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Contributions: We propose a novel framework for joint 3-D vessel segmentation and centerline extrac-
tion. The approach is based on multivariate Hough voting and oblique random forests (RFs) that we learn
from noisy annotations. It relies on steerable filters for the efficient computation of local image features
at different scales and orientations.
Experiments: We validate both the segmentation performance and the centerline accuracy of our
approach both on synthetic vascular data and four 3-D imaging datasets of the rat visual cortex at
700 nm resolution. First, we evaluate the most important structural components of our approach: (1)
Orthogonal subspace filtering in comparison to steerable filters that show, qualitatively, similarities to
the eigenspace filters learned from local image patches. (2) Standard RF against oblique RF. Second, we
compare the overall approach to different state-of-the-art methods for (1) vessel segmentation based
on optimally oriented flux (OOF) and the eigenstructure of the Hessian, and (2) centerline extraction
based on homotopic skeletonization and geodesic path tracing.
Results: Our experiments reveal the benefit of steerable over eigenspace filters as well as the advantage of
oblique split directions over univariate orthogonal splits. We further show that the learning-based
approach outperforms different state-of-the-art methods and proves highly accurate and robust with
regard to both vessel segmentation and centerline extraction in spite of the high level of label noise in
the training data.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Segmentation and analysis of tubular structures such as blood
vessels, in particular, play a crucial role for numerous medically
oriented applications and have attracted a lot of attention in the
field of medical image processing. The multi-scale nature of ves-
sels, image noise and contrast inhomogeneities make it a challeng-
ing task. In this context, a large variety of methods have been
developed exploiting photometric and structural properties of
tubular structures.
1.1. Related work

1.1.1. Vessel segmentation
Vessel segmentation is an established field in biomedical image

processing, see for example Kirbas and Quek (2004) and Lesage
et al. (2009) providing extensive reviews. Many of them are
notably tailored to specific applications and imaging modalities.
Rather simple methods for vessel detection, e.g., absolute or locally
adaptive thresholding (Otsu, 1979; Canny, 1983), are regularly
used in practice due to their conceptual simplicity and computa-
tional efficiency but they are a serious source of error and require
careful parameter selection. More sophisticated segmentation
techniques can roughly be divided into two groups. One group pur-
sues a top-down strategy by iteratively propagating segmentation
labels starting at set of seeds towards distal branches by means of,
e.g., region growing (Martínez-Pérez et al., 1999; Lo et al., 2010),
active contours (Lorigo et al., 2001), particle filtering (Lesage
et al., 2008; Florin et al., 2006), or path tracing (Zhou et al., 2007;
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Schneider and Sundar, 2010). The design and choice of an
appropriate energy or posterior density term to guide the evolu-
tion of the segmentation is crucial and usually involves strong
assumptions on the underlying structures to be detected. Simi-
larly, elaborate break criteria are required to prevent the segmen-
tation from leaking into the background, particularly for data
with a low signal to noise ratio. Another group of methods fol-
lows the bottom-up paradigm aiming at optimizing a global
neighborhood graph in order to incorporate spatial context
(Türetken et al., 2012; Rempfler et al., 2014). The graph is com-
monly defined on the voxel locations based on a likelihood for
a voxel belonging to a tubular structure as well as certain con-
straints for better robustness, e.g., handling of bifurcations and
low-contrast regions (Breitenreicher et al., 2013). Standard opti-
mization strategies such as belief propagation or graph cuts are
commonly applied to find the global optimum of the graph which
intrinsically defines the termination criteria. However, dealing
with large image data, global optimization easily becomes com-
putationally infeasible.

1.1.2. Vessel enhancement
An essential element of all algorithms are measures for tubu-

larity or ‘‘vesselness’’. They are commonly calculated based on
optimal filtering and Hessian-based approaches relying on ideal-
ized appearance and noise models to enhance tubular structures.
The former includes optimal edge detection (Canny, 1983) and
steerable filters providing an elegant theory for computationally
efficient ridge detection at arbitrary orientations (Jacob and
Unser, 2004; González et al., 2009b). The latter is based on the
eigenanalysis of the Hessian capturing the second-order structure
of local intensity variations (Sato et al., 1997; Frangi et al., 1998).
The Hessian is commonly computed by convolving the image
patch with the partial second-order derivatives of a Gaussian
kernel as the method of choice for noise reduction and to tune
the filter response to a specific vessel scale. This basic principle
has already been used by Canny for edge and line detection
(Canny, 1983; Schneider, 1990). The differential operators
involved in the computation of the Hessian are well-posed con-
cepts of linear scale-space theory (Lindeberg, 1996). Modeling ves-
sels as elongated elliptical structures, the eigendecomposition of
the Hessian has a geometric interpretation, which can be used to
define a vesselness measure as a function of the eigenvalues
(Sato et al., 1997; Frangi et al., 1998). Due to the multi-scale nat-
ure of vascular structures, Hessian-based filters are commonly
applied at different scales. Besides, the eigenvector corresponding
to the largest eigenvalue of the Hessian computed at the most dis-
criminative scale is a good estimate for the local vessel direction.
In practice, vesselness filters tend to be prone to noise and have
difficulty in detecting vessel parts such as bifurcations not com-
plying with the intrinsic idealized appearance model. More
recently, Xiao et al. (2013) proposed to replace the Gaussian kernel
of standard Hessian approaches with a bi-Gaussian function that
allows for independent selection of different scales in the fore-
ground and background. The authors show that a proper selection
of the scale parameters reduces interference from adjacent objects
while preserving intra-region smoothing. As compared to Hessian-
based approaches using inappropriately broad Gaussian kernels, it
is hence better suited to resolve neighboring structures, in partic-
ular. Vesselness filters have also been successfully applied for glo-
bal vessel segmentation in X-ray angiography using ridge tracking
(Schneider and Sundar, 2010) and graph cut theory (Hernández-
Vela et al., 2011). In order to partly overcome the shortcomings
of Hessian-based filters, optimally oriented flux (OOF) as intro-
duced by Law and Chung (2008) and its anisotropic variations
(Benmansour and Cohen, 2011) have recently gained attention
for the segmentation of different anatomical structures including
vessels (Benmansour et al., 2013) and intervertebral discs (Law
et al., 2013). Briefly, OOF aims at computing an optimal projection
direction minimizing the inward oriented flux at the boundary of
localized circles (2-D) or spheres (3-D) of different radii (scales).
Similar to the Hessian-based approaches, OOF can be used to esti-
mate the local vessel direction as a generalized eigenvalue prob-
lem. At the same time, the OOF descriptor is more robust
against image noise and local intensity inhomogeneities in the
presence of nearby structures, which adversely affects the differ-
ential nature of the Hessian. The OOF value, i.e., the projected out-
ward flux, at a certain position and scale can be interpreted as the
likelihood of the voxel being centered in a tubular structure of the
selected scale. By design, OOF hence provides strong responses at
centerlines of curvilinear structures. Similar to the Hessian-based
vesselness, the OOF eigenvalues can be combined to obtain a
response across the entire structure (Law and Chung, 2008;
Benmansour and Cohen, 2011). Finally, Law and Chung (2010)
have demonstrated that different measures of image gradient
symmetry can be derived from OOF to guide an active contour
model for 3-D vessel segmentation with promising results on clin-
ical intracranial and cardiac image data.

1.1.3. Centerline extraction
For many applications, vessel detection, i.e., binary segmenta-

tion of the vessel lumen, is insufficient and a more comprehensive
vascular description is desirable to characterize the topology and
morphology of vascular networks. To this end, the tubular shape
of a vascular segment can be modeled by its centerline, i.e., the
1-D curve centered inside the vessel lumen, along with an estimate
of the vessel diameter along the centerline assuming a circular
cross-section. Other centerline models rely on more general
cross-sectional contours such as ellipses (Krissian et al., 2006). Var-
ious approaches for centerline extraction have been proposed in
the literature including skeletonization by homotopic thinning
(Palágyi and Kuba, 1998; Pudney, 1998) and minimal path tech-
niques (Lesage et al., 2009, Section 4.4). The latter computes the
centerline between two-points as the path minimizing a certain
energetic potential favoring centerline positions. Minimal path
techniques enjoy great popularity due to their robustness and glo-
bal optimality properties (Cohen and Kimmel, 1997). Different
variations have been proposed that mostly differ in the definition
of the energy term and the numerical optimization schemes such
as Dijkstra-like (Gülsün and Tek, 2008; Breitenreicher et al.,
2013) and fast marching schemes (Sethian, 1999; Benmansour
and Cohen, 2011). Deschamps (2001) defines a distance potential
as a non-linear function of the distance to the object boundary. It
is used to readjust minimal paths towards the vessel center. Slight
inaccuracies in the extracted vessel boundaries may easily impair
the distance-based metric, though. Benmansour and Cohen
(2011) propose an unisotropic metric based on OOF (Law and
Chung, 2008) and present promising results. However, accurate
centerline extraction requires a dense sampling of the scale space
which is computationally expensive when dealing with tubular
structures in a wide range of scales. Recently, voting mechanisms
as used for object detection in the computer vision community
(Gall et al., 2011) have been applied in the context of centerline
extraction to increase robustness against noise and low-contrast
regions, in particular (Zhou et al., 2007; Risser et al., 2008;
Rouchdy and Cohen, 2012).

1.2. Overview

In this paper, we aim at efficient processing of 3-D high-
resolution angiographic image data (> 1010 voxels) mapping the
cerebrovascular system down to the capillary level, which is of
great interest for the analysis of the cerebral vasculature



Fig. 1. Cerebrovascular network of the rat somatosensory cortex. (a) Vectorized model reconstructed from 3-D high-resolution imaging data acquired by synchrotron
radiation X-ray tomographic microscopy (SRXTM) of a cylindrical sample with a volume of about 2.8 mm3. (b,c) Cubic subregion of (a) containing a pial arteriole at the cortex
surface (top) with a penetrating arteriole orthogonally plunging into the cortex. The vasculature is visualized as vectorized model (b) and surface mesh (c). The vessel radii in
(a) and (b) are color-coded on a logarithmic scale. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1 Contributions partly included in our previous conference paper (Schneider et al.,
2013) are marked with an asterisk.
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(Reichold et al., 2009; Hirsch et al., 2012; Schneider et al., 2014). An
example dataset of a small cylindrical sample of the rat
somatosensory cortex is shown in Fig. 1. Processing these huge
amounts of data involves various challenges: First and foremost,
the considerable computational challenge due to the gigantic data
size – more than 20 GB of raw image data for the small sample in
Fig. 1(a) – requires particularly efficient algorithms to perform
the analysis within a reasonable time span. We hence devise a fast
machine learning approach for joint vessel segmentation and cen-
terline extraction using a single set of features computed from effi-
cient local linear filtering rather than complex non-local spatial
models incorporating prior knowledge and regularization
(Schneider and Sundar, 2010; Hernández-Vela et al., 2011). Second,
manual or semi-automatic generation of high quality ground truth
data by human experts is tedious and essentially prohibitive for
high-resolution 3-D data. Training the models of machine learning
techniques, however, requires sufficient amount of labeled training
data. Therefore, minimum manual input during training is another
crucial objective of this work. To this end, we propose to train
the classifiers using automatically generated noisy training labels,
thus eliminating the need for tedious manual labeling. Despite typ-
ical imaging artifacts and high levels of label noise in the training
data, the obtained segmentation results prove robust and accurate
on our datasets. Finally, vascular structures are characterized by a
complex topology and morphology with large variations, which adds
to the complexity of automated vessel segmentation. Due to the
hierarchical architecture of the vascular system, vessels appear at
very different scales spanning several orders of magnitude. Consid-
ering this complex multi-scale nature of vascular structures, we
implicitly learn the vascular appearance from the training data
employing oriented features computed at different scales. The
learned model is more flexible and superior to parametric models,
e.g., based on Hessian eigenanalysis (Sato et al., 1997; Frangi et al.,
1998) or optimally oriented flux (Law and Chung, 2010), that
intrinsically rely on a cylindrical appearance model which clearly
does not hold in special topological configurations such as bifurca-
tions. Fig. 2 provides an overview of the proposed processing
pipeline.
1.3. Contributions

In the following we briefly summarize the main contributions of
this work1:

1. We propose a novel framework for joint vessel segmentation
and centerline extraction. This framework predicts – simulta-
neously and from the same image features – local vessel pres-
ence and nearby centerlines using, respectively, oblique
random forests (RFs) for efficient classification and multivari-
ate Hough forests to infer probabilistic votes about the sup-
posable vessel center. The accumulated centerline votes then
drive fast marching (FM) scheme to extract the centerline as
the minimal path with lowest energy. We refer to this frame-
work as oblique Hough forest.

2.⁄ Based on extensive validation experiments, we offer a system-
atic comparative analysis of different features for vessel seg-
mentation computed from, respectively, orthogonal subspace
filtering (Menze et al., 2006; Rigamonti et al., 2011) and steer-
able filters sharing similar structure (Freeman and Adelson,
1991; Jacob and Unser, 2004). The latter allows for efficient
directional filtering and explicit scale parametrization in order
to compensate for the preferred local orientation and to
account for the multi-scale nature of vascular structures.
Steerable filters have successfully been applied for filament
and dendrite detection in previous work by González et al.
(2009a,b).

3.⁄ We further propose and comprehensively test a novel oblique
split model with an elastic net penalty term that combines ‘1

and ‘2 regularization, which leads to sparser split weights than
purely ‘2 regularized oblique splits introduced by Menze et al.
(2011).



Fig. 2. Overview of the machine learning-based framework for vessel segmentation and centerline extraction for a 2-D example. First, features are computed from (steerable)
filter templates at different scales (left). Second, the vessel lumen is segmented based on random forest (RF) classification (top right). Third, we cast probabilistic votes for the
centerline location at each location labeled as vessel using multivariate Hough forest regression (bottom right). The centerline is finally extracted using a fast marching (FM)
framework.
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4. In order to minimize the requirement for manual input dur-
ing training, we use automatically generated noisy annota-
tions to train the classification and regression forests in our
validation experiments. In a systematic quantitative assess-
ment of the parametrization of the RF models we demon-
strate the advantage of the learning step and show that the
trained classification and regression forests are able to gener-
ate and extract highly accurate segmentation results and
centerlines in spite of the high level of label noise in the
training data.

1.4. Paper outline

This paper is structured as follows. In Section 2, we first
introduce two different kinds of features based on orthogonal
subspace filtering and steerable filter templates, respectively,
that are used for vessel segmentation. Second, we present the
details of our machine learning framework based on random for-
ests, especially focusing on the design of the split functions. We
also show how the framework can be extended to allow for cen-
terline extraction by applying fast marching (FM) approach to a
‘‘centeredness’’ potential obtained from Hough forest regression.
In Section 3, we give details about the performed validation
and sensitivity experiments to assess the segmentation perfor-
mance and accuracy of our framework. The results are discussed
in Section 4. Finally, we conclude and show perspectives in
Section 5.
2. Methods

In this section, we first introduce two different sets of local
image features for vessel segmentation based on (1) orthogonal
subspace filtering and (2) steerable filters computed at different
scales and orientations in order to achieve rotational invariance
(Section 2.1). In Section 2.2, these features are then used to
train an oblique RF classifier that is well adapted to correlated
feature responses from local image filters (Menze et al., 2011).
Different from standard discriminative learning algorithms, such
as support vector machines, RF naturally returns continuous
probabilities when predicting vessel locations, which allows us
to adapt the threshold for classification. Moreover, RF is capable
of coping with high dimensional feature vectors and tolerate
noisy training labels. It is fast to train with only very few
parameters to be optimized, even faster to apply (few threshold
operations), and easy to parallelize. Efficient prediction becomes
particularly important for scalability in our specific application
using high-resolution image data at nanometer resolution.
Finally, Section 2.3 describes an extension of the RF classifica-
tion framework that allows for robust and accurate centerline
extraction using a Hough voting approach based on regression
forests.

2.1. Local image features

We introduce two different kinds of features. One is based on
orthogonal subspace filtering where we learn 3-D eigenspace
filters from local image patches that return task optimal feature
responses. The other uses a set of steerable filters that show, qual-
itatively, similarities to the learned eigenspace filters, but also
allow for explicit parametrization of scale and orientation that
we formally generalize to the 3-D spatial context. In this way,
steerable filters allow for efficient computation of oriented features
along arbitrary directions in 3-D and at the same time include
higher order derivatives as compared to Hessian-based
approaches.

2.1.1. Orthogonal Subspace Filters (OSFs)
Matched filters (MFs) have widely been used in signal process-

ing. They allow to detect a signal of known shape (template) by
cross-correlation and perform provably optimal under additive
Gaussian white noise conditions (Moon and Stirling, 2000). In
terms of image processing, this corresponds to the convolution of
the image with the MF. From a learning and classification perspec-
tive, matched filtering (signal detection) is closely related to linear
regression for binary classification between background and pat-
tern (vessel) (Menze et al., 2006). Considering the image as a com-
position of local image patches with each pixel in the patch
representing a feature, MF defines 1-D linear subspace (regression
coefficients) of this feature space which allows for separation of
the pattern from background. Instead of an optimal 1-D subspace
assuming linear separability in the feature space as implied by
using a single matched filter, we use a less restrictive dimensional-
ity reduction similar to (Menze et al., 2006), namely (linear)
principal component analysis (PCA), in order to define a subspace
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of higher dimensionality. More formally, let pi 2 RP3
denote a

(cubic) image patch of size P � P � P containing P3 pixels. A
d-dimensional subspace (d 6 P3) capturing the most important
modes of variation in the image patches can then be defined using
PCA (Jolliffe, 2002):

81 6 k 6 d 6 P3 : ak ¼ arg max
a 2 RP3

; kak ¼ 1;
81 6 i < k : covðai;aÞ ¼ 0

varða>POSFÞ; ð1Þ

where POSF ¼ ½pi�16i6NP
2 RP3�NP is the data matrix assembling NP

patches labeled as vessel. The principal axes ak form an orthonor-
mal basis of the d-dimensional subspace and are ordered according
to their preserved variance. They can be computed efficiently as the
d eigenvectors corresponding to the largest eigenvalues of the
covariance matrix of POSF after mean centering using singular value

decomposition. Projecting an arbitrary image patch p 2 RP3
onto the

PCA subspace yields its d principal components (PCs) a>k ðp�m1Þ,
where m1 is the empirical mean of all patches in POSF. The principal
components (PCs) of the image patches centered at pixels x in
image I can thus be computed by d independent convolution oper-
ations of the image with each (properly reshaped) principal axis
~ak 2 RP�P�P:

fOSFðI; xÞ ¼ ð~ak � IÞðxÞ � a>k
1

NP

XNP

i¼1

pi

" #
16k6d

2 Rd: ð2Þ

The (reshaped) principal axes will also be referred to as orthogonal
subspace filters (OSFs). The PCs, i.e., the OSF response of an image
patch, are used as features along with a non-linear decision rule
for vessel segmentation as described in Section 2.2.

Rotational invariance. In the definition of the OSFs in Eq. (1), we
rely on the PCA-based scheme to learn the structure of the high-
dimensional patch feature space and to provide a proper feature
projection into a low-dimensional subspace. Instead of learning
the OSFs from the raw image patches, we can apply the same
scheme to local patches that have been normalized for pose in
order to computationally eliminate the variability in the orienta-
tion of vascular structures. To this end, each image patch pi has
to be transformed w.r.t. the local vessel direction into a normalized
pose first (see Section 2.1.2 for details), which requires costly
resampling and interpolation. Apart from patch normalization,
the framework for learning the rotationally invariant orthogonal
subspace filters (rOSFs) and the extraction of rOSF features is the
same as for OSF (see Eqs. (1) and (2)). While rOSF is prohibitively
expensive for most applications – including ours – we report
experimental results for both OSF and rOSF features for validation
purposes in Section 3.

2.1.2. Steerable Filter Templates (SFTs)
The OSFs learned from image patches as described in the

previous section turn out to be highly structured (see Fig. 6).
Instead of learning the structured filter kernels, we attempt to
explicitly parametrize them using a steerable filter model. The
model we choose is based on Gaussian derivatives, which allows
for efficient directional filtering at different scales and, most
importantly, implicates rotational invariance (Jacob and Unser,
2004). Similar to González et al. (2009b), we define the filter
templates as normalized derivatives of Gaussians up to order M
(Lindeberg, 1996):

8m P 1 ^ 0 6 b 6 a 6 m 6 M : Gr
m;a;bðxÞ

¼ rm @
m�a@a�b@b

@m�a
x @a�b

y @b
z

GrðxÞ; ð3Þ
where GrðxÞ ¼ 1ffiffiffiffi
2p
p

rð Þ3
exp � kxk2r2

� �
denotes the 3-D symmetric

Gaussian kernel with variance r and zero mean. As in Eq. (2), each
template induces a single feature by convolution with image I.
They can be assembled to a feature vector of dimension
dM ¼ 1

6 ðM
3 þ 6M2 þ 11MÞ at a fixed scale r:

frðI;xÞ ¼ Gr
1;0;0;G

r
1;1;0;G

r
1;1;1; . . . ;Gr

M;M;M

� �>
� I

� �
ðxÞ 2 RdM : ð4Þ

We enhance the features by concatenating feature vectors at
different scales r ¼ r1; . . . ;rSð Þ>:

fSFTðI;x;rÞ ¼ fr1 ðI; xÞ; . . . ; frS ðI; xÞ
� �> 2 RdMS: ð5Þ

The steerability of Gaussian derivatives has been derived for the 2-D
case in (Jacob and Unser, 2004) and can readily be extended to 3-D
(Freeman and Adelson, 1991; González et al., 2009a). Steerability
refers to the property that the convolution of an image with a
rotated version of the steerable filter template (SFT) can be
expressed by a linear combination of the filter response of the
image with the SFT without rotation:

I � Gr
m;a;bðRxÞ ¼

Xm

i¼0

Xi

j¼0

wi;j
m;a;b I � Gr

m;i;j

� �
ðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

frm;i;jðI;xÞ

; ð6Þ

where R 2 SOð3Þ denotes a 3-D rotation matrix. The uniquely
defined coefficients wi;j

m;a;b can be computed in closed form as:

wi;j
m;a;b ¼

X
p2Pi;j

m;a;b

ð�1Þa�v1�w2
m� a

u1

� �
a� b

v1

� �
b

w1

� �
u1

u2

� �
w1

w2

� �

ðcos hÞm�a�u2þw2 ðcos /Þm�aþb�u1þv1�w1

ðsin hÞbþu2�w2 ðsin /Þa�bþu1�v1þw1�u2�w2 ; ð7Þ

where

Pi;j
m;a;b ¼ fðu1;v1;w1;u2;w2Þ> 2 N5

0 j u1 6 m� a;v1 6 a� b;w

6 b;u2 6 u1;w2 6 w1;u1 þ v1 þw1 ¼ i;u2 þw2 ¼ jg: ð8Þ

A more detailed derivation is provided in Appendix B. This
formalism allows to efficiently evaluate the feature vector fSFT for
an arbitrary rotation without any additional costly convolution.
We use a restricted set of rotations in our application considering
the tubular structure of vessels. The local vessel direction
d ¼ ðdx; dy;dzÞ> 2 R3; kdk ¼ 1 can be parametrized using spherical
coordinates ðh;/Þ with unit radius, elevation h ¼

arctan dz=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x þ d2
y

q� �
, and azimuth / ¼ arctanðdy=dxÞ relative to

the x-y plane (z ¼ 0). It is sufficient to restrict the parametrization
to the positive hemisphere (z > 0), i.e., 0 6 h 6 p=2 and
�p < / 6 p. The vessel patch can then be transformed to the
normalized pose d0 ¼ ð1;0;0Þ> by applying the rotation matrix

Rh;/ ¼
cos h cos / cos h sin / sin h

� sin / cos / 0
� sin h cos / � sin h sin / cos h

0B@
1CA: ð9Þ

The SFT features evaluated for this rotation according to Eq. (6)
hence describe the intensity variation characteristics of different
orders along the vascular structure as well as in the orthogonal
plane. Assuming a symmetric vessel (intensity) profile perpendicu-
lar to the local vessel direction d, restricting the set of rotations is
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reasonable as the vessel structure is (locally) invariant under rota-
tion about d.

Features computed from SFT have several advantages over
(r)OSF: First of all, the explicit scale parameter r allows to tune
the SFT features to better account for the multi-scale nature of
vascular structures. Second, SFT features can be computed
efficiently for arbitrary (vessel) orientations due to the steerability
of Gaussian derivatives. Directional filtering based on rOSF, by
contrast, involves computationally costly resampling and interpo-
lation due to the lack of steerability (see Section 2.1.1). While this
is still feasible for the estimation of the rOSF filter templates, it
becomes extremely costly during prediction particularly when
maximizing the ensemble confidence for different orientations
(see Section 2.2). Finally, the separability of Gaussian derivatives
dramatically decreases the computational complexity of SFT as
compared to the inseparable (r)OSF filters, which is of uttermost
importance for the processing of large image volumes as in our
application.

2.2. Vessel segmentation using classification forests

The OSF and SFT features as defined in Eqs. (2) and (5),
respectively, are each used along with a non-linear decision rule
for vessel segmentation. We train separate classifiers for the
different feature types as follows:

2.2.1. Training data
A representative set S of 2NS tuples (image Ik, location xk, vessel

orientation dk, class label yk) is randomly sampled from a labeled
set of images corresponding to NS foreground (yk ¼ 1) and back-
ground (yk ¼ 0) samples, respectively:

S ¼ ðIk;xk;dkÞ j 1 6 k 6 2NS ^ yk ¼ 1() 1 6 k 6 NSf g: ð10Þ

For these samples, the features fðI;xÞ can be extracted as defined in
Eqs. (2) and (5). The SFT features are additionally rotated to the
normalized orientation according to Eqs. (6) and (9) w.r.t. the local
vessel direction d. Similarly, normalized rOSF features are obtained
from rotated (and resampled) image patches. This defines the
training set

T ð0Þ ¼ fk ¼ fðIk;xkÞ; ykð Þ j 1 6 k 6 2NSf g ð11Þ

that is ultimately used to train random forest (RF) classifier
(Breiman, 2001).

2.2.2. Training
An RF classifier consists of an ensemble of decision trees used to

model the posterior probability of each class (vessel/background).
During training, each tree is fully grown from bootstrapped data-
sets2 T 0 � T ð0Þ using stochastic discrimination. For this, the data is
split at each tree node, starting at the root, by a binary test defining
a hyperplane in the feature (sub-)space. In contrast to traditional
bagging, the split is based on a small number of randomly selected
feature channels c1; . . . ; cNF only

Kðf; c;w; hÞ ¼
0; if w>½fci

�i¼1;...;NF
< h

1; otherwise

(
; ð12Þ

where w 2 RNF and h 2 R are the split parameters to be deter-
mined during training. Starting at the root node, each training
2 We stick to the ‘‘set’’ terminology and notation here even though, strictly
speaking, bootstrapping yields (ordered) multisets denoted by capital calligraphic
letters.
sample is split w.r.t. the chosen binary test and serves as input
for the construction of the left (K ¼ 0) or right (K ¼ 1) child node.
The construction process is repeated recursively until a break
criterion is met, i.e., the maximum tree depth has been reached
or the number of training samples available to estimate another
split has dropped below a certain threshold. Upon termination at
a leaf node l, the remaining training samples T l � T ð0Þ are used
to compute the empirical estimate of the posterior class probabil-
ities as

pðy ¼ 1jX lÞ ¼
1
jX lj

XjX l j

k¼1

yk;

pðy ¼ 0jX lÞ ¼ 1� pðy ¼ 1jX lÞ:
ð13Þ

Note that for a given training (sub-)set, we refer to the correspond-
ing (ordered) multiset of features and labels as X and Y,
respectively.

We investigated both ‘‘orthogonal’’ and ‘‘oblique’’ trees varying
in the applied split model. As proposed in Breiman’s original paper
(Breiman, 2001), the former is based on optimal thresholds for
randomly selected single features in every split (NF ¼ 1, w ¼ 1),
i.e., mutually orthogonal 1-D hyperplanes. The computation of
the optimal split parameters during the initial training phase is
driven by maximizing the information gain, i.e., minimizing the
class uncertainty

K̂ ¼ arg max
K

HðXÞ �
X

k2f0;1g

jX kj
jXj HðX kÞ

¼ arg min
K

X
k2f0;1g

�jXkj
X

y2f0;1g
pðyjX kÞ log pðyjX kÞð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

UkðT ;KÞ¼UkðX ;Y;KÞ

; ð14Þ

where H is the entropy and X k ¼ ff 2 X j KðfÞ ¼ kg.
By contrast, oblique splits define multidimensional hyperplanes

to separate the feature space, e.g., by choosing randomly oriented
hyperplanes (Breiman, 2001) or applying linear discriminative
models (Menze et al., 2011). For the oblique RFs in this work, we
employ a linear regression model with an elastic net penalty term
(Friedman et al., 2010) to learn multivariate (optimal) split
directions w at each node:

ŵ ¼ arg min
w2RNF

1
2jT nj

X
ðf;yÞ2T n

ð2y� 1Þ �w> fci


 �
i¼1;...;NF

� �2
þ kPaðwÞ;

ð15Þ

where T n � T ð0Þ is the training data passed to node n and c1; . . . ; cNF

are randomly selected (but fixed) feature channels. Note that we
map the ð0;1Þ-class labels y to ð�1;1Þ. As a regularizer, we employ
the elastic net penalty

PaðwÞ ¼ ð1� aÞ1
2
kwk2

‘2
þ akwk‘1

; ð16Þ

with regularization parameter a > 0 as a compromise between
ridge regression (a ¼ 0) and the lasso penalty (a ¼ 1), where k � k‘1

and k � k‘2
denote the ‘1- and ‘2-norm, respectively. The advantage

is joint regularization of the coefficients and sparsity – coefficients
are both encouraged to be small, and to be zero if they are very
small. The latter lasso property reduces the dimensionality of the
split space, which is desirable for memory and robustness purposes.
With a ¼ 1 (and k� 0) we will get a single nonzero coefficient, i.e.,
RF with univariate splits, whereas choosing a ¼ 0 we have ridge
regression as in (Menze et al., 2011). Altogether, we train a random
forest classifier by separately growing NT decision trees as summa-
rized in Algorithm 1.
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2.2.3. Prediction
Previously unseen samples x can be classified by pushing the

extracted features f down all NT decision trees of the ensemble
until it ends up in a leaf node. Thus, each tree assigns a label
ŷk 2 f0;1g corresponding to the maximum posterior class proba-
bility stored at the leaf node. Similar to Eq. (13), the combined pos-
terior is estimated as the ensemble confidence:

LV ðxÞ ¼ pðy ¼ 1jfÞ ¼ 1
NT

XNT

k¼1

ŷk: ð17Þ
The binary class label ŷ can finally be assigned using a majority
vote, i.e., LV ðxÞ > 0:5, or any other threshold.

Note that for OSF features a single RF is trained for all vessel ori-
entations. The intrinsic orientation-induced structure in the OSF
feature space has to be learned by arbitrarily rotating image patches
both for learning the OSF eigenfilters and for training the subse-
quent classifier (see Section 3 for further details). In contrast, SFT
features allow for explicit parametrization of the orientation. The
expected filter response for an arbitrary orientation can efficiently
be computed from the set of stationary base features fSFT as defined
in Eqs. (5) and (6). As the corresponding RF classifiers are trained on



Fig. 3. Visualization of the mapping from image locations to the ‘‘closest’’ point
along the centerline for two cylindrical vessel segments with their centerlines
marked as dashed lines (right). The mapping as defined in Eq. (18) is visualized for
an enhanced axial subregion (left). The image subdomains X1 and X2 shaded in blue
and red, respectively, are assigned to the corresponding centerline location
ĉðXiÞ ¼ ci (i 2 f1;2g). For the image location x, in particular, c1 is the closest
centerline point w.r.t. ‘2 as kx� c1k < kx� c2k, whereas ĉðxÞ ¼ c2 yields the
topologically correct mapping. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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SFT features extracted from vessels with normalized orientation
only, the SFT features of the patch to be classified have to be
computed for normalized orientation as well.3 To this end, orienta-
tion independent prediction can be achieved by sampling the space of
possible vessel orientations (half sphere), computing the correspond-
ing (rotated) SFT features and ultimately assigning the classification
result with the maximum confidence as proposed in (González
et al., 2009b). In contrast to OSF features, this even allows to not only
estimate the posterior class probabilities but also a probability distri-
bution on the vessel orientation. Using a robust predictor for the local
vessel direction, e.g., based on the eigenanalysis of the Hessian, the
prediction stage can certainly be sped up substantially.

2.3. Centerline extraction using multivariate hough regression forests

In this section, we describe how to extend the segmentation
framework to allow for joint vessel segmentation and centerline
extraction using a fast marching approach applied to an energy
potential obtained from a probabilistic regression framework. To
this end, we train a Hough regression forest, i.e., an ensemble of
regression trees, to infer at each voxel labeled as vessel the most
likely displacements to proximate vessel centers. Regression for-
ests enjoy great popularity in the computer vision community for
object detection (Gall and Lempitsky, 2009; Rematas and Leibe,
2011). To our knowledge, the only application of regression forests
in the medical field is for anatomy detection and localization by
Criminisi et al. (2011).

2.3.1. Centerline training data
The construction of the regression trees proceeds very similar to

the RF training described in the previous Section 2.2. For the defi-
nition of the training set, instead of a binary class label, we now
assign to each image location xk the offset ok ¼ ck � xk 2 R3 to
the ‘‘closest’’ location ck 2 C along the vessel centerline C:

ĉðxÞ ¼

arg min
c 2 C

Yðxþ tðx� cÞÞ ¼ 1 8t2½0;1�

kx� ck; if YðxÞ ¼ 1

ĉ
�

arg min
x0 2 X

YðxÞ ¼ 1

kx� x0kÞ; otherwise

8>>>>>>><>>>>>>>:
; ð18Þ
3 Note that this also holds for rOSF features.
where X is the image domain. The binary segmentation map Y
assigns a binary label to each location depending on whether the
location belongs to a vessel (Y ¼ 1) or not (Y ¼ 0). In other words,
a voxel labeled as vessel is assigned to the closest point on the
centerline such that the straight path between the point and the
centerline candidate is completely contained in the lumen. Each
background voxel is mapped to the centerline location of the closest
point of the vessel (surface). Simply mapping each image location to
the closest centerline point w.r.t. ‘2 would result in topologically
incorrect mappings (see Fig. 3 for an example). The training set for
centerline regression can then be defined as ~T ð0Þ ¼ fk ¼ fðIk;xkÞ;ðf
ok ¼ ĉðxkÞ � xkÞ j 1 6 k 6 NSg with the same features f as used for
classification. The (ordered) multiset of offset vectors ok will be
referred to as O.

2.3.2. Training
For the construction of the regression trees, optimal split

parameters are computed by linear regression similar to Eqs. (14)
and (15) minimizing the uncertainty (variance) of the displace-
ment vectors (Gall et al., 2011):bK ¼ arg min

K

X
k2f0;1g

~Ukð ~T ; KÞ þ kPaðwÞ; ð19Þ

with the uncertainty defined as:

~Ukð ~T ; KÞ ¼ j ~Ok j varð~OkÞ ¼
X
o2~Ok

o� 1
j~Okj

X
o02~Ok

o02
������

������; ð20Þ

where ~Ok ¼ fol 2 O j 9ðfl;olÞ 2 ~T : KðflÞ ¼ kg. Once the break crite-
rion for the iterative tree construction is met (see Algorithm 1), a
leaf node l is added to the tree storing the corresponding set of dis-
placement vectors Ol.

2.3.3. Prediction
During prediction, similar to the classification case, the extracted

features f of a previously unseen sample x are pushed down each
regression tree of the ensemble. Let LðfÞ denote the corresponding
set of reached leaf nodes. The posterior probability for the inferred
location of the vessel centerline c can be decomposed as

pðcjxÞ ¼
X
l2LðfÞ

p cjx; lð ÞpðlÞ: ð21Þ

Following Gall et al. (2011), the first term is approximated by a sum
of Dirac measures do for the displacement vectors o:

p cjx; lð Þ ¼ 1
jOlj

X
o2Ol

doðc� xÞ: ð22Þ

Put differently, this can be interpreted as casting votes for center-
line candidates located at c ¼ xþ o for each displacement o 2 Ol

stored at the leaf node l. The probability pðlÞ is used to weight the
different votes w.r.t. the uncertainty of the corresponding leaves
(see Eq. (20)):

pðlÞ ¼ exp �g varðOlÞð ÞP
l02LðfÞ exp �g varðOl0 Þð Þ ; ð23Þ

where g P 0 is a constant shape parameter. Accumulating the dis-
placement votes over the entire image domain X finally yields a
confidence map indicating the likelihood of an image location
c 2 X being part of the vessel centerline:

LCðcÞ ¼
X
x2X

pðcjxÞpðxÞ; ð24Þ

with the prior defined as

pðxÞ ¼
X

y2f0;1g
p xjYðxÞ ¼ yð Þp YðxÞ ¼ yð Þ / dYðxÞLV ðxÞ; ð25Þ
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where LV denotes the vessel likelihood from Eq. (17). It is preferable
to accumulate the votes from samples x belonging to the vascula-
ture (YðxÞ ¼ 1), for two reasons: First, the utilized features have a
rather limited spatial support depending on the scale parameters
(see Eqs. (2) and (5)). Therefore, casting centerline votes is only
meaningful at locations where the local feature descriptor captures
sufficient information about the foreground structure in the local
vicinity to allow for reliable inference of meaningful displacement
estimates. This could partly be resolved by, e.g., proper modification
of the leaf prior (see Eq. (23)) or additional conditioning of the per-
leaf centerline likelihood (see Eq. (22)) on the class label YðxÞ. Sec-
ond, it remains unclear how to consistently orient the local feature
descriptors at background samples to be used for centerline regres-
sion. For instance, one could choose the orientation of the ‘‘closest’’
vessel, which is difficult to estimate robustly, though. Alternatively,
the choice of the training samples could account for this by
incorporating features computed at background samples for various
different orientations. This requires excessive sampling and hence
significantly extends the training (and testing) phase. RF training
could also be modified to incorporate the class label of the training
samples into the objective function for split optimization (see Eq.
(20)) as in Gall et al. (2011), Criminisi et al. (2011). Similarly, the
sample prior is proportional to the vesselness likelihood LV of Eq.
(17). The weight of the individual votes is thus decreased in regions
of large uncertainty due to inaccuracies of the estimated vessel
direction or image noise, for instance.

2.3.4. Centerline extraction
In contrast to vessel classification, thresholding the centerline

confidence map does not yield a topologically meaningful result,
i.e., vessel centerline, but additional postprocessing is required.
Moreover, one has to keep in mind that the regression framework
accumulates displacement votes from surrounding samples within
the vessel lumen only. The absolute value of the vote map hence
depends on the local vessel diameter. Nonetheless, it can readily
be used as an energy term to extract centerlines as minimal paths
using a fast marching framework (Sethian, 1999). To this end, let
Pðp;qÞ denote the set of naturally parametrized paths from p to
q. The optimal centerline path w.r.t. the confidence map of Eq.
(24) can then be defined as

bCðp;qÞ ¼ arg min
P2Pðp;qÞ

Z jPj

t¼0

1
LC PðtÞð Þdt; ð26Þ

where jPj is the arc length of path P. The strong formulation of this
optimization problem leads to the Eikonal equation, which is a spe-
cial case of the Hamilton–Jacobi equation (Cohen and Kimmel,
1997):

jrUðxÞj ¼ 1
LCðxÞ

; ð27Þ

with boundary condition UðpÞ ¼ 0. This nonlinear hyperbolic partial
differential equation models the (earliest) arrival time of a wave
propagated from p with speed LCðxÞP 0. A fast marching scheme
based on upwind finite difference approximation as proposed by
Sethian (1999) is used to efficiently solve the Eikonal equation.
The minimal path between p and q is eventually extracted by
back-propagation starting at q until the global minimum at p is
reached (Sethian, 1999). We use fourth-order Runge–Kutta
optimization rather than gradient descent steps on UðxÞ to avoid
oscillations (Benmansour et al., 2013).

3. Experiments

In this section, we describe the different experiments to evaluate
the proposed framework for vessel segmentation and centerline
extraction for real and synthetic data. If not otherwise stated, we
will use the default parameters summarized in Table A.3. An
exhaustive parameter study will be discussed in Section 4.

3.1. Vessel segmentation

3.1.1. Datasets
We evaluate the performance of our segmentation framework

on four 3-D datasets obtained from synchrotron radiation X-ray
tomographic microscopy (SRXTM) of cylindrical samples of the
rat somatosensory cortex (see Fig. 1). The optical magnification
was twentyfold resulting in a total volume size of 2048 px �
2048 px � 4000 px with an isotropic voxel spacing of 700 nm for
the reconstructed 16 bit grayscale images (Reichold et al., 2009).
In a preprocessing step we apply anisotropic diffusion filtering in
order to reduce image noise while preserving edge contrast
(Perona and Malik, 1990). From each (preprocessed) dataset two
disjoint regions of interest (ROIs) of size 256 px � 256 px � 256 px
are extracted for training and testing, respectively. In the following,
we will refer to these non-overlapping ROIs as test and training
data/ROI, respectively. For each test ROI, ground truth (GT) labels
were manually generated by an expert assisted by a semi-
automatic segmentation tool (Yushkevich et al., 2006) on 15 evenly
distributed slices along each axis (axial, coronal, sagittal). Thus, a
total of 180 2-D slices have been labeled containing 7:3� 104 fore-
ground and 2:6� 106 background labels in average (	3:9� 104)
corresponding to a vascular volume fraction of 2:7	 1:5%.

3.1.2. Baseline
In a first baseline experiment, all ROIs are segmented using

Otsu’s method (Otsu, 1979) and two different multi-scale
approaches based on vessel enhancement filtering (Sato et al.,
1997; Frangi et al., 1998) and optimally oriented flux (OOF) for cur-
vilinear structure detection as proposed by Law and Chung (2008).
We perform an exhaustive grid search to optimize the vesselness
scales on the test ROIs. To this end, the different experiments for
varying scales were ranked w.r.t. the area under the receiver oper-
ating characteristic (ROC) curve using the GT labels of the test ROIs.
The scale configuration yielding the minimum average rank index
over the four datasets is ultimately chosen for the baseline
experiments. For Frangi’s and Sato’s vesselness filters five
logarithmically spaced scales performed best: r ¼ ð0:70;1:1;1:7;
2:7;4:2Þ [lm]. Following Law and Chung (2008), the OOF scale
space was densely sampled according to the Nyquist sampling
rate: rk ¼ 0:7þ 0:35 � kð Þlm 806k626.

3.1.3. Feature extraction
In a next step, we compute the OSF eigenfilters introduced in

Section 2.1.1 from 3000 randomly sampled patches centered at
voxels labeled as vessel in the Otsu label map. In particular, back-
ground patches are not considered for the estimation of the OSF
templates. Besides the original vessel patches, five randomly
rotated versions of each patch are added to the set of patches
POSF used in Eq. (1) in order to account for rotational symmetry
of vessel structures – even in case of orientation bias in the training
ROI – while keeping the total number of patches at a moderate
level (NP ¼ 1:8� 104). As in (Menze et al., 2006), the OSF patch size
P was assessed from the RF feature importance and set to
P ¼ 19 px. Similarly, rOSF templates are estimated from the same
3000 randomly sampled foreground patches. In contrast to OSF,
each patch is transformed to the normalized pose as described in
Section 2.1.2. To this end, the local vessel direction at each patch
center is estimated based on the eigenanalysis of the Hessian
computed at the most discriminative scale as defined by Frangi’s
multi-scale vesselness (Frangi et al., 1998).

As for the SFT feature model, we perform a small parameter
study to optimize the SFT scales similar to the multi-scale vessel-
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ness parameters. In order to avoid overfitting, however, we use the
training ROIs for the parameter optimization where the Otsu labels
are considered as ground truth in this case. We ultimately select
S ¼ 3 logarithmically spaced scales r ¼ ð0:70;1:7; 4:2Þ [lm]. For
Gaussian derivatives up to order M ¼ 1 (2, 3, 4), the SFT model thus
defines S � dM ¼ 9 (27, 57, 102) features, respectively (see Eqs. (4)
and (5)). For a fair comparison of the SFT and (r)OSF feature mod-
els, the PCA subspace dimension d, i.e., the number of (r)OSF fea-
tures, has been chosen accordingly.
3.1.4. Training and prediction
Different RF classifiers consisting of NT ¼ 256 decision trees

were trained separately on the training ROI of a single dataset
using OSF, rOSF, and SFT features along with orthogonal and obli-
que splits, respectively, as explained in Algorithm 1. The training
was repeated for each dataset using NS ¼ 4000 foreground (vessel)
and background samples, respectively, randomly drawn from the
Otsu label map to define the sample set S. The local vessel direc-
tion, as required for RF training using rOSF and SFT features, is
again estimated based on the Hessian eigenanalysis (see above).
Note that we compute the (noisy) training labels fully automati-
cally without any user input. The manually annotated GT labels
for the test ROIs are used for validation only.

Finally, the different RF models were applied to the test ROIs of
each dataset. The classification performance was then evaluated on
the uniformly aligned slices with GT labels available (see above).
The generalization error of the individual classifiers is investigated
for ‘‘totally’’ unseen data using leave-one-out cross-validation on
the four datasets, which will be referred to as ‘‘inter-dataset’’ vali-
dation in the following. Besides, we also perform ‘‘intra-dataset’’
validation by choosing the (non-overlapping) training and test
ROI from the same dataset. In this way, we assess the prediction
error on morphologically similar (yet still unseen) test data from
the same dataset that has been used for RF training.
3.2. Centerline extraction

In a second set of experiments, we test the accuracy of our
extended framework for centerline extraction using both synthetic
and real datasets. The latter consists of the four datasets used for
the segmentation experiments.
Fig. 4. Synthetic arterial tree models used for training (left) and testing (right) (Schnei
(left,right) outline the ROI of the subgraphs used for our experiments (center). The vessel
cover the same range of vessel radii (train: (2.0–15.6) lm, test: (2.0–16.1) lm). (For interp
web version of this article.)
3.2.1. Datasets
Synthetic data is obtained as follows: An artificial, yet

physiologically plausible, arterial tree model is generated for a
box-shaped simulation domain as described in Schneider et al.
(2012). The vascular network is represented as a discrete graph
structure (rooted tree) where each vessel segment is modeled as
rigid cylindrical tube with a constant radius inscribed in the vessel
lumen. Spline smoothing (de Boor, 2001) is applied to the gener-
ated network before it is cropped to a centered cuboid with dimen-
sion 350 lm � 350 lm � 512 lm (see Fig. 4). The cropped network
is considered as the ground truth vascular geometry for our exper-
iments on synthetic data. Next, we synthesize 3-D image data from
the vascular model. To this end, we first compute two binary label
maps of size 387 px � 387 px � 565 px with an isotropic voxel
spacing of 1 lm marking each voxel as (1) inside/outside the vessel
lumen (segmentation map), and (2) part/not part of the discretized
vessel centerlines (centerline map). Convolving the segmentation
map with a Gaussian point spread function (r ¼ 1 lm, see
Fig. 5(a)) ultimately yields the synthetic 3-D image data. An axial
slice is shown in Fig. 5(b) with superimposed segmentation and
centerline labels. We generate two synthetic datasets for training
and testing using different random seeds to drive the arterial tree
simulation of Schneider et al. (2012). Thus, we obtain different yet
morphologically similar training and test data (see Fig. 4). We fur-
ther verify that the radius histograms of the two synthetic datasets
approximately cover the same range of scales and hence allow for a
fair comparison with the OOF multi-scale approach where we den-
sely sample the scale space (see below).
3.2.2. Training and prediction
Similar to the classification experiments, we learn a Hough

regression forest from 32,000 randomly sampled training
exemplars that are labeled as vessel in the segmentation map (see
Section 2.3). The corresponding centerline offsets are computed
according to Eq. (18) with the centerline C defined by the rasterized
centerline map. SFT features are computed for Gaussian derivatives
up to order M ¼ 4 at three different scales r ¼ ð2:0;4:4;10Þ [lm]
with the local vessel direction estimated based on multi-scale Hes-
sian eigenanalysis (r ¼ ð2:0;3:1;4:9;7:7;12Þ [lm], see above). In
contrast to RF classification, we increase the number of randomly

chosen feature channels at each split node to N0
F

3

l m
as proposed in
der et al., 2012, cf. Fig. 5). The red cuboids in the center of the simulation domain
radii are color-coded on a logarithmic scale. The training and test ROI approximately
retation of the references to colour in this figure legend, the reader is referred to the
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Fig. 5. Synthesis of image data from artificial vascular model. (a) Intensity profile orthogonal to the vessel direction w.r.t. the distance d to the centerline for vessel radius r
using a Gaussian point spread function. (b) Axial slice of the synthetic image data with the vessel boundaries and the rasterized centerline voxels superimposed in red and
blue, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

230 M. Schneider et al. / Medical Image Analysis 19 (2015) 220–249
Liaw and Wiener (2002). For the 102 SFT feature channels in our
experiment, this corresponds to 35 features per split (instead of 11
for classification).

We validate the regression framework for centerline extraction
on the synthetic test dataset. Centerline votes are cast at all voxels
labeled as foreground in the synthetic segmentation map with a
uniform prior (see Eq. (25)). The centerline segments are finally
extracted from the voting map as minimal paths between the
start/end node of all vessel segments as defined by the GT arterial
tree model. Note that the GT geometry, i.e., location of seeds, and
topology, i.e., connection of seeds, is usually not known for real
data. The experiment on the synthetic data hence focuses on the
spatial accuracy that can be achieved based on the proposed voting
framework rather than the topological correctness or seed point
accuracy. As manual selection of the seed points is prohibitive
for large datasets, we pursue a different strategy for the choice of
the seed points for the real data (see below).

For the real datasets, we manually generate GT centerline labels.
To this end, a topological skeleton is extracted from the binary seg-
mentation obtained from the RF-SFT experiments described above
(see Fig. 11) using distance ordered homotopic thinning (DOHT)
(Palágyi and Kuba, 1998; Pudney, 1998). Briefly, the method itera-
tively peels off simple points within the surface layer of the object.
A point is considered simple iff its removal does not alter the object
topology. Following Pudney (1998), the object points are visited
(and potentially deleted) in ascending order of their distance to
the background computed by a distance transform of the inverted
segmentation map. The candidate points are characterized as sim-
ple based on the binary pattern of their local neighborhood (Chen
and Molloi, 2003). A discrete graph model is finally extracted from
the skeletonized object. Skeletonization artifacts, e.g., spurious
sprouts, are removed based on simple geometric heuristics. Based
on the DOHT skeleton, the centerline is manually adjusted for
selected vessel segments by an expert and will be used as ground
truth in the experiments. Finally, each GT centerline point is
assigned a radius estimate based on the distance map to the closest
background voxel (see Table 2). The radius information is used to
select proper scales for the baseline experiments (see below).

Training and testing of the RF classifiers for the real datasets
proceeds similar to the experiments on synthetic data. Training
exemplars are sampled from the RF-SFT segmentation map, center-
line offsets are computed from the (automatically extracted) DOHT
skeleton. The SFT feature scales are the same as for the segmenta-
tion experiment (r ¼ ð0:7;1:7;4:2Þ [lm]). Note that the features
have to be computed only once for segmentation and centerline
extraction. During prediction, the RF-SFT vessel confidence map
from the previous segmentation experiments is used as prior in
Eq. (25). We extract optimal centerline segments w.r.t. Eq. (26),
where the seeds are defined by the vessel segments of the DOHT
skeleton. Thus, each vessel segment of the DOHT skeleton and
the corresponding extracted centerline share their start and termi-
nal node. We perform a leave-out-one cross-validation test using
three datasets for training and the remaining for testing.

3.2.3. Baseline
As baseline experiments, we choose two approaches based on

fast marching as well, but using different speed functions. In the
first approach the speed function is defined based on the distance
to the background (DIST). By design, the propagated waves between
the start and end point of a centerline candidate hence travel faster
in the vessel center (Deschamps, 2001). The second approach is a
simplified version of Benmansour and Cohen (2011) tracing geode-
sic paths in the scale-space domain (Benmansour et al., 2013).
Briefly, a tubularity measure based on OOF (Law and Chung,
2008) is computed at multiple scales densely sampling the scale
space in the range of the tubular structures to be detected. The
OOF value at a specific location and scale can be interpreted as
the likelihood of the voxel being centered in a tubular structure of
the selected scale. For the synthetic datasets, we compute the tub-
ularity map for 15 scales r ¼ ð2:0;3:0; . . . ;16Þ [lm]. Note that the
vessel radii of the test ROI cover the same range (see Fig. 4). Like-
wise, 12 scales r ¼ ð0:7;1:4; . . . ;8:4Þ [lm] are used for the real
datasets covering the radius range of all test sets (see Table 2).

The accuracy of the extracted centerlines in all experiments is
assessed based on an absolute and relative distance metric:

DabsðC;C0Þ ¼ 1
jCj
X
p2C

min
q2C0
kp� qk

DrelðC;C0Þ ¼ 1
jCj
X
p2C

1
rNN

min
q2C0
kp� qk;

ð28Þ

where C and C0 denote, respectively, the extracted and reference
centerline graphs and rNN the radius at the nearest neighbor in C0.
4. Results and discussion

In this section we present and discuss the experimental results.
First, we analyze the orthogonal subspace filters learned from our
data and compare them to steerable filters in Section 4.1. Sec-
tion 4.2 discusses the training of classification trees for both types
of features and presents qualitative and quantitative segmentation
results for the presented framework and the baseline experiments.
In Section 4.3 we explore the parametrization of classification for-



(a) OSF templates

(b) rOSF templates

(c) SFT templates

Fig. 6. Filter templates of different feature models visualized for centered sagittal, coronal, and axial slices. (a,b) Mean pattern and most significant (reshaped) eigenfilters ~ak

computed from vessel patches before (a) and after (b) pose normalization (R–L direction). (c) SFT filter templates defined as normalized Gaussian derivatives Gr
m;a;b of different

orders at a single scale r (see Eq. (3)). The parametrized SFT templates feature similar structural properties as the learned eigenspace filters.
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ests in an exhaustive parameter study. Similarly, we present qual-
itative and quantitative results for the experiments on centerline
extraction (Section 4.4) along with a sensitivity analysis of the
parametrization of Hough regression forests (Section 4.5).
4.1. PCA-based matched filters

When inspecting the OSF filter templates we observe a highly
structured pattern (see Fig. 6(a)). The ball-shaped mean shows a
Gaussian-like pattern The most significant principal axis captures
the average image intensity in the vicinity of the sample. Broadly
speaking, patches a2; . . . ;a4 capture first-order derivatives along
the anterior-posterior (A–P), right-left (R–L), and superior-inferior
(S–I) direction, respectively. Similar first-order patterns at smaller
scales and along different directions appear in a10; . . . ;a14. Patches
a5; . . . ;a9 correspond to differently oriented second-order
derivatives.

The rOSF templates of Fig. 6(b) reveal an even richer structure of
the data at hand. The mean patch captures the Gaussian intensity
profile orthogonal to the normalized vessel direction (R-L). The
multi-scale nature of the analyzed vascular structure is reflected
in the most significant principal axis a1 and a5. Similar to OSF,
first-order derivatives at different scales and orientations are cap-
tured in a2;a3, a4, and a6. Note however, that the derivatives are
mostly aligned along the A-P and S-I direction, while derivatives
along the vessel direction (R-L) appear later (a2;a13). Likewise, sec-
ond- and third-order derivatives orthogonal to the vessel direction
are captured as well. For comparison, normalized Gaussian deriva-
tives of different orders as used for the SFT feature model are visu-
alized in Fig. 6(c). They feature similar structural properties as OSF
templates with the additional advantage of explicit multi-scale
parametrization and steerability.
The PCA spectra show a sharp profile as indicated in Fig. 7(a).
Hence, the variance of the vessel patches can be described by
few modes only. It also becomes obvious that the spectrum drops
significantly faster for patches explicitly aligned w.r.t. the local
vessel direction (rOSF). In this way, the intrinsic structure of the
rOSF patches is reduced by one degree of freedom (orientation)
which does no longer need to be captured by the PCA model as
in the OSF case.

4.2. Vessel segmentation

4.2.1. Feature importance
We use the normalized RF feature relevance score, i.e., the per-

mutation importance as defined in Breiman (2001), to identify the
relevant scales and orders. It is a measure for the predictive power
of the different features and is thus often used for feature selection.
Fig. 7(b)–(d) show the normalized importance scores for the differ-
ent feature models using oblique splits. The SFT feature importance
indicates that the second-order derivatives parallel and orthogonal
to the vessel direction (Gr

2;0;0, Gr
2;2;0;G

r
2;2;2) are most significant for

the classification. Note that the Hessian-based segmentation
approaches also rely on these features (Sato et al., 1997; Frangi
et al., 1998). For increasing scales r, the importance values tend
to decline in general. In contrast to the PCA spectra, the (r)OSF fea-
ture importance shows a rather noisy profile. This clearly indicates
that the discriminative power of PCA mode, i.e., feature impor-
tance, is not necessarily dependent on the preserved variance of
the data, i.e., feature index. Nonetheless, features ranking high
w.r.t. the feature importance tend to be also more important
w.r.t. the explained variance (see Fig. 7(c) and (d)). With increasing
feature index, the importance slowly decreases, in general, as the
corresponding filter patches slowly start to model noisy structures.
For both feature models, (r)OSF patches capturing the average
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Fig. 7. (a) Normalized PCA spectrum kk=k1 and explained variance as measured by the cumulative spectrum
Pd

k¼1kk=
PP3

k¼1kk for (r) OSF patches, where kk denotes the k-th
eigenvalue of the data covariance matrix. The values are averaged over all four datasets. Error bars indicate the standard deviation. Note that the error bars are plotted in one
direction only for better visibility. (b–d) Variable importance (Breiman, 2001) for different feature models on a logarithmic scale (oblique splits): (c) OSF and (d) rOSF feature
model using the most significant d ¼ 72 PCA templates. Note that the feature indices correspond to the numbering in (a), i.e., features are sorted in descending order of
the corresponding eigenvalue. Similar to Fig. 6, the filter patches corresponding to the five feature channels with maximum importance (highlighted in color) are plotted in
the upper right corner in the order of decreasing importance. (b) Importance of SFT features at eight different scales r ¼ ð1; . . . ;8Þ [px] up to order M ¼ 2 (total of 72 features).
The prominent peaks in (b) correspond to the Gaussian derivatives Gr

2;0;0;G
r
2;2;0, and Gr

2;2;2. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 8. Precision-recall curves (PRCs) and optimal operating points w.r.t. F1 measure for a single dataset. Left: RF-OSF and RF-SFT in comparison to optimally oriented flux
(OOF), Frangi’s/Sato’s vesselness, and Otsu thresholding. Right: Comparison of different feature models for varying number of features. The PCA dimension d is chosen to
match the number of SFT features with Gaussian derivatives up to order M at three different scales (see text). The differently shaded areas outline the boundaries between the
worst- and best-performing PRC of the three feature models. Center: Scaled version of the upper right corners of the main plots (black rectangle).
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image intensity in the local neighborhood are among the most dis-
criminative features as a result of the multi-scale nature of the data
at hand. Likewise, first-order derivatives as well as higher order
structures seem to be highly discriminative. Interestingly, first-
order derivatives along and orthogonal to the local vessel direction
(rOSF) seem to be more important than second-order structures as
in the SFT case.

4.2.2. Segmentation results
Comparing the overall classification performance of the pro-

posed learning-based approaches for different model parameters
to standard segmentation approaches reveals the superior perfor-
mance of the SFT features as indicated by the features as indicated
by th in Fig. 8. With regard to the different feature models, the PRCs
confirm that SFT features clearly outperform the (r)OSF model. It is
remarkable that rOSF features perform worse compared to the OSF
model, in general. Only for a rather low-dimensional feature space
(d ¼ 9), rOSF yields better results. Increasing the number of fea-
tures does not improve the performance significantly as indicated
by the narrow area in Fig. 8 shaded in dark gray. We will discuss
this observation in further detail later. In addition, the plot shows
that the RF-SFT model is superior to the OOF and Hessian-based
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Fig. 9. Variable importance (Breiman, 2001) of the RF-SFT model on a logarithmic scale for the intermediate scale r2 ¼ 1:7 lm and different maximum derivative orders
(a) M ¼ 2, (b) M ¼ 3, (c) M ¼ 4. The feature ranges labeled by roman numbers I–IV correspond to the Gaussian derivatives of the respective order. Second-order derivatives
are most important in all test.

Table 1
Quantitative evaluation of the segmentation performance for different approaches using ‘‘intra-dataset’’ and ‘‘inter-dataset’’ cross-validation (see text). The reported numbers are
averaged over all datasets (mean 	 standard deviation). The operating point of the RF classifiers has been selected at the 95% recall level (see Fig. 8). The partial area under the
precision-recall curve (AUC-PR) has been computed on the recall interval ½0:5;1�. The balanced error rate (BER) is reported as defined by Chen and Lin (2006). Figures highlighted
in bold face mark the best result w.r.t. the corresponding metric. The oblique split model outperforms univariate orthogonal splits w.r.t. segmentation performance and average
path length. Likewise, SFT features prove to be superior to (r)OSF. Otsu’s conservative segmentation achieves high precision (PPV), maximum specificity (SPC), and very few false
positives (FPR) at the expense of an inaccurate segmentation of vessel boundaries (false negatives) as indicated by the increased balanced error rate and the F1 measure.

Method Validation PPV [%] SPC [%] FPR [%] BER [%] F1 [�10�2] AUC-PR [�10�2] Dice Jaccard Path Length

O
rt

h
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on
al

RF-OSF inter-data 70:68	 8:70 98:94	 0:66 1:06	 0:66 3:08	 0:34 80:75	 5:69 44:31	 2:09 0:81	 0:06 0:68	 0:08 7:63	 0:63
intra-data 75:53	 4:60 99:23	 0:22 0:77	 0:22 2:93	 0:12 84:06	 2:86 45:60	 1:22 0:84	 0:03 0:73	 0:04

RF-rOSF inter-data 65:87	 7:29 98:63	 0:88 1:37	 0:88 3:22	 0:45 77:56	 5:17 42:33	 2:90 0:78	 0:05 0:64	 0:07 7:31	 0:48
intra-data 68:59	 9:02 98:94	 0:18 1:06	 0:18 3:06	 0:10 79:40	 5:93 43:32	 2:54 0:79	 0:06 0:66	 0:08

RF-SFT inter-data 91:05	 1:72 99:76	 0:11 0:24	 0:11 2:67	 0:06 92:94	 0:91 48:62	 0:28 0:93	 0:01 0:87	 0:02 5:98	 0:91
intra-data 92:25	 1:17 99:78	 0:12 0:22	 0:12 2:65	 0:06 93:56	 0:62 48:81	 0:17 0:94	 0:01 0:88	 0:01

O
bl

iq
u

e

RF-OSF inter-data 77:03	 5:86 99:28	 0:26 0:72	 0:26 2:89	 0:14 84:94	 3:59 45:86	 1:28 0:85	 0:04 0:74	 0:05 4:61	 0:32
intra-data 79:52	 2:91 99:37	 0:25 0:63	 0:25 2:85	 0:13 86:52	 1:74 46:61	 0:57 0:87	 0:02 0:76	 0:03

RF-rOSF inter-data 69:15	 4:56 98:89	 0:47 1:11	 0:47 3:08	 0:23 79:94	 3:02 43:38	 1:68 0:80	 0:03 0:67	 0:04 4:37	 0:21
intra-data 70:68	 7:38 99:04	 0:16 0:96	 0:16 3:00	 0:08 80:88	 4:72 43:94	 1:97 0:81	 0:05 0:68	 0:07

RF-SFT inter-data 95:35	 1:73 99:88	 0:04 0:12	 0:04 2:60	 0:04 95:13	 0:86 49:21	 0:24 0:95	 0:01 0:91	 0:02 4:15	 0:78
intra-data 95:91	 1:22 99:89	 0:06 0:11	 0:06 2:58	 0:04 95:42	 0:59 49:31	 0:15 0:95	 0:01 0:91	 0:01

OOF average 79:27	 1:99 99:29	 0:49 0:71	 0:49 2:86	 0:25 86:42	 1:19 46:35	 0:27 0:86	 0:01 0:76	 0:02 n/a
Sato average 63:50	 2:65 98:54	 0:72 1:46	 0:72 3:23	 0:36 76:10	 1:91 42:63	 0:68 0:76	 0:02 0:61	 0:02 n/a
Frangi average 60:71	 2:05 98:32	 0:95 1:68	 0:95 3:34	 0:47 74:06	 1:52 41:75	 0:54 0:74	 0:02 0:59	 0:02 n/a
Otsu average 99:96	 0:03 100:00	 0:00 0:00	 0:00 14:29	 1:57 83:29	 2:13 n/a 0:83	 0:02 0:71	 0:03 n/a

PPV: positive predictive value (precision), SPC: specificity, FPR: false positive rate, BER: balanced error rate, AUC-PR: area under the precision-recall curve.
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approaches, even for a small number of features. Note that the
reported results for OOF, Frangi, and Sato have to be considered
as upper bound as the scale parameters have been optimized on
the test data (overfitting). The analysis also reveals that the seg-
mentation performance of the RF-SFT model hardly changes if we
choose the maximum derivative order of the SFT features M > 1
(see Fig. 8, center), which is consistent with the observation of
the second-order derivatives being the most discriminative fea-
tures (see Fig. 7(b)). For some cases, the RF-SFT model for M ¼ 3
even performs worse compared to M ¼ 2. Assessing the feature
importance (see Fig. 9) reveals that stepping from M ¼ 2 to
M ¼ 3 mostly adds unimportant features (see Fig. 9(b)) which
can make the randomized feature selection less effective. Incorpo-
rating derivatives of fourth-order, however, introduces additional
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features that turn out to be more significant, most importantly
fourth and mixed second-order derivatives along and orthogonal
to the vessel direction, e.g., Gr

4;0;0 and Gr
4;2;2. In spite of the signifi-

cantly increased number of features for M ¼ 4 (102 features) in
comparison to M ¼ 2 (27 features), the segmentation performance
hardly changes, which once more emphasizes the importance of
the second-order derivative features.

A more detailed numerical analysis of the classification perfor-
mance of the different approaches is summarized in Table 1 and
confirms the superior performance of the RF-SFT model over the
(r) OSF features and the multi-scale OOF and vesselness
approaches. Otsu’s method (Otsu, 1979) tends to underestimate
the global threshold, which results in a conservative segmentation
with high precision (PPV), maximum specificity (SPC), and very
few false positives (FPR) only. However, the segmentation of vessel
boundaries, in particular, becomes inaccurate as indicated by the
increased balanced error rate (BER) and the F1 measure. The
average segmentation performance on ‘‘totally’’ unseen data
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Fig. 10. Sample proximity for the oblique and orthogonal node model using RF-SFT with
examples per class (FG: foreground, BG: background). (a) Co-occurrence matrices specif
Proximity plot w.r.t. five most significant PCs computed from multidimensional scaling
image patches for selected test samples (black circles) from different regions (roman nu
axial slices w.r.t. the normalized vessel direction (R–L). The patch centers are marked b
fewer eigenspaces. (For interpretation of the references to colour in this figure legend, t
(inter-dataset) consistently decreases as compared to the intra-
dataset analysis using morphologically similar test and training
data from disjoint ROIs of the same dataset (see Section 3.1). In
the case of the RF-SFT model, in particular, these differences
become negligible, which shows that the RF classifier generalizes
well. The figures also reveal that oblique splits, as compared to
orthogonal splits, yield both better classification performance
and smaller (average) path lengths regardless of the chosen feature
model. The advantage of oblique over orthogonal splits may result
from the correlation between the features, and correlated noise
that is better captured by the multivariate oblique node model
than by univariate splits (Menze et al., 2011). We define the aver-
age forest path length (FPL) as the weighted tree depth over all leaf
nodes averaged over all tress of the RF classifier:

FPL ¼ 1
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default parameters. The proximities are computed for 128 randomly sampled test
ying the relative frequency of two test samples sharing the same terminal node. (c)
(MDS) of the proximity matrix. (b) Normalized spectrum of MDS modes. (d) Local
mbers) marked in (c). The patches are visualized for centered sagittal, coronal, and
y small crosses. Oblique RF proximity explains variation (in MDS embedding) with
he reader is referred to the web version of this article.)



Fig. 11. Visualization of the segmented cerebrovascular network for the 3-D test ROI (bottom) and a single axial slice (top/middle) using different segmentation techniques
(columns). (a) Global thresholding using Otsu’s method (Otsu, 1979). (b) Hessian-based segmentation using Frangi’s vesselness (Frangi et al., 1998). (c) OOF proposed by Law
and Chung (2008). (d,f) RF-based segmentation for different features: (d) OSF features considering the first d ¼ 102 most significant filter templates. (d) rOSF features
computed in normalized vessel orientation (d ¼ 102). (e) SFT features using Gaussian derivatives up to order M ¼ 4 at three different scales (see text). The bottom row shows
(b,c) the normalized filter response and (d,f) RF confidence maps as defined in Eq. (17). The corresponding binary segmentation maps are computed at the corresponding F1-
optimal operating points marked in Fig. 8. The results are rendered in 3-D (bottom) and outlined in red (top/middle) along with the GT contours in orange for three subregions
within the axial slice (A–C). Black circles in the 3-D plots highlight prominent differences in the segmentation results. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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where Lk denotes the k-th tree, T l and dl the training examples and
depth at leaf node l, respectively. Thus, FPL is a measure for the
expected number of splits required to push a random exemplar
from the root to the leaf node.

In order to gain further insight into the complex, deeply nested
tree structure, we assess the pairwise sample proximity. More spe-
cifically, we accumulate a proximity matrix for 128 randomly sam-
pled test exemplars per class, i.e., matrix size 256 � 256. For each of
the NT decision trees, any pair of test examples sharing a leaf node
has their proximity increased by 1=NT. Fig. 10(a) shows the proxim-
ity matrices for the orthogonal and oblique node model using RF-
SFT with default parameters. The proximity matrix can be consid-
ered as a distance measure between test samples from an RF point
of view. For better visualization, the matrix is then represented
w.r.t. the most significant eigenmodes using multidimensional scal-
ing (MDS) (Hastie et al., 2009). The proximity plots of Fig. 10(c) for
the different node models show that the test samples almost per-
fectly split along the first principal component. The second mode
of the oblique split model captures additional structure in the fore-
ground samples while the meaning of the corresponding mode in
the orthogonal split model remains unclear. Comparing the spectra
of the eigenmodes for the different split models in Fig. 10(b) clearly
indicates that the oblique RF proximity explains variations in the
MDS embedding with fewer eigenspaces. Fig. 10(d) illustrates the
local image patches for selected test samples from different regions
of the proximity plot in Fig. 10(c). The second and third eigenmode
essentially capture the location of the foreground sample relative to
the vessel center. Samples in region II appear pretty much centered
in the vessel lumen, whereas the remaining regions (I, III, IV, V)
correspond to samples close the surface.

In Fig. 11 we compare the binary segmentation of the cerebro-
vascular network of a single dataset obtained by the different
approaches using the F1-optimal operating points marked in
Fig. 8. Visually, Otsu’s method is too conservative while the Frangi
filter and partly also the RF-OSF model generate rather smooth ves-
sel surfaces missing some of the details. The ideal elliptical appear-
ance model underlying the Hessian-based vesselness filters
generate many false negatives at bifurcations, in particular, where
the model assumptions do not hold. Here, the classification
approach is able to consider more complex geometries, that are
in accordance with higher order filter responses in the training
data. As already indicated by the precision-recall analysis, the
OOF-based segmentation proposed by Law and Chung (2008)
outperforms the vesselness approaches but still produces severe
‘‘leakage’’ artifacts. In contrast, the RF-SFT results shown in the
axial views are in much better agreement to the GT labels.
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Fig. 12. Computation time for feature extraction on a single 2-D slice of the real datase
size P (a) and different number of features N0

F (b). The reported time measurements are a
fitted to the data, respectively. (c) Computation time for training and prediction based on
ROIs, standard deviation indicated by error bars. Timings are obtained from a standard d
implementation based on ITK (Johnson et al., 2013) with multi-threading disabled for b
Comparing OSF and rOSF features, the RF-rOSF confidence map
tends to be much sharper at the vessel boundaries and partly
reduces the noisy response of the OSF maps (region C). However,
the rOSF segmentation is affected by severe leakage artifacts in
some cases, e.g., top of region C, which results in over-segmenta-
tion. This is also reflected in the increased false positive rate
(FPR) of rOSF over OSF in Table 1. The leakage might result from
missing structural information in the training data or imperfect
estimates of the local vessel direction. The latter has a direct
impact on the computation of the local rOSF descriptor whereas
the OSF features intrinsically model the anisotropy.

4.2.3. Computational complexity
As described in Section 2.1, SFT has several advantages over

(r)OSF including steerability and, more importantly, separability,
which allows for efficient feature extraction. Comparing effective
timings for the computation of the different features in Fig. 12(a)
and (b) clearly confirms the computational advantage of SFT over
(r)OSF. The lack of separability of the (r)OSF filters results in a cubic
computational complexity in the patch size (OðP3Þ) while SFT fea-
tures can be extracted in linear time Oð3PÞ (see Fig. 12(a)). For con-
stant patch size P ¼ 19 px, as in the segmentation experiments,
feature extraction of the different features is linear in the number
of features ðOðN0

FÞÞ where SFT shows a smaller constant factor as
compared to (r)OSF (see Fig. 12(b)). Due to the lack of steerability,
the computation of rOSF features requires local image resampling
with regard to the estimated local vessel direction, which signifi-
cantly adds to the total computationally complexity of rOSF. The
computation time to learn and apply the RF-SFT model are summa-
rized in Fig. 12(c). As the decision trees can be trained simulta-
neously for a given training set, the RF training times are
reported for a single tree. The timings for feature extraction, train-
ing and testing increase with the number of features, in general. As
the prediction time also critically depends on the path length
(number of splits) of the test samples from the root to the leaf node
of the decision trees, the test time slightly decreases when step-
ping from N0

F ¼ 9 to N0
F ¼ 27. For N0

F ¼ 9, i.e., maximum Gaussian
derivative M ¼ 1, the learned RF models have much deeper trees
as the highly discriminative features computed from second-order
derivatives (N0

F ¼ 27, M ¼ 2) are not considered. The total process-
ing time for the segmentation of a volume of size
256 px � 256 px � 256 px based on the proposed RF-SFT model is
in the order of half an hour on a standard desktop computer. Seg-
mentation of huge datasets (
 1010 px) requires about (12–18) h
on a small cluster with 16 nodes. The large variation of the total
wall-clock processing time can mostly be attributed to the
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computational overhead for data handling and input/output oper-
ations that can result in substantial idle time.

4.3. Parametrization of the classification forest

The proposed segmentation framework involves few user-
defined parameters only. In contrast to other classifiers, such as
the widely used support vector machine, e.g., González et al.
(2009b), Rigamonti et al. (2011), the parameters related to the RF
classifier, in particular, have an intuitive meaning and can easily
be selected or optimized in a reasonable range. The sensitivity of
the segmentation results with regard to the most important RF
parameters has been analyzed in several parameter sensitivity
analysis. To this end, we repeat the validation experiment for the
RF-SFT model on the four datasets as described above using the
default parameter configuration (see Table A.3) for all but one RF
parameter which is varied in a reasonable range for each experi-
ment. The resulting segmentation performance w.r.t. the (partial)
area under the precision-recall curve (AUC-PR) is shown in Figs. 13
and 14 for the different parameters. As in Table 1, the average AUC-
PR is reported for inter- and intra-data cross-validation. In all
parameter studies, the inter-data performance is slightly worse
compared to the intra-data validation but shows very similar sen-
sitivity characteristics.

4.3.1. Ensemble size
As already noted by Breiman (2001) in his original paper, RF

does not overfit as more trees are added to the ensemble.
Fig. 13(a) confirms that for an increasing number of decision trees
(NT), the average segmentation performance increases and tends
to ‘‘converge’’ while the variance decreases. In our application,
we found NT ¼ 256 to perform reasonably well while further
increasing the number of trees did not result in remarkable
improvements. Also note that the RF training (and testing) can eas-
ily be parallelized. The choice of NT hence does not significantly
affect the overall computational time.

4.3.2. Subspace dimensionality
The number of (random) feature channels (NF) that are individu-

ally selected at each split node to estimate the optimal split func-
tion (see Eq. (15)) can be crucial for the performance of the RF
classifier (see Fig. 13(b)). Choosing NF too small can make it diffi-
cult to robustly estimate the ‘‘optimal’’ splits as the (few) selected
feature channels might not be discriminative. Repeated split opti-
mization for different randomly chosen features as described in
Algorithm 1, however, is able to partly overcome this problem.
On the other hand, employing too many features at a time can
make the split estimation unstable and lead to overfitting. We
clearly see from Fig. 13(b) that the widely used default choice

NF ¼
ffiffiffiffiffiffi
N0

F

q
 �
with N0

F being the total number of features (Liaw

and Wiener, 2002), in fact yields a good overall performance and
is close to the maximum.

4.3.3. Tree structure
Commonly, decision trees are fully grown during training with-

out pruning (Breiman, 2001). When dealing with very noisy feature
or label data, however, it might be beneficial to limit the maximum
tree depth (dmax) as a regularizer. Fig. 13(c) shows that pruning
deteriorates the segmentation performance in our case. It increases
with dmax until convergence at about dmax ¼ 8 as the fully grown
decision trees are rather flat as indicated by the small average path
length. The second break criterion during RF training is the mini-
mum number of samples (smin) stored at each leaf node (see Algo-
rithm 1). The parameter study in Fig. 13(d) shows that the
segmentation performance is very stable for a wide range of smin.
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Fig. 14. Parameter study of classification forests w.r.t. oblique split parameters (see Eqs. (15) and (16)). (a,b) Regularization parameter k relative to kmax as defined by
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Due to the constraint in the linear node model, the split functions
can still be robustly estimated during training even for a small
number of training exemplars. Similar to the maximum tree depth,
disabling the leaf sample restriction during training to obtain fully
grown trees (smin ¼ 1) in fact yields the best results. Only for extre-
mely large values (smin ¼ 128), the performance drops significantly
as a result of aggressive pruning. Note that the choice of the default
parameter values dmax ¼ 16 and smin ¼ 1 practically results in fully
grown trees without pruning in our experiments.

4.3.4. Regularization of split weights
Finally, we investigate the influence of the choice of the most

important parameters for the regularized split weight optimization
in more detail, namely the regularization parameter (k) and the elas-
tic net penalty parameter (a) (see Eqs. (15) and (16)). The former
determines the impact of the regularization term while the latter
selects the type of regularization as a compromise between ridge
regression (a ¼ 0) and the lasso penalty (a ¼ 1). Besides the seg-
mentation performance, we also consider the average forest path
length as defined in Eq. (29) as well as the sparsity of split weights
to gain further insight into the effect of the regularization term. For
split weights w, we quantify the sparsity, i.e., number of negligible
components, as

SpðwÞ ¼ 1
jwj

Xjwj
k¼1

1 jwkj < hSp � kwk1
� �

; ð30Þ

where 1 denotes the indicator function, k � k1 the maximum norm,
and hSp < 1 a constant threshold.

In a first study, we sweep the regularization parameter k for
constant a ¼ 0:5 (default value). Following the concept of pathwise
coordinate descent (Friedman et al., 2010), we choose k relative to



Fig. 15. Normalized centerline votes along axial slices of the synthetic test data using SFT features up to order M ¼ 1 to M ¼ 4 (a,d). The ground truth vessel boundaries and
centerlines are superimposed in white and red, respectively. SFT features using first-order derives only result in highly scattered centerline votes, particularly for large
vessels. Considering higher order derivatives, the accumulated Hough votes become more and more localized and peak at the center of the vessel lumen. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

M. Schneider et al. / Medical Image Analysis 19 (2015) 220–249 239
the smallest value kmax for which the covariance updates are non-
zero (see Friedman et al., 2010, Section 2.5 for details). In general,
the overall segmentation performance slightly drops with increas-
ing (relative) k, particularly for k=kmax > 0:5 (see Fig. 14(a)). As the
regularization term gains in importance, the sparsity of the split
weights increases significantly while the decision trees become
only slightly deeper (see Fig. 14(b)). For k ¼ 0, i.e., no regularization
at all, the optimization of the split weights seems to perform
robust in our case without (obvious) numerical instabilities. The
regularization parameter k is chosen dynamically and varies for
each split node as kmax depends on the training data that is used
to estimate the optimal split. A global choice of k has several draw-
backs as indicated by Fig. 14(c) and (d). Choosing k too large can
easily make the split estimation instable. As a result, the training
process breaks at an early stage leaving incompletely split training
data at the leaf nodes and hence producing flatter trees. For
instance, virtually all decision trees consist of a single split and
two leaf nodes for k ¼ 1, which significantly degrades the
segmentation performance. Furthermore, the relative choice of k
proves better suited to choose the desired level of sparsity without
severely compromising on the segmentation performance as
indicated in Fig. 14(e).

Fixing the value of k and varying the penalty parameter a, we
note that for a > 0, the aforementioned effect of increasing split
weight sparsity at the expense of a (slight) loss of segmentation
performance and deeper trees, is much smaller regardless of the
choice of k (see Fig. 14(f) and (g)). For a ¼ 0, i.e., ridge regression,
the sparsity drops significantly while the classification perfor-
mance remains stable. In our case, ridge regression seems to be
able to robustly estimate the (dense) split direction without (obvi-
ous) numerical instabilities. Increasing the value of a attaches
greater significance to the lasso penalty and hence enforces spar-
sity in the split weights. It is remarkable that more than half of
the split weights are negligible for small values of a without signif-
icant impairment of the segmentation performance. This makes
the oblique RF more efficient and more similar to univariate splits
as the evaluation of the split functions (see Eq. (12)) can be accel-
erated significantly. A proper RF implementation with on-demand
feature computation could speed up the RF prediction time even
further by extracting the required features only, i.e., feature chan-
nels corresponding to nonzero split weights (not used here). At the
same time, the average tree depth hardly changes when stepping
from ridge regression (no sparsity) to the lasso penalty (maximum
sparsity), which leaves the total number of splits to be evaluated
during prediction virtually unchanged.

In summary, we find that the learning-based segmentation
approaches yield better segmentation results compared to the
state-of-the-art baseline approaches, with SFT features being
clearly favorable over (r)OSF. Additionally, we find that the oblique
split model proves robust and superior to univariate splits. The
employed constraint allows for robust estimation of the oblique
split direction while maintaining sparsity in the split weights,
which can significantly accelerate the evaluation of the split func-
tion during prediction.

4.4. Centerline extraction

In this section, we present and discuss the experimental results
for centerline extraction based on the extended RF framework.
Considering the superior segmentation performance of the SFT
feature model compared to (r)OSF, the same (SFT) features are
employed for this task as a second use case.

4.4.1. Qualitative results and limitations
The aggregated centerline voting maps for the synthetic dataset

are shown in Fig. 15 for different configurations. For a low maxi-
mum derivative order of the SFT features (M ¼ 1), the votes tend
to scatter, particularly for large vessels. Including higher order
derivatives, the votes become more and more localized and
accumulate towards the center of the vessel lumen.



Fig. 16. Qualitative comparison of different approaches for centerline extraction on real data (set 1 (a–c), set 2 (d), set 3 (e), set 4 (f,g)). The extracted centerlines are rendered
in different colors along with the (opaque) 3-D mesh of the vasculature. Particularly large deviations from the ground truth centerline are marked by arrowheads. The gray
spheres have been manually added to indicate the spatial dimensions (sphere diameter 6 lm). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 17. Spatial accuracy of the extracted centerlines for the synthetic data w.r.t. the absolute (a,c) and relative (b,d) error metric Dabs and Drel as defined in Eq. (28). (a,b)
Comparison of the RF framework using Hough regression to the baseline approaches. (c,d) Hough regression for different maximum derivative order M. The median and the
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Fig. 16 shows qualitative results for the real datasets comparing
the different extraction approaches. It can be noted that the OOF
approach tends to have some difficulties particularly in regions
where the tubular shape model does not hold, e.g., close to bifurca-
tions (see Fig. 16(a) and (b)) or sudden changes of the vessel radius
as in Fig. 16(b), (e) and (g). There, the RF- and distance-based
extraction perform more robustly. The DOHT centerline shows jag-
ged edges as a result of the discrete skeletonization procedure (see
Fig. 16(c) and (f)). Spline smoothing could be applied to partly
overcome this problem (de Boor, 2001). However, it remains
unclear how to choose the smoothness parameter and how
smoothing eventually affects the accuracy, particularly at tortuous
vessel segments. The RF voting scheme allows for robust and
highly accurate centerline extraction, in general. Only for very
few cases, the RF centerlines locally show small deviations from
the ground truth particularly at large segments of set 4 due to
missing scales in the training data (see Fig. 16(f)). Visually, the
different centerlines can hardly be distinguished from each other
in many cases. Therefore, we will present revealing results from
a rigorous quantitative analysis next.

4.4.2. Quantitative comparison
A quantitative comparison of the different centerline extraction

approaches is provided for the synthetic data in Fig. 17. The
distance-based fast marching scheme (DIST) achieves the best per-
formance on the synthetic dataset. As the distance transform (dis-
tance to the background) is computed from the GT segmentation
and the vessel segments are modeled as piecewise linear tubular
structures, the distance information provides a very strong center-
line prior and is hence well suited to drive the wave propagation.
However, the skeletonization based on distance-ordered homo-
topic thinning (DOHT), which utilizes the same distance informa-
tion computed from the GT labels, performs worse. The oblique
Hough forest framework (RF) achieves slightly better accuracy



Table 2
Quantitative comparison of the centerline accuracy for the four high-resolution datasets w.r.t. the absolute and relative error metric (mean 	 standard deviation). The figures
highlighted in bold face mark the best result w.r.t. the corresponding metric. The oblique Hough forest framework (RF) performs consistently better than the baseline approaches
on all four datasets.

Test set
(vessel radius)

DOHT DIST OOF RF-SFT

#1
(0.691–3.17) lm

(0.266 	 0.153) lm
(12.8 	7.77)%

(0.366 	 0.973) lm
(19.0 	57.4)%

(0.310 	 0.225) lm
(15.1 	11.6)%

(0.205 	0.144) lm
(9.83 	7.41)%
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than the OOF-based extraction and performs very robustly as indi-
cated by the small standard deviation. The OOF accuracy particu-
larly decreases for larger segments (see relative error, Fig. 17(b)).
We also note that the Hough forest performance shows a similar
profile as in the segmentation experiments for varying maximum
derivative order of the SFT features (see Fig. 17(c) and (d)). Consid-
ering first-order derivatives only (M ¼ 1) results in a poor perfor-
mance particularly at large vessels as a result of the rather
scattered voting map (see Fig. 15(a)). Incorporating higher order
derivatives significantly improves the average centerline accuracy
(M P 2). In fact, similar observations can be made for the experi-
ments on the real datasets.

The centerline accuracy of the leave-one-out cross-validation
experiments on the real datasets is summarized in Table 2. In con-
trast to the synthetic datasets, RF regression performs consistently
better than the baseline approaches for all four datasets. The DOHT
error reflects the manual adjustments of the expert to define the
GT centerline based on the DOHT skeleton. The OOF and dis-
tance-based extraction approach work comparably well. The latter
shows slightly better absolute errors but tends to be inaccurate for
small segments as indicated by the increased relative figures (see
also Fig. 18). Moreover, it is prone to artifacts of the binary seg-
mentation map which can result in large deviations and leads to
the by far largest standard deviation of the compared methods.
The RF scheme, however, overcomes these difficulties by vote
aggregation and performs much more stable. Only the absolute
error and standard deviation for set 4 are slightly increased com-
pared to set 1–3, yet still superior to the other approaches. As men-
tioned before, this results from missing scales in the training
examples randomly sampled from set 1–3 with a smaller radius
range listed in the first column of Table 2.
A more detailed quantitative analysis of the centerline accuracy
w.r.t. the structure size of the real datasets is provided in Fig. 18.
The error histograms confirm the superior performance of Hough
forests over the OOF and distance-based extraction approach. For
very small vessel segments (d < 4 lm), the small number of aggre-
gated centerline votes results in a slight loss of accuracy for RF-SFT.
In the diameter range of the most frequent vessel segments, i.e.
capillaries (4 lm 6 d 6 6 lm), however, RF-SFT clearly outper-
forms the other approaches including DOHT with the most stable
error profile across all scales as the DOHT skeletonization is based
on the GT segmentation.

4.5. Sensitivity analysis of the Hough regression forest

We further investigated the sensitivity of the centerline accu-
racy w.r.t. to the number of regression trees (NT) and the maximum
tree depth (dmax) for the real datasets (see Fig. 19). The (relative)
error decreases with an increasing number of trees as shown in
Fig. 19(a). For NT P 32 the improvements become less drastic
and the error rate stabilizes for all four datasets. Similarly, the
maximum tree depth dmax critically influences the error rate (see
Fig. 19(b)). Pruning the fully grown trees reduces the average tree
depth, i.e., the number of splits to be evaluated in order to push a
sample from the root to a leaf node. At the same time, both the
average number of samples per leaf node and the leaf uncertainty
as defined in Eq. (20) increase (see Fig. 19(c)), which impairs the
centerline accuracy. For dmax P 22, the regression trees become
fully grown and the performance converges. Note that the average
number of leaf samples remains greater than one as the training
exemplars are sampled with replacement for each tree. Duplicate
training examples inevitably end up in the same leaf node regardless
of the maximum tree depth. The leaf uncertainty, i.e., the variance of
the offsets stored at each leaf node, drops to zero in fully grown
trees. In this case, all leaf node votes of the different regression trees
are weighted equally during vote accumulation (see Eq. (21)). The
leaf weight defined in Eq. (23) becomes uniform pðlÞ ¼ 1=NT and
hence independent of the shape parameter g, in particular.

In summary, the proposed extraction approach based on Hough
regression forests is robust and able to extract highly accurate cen-
terlines for a wide parameter range. Similar to the selection of
proper scale parameters for any multi-scale approach, e.g., opti-
mally oriented flux, Hessian-based filters, SFT features, care has
to be taken to provide proper training data comprising the range
of vessel calibers to be processed. As the same (steerable) features
are used for both classification and regression, the additional com-
putational cost for centerline extraction is marginal. Ultimately, we
can envision a unified framework using decision trees optimized
with a multi objective in order to concurrently solve the classifica-
tion and regression task as in Gall et al. (2011). This could poten-
tially allow for even more efficiently structured trees exploiting
the discriminative structure of the common feature space.
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Fig. 19. Sensitivity analysis of the extended regression framework w.r.t. different parameters: (a) Number of RF trees NT. (b,c) Maximum tree depth dmax. The average path
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5. Summary and conclusions

We have proposed a machine learning-based framework for
accurate and efficient 3-D vessel segmentation and centerline
extraction based on oblique random forests (RFs) and Hough voting.
For the classification task, we have compared two kinds of features
computed from orthogonal subspace filtering and steerable filters,
respectively. The latter allow to efficiently decompose the image
into a multi-scale rotational basis using steerable filter theory
(Jacob and Unser, 2004; González et al., 2009b). Our experiments
on 3-D high-resolution imaging data of the rat visual cortex reveal
the benefit of steerable over eigenspace filters. Likewise, the intro-
duced oblique split model based on linear regression with an elastic
net regularization proves to be superior to univariate orthogonal
splits. Furthermore, the constrained optimization of the oblique
splits provides an effective parametrization for the sparsity of the
split coefficients, which allows us to decide on the level of sparsity,
i.e., more efficient split evaluation during prediction at the expense
of a slight loss of accuracy. A sensitivity analysis w.r.t. different RF
parameters revealed that the segmentation performance remains
stable for a wide parameter range. Moreover, the machine learn-
ing-based approach outperforms different state-of-the-art segmen-
tation approaches leveraging the Hessian eigenstructure and
optimally oriented flux, respectively. The RF classifiers show excel-
lent classification performance on the 3-D datasets even for incom-
plete and noisy training labels as obtained by Otsu’s method in our
experiments, which renders tedious manual labeling superfluous.
The proposed segmentation framework hence allows to fully
automatically learn RF models for 3-D vessel segmentation on
new datasets. For instance, in our recent study (Rempfler et al.,
2014) we found the proposed approach to generalize well for differ-
ent types of 3-D angiographic whole brain datasets acquired by
micro magnetic resonance angiography (lMRA) or micro computed
tomography (lCT) at different spatial resolution.

We have further demonstrated how to leverage the same steer-
able features as used for vessel segmentation in an extended regres-
sion framework to learn the location of the vessel centerline. To this
end, we train a Hough regression forest to infer probabilistic votes
about the supposable vessel center at each voxel. The accumulated
centerline votes then drive a fast marching scheme in order to
extract the most likely centerlines as the minimal path with lowest
energy. Our validation experiments on synthetic and real datasets
have shown the advantage of the proposed approach over state-
of-the-art techniques for centerline extraction w.r.t. centerline
accuracy and robustness, particularly in regions where the tubular
shape model does not hold, e.g., in the vicinity of bifurcations.
For future work, it would be interesting to further investigate if
the combination of different types of features is able to leverage
their respective strengths and boost the performance as in
Rigamonti and Lepetit (2012). Furthermore, besides centerline
extraction, the regression framework could easily be adjusted to
learn and predict even more complex information, e.g., vessel cali-
ber, in a general and computationally cheap fashion from local fea-
tures. The classification framework could be extended along the
same lines. Based on the findings of Zhou et al. (2007), combining
SFT features in the local neighborhood of each voxel might, for
instance, allow for efficient and accurate 3-D bifurcation detection.
Another line of research could examine to what extent the concept
of auto-context (Tu and Bai, 2010) is able to further boost the seg-
mentation and regression performance. The discriminative vessel
and centerline confidence maps provide rich context information,
in addition to the original image patches, that can readily be used
to train a new classifier. Likewise, similar to Gall et al. (2011), a uni-
fied regression forest could be trained to allow for joint classifica-
tion and regression, i.e., prediction of the class label (foreground
vs. background) and inference of the centerline offset in our appli-
cation. This requires a more complex training strategy, e.g., multi-
objective split optimization in order to achieve both purity of class
labels and minimal regression uncertainty at the leaf nodes. Addi-
tional comprehensive experiments have to be performed to investi-
gate the potential benefit of a single unified classifier over the two-
stage RF framework w.r.t. efficiency and accuracy, in particular.
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Appendix A. Default parameters

Default parameters are listed in Table A.3.



Table A.3
Default parameters for experiments.

Parameter Value Description Text

(r)OSF P 19 px Patch size Eq. (1)
NP 1:8� 104 Number of patches Eq. (1)

d ¼ N0
F

102 PCA dimension Eq. (1)

(=total number of features)

SFT M 4 Maximum derivative order Eq. (3)
dM 34 Number of Gaussian Eq. (4)

derivatives up to order M
S 3 Number of scales Eq. (5)
~r ð0:70;1:7;4:2Þ [lm]a SFT scales Eq. (5)

ð2:0;4:4;10Þ [lm]b

N0
F

102 (¼ dM � S) Total number of features Algorithm 1

RF jT j 2 � 4000c Number of training samples Algorithm 1
32,000d

Obliquec Split model Algorithm 1
Orthogonald

NT 256c Number of RF decision trees Algorithm 1
dmax 16c Maximum tree depth Algorithm 1
dmax 32d

smin 1 Minimum number of samples Algorithm 1
per leaf node

NF 1e Number of features per split Eq. (12)
11f,c

(¼
ffiffiffiffiffiffiffiffi
NF Þ

p� �
)

35f,d
(¼ N0

F
3

l m
)

k 1
2 kmax

c Regularization parameter Eq. (15)

0:01d Eq. (19)
a 0:5 Elastic net penalty parameter Eq. (16)
g 10 lnð2Þ

D
d
 9:9 lm�1a


 6:9 lm�1b

Leaf prior parameter relative
to isotropic voxel spacing D

Eq. (23)

a Real data (SRXTM)
b Synthetic data
c RF classification
d Hough forest regression
e Orthogonal split
f Oblique split
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Appendix B. Steerability of Gaussian derivatives

The steerability of Gaussian derivatives has been derived for
the 2-D case in Jacob and Unser (2004) and can readily be
extended to 3-D (Freeman and Adelson, 1991). Steerability refers
to the property that the convolution of an image with a rotated
version of the steerable filter template (SFT) can be expressed
by a linear combination of the filter response of the image with
the SFT without rotation:

I � Gr
m;a;bðRxÞ ¼

Xm

i¼0

Xi

j¼0

wi;j
m;a;bðI � Gr

m;i;jÞðxÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
frm;i;jðI;xÞ

; ðB:1Þ

where R 2 SOð3Þ denotes 3-D rotation matrix:

Rh;/ ¼
cos h cos / cos h sin / sin h

� sin / cos / 0
� sin h cos / � sin h sin / cos h

0B@
1CA: ðB:2Þ

The uniquely defined coefficients wi;j
m;a;b can be computed in closed

form as:

wi;j
m;a;b ¼

X
s2Pi;j

m;a;b

ð�1Þa�v1�w2
m� a

u1

 !
a� b

v1

 !
b

w1

 !
u1

u2

 !
w1

w2

 !

ðcos hÞm�a�u2þw2 ðcos /Þm�aþb�u1þv1�w1

ðsin hÞbþu2�w2 ðsin /Þa�bþu1�v1þw1�u2�w2 ; ðB:3Þ

where
Pi;j
m;a;b ¼ fðu1;v1;w1;u2;w2Þ> 2 N5

0 j u1 6 m� a;v1

6 a� b;w 6 b;u2 6 u1;w2 6 w1;u1 þ v1 þw1

¼ i;u2 þw2 ¼ jg: ðB:4Þ

Proof. Following Jacob and Unser (2004), the Fourier transforma-
tion (FT) of the rotated filter templates as defined in Eqs. (B.1) and
(B.2) can be computed by a rotation in the Fourier domain:

F Gr
m;a;bðRh;/xÞ

� �
¼ðiwx coshcos/þ iwy coshsin/þ iwz sinhÞm�a

ð�iwx sin/þ iwy cos/þ0Þa�b

ð�iwx sinhcos/þ iwy sinhsin/þ iwz coshÞb � bGrð~xÞ;
ðB:5Þ

where bGrðxÞ ¼ FðGrðxÞÞ denotes the transfer function of the Gauss-
ian kernel. Repeatedly applying the binomial equation, this can be
rewritten as:

F Gr
m;a;bðRh;/xÞ

� �
¼
Xm�a

u1¼0

Xa�b

v1¼0

Xb

w1¼0

Xu1

u2¼0

Xw1

w2¼0

wðu1 ;v1 ;w1 ;u2 ;w2Þ>
m;a;b � bGrð~xÞ

ðB:6Þ

ðiwxÞm�ðu1þv1þw1ÞðiwyÞðu1þv1þw1Þ�ðu2þw2ÞðiwzÞu2þw2 ;

where

wðu1 ;v1 ;w1 ;u2 ;w2Þ>
m;a;b ¼ð�1Þa�v1�w2

m�a
u1

� �
a�b

v1

� �
b

w1

� �
u1

u2

� �
w1

w2

� �
ðcoshÞm�a�u2þw2 ðcos/Þm�aþb�u1þv1�w1

ðsinhÞbþu2�w2 ðsin/Þa�bþu1�v1þw1�u2�w2 : ðB:7Þ



(a) Otsu (b) Frangi

(c) OOF (d) RF-OSF

(e) RF-rOSF (f) RF-SFT

Fig. C.20. Segmented cerebrovascular network for the 3-D test ROI of dataset D1 using different segmentation techniques. (a) Otsu’s method (Otsu, 1979). (b) Frangi Frangi
et al. (1998). (c) OOF (Law and Chung, 2008). (d) RF-OSF (d ¼ 102). (e) RF-rOSF (d ¼ 102). (f) RF-SFT (M ¼ 4). The binary segmentation maps are computed at the
corresponding F1-optimal operating points.
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(a) Otsu (b) Frangi

(c) OOF (d) RF-OSF

(e) RF-rOSF (f) RF-SFT

Fig. C.21. Segmented cerebrovascular network for the 3-D test ROI of dataset D2 using different segmentation techniques, (a) Otsu’s method (Otsu, 1979). (b) Frangi Frangi
et al. (1998). (c) OOF (Law and Chung, 2008). (d) RF-OSF ðd ¼ 102Þ. (e) RF-rOSF ðd ¼ 102Þ. (f) RF-SFT (M = 4). The binary segmentation maps are computed at the
corresponding Fl-optimal operating points.
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(a) Otsu (b) Frangi

(c) OOF (d) RF-OSF

(e) RF-rOSF (f) RF-SFT

Fig. C.22. Segmented cerebrovascular network for the 3-D test ROI of dataset D3 using different segmentation techniques, (a) Otsu’s method (Otsu, 1979). (b) Frangi Frangi
et al. (1998). (c) OOF (Law and Chung, 2008). (d) RF-OSF ðd ¼ 102Þ. (e) RF-rOSF ðd ¼ 102Þ. (f) RF-SFT (M = 4). The binary segmentation maps are computed at the
corresponding Fl-optimal operating points.
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(a) Otsu (b) Frangi

(c) OOF (d) RF-OSF

(e) RF-rOSF (f) RF-SFT

Fig. C.23. Segmented cerebrovascular network for the 3-D test ROI of dataset D4 using different segmentation techniques, (a) Otsu’s method (Otsu, 1979). (b) Frangi Frangi
et al. (1998). (c) OOF (Law and Chung, 2008). (d) RF-OSF ðd ¼ 102Þ. (e) RF-rOSF ðd ¼ 102Þ. (f) RF-SFT (M = 4). The binary segmentation maps are computed at the
corresponding Fl-optimal operating points.
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Applying the inverse FT to Eq. (B.6) and convolving with image I
finally yields:

I � Gr
m;a;bðRh;/xÞ ¼

X
u1 ;v1 ;w1 ;u2 ;w2

wðu1 ;v1 ;w1 ;u2 ;w2Þ>
m;a;b I � Gr

m;u1þv1þw1 ;u2þw2

� �
ðxÞ

¼
Xm

i¼0

Xi

j¼0

X
s2Pi;j

m;a;b

ws
m;a;b|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

wi;j
m;a;b

I � Gr
m;i;j

� �
ðxÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

fm;i;jðI;xÞ

; ðB:8Þ

where

Pi;j
m;a;b ¼ fðu1;v1;w1;u2;w2Þ> 2 N5

0 j u1 6 m� a;

v1 6 a� b;w 6 b;u2 6 u1;w2 6 w1;u1 þ v1 þw1 ¼ i;

u2 þw2 ¼ jg: ðB:9Þ

Note that care has to be taken when applying FT-based convo-
lution. The bandwidth of the Gaussian derivatives is governed by
the standard deviation r of the Gaussian function. Without proper
oversampling, a small r can result in signal aliasing and undesired
magnification after FT-based convolution (Law and Chung, 2009).
Appendix C. Segmentation results

The binary segmentation of the cerebrovascular networks of the
test ROI of datasets D1�4 are compared for the different vessel
segmentation approaches in Figs. C.20–C.23.
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