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Abstract. This paper describes a new approach for the reconstruction of com-
plete 3-D arterial trees from partially incomplete image data. We utilize a phys-
iologically motivated simulation framework to iteratively generate artificial, yet
physiologically meaningful, vasculatures for the correction of vascular connectiv-
ity. The generative approach is guided by a simplified angiogenesis model, while
at the same time topological and morphological evidence extracted from the im-
age data is considered to form functionally adequate tree models. We evaluate
the effectiveness of our method on four synthetic datasets using different metrics
to assess topological and functional differences. Our experiments show that the
proposed generative approach is superior to state-of-the-art approaches that only
consider topology for vessel reconstruction and performs consistently well across
different problem sizes and topologies.
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1 Introduction

Vascular image analysis plays a crucial role in many research areas and has various ap-
plications. In neuroscience, for instance, gaining further insight into the topological and
morphological properties of the cortical microvasculature is fundamental to a better un-
derstanding of the neurovascular coupling and regulation in neurodegenerative diseases
such as Alzheimer’s [1]. Advances in high-resolution imaging modalities, e.g., syn-
chrotron radiation micro-CT, have greatly facilitated the acquisition of highly detailed
image data of complex vascular systems across different scales down to the capillary
level [8]. However, the analysis and reconstruction of complete vascular networks is still
an open problem despite extensive ongoing research in vascular image analysis. Most
of the research addresses the problem of vessel detection and segmentation [4] while
mostly neglecting vascular connectivity [9]. Incomplete connectivity dramatically com-
plicates or even precludes the analysis of hemodynamic and metabolic properties [1, 8].
Topological defects are commonly caused by limitations of the reconstruction method-
ology (e.g. invalid model assumptions) or problems related to image acquisition (image
noise, artifacts) and sample preparation (insufficient dye filling, air bubbles, clotting).

There is only very little previous work on reconstruction and correction of vessel con-
nectivity [4, 9]. A popular principle is the extraction of a minimum spanning tree (MST)
w.r.t. different distance metrics based on Euclidean distance or physiological princi-
ples [2, 4]. Risser et al. [10] proposed a gap filling approach based on tensor voting. The
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authors use local directional and morphological information to define a tensor field sup-
porting likely vessel pathways to be tracked to fill gaps. More recently, Kaufhold et al.
[3] presented a learning-based algorithm to recover missing connectivity by threshold
relaxation relying on last traces of information in the image data that have been missed
before. Though in case of total signal loss at a gap (e.g. caused by incomplete filling
with dye), their method is no longer applicable.

The slightly different and more fundamental problem of synthetic formation of func-
tionally adequate vascular networks has attracted considerable attention in the field of
computational physiology [5, 12, 13]. Here, physiological principles are applied to gen-
erate synthetic vascular models that satisfy prescribed physiological conditions.

In this work, we combine different key ideas of both aforementioned problem classes
to reconstruct consistent 3-D arterial trees from partially incomplete image data. We uti-
lize artificially generated, yet physiologically plausible, vascular structures for the cor-
rection of vascular connectivity. To this end, we adapt a simulation framework based on
a simplified angiogenesis model to iteratively complete the defective vasculature tak-
ing into account the topological and morphological evidence extracted from the image
data. The primary objective of this work is first and foremost the reconstruction of a
physiologically meaningful vasculature rather than the recovery of the exact topology.

2 Methods

Generating New Vascular Structures. The proposed approach for topological gap
in-fill (TGIF) is primarily based on our generative model for the construction of syn-
thetic 3-D arterial tree models as introduced in [12]: The physiologically motivated
method combines a simplified model for sprouting angiogenesis stimulated by a growth
factor with structural remodeling and degeneration in response to morphological and
metabolic stimuli to iteratively generate an arterial tree model until the (prescribed)
metabolic demand of the embedding tissue is met, i.e., no hypoxic regions left. The
vascular system is modeled as a set of binary trees where each vessel branch is approx-
imated by a sequence of edges (vessel segments) each representing a cylindrical tube
of fixed length and radius. Additional morphological constraints are enforced at con-
struction time with regard to the morphometrical configuration at bifurcations, i.e., rela-
tionship of radii (Murray’s law) and optimal bifurcation angles derived from Murray’s
minimum work principle (MWP). The iterative growth proceeds in four steps [12]:

(S1) Angiogenesis model: reaction-diffusion process to estimate tissue perfusion and
oxygenation as well as the corresponding concentration map of vascular endothe-
lial growth factors (VEGFs) emitted by hypoxic-ischemic cells.

(S2) Vascular growth forming new sprouts in chemotactic response to VEGF.
(S3) Structural remodeling and degeneration of redundant vascular structures.
(S4) Repeat steps (S1)–(S3) until prescribed tissue metabolism is met.

To apply this concept [12], we identify feeding vessels (root nodes) entering the
image volume and isolated vascular components with no connection to any root. As
these unrooted parts are lacking blood supply (stagnant hypoxia), they do not contribute
to the perfusion of the surrounding tissue estimated in step (S1). The resulting hypoxic
areas lead to locally increased VEGF secretion attracting new sprouts. Thus, step (S2)
iteratively grows new sprouts originating from rooted (perfused) segments following the
local VEGF gradient (constant step length δ), and the sprouting tip is connected to an
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unrooted segment when it gets closer than 4 µm. Still, due to the sparse vascularization
of 3-D tissues (≈ 2% vascular volume fraction [8]), a sprouting tip would rarely hit
another unrooted vessel if purely driven by angiogenesis [13]. Thus, we propose to
amend the generative model by an “attractor” to enforce such connections between
vessel segments if supported by the topology and morphology, which we discuss next.

Connecting Unrooted Segments. We allow rooted sprouts to link with nearby un-
rooted vascular structures in step (S2). Similar to [13], we define the set of potential
connection candidates at a sprouting tip as unrooted vessel segments lying within a
spherical-cone-shaped sector along the sprout direction (maximum distance Rmax =
100 µm, angular deviation θmax = 60° [13, Tbl. 1]). To find the optimal connection can-
didate for a sprouting node vs with proximate connection candidates vc ∈ Vc, we first
rank the connecting edges e = (vs, vc) w.r.t. the heuristic cost function (HCF) proposed
by Reichold [8] considering directional and spatial information. This parametric model
favors short over long infills, but also a minimal bending angle of the new connection:

CHCF
(
e
)
= λd · l(e)

dmax
+ (1− λd) ·

[
1− exp

(
− α

α0

)][
1− erf

(
l(e)

d0

)]
, (1)

where l(e) ≤ dmax denotes the edge length, and λd ∈ [0, 1] is a weighting factor to
balance the distance-based and angle-based term. The bending angle α is defined as
the sum of the bending angles relative to the vessel direction at vs and vc, respectively
(see supplementary material for illustrations of CHCF). The parameter d0 defines the
maximum distance beyond which the influence of α is negligible. The factor α0 is used
to shape the angle-dependent term. As the ranking of the candidate edges w.r.t. CHCF is
not symmetric, i.e., the top-ranked edge (vs, vt) of vs can be ranked very low at vt, we
apply a k-reciprocal neighborhood search [7]: From the top krNN ranked candidate edges
of vs, we pick the highest ranked edge ê = (vs, v̂t) for which ě = (v̂t, vs) is among the
krNN highest ranked edges of v̂t. If there is no such “krNN-optimal” edge ê, we follow
the homing mechanism proposed by Secomb et al. [13, Eq. 10–14] that makes sprouting
tips susceptible to nearby vessel segments, i.e., the growth direction of the evolving
sprout is computed as the weighted sum over the set of potential connection candidates
as defined above (sensitivity kV = 10 [13, Tbl. 1])). Finally, if the sprouting tip does
not sense any proximate vessel segments, i.e., empty set of connection candidates, we
fall back to the VEGF-based strategy in step (S2) to determine the growth direction.

Remodeling. Adding new vascular connections modifies the network topology
and – under consideration of global geometrical constraints, such as continuity of radii
along connections and radii at bifurcations following Murray’s law – we have to update
the vessel diameters in step (S3) to match the new conditions. To this end, we adjust the
diameters of newly generated vessels (synthetic nodes) and maintain estimated vessel
radii at static nodes with strong evidence in the image data.

Every synthetic subtree generated at an infill location has a well-defined static root
node nr at the proximal transition from static to synthetic data. Also, each terminal node
at the distal end of the subtree is either (1) non-static, i.e., newly generated sprouting tip
not yet linked with a connection candidate, or (2) static, i.e., transition from synthetic
to static data with prescribed radius. We iteratively remodel the subtree as follows:

(R1) Prescribe vessel radius at static terminal nodes according to image evidence.
(R2) Propagate radii from all subtree terminals to rootnr according to Murray’s law [12].
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Fig. 1. Synthetic vascular tree model with
artificial gaps (B2, γcrop = 32‰).

Table 1. Examined parameter ranges for different
reconnection approaches. Default HCF parameters
used for TGIF are underlined.

Method Parameter Value/Range Text/Reference

MWP λMWP {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} [2, Eq. 13]

TV L see dmax [10, Eq. 6]
θ {15°, 30°, 45°, 60°} [10, Eq. 6]

lmax {0.5, 1.0, 1.5, 2.0} × sgap [B1 ] [10, Sec. III.K.4]
{12, 48, 96, 144}[µm] [B2 ]

smin {10−4, 10−2, 10−1, 0.5} [10, Sec. III.K.4]

HCF dmax {0.5, 0.75, 1.0, 1.5, 2.0} × sgap [B1 ] Eq. (1)
{12, 24, 48, 96}[µm] [B2 ]

λd {0.4, 0.5, 0.6, 0.7}
α0 {100°, 120°, 140°, 160°}/ log(2)
d0 {0.5, 1.0, 2.0, 4.0} × dmax

krNN {1, 2, 4, 6}
TGIF λg {1, 2, 4, 8} [12, Eq. 12]

δ {8, 16, 32, 64}[µm]
ξ {1.00, 1.05, 1.10, 1.15) (R3)

(R3) STOP if for updated and static vessel radius at nr: rupdated

rstatic
< ξ for constant ξ ≥ 1.

(R4) Randomly choose a non-static terminal node nt of the subtree (FAIL if none is
left), shrink the terminal vessel branch at nt (r

′ = 0.9r), and prune it if r′ ≤ 2 µm.
(R5) Repeat steps (R1)–(R4) until STOP or FAIL.
(R6) Reinforce static radius at nr and propagate radii down to subtree terminals [12].

If the tree cannot be remodeled properly (FAIL), we discard the new connection edge
and continue with steps (S1)–(S4). Note that we prevent static vessel branches from
undergoing any kind of remodeling, degeneration or cropping, except for the adjustment
of vessel radii at short isolated branches following the concept of “islands” in [10]. The
simulation is ultimately stopped if the surrounding tissue is sufficiently perfused [12].

3 Experiments and Results

We evaluate the performance of the proposed algorithm for TGIF on four synthetic
datasets and compare it to different baseline approaches.

Experimental Data. Following the experimental setup of Schneider et al. [12,
Fig. 4–6], two artificial arterial tree models are generated for different random seeds.
For each of these models we derive a vessel size imaging (VSI) map that is in turn
used to synthesize a functionally equivalent but structurally different arterial tree fol-
lowing [5]. The vessel radii range from (2–17) µm in all four cases. We then create
artificial gaps by introducing simulated air bubbles (occlusions) at randomly sampled
locations within the vessel lumen and cropping the occluded parts of the vasculature.
We examine two different configurations for the choice of the size and number of arti-
facts: In a first set of experiments (B1), we vary the bubble size sgap ∈ {3, . . . , 384}[µm],
while the number of artifacts is chosen such that the cumulative length of the cropped
vessel segments amounts to γcrop = 5% of the total segment length of the ground
truth (GT) vasculature. Conversely, in the second configuration (B2), we consider dif-
ferent crop factors γcrop ∈ {1, . . . , 32}[‰] for a fixed ensemble of bubble artifacts
(sgap = (3, 6, 12, 24, 48, 96)[µm]). In order to avoid boundary artifacts, we only crop
vessel segments within a centered box-shaped region of interest (ROI) (see Figure 1).
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Likewise, we exclude large vessels (r > 10 µm) that are rarely affected by incomplete
filling in real data. From each of the deteriorated vasculatures, we derive an observable
counterpart to be used in our infill experiments by modeling the forward imaging and
inverse segmentation process as follows: First, we synthesize 3-D image data by sequen-
tially discretizing each vessel segment via a Gaussian point spread function and additive
Gaussian noise (isotropic spatial resolution: 1 µm). Next, we apply vessel segmenta-
tion [11] and skeletonization based on distance-ordered homotopic thinning (DOHT)
to reconstruct the vascular structure. Vessel calibers along the skeletonized centerline
are determined based on distance transformation. Finally, we apply spline smoothing
to each vessel branch and assign a constant radius that preserves the total lumen of the
original branch to make the estimation of vessel direction and diameter more robust.

Alternative Methods. On these data we test four alternative gap filling approaches:
(1) Prim’s algorithm was applied to extract the minimum spanning tree (MST) with each
candidate edge connecting a rooted with an unrooted node (e = (vr, vc)) weighted by
the edge length l(e). The radius of candidate edges added to the tree is chosen as the
arithmetic mean of the maximum adjacent segment radius at vr and vc.
(2) Jiang et al. [2] proposed a different weighting scheme based on Murray’s minimum
work principle (MWP). The authors derive a simplified cost function for each candidate
edge as a mixture of the shortest path tree (SPT) and r2-weighted MST [2, Eq. 13]:

CMWP
(
e = (vr, vc)

)
= l(e) · r2(e)

︸ ︷︷ ︸
r2-MST

+ λMWP
r3min

2
·
∑

ei∈P(vc,v̂r)

l(ei)/r(ei)

︸ ︷︷ ︸
simplified SPT

, (2)

where rmin = 2 µm denotes the minimum vessel radius and P(vc, v̂r) the shortest path
from candidate node vc to the closest root node v̂r of vr. The radius of candidate edges
is chosen as in MST. Following [2], we apply Prim’s algorithm for different values of
λMWP < 1 (see Table 1) to find the optimal tree minimizing the MWP cost.
(3) The gap filling approach by Risser et al. [10] based on tensor voting (TV) was applied
as follows: First, we compute the tensor and saliency maps from the vessel network us-
ing an isotropic spatial resolution of 1.5 µm. For the generation of missing segments we
found that the tracking scheme proposed by the authors [10, Eq. 8], i.e., greedily fol-
lowing the maximum saliency in a local neighborhood, can easily fail due to the limited
spatial resolution. Thus, we adapt a fiber tracking scheme also used for diffusion tensor
imaging to directly track the tensor field rather than the derived saliency measure [6]
and use it as a fallback strategy. We perform an exhaustive grid search for each dataset
to find the optimal configuration of the four main parameters defining the tensor field
and the break criteria during tracking (see Table 1).
(4) Finally, we use the proposed combination of the heuristic cost function in Equa-
tion (1) and the k-reciprocal neighborhood scheme in a modified MST-like framework,
which can be regarded as a simplified version of TGIF considering topological informa-
tion only: Unlike standard MST, we consider candidate edges from rooted to unrooted
nodes only if they fulfill the k-reciprocal neighborhood condition. We then apply Prim’s
algorithm to greedily extract the corresponding MST w.r.t. candidate edge weights as
defined in Equation (1) for different parameters (see Table 1).

Our Approach: \relax TGIF. Similar to the baseline experiments, we perform a
parameter sweep for selected parameters listed in Table 1. For each parameter set and
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Fig. 2. Close-up views of (a) the ground truth (GT) network in Figure 1 and (b–f) the recon-
structed networks generated by different approaches for optimal parameter values minimizing
ΔQleaf. Vessel branches are rendered as cylindrical tubes for the cropped synthetic GT network
(gray), cropped gaps (red, radius scaled for better visibility), and reconstructed infill edges (blue).

each input network we run four TGIF simulations using different seeds to account for
statistical variations of the reconstructed topologies. As above, the prescribed metabolic
profile and angiogenesis parameters are taken from [12].

Quantitative Analysis and Comparison. For the comparison of the different re-
construction approaches we employ four different metrics focusing on different aspects:
(1) Topological correctness is assessed by a precision-recall analysis. Each infill edge
connecting to a static node is counted as true positive if the static target and the proxi-
mal interface to the static graph originate from the same bubble artifact (false positive
otherwise). False negatives are computed as (#gap boundary nodes−#true positives−
#gaps). From the derived precision and recall measures, we compute the F1 score.
(2) As direct comparison of the network topology may not be adequate to capture func-
tional differences, we consider differences in the path length from GT nodes vGT to the
shortest GT root node v̂GT [2]: ΔEpath = 1

‖VGT‖
∑

vGT∈VGT
|l(P (v′, v̂′))−l(P (vGT, v̂GT)|,

where v′ is the node of the reconstructed graph that is closest to vGT in an Euclidean
sense. As each synthetic arterial tree contains 16 roots in total, the paths may well end
up at different roots (v̂′ � v̂GT). The path length at unrooted nodes is set to zero.
(3,4) Finally, we compare the hemodynamic properties of the reconstructed and GT net-
work. To this end, we simulate the blood flow in the network using pressure boundary
conditions at root and leaf nodes where the caliber-dependent pressure values are taken
from literature [8]. Terminal nodes of the reconnected networks without any match-
ing leaf node in the GT network are assigned a no-flow boundary condition. From
the simulation results, we compute the relative net inflow change at all GT leaf nodes:
ΔQleaf =

∑
vGT

|Qin(v
′)−Qin(vGT)|
Qin(vGT)

. Similarly, we consider the total flow entering the re-
constructed and GT network and compare their absolute relative difference ΔQnet.

Close-up views of the reconstructed networks from the different approaches are pro-
vided in Figure 2. Topological differences are visually most pronounced for long curved
segments that are difficult to recover. The examples illustrate that TGIF is able to cor-
rectly fill most of the gaps and, unlike the other approaches, form bifurcations when
necessary. Quantitative results w.r.t. the different metrics are shown in Figure 3 for the
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Fig. 3. Quantitative evaluation of different reconnection approaches for varying gap size (a–c) and
cumulative artifact length (d–f). (a,d) Relative net inflow change ΔQleaf at leaf nodes. (b,e) Rel-
ative total net inflow change ΔQnet. (c) Topological correctness of infill edges w.r.t. F1 score.
(f) Relative path length error. For each problem size (fixed sgap and γcrop), average values over all
four synthetic datasets are marked for each reconnection approach using the optimal parameter
configuration (see Table 1) minimizing ΔQleaf. Shaded areas within each subfigure outline the
envelope of the average values obtained by applying these optimal parameters across sgap and
γcrop, respectively. Error bars for TGIF indicate the standard deviation across the four datasets.

different reconnection approaches and both experimental setups (B1, B2). In general,
the different metrics indicate a decreasing quality of the reconstructed networks for in-
creasing problem size. For increasing gap size (B1), the topological differences of the
GT and reconstructed models become more pronounced as indicated by the decreasing
F1 score. It is remarkable that small changes in topology can have a substantial impact
on flow-related errors (see Figures 3a–3c). The figures indicate that TGIF outperforms
the baseline approaches. Only for small crop factors, TGIF shows an increased path
length error while the flow-related metrics remain consistently small (see Figures 3d–
3f). This demonstrates the difficulty of reasonable comparison and validation of vascu-
lar networks. The parameter study reveals that, while TV proves to be highly sensitive
to the parameter choice, TGIF performs consistently well across different problem sizes
and topologies (functionally equivalent but structurally different networks, see above),
as indicated by the narrow envelopes and small error bars in Figure 2, respectively. Fi-
nally, we find that MST outperforms MWP in our experiments. However, further experi-
ments (not reported here) reveal that, particularly for the synthetic VSI-based networks,
Murray’s minimum work principle seems to hold at the macroscale only, i.e., excluding
the microvasculature (r ≤ 5 µm) significantly improves the performance of MWP over
MST as reported in [2] for the macrostructure of murine coronary arterial trees.

4 Conclusions and Future Work
We proposed a new method for the reconstruction of complete 3-D arterial trees from
partially incomplete image data by combining different key ideas that have been used
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for the artificial generation of functionally adequate vascular models and different con-
cepts aiming at the correction of vascular connectivity. The experiments demonstrate
the effectiveness and superior performance of our approach compared to different state-
of-the-art methods for vascular reconstruction. In this work, we have only considered
arterial tree models rather than full-fledged vascular networks. Jointly considering arte-
rial and venous networks raises additional problems as recently described in [13]. For
instance, vascular remodeling and reconnection have to be reconsidered carefully as the
hemodynamics can easily be spoiled by inserting functional shunts. Likewise, it would
be interesting to exploit the image data not only for the initial estimation of the (defec-
tive) vascular topology but also to further guide and constrain the reconstruction and
thus achieve better robustness against inaccuracies in, e.g., vessel direction and caliber.
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