios and relatively low affinity
for calcium, which limited detection of spontaneous calcium
microdomains within ramified astrocyte processes (Atkin et al.
2009; Paukert et al. 2014). High-affinity genetic calcium indica-
tors, such as Yellow Cameleon Nano50, detect long (~70 s)
spontaneous calcium signals within astrocyte processes
(Kanemaru et al. 2014), which may reflect saturation of this
sensor, making it difficult to elucidate individual peaks of dif-
ferent types. GCaMP6s is well suited for calcium imaging
within astrocyte subcellular domains due to its strong signal-
to-noise ratio and dissociation constant of 144 nM (Chen et al.
2013), which is within the astrocyte intracellular calcium con-
centration range (Zheng et al. 2015). With GCaMP6s, we
observed localized, spontaneous calcium microdomains within

process structures that have a higher mean amplitude (Fig. 1E)
and a greater number of signals (Fig. 1D) than endfeet or soma-
ta, comparable to previous reports with other calcium indica-
tors and in other brain regions (Shigetomi et al. 2013; Gee et al.
2014; Kanemaru et al. 2014; Otsu et al. 2015; Srinivasan et al.
2015; Tang et al. 2015). A previous study has also detected 3
different populations of GCaMP6s peaks in astrocytes: single-
peaks, multipeaks, and plateaus (Bonder and McCarthy 2014).
We found that multipeaks were the most common peak type
in fine processes, while plateaus predominated in endfeet and
somata (Fig. 1K). Singlepeaks were found in all cellular regions
(endfeet, somata, and processes) and the dynamics of these
peaks were similar to other reports (Bonder and McCarthy
2014).

Previously, Takata and Hirase (2008) used Oregon Green
BAPTA 1-AM (OGB1) to visualize rat cortical astrocyte calcium
signals in vivo and reported that somata in cortical layer
1 were more spontaneously active than somata in layer 2/3.
We did not detect significant differences in somata, processes,
or endfeet spontaneous activity between layer 1 and 2/3
(Supplementary Fig. S1A–C), though layer 1 somata tended to
have more signals per minute (Supplementary Fig. S1A).
Takata and Hirase (2008) also reported that more astrocytes
are present in layer 1 than layer 2/3 of the rat cortex, but we
did not observe a difference in the number of astrocytes/mm2

in our mice (Supplementary Fig. S1D). These differences
between rat and mouse cortical cyto-architectures could
account for the discrepancies between our results.

Mice use their whiskers for vibrotactile perception mediated
by high frequency changes in whisker position (Wolfe et al. 2008;
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Jadhav et al. 2009; Mayrhofer et al. 2015). Recently, our group
characterized the neuronal population response to increasing
frequencies of whisker deflection and found that while many
neurons respond weakly to stimulation, a subset of highly
responding neurons (~3%) reliably discriminate different stim-
uli (Mayrhofer et al. 2015). In astrocytes, spontaneous signals
tended to mask sensory stimulation-evoked activity within the

population, particularly from whisker stimuli (Fig. 3C). We iden-
tified subcellular astrocyte regions that responded to sensory
stimulation with a peak in the activity window, and these
regions tended to be less spontaneously active and respond
with more signals to different frequencies of stimulation
(Fig. 3D). Based on the response probability (Fig. 3G), responding
ROIs were more likely to have a peak in the activity window,
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but they did not respond in every trial on average, possibly due
to adaptation or a local “refractory” period within the astrocyte.
This refractory period may reflect local receptor inactivation in
highly responsive areas, and favor activation of other regions
at later times. In a previous study using different frequencies of
whisker stimulation for 1min, local field potentials and astro-
cyte somata calcium responses peaked at 5 Hz and decreased
at 10 Hz, which they attributed to neuronal adaptation (Wang
et al. 2006). While we chose to use higher frequencies of stimu-
lation that mimic “stick-slip” events from whisking on textured
surfaces, we also limited stimulation to much shorter epochs
(1 or 8 s) that reliably produce field potential spikes and calcium
transients within neurons (Khatri et al. 2004; Musall et al. 2014;
Mayrhofer et al. 2015). During this type of pulsatile whisker
stimulation, neuronal adaptation occurs within the first few
pulses and the number of spikes per pulse decreases, particu-
larly at higher frequencies (Khatri et al. 2004; Fraser et al. 2006;
Musall et al. 2014). However, neuronal responses remain locked
to the pulsatile stimulus (Ewert et al. 2008) and are reproducible
across many trials (Mayrhofer et al. 2015). While we did not
observe a decrease in astrocyte responses with increasing
whisker stimulation frequencies, neuronal adaptation could
explain why the astrocytic response was not directly propor-
tional to the stimulation intensity (10–90 Hz stimulation;
Fig. 3D–F).

In terms of astrocyte compartments, a recent study com-
pared calcium signals (from GCaMP5G) in astrocyte processes
and somata during whisker stimulation and they found that
somata and processes had similar mean amplitudes with a sig-
nal delay of ~25 s after the start of stimulation (Gee et al. 2014).
We also found that somata, processes, and endfeet had a similar
mean signal onset (~15 s), though peaks occurred earlier after
the start of stimulation. Unlike Gee et al. (2014), we did not
observe similar somata and process signal amplitudes (Fig. 4D).
We attribute this to the prevalence of low-amplitude plateau sig-
nals in somata ROIs (Fig. 5H). We also observed similar response
probabilities in endfeet, somata, and processes (Fig. 4F), suggest-
ing that the stimulus response was analogous across ROI types.
When considering ROI area, responding process ROIs had a lar-
ger mean area than spontaneous process ROIs (Fig. 4B), similar
to recent observations of light-evoked astrocyte responses in the
visual cortex (Asada et al. 2015). A larger area could reflect great-
er propagation of signals in response to stimulation. Processes
have a close proximity to synapses, and the size of astrocyte
domain activation could be an integral feature of how astrocytes
encode local synaptic activity. It is also worth noting that anes-
thetics can inhibit astrocyte calcium signals (Thrane et al. 2012),
which could have suppressed the calcium responses in our
experiments. However, we found that the responses were con-
sistent across animals under isoflurane anesthesia. Future stud-
ies in awake, behaving animals that simultaneously monitor
local neuronal and astrocytic calcium signals will help to better
elucidate the time course and possible coordinated activity
between these 2 cell populations.

When considering individual calcium signals, the shape of
peaks (duration and amplitude) did not change upon sensory
stimulation. However, we observed an increased number of
multipeak and plateau signals, which directly accounts for the
differences in mean amplitude and duration that we detected
between somata and processes. Somata (particularly in layer
2/3) had more plateau signals, which were of longer duration
and lower amplitude, while multipeaks occurred more fre-
quently in processes (Fig. 5), which increased the mean ampli-
tude and number of signals per minute. Different peak types

could explain how astrocytes integrate synaptic activity and
may represent diverse mechanisms of signaling. Numerous
pathways are known to increase intracellular calcium in astro-
cytes including various ion channels and calcium release from
ER stores through G-protein-coupled receptor (GPCR)-mediated
IP3 signaling or calcium-induced calcium release via ryanodine
receptors (Parpura et al. 2011). We specifically examined IP3 sig-
naling and found that, similar to a previous study (Srinivasan
et al. 2015), Ip3r2−/− mice had fewer spontaneous singlepeaks
and multipeaks. These mice also had less sensory-stimulus-
evoked multipeak signals (Fig. 6 and Supplementary Fig. S5).
This suggests that GPCR activation and IP3-mediated release of
ER calcium stores contribute to these types of signals. However,
it is important to note that even though there were fewer process
ROIs detected and less multipeak signals, the sensory-evoked
astrocytic responses were not abolished in these animals and
we could identify responding regions in all subcellular com-
partments without a change in response probability between
knockouts and littermate controls (Fig. 6D). This indicates that
other cellular mechanisms have a role in astrocyte sensory-
evoked calcium signaling. Further pharmacological or trans-
genic mouse studies targeting different pathways of activation
will help to elucidate the contribution of these pathways to
astrocyte calcium peak types.

We also observed a weak signal correlation between spon-
taneous astrocyte signals within the same field of view, which
was similar to a previous report of correlated OGB1 activity in
somata (Takata and Hirase 2008). The pairwise correlations,
particularly for responding ROIs, increased upon stimulation,
which suggests the population becomes more synchronous
(Fig. 7). Astrocyte populations throughout the cortex are known
to display widespread, coordinated calcium signaling and syn-
chronicity, particularly within somata, in response to norepin-
ephrine from the locus coeruleus (Ding et al. 2013; Paukert
et al. 2014) and acetylcholine from the nucleus basalis (Takata
et al. 2011). In the present study, we did not observe sensory-
stimulus-evoked calcium signals outside the corresponding
somatosensory region (Supplementary Fig. S3), suggesting
these neuromodulatory pathways are not recruited by our
stimulation paradigms. Increased astrocyte synchronicity after
sensory stimulation could be an important component of
astrocyte information processing and reflect barrel cortex cir-
cuit connectivity.

To our knowledge, we also present here the first chronic
study in vivo of astrocyte calcium signals in the same popula-
tion over time (Fig. 8). Endfeet and somata responded more
stably to whisker stimulation across multiple days (Fig. 8C).
Process signals tended to occur in a particular region only in a
single session. It is possible that different processes are acti-
vated at different times based on the local synaptic responses
(Grienberger and Konnerth 2012). Our group has previously
shown that a sparse population of neurons responds reliably
over different time points to whisker stimulation (Margolis
et al. 2012; Mayrhofer et al. 2015). However, different synapses
within the arbor of these neurons could be activated at each
time point and this may cause the spatial diversity we observed
in responding astrocyte processes. Signals within astrocyte pro-
cesses may also induce responses in the soma and/or endfeet
through second messenger cascades, allowing astrocytes to
translate signals from different processes into similar calcium
responses in somata or endfeet. This would account for the
stable responses we observed in somata and endfeet on mul-
tiple days and could be an important feature of how astrocytes
integrate synaptic information throughout the cell.
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Our results provide new insights into the nature of astrocyte
calcium signaling in response to sensory stimulation, particu-
larly in terms of subcellular astrocyte compartmentation and
different peak types. A clearer picture of calcium signaling
within somatosensory astrocytes is starting to emerge: somata
and endfeet respond stably to sensory stimulation over time
with more plateau signals and increased synchronicity. Processes
have the greatest response to sensory stimulation and favor
oscillating multipeaks, but these signals are less synchronous
and do not occur in the same process in different sessions. This
helps to clarify astrocyte calcium signal heterogeneity, but raises
fundamental questions about how astrocytes encode local neur-
onal network activity through different calcium signal peaks
within different cellular compartments. Further studies correlat-
ing astrocyte and neuronal activity are now needed to better
understand how astrocytes integrate synaptic frequencies.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.
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