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We present an approach to generate 3-D arterial tree models based on physiological principles while at
the same time certain morphological properties are enforced at construction time. The driving force of
the construction is a simplified angiogenesis model incorporating case-specific information about the
metabolic demand within the considered domain. The vascular tree is constructed iteratively by succes-
sively adding new segments in chemotactic response to angiogenic growth factors secreted by ischemic
cells. Morphometrically confirmed bifurcation statistics of vascular networks are incorporated to opti-
mize the synthetic vasculature. The proposed method is able to generate artificial, yet physiologically
plausible, arterial tree models that match the metabolic demand of the embedding tissue and fulfill
the prescribed morphological properties at the same time. The proposed tree generation approach is
applied in a simulation setup based on the metabolic configuration and anatomy of the macaque visual
cortex. We analyze the generated tree models with respect to morphological and physiological aspects
including fluid-dynamic simulations. The comparison of our results with the findings of different studies
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on the structure of cerebral vasculatures demonstrates the plausibility of our method.
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1. Introduction
1.1. Motivation

Arterial trees are highly complex branching structures for effi-
cient oxygen and nutrient supply of tissue and drainage of meta-
bolic end products (LaBarbera, 1990; Karch et al., 2000). For an
in-depth understanding of various aspects of the circulatory sys-
tem, detailed functional and structural analysis of microvascular
networks in both normal and pathological tissue is essential since
hemodynamic and metabolic conditions are critically dependent
on the microvascular architecture (Secomb et al., 2004; Ji et al.,
2006). As an example, detailed, explicit vascular models are
needed in surgical training simulation, when generating variable
anatomical scenes with realistic physiological properties
(Tuchschmid et al., 2007). In the field of cancer research, various
models for tumor growth have been proposed which partly rely
on explicit vascular models (Lloyd and Székely, 2008). Appropriate
validation of these growth models with in vivo time-series requires
proper initialization with an explicit microvasculature. Similarly,
knowledge of the entire cerebrovascular network down to the
capillary level is required for gaining insight into blood flow
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dynamics and its regulation by numerical simulations (Reichold
et al., 2009; Guibert et al., 2010; Lorthois et al., 2011). This allows
to assess the significance of occlusions and resulting redistribution
of blood flow (Schaffer et al., 2006) as well as the prospective ef-
fect of interventions. Additionally, it has been shown that many
of the neurodegenerative diseases, e.g., Alzheimer’s disease, have
a prominent vascular component (Meyer et al.,, 2008; Zlokovic,
2011). There is increasing evidence that reduced energy substrate
and oxygen delivery is in part responsible for the severe symptoms
of the disease. This underlines the need for a better knowledge of
the vascular network’s structure in normal and pathological tissue
in order to increase our understanding of the pathophysiological
mechanisms.

Microvascular structures have been analyzed based on intravas-
cular dye injections, staining of vessel components, or vascular
corrosion casts using state of the art imaging modalities, e.g.,
all-optical histology (Tsai et al., 2009), or synchrotron radiation
based X-ray tomographic microscopy (Plouraboue et al., 2004;
Heinzer et al., 2006, 2008; Reichold et al., 2009). However, the seg-
mentation and reconstruction of consistent arterial trees from
high-resolution image data still remains a challenge (Cassot
et al., 2006; Kaufhold et al., 2008; Risser et al., 2008). While the
relatively small number of large vessels can be modeled explicitly,
this becomes increasingly difficult for the vast number of smaller
vessel branches, e.g., due to the limited spatial resolution of the
imaging modality or the lack of image contrast at the microscale.
Therefore, numerous methods for the generation of artificial
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vascular models have been proposed. In this paper we present a
physiologically inspired construction approach for arterial models
in the absence of pathologies, while relying on case-specific func-
tional information.

1.2. Related work

The main approaches for the generation of artificial vascula-
tures are typically based on optimality or evolutionary principles.
Nekka et al. (1996) describe a deterministic construction method
for 2-D vascular structures incorporating a highly simplified angi-
ogenesis model. Vascular formation is modeled as an evolutionary
process in response to angiogenic factors secreted by ischemic tis-
sue cells. Vessel segments are considered as 1-D edges in a graph
neglecting the spatial extent of the lumen. As the formation pro-
cess is purely based on the distribution of angiogenic factors with-
out imposing any further restriction regarding the geometry of the
evolving network, the results appear rather artificial and too regu-
lar. A more sophisticated angiogenesis-based simulation frame-
work for the construction of vascular systems in arbitrary
anatomies has been proposed by Szczerba and Székely (2005). This
approach has been integrated into a generic model also accounting
for tumor growth and modeling (Lloyd et al., 2008). Even though
the results show high similarity with real vasculatures, the under-
lying simplifications still do not allow to generate vascular mor-
phologies in full accordance with experimental findings.

Based on experimental observations from real vessel networks,
several optimality principles have long been hypothesized, e.g.,
minimal building material or minimal energy dissipation (Murray,
1926; Zamir, 1976; Cohn, 1954; Kamiya and Togawa, 1972; Gafiy-
chuk and Lubashevsky, 2001; Kassab, 2007). Klarbring et al. (2003)
apply strategies originating from topology optimization of electri-
cal networks and load carrying trusses to flow networks. The flow
network topology is optimized w.r.t. the cross-section of the pipes
in order to minimize the total pressure loss (dissipation) under a
total volume constraint.

Schreiner and Buxbaum (1993) proposed to use constrained
constructive optimization (CCO) to iteratively construct a 2-D bin-
ary tree. The method of CCO (and its variations) is a stochastic con-
struction process purely based on structural optimality principles
under hemodynamic boundary conditions. In order to generate
visually more realistic vascular trees in 3-D, Karch et al. (1999,
2000) combined CCO with staged tissue growth leading to struc-
tural changes of the simulated tree models. However, the vascular
trees have been truncated at the prearteriolar scale. Similarly, CCO
has recently been combined with time-dependent constraints on a
level set distance function to restrict the morphology and the
arrangement of major (cerebral) arteries, in particular (Bui et al.,
2010). Multiple connected trees, e.g., a venous and arterial tree,
can be constructed by connecting new points to both trees induc-
ing two new terminal branches with opposite flow direction spec-
ified as boundary condition (Kretowski et al., 2003). This extension
of CCO for the construction of multiple coupled trees in 3-D has
successfully been applied to simulate biphasic computed tomogra-
phy images (Kretowski et al., 2007).

Leeuwen et al. (1998) suggested an algorithm for the generation
of artificial 3-D vascular networks for use in hyperthermia treat-
ment planning. Formation of new segments starts at uniformly dis-
tributed target points in the region of interest towards existing tree
segments. The growing process is driven by a 3-D potential field
computed as the superposition of potential functions assigned to
each established vessel. The driving force is hence defined by the
vasculature itself rather than (underperfused) tissue cells. As there
is no physiological equivalent to the employed potential field, it re-
mains unclear how to define or adjust the potential to enforce cer-
tain physiological properties.

In the aforementioned approaches, tree generation is consid-
ered as a strictly generative and irreversible process which does
not allow for dynamic remodeling of the vasculature. A more dy-
namic growth model incorporating vascular degeneration provides
the required flexibility to build individual vasculatures meeting
prescribed case-specific conditions such as metabolic demand.

1.3. Our approach

We pursue a modeling approach based on a simplified angio-
genesis model as the driving force of vascular tree formation and
degeneration. It relies on the metabolic activity of the tissue in
the considered domain as may be obtained from functional imag-
ing, for instance. At the same time, similar to CCO, we incorporate
morphometrically confirmed optimality hypotheses concerning
the branching structure of vascular systems. This way, we itera-
tively build an arterial tree that meets the metabolic requirements
of the embedding tissue using a multiscale simulation approach
(staged growth). As opposed to previously suggested approaches,
we do not explicitly enforce hemodynamic constraints at construc-
tion time. Also note, that we focus on the construction of arterial
trees rather than a complete vascular network with a venous
counterpart.

In Schneider et al. (2011), we sketched a first draft of such an
algorithm which was used to construct artificial tree models for
different synthetic metabolic maps. In this paper, we significantly
extend our previous work, particularly w.r.t. the experimental set-
up which is based on real data obtained from an animal study on
the microvascular structure and oxygen metabolism in the maca-
que visual cortex (Weber et al., 2008) (see Section 3). The tree
construction approach itself is modified to allow for user-defined
radius boundary conditions at the initial tree segments (see
Section 2.3). In this way, excessive (uncontrolled) growth of single
trees is prevented, which ultimately yields more realistic results
w.r.t. both morphological and hemodynamic properties. Finally,
the synthetic trees are analyzed in more detail w.r.t. morphologi-
cal, topological, and fluid-dynamic properties.

2. Methods

Our approach for the generation of artificial arterial trees is
based on physiological principles related to (sprouting) angiogen-
esis in order to achieve physiologically plausible results. Angiogen-
esis describes the formation of new capillary blood vessels from a
pre-existing vasculature in well-characterized stages. It plays a
crucial role in different growth processes such as embryonic devel-
opment, wound healing, or tumor growth (Milde et al., 2008). In
chemotactic response to angiogenic signals, also known as angio-
genic growth factors, solid capillary sprouts develop from pre-
existing vessels by means of endothelial cell proliferation and
migration towards the source of the angiogenic stimulus. There
are numerous growth factors and other chemical substances in-
volved in angiogenesis. We will reduce the complex signaling cas-
cade to a single transmitter, namely the vascular endothelial
growth factor (VEGF). This family of transmitters has widely been
studied both in vivo and in vitro and proven to be a potent stimu-
lator of physiological and pathological angiogenesis (Gabhann
et al., 2007). VEGF, secreted by, e.g., tumor or ischemic cells, dif-
fuses into the surrounding tissue establishing a concentration gra-
dient between the source and the vessels. In our method, these
physiological principles are applied on a gradually growing simula-
tion domain to drive the iterative arterial tree generation consist-
ing of a constructive (growth) and destructive (degeneration)
component. In contrast to a purely constructive approach (Schnei-
der et al., 2011), these opposing processes allow for dynamic tree
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Fig. 1. Schematic workflow of tissue metabolism driven arterial tree generation.

remodeling w.r.t. morphological statistics and constraints as well
as the prescribed oxygen metabolism of the embedding tissue.
The general workflow of the tissue metabolism driven tree gener-
ation is depicted in Fig. 1. The individual components will be ex-
plained in further detail in the following.

2.1. Arterial tree model

In this work, we consider arterial tree models rather than full-
fledged vascular networks consisting of an arterial supply network
and an interconnected venous drainage system. According to mor-
phometric analysis, bifurcations of vascular trees almost invariably
branch into two distal branches (Zamir, 1976). As a first approxi-
mation, arterial trees can hence be considered as binary trees that
can be efficiently represented by a discrete graph structure en-
hanced by additional node and edge attributes to encode geometry.
The graph structure (rooted tree) and the vasculature are related as
follows: Each vessel segment is modeled as rigid cylindrical tube
with radius r and length [ inscribed in the vessel. It is represented
by a single directed edge connecting two nodes. Semantically, this
gives rise to four different types of nodes, namely root, leaf, bifur-
cation (-«), and inter nodes (-e.). The latter links two successive
vessel segments and allows to approximate the shape of a tortuous
vessel branch. Additionally, each node is tagged with a unique 3-D
coordinate p = (x,y,z)". Combining coordinate and connectivity
information fully captures the geometry of the approximated vas-
culature. The edge direction is defined as the direction of blood
flow, i.e., pointing “downstream” towards the capillary bed. Note
that a binary rooted tree model does not allow for cycles and hence
is not able to capture interconnections (anastomoses) and the web-
like nature of the capillary network. In the following, we will dis-
tinguish between vessel segments and vessel branches. The former
denotes a single edge between any two connected nodes, while the
latter relates to the path from a bifurcation or root node to the next
distal bifurcation or leaf node as a whole. We assume the segment
radii of a single branch to be constant, i.e., adjacent edges of an in-
ter node have the same radius (see Fig. 2a).

(a)

root node
inter node
bifurcation node
leaf node

@000

oo directed
vessel segment

e vessel branch

Similar to Schreiner and Buxbaum (1993) and Kretowski et al.
(2003), we enforce additional morphological constraints for the
arterial tree model. The relation of the decreasing vessel radii from
proximal to distal branches is governed by a bifurcation law, also
known as Murray’s law. It relates the radius of the proximal parent
branch r, to the radius of the left (r;) and right (r;) daughter
branches (Murray, 1926):

rh=r]+1], (1)

where 7 denotes the bifurcation exponent, with values reported
ranging from 7 = 2.0 to y = 3.0 (Arts et al., 1979; Fung, 1997; Schre-
iner and Buxbaum, 1993; Zamir, 2000). This well-known physiolog-
ical law has been confirmed by both morphometrical analysis of
arterial trees (Zamir, 1976; Kaimovitz et al., 2008) and theoretical
considerations on optimality principles (Murray, 1926; Cohn,
1954). However, there are other studies showing that not all bifur-
cations strictly obey this branching pattern in nature (Cassot et al.,
2009). They suggest that while Murray’s law is acceptable as a mac-
roscopic approximation, it may not be applicable at all scales, in
particular at the microscopic level.

Additionally, the bifurcation configuration is further con-
strained w.r.t. bifurcation angles based on fluid dynamic consider-
ations (Fung, 1997, Chapter 3.3) and the optimality principles of
minimum work and minimum energy dissipation proposed by
Murray (1926) and Rosen (1967), respectively:

o For
—_p 1 r _p " !
COS(d)l) - 2’,12)’,’2 ) Os(d)r) - zrgr% ) (2)

with ¢;, ¢, denoting the bifurcation angle of the left and right
daughter segment, respectively. Geometrically this corresponds to
the optimal position of the branching point p, w.r.t. a minimum vol-
ume principle, i.e., minimizing the total lumen volume for fixed
boundary points of the adjacent branches:

Py =argmin > 17|k — Poll,, 3)
Pp ke{p.lr}

where p,, p;, pr are the boundary nodes of the parent, left, and right

segment, respectively (see Fig. 2b).

From a global point of view, arterial vessels share a distinct root,
namely the aorta. On a local level, however, the considered vascu-
lature may consist of several disjoint components. Therefore, the
arterial tree model has to be extended to a “rooted forest” consist-
ing of several disjoint rooted trees, each of them corresponding to a
single arterial component. In the following, we will neglect this
subtlety and stick to the term (arterial) tree model.

2.2. Angiogenesis model

We use a simplified angiogenesis model as the driving force for
our simulations. The model considers the mutual interplay of arte-
rial oxygen (0,) supply and VEGF secreted by ischemic cells.

(b)

Pp

Fig. 2. Arterial tree model (a) with constrained bifurcation configuration (b).
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Fig. 3. Michaelis-Menten relationship for the oxygen consumption rate R; relative to saturation level R as a function of local oxygen concentration ¢; (a). VEGF secretion R,

relative to base level R) (b).

Tissue is assumed to be homogeneous w.r.t. O, and VEGF trans-
port with diffusivity D; and D,, respectively. Assuming steady-
state conditions, Fick’s first law postulates (Secomb et al., 2004):

D1V%c; =Ri(cy), (4)
C1

R —RO__1 5

I(Cl) 1C1+C’]1, ( )

where c; represents the O, concentration. R;(c;) denotes the O, con-
sumption rate which is modeled by a Michaelis—Menten relation-
ship defined by the 0, demand at saturation level R® (unlimited
0, supply) and the half-saturation concentration c? (see Fig. 3a).
Note that R? is subject to regional variations, in general.

VEGF secretion in tissue is dependent on the average oxygena-
tion level. However, the exact relationship has not yet been exper-
imentally measured. We model the oxygen-dependent VEGF
secretion rate R, as follows (Gabhann et al., 2007):

6R), if ¢; <O
high . .
Ry(cy) = (1 + 5(@7,3)123, if 6% < ¢; < oMeh, (6)
1 1
RS, if ¢, > ohie

The shape of R; is sketched in Fig. 3b. Along with Eq. (5), the em-
ployed thresholds 6" and 0‘1“gh have the following interpretation:

low
€ = Olow - R (Cl) _ 91
=0; =1
R 0w 4 ch

high
o ghigh Ri(ci)  07®
1=% 0~ high h
R; 0,°" +c]

(~ 66.6%), (7)

(~ 97.6%). (8)

In other words, if the oxygen concentration at a tissue cell exceeds
H'I“gh, the oxygen saturation level is more than 97.6%. The figures
have been computed for the parameter values provided in Table 1.

The secreted VEGF isotropically diffuses and is subject to natu-
ral decay while neglecting VEGF uptake by endothelial cells (Milde
et al., 2008):

DzVZCz =VCy — RQ(C]), (9)

with VEGF concentration c,, diffusivity D,, and decay rate v.

For a given vascular tree, this simplified reaction-diffusion
model can be applied in order to approximate the perfusion of
the surrounding tissue and to compute the corresponding VEGF
concentration map. The transition from the arterial tree model to
the O, and VEGF map is described in more detail in Appendix A.
In brief, the oxygenation map is approximated as the superposition
of the oxygenation induced by each single vessel segment accord-
ing to Eq. (4). We assume radial O, diffusion with a Dirichlet
boundary condition on the surface of the artery wall. The boundary

Table 1
Main simulation parameters. The default values are underlined (if required).
Additional algorithm parameters are listed in Table B.3.

Parameter Value Unit Source Text
D, 241 x107° m?s~! Ji et al. (2006) Eq. (4)
RoSe 5.08 x 1074 m o, mg3,. s ! Powers etal (1985) Eg.(5)
ch 195x10°  m3 mg3,  Jietal (2006)
K 4.08 x 1073 méz mgﬁood n/a Eq.
(A1)
To 3.5x10°° m Cassot et al. (2006)
glow 3.89 x10°° mo, mg3 . Gabhann et al. Eq. (6)
(2007)
ghieh 7.78 x 1074 m3, mgl,. Gabhann et al.
(2007)
D 1.04 x 101 m?s! Gabhann et al. Eq. (9)
(2007)
v 4x181x10* s! Milde et al. (2008)
Y 3.0,3.5 - Fung (1997) Eq. (1)
My 12,14, 16 - nfa Eq. (10)
Up 6.0 - n/a
g 1.0 - n/a Eq. (12)
v 1.1 - nfa Eq. (15)
T'min 3.0 x 1076 m n/a

condition is chosen heuristically based on a radius-dependent
scheme that makes small vessels at the capillary scale contribute
most to the oxygenation, whereas large vessels have a negligible
effect (see Appendix A for details). The induced steady-state VEGF
concentration is subsequently computed according to Egs. (6) and
(9). Corresponding to the physiological principle of sprouting angi-
ogenesis, the VEGF concentration map is then used as an excitatory
potential field for vascular growth.

2.3. Vascular growth

Following the process of sprouting angiogenesis, vascular
growth is modeled as a chemotactic process w.r.t. the local VEGF
concentration. In other words, we will consider vascular growth
as a predominantly local process, i.e., the vasculature is being
adapted and remodeled locally in order to counteract the secretion
of a growth-stimulating external VEGF agent. The vascular growth
model is sketched in Algorithm 4 in Appendix B. In general, we dis-
tinguish between apical growth at leaf nodes (apices) and sprout-
ing at inter nodes.

2.3.1. Apical growth

Apical growth is the primary growth process observed in nat-
ure. A capillary may either elongate or bifurcate into two similar
branches resulting in mostly symmetric bifurcations. We model
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this binary event as a probabilistic process, which directly allows
to incorporate further constraints on the morphology (branching
pattern) of the constructed tree structures. To this end, we pre-
scribe a global branch length statistics assuming the branch aspect
ratios x = I/r follow a log-normal distribution with location and
scale parameter y, and oy, respectively:

1 Inx — 1)
Py(x) = 10g N'(X; 1y, 0p) = —— exp ( (22Hb)> (10)
x,/2m0? %

where x = [/r denotes the aspect ratio of a branch with (constant) ra-
dius r and (cumulative) length L. Using the corresponding cumula-
tive distribution function (cdf) of this branch length distribution,
an evolving leaf node at the distal end of a vessel branch with aspect
ratio x = I/r will form a bifurcation with probability:

Inx -,
\/ 202

where &(x) denotes the standard normal cdf and erf (x) the
Gaussian error function.

In case of an elongation at a leaf node p, the growth direction is
chosen based on the local VEGF gradient as

o ) =3t zef (11)

Pb(X;ub,ab):¢<m7_””> 1,1

- Vo) ds
=4 12
O IVa®I ) dy) 12

where ||-|| denotes the Euclidean norm, d; the (oriented) direction of
the proximal segment and /g a constant regularizer to avoid sharp
bendings. The radius of the new distal segment is adopted from
the proximal segment. For given segment radius, the corresponding
segment length is inferred from the branch length statistics in
Eq. (10) to completely define the newly formed segment.

In case of a bifurcation at a leaf node, the segment radii ry, > of
the two new distal branches are computed based on the proximal
segment radius rp:

re=2""ry,
r~N(ru=re,0=r:/32),
NN V'
n=(r-r)". (13)

Intuitively, this heuristic has the following interpretation: For given
proximal segment radius rp,, we compute the “expected” radius r. of
the distal segments according to Murray’s law for a fully symmetric
bifurcation (r; = r3). Next, r. is used as the mean of a narrow normal
distribution to infer ry. Finally, r, is well-defined according to Mur-
ray’s law given r, and ry. Strictly speaking, we further restrict the
valid radius range to rpin <11, 12 < 1p in order to avoid both exces-
sively strong growth and tiny sprouts (rmi, =3 pm). Just like the
elongation case, the segment lengths are inferred from the branch
length statistics for given segment radii. The branching angles are
computed using Eq. (2).

According to the minimum volume principle, the adjacent seg-
ments at a bifurcation node are coplanar (Kamiya and Togawa,
1972; Fung, 1997). We define the corresponding plane at a bifur-
cating leaf node to be spanned by the direction of the proximal seg-
ment and the local VEGF gradient. In this way, the bifurcation
configuration is well-defined except for the arbitrary ordering of
the left and right segment. Applying the branching angles directly,
however, might result in large deviations of the grow directions
from the local VEGF gradient. Therefore, we finally adjust this ten-
tative bifurcation configuration as follows: Firstly, the distal seg-
ments are ordered (left vs. right) such that the enclosed angle of
the larger segment and the the VEGF gradient becomes minimal.
Next, both segments are rotated about the normal vector of the

bifurcation plane such that the larger segment coincides with the
VEGF gradient. Finally, the bifurcation node is relocated using
Eq. (3) in order to reinforce optimal bifurcation angles.

2.3.2. Sprouting

Besides apical growth at leaf nodes, vessels may also build
sprouts at inter nodes resulting in both symmetric and asymmetric
bifurcations. Forming a new sprout at an inter node divides the
pre-existing vessel into a proximal and distal branch with aspect
ratio x, and x4, respectively. Consequently, introducing the new
sprout affects the tree’s branch length statistics as a single branch
is replaced by two shorter ones (and the new sprout is added).
Hence, we define the sprouting probability at an inter node using
Eq. (11) as:

Ps((Xp, Xa); fy, Op) = \/Pb(Xp;Hb»Ub)Pb(Xd;Mb»Ub) (14)

Intuitively, this definition makes sprouting less likely towards the
source and target of a vessel branch and more likely towards the
center.

Similar to apical growth, we choose the local VEGF gradient as
the preferred growth direction of the new sprout: ag = % In
order to prevent the new sprout from growing in the direction of
the (pre-existing) distal branch, we apply an additional angular
condition. For this, we allow for sprouting only if the local VEGF
gradient ag and the direction of the distal branch draw an angle
of at least 10°. The new segment radius r; is computed as

Ty = Tp,
1/
’_ r 7
= (7 -n)
_ (!//“/ _ ‘1)1//1»1)7

r— {r ~U(Tmin, 17), if Tmin <T¢ (15)

T'min, otherwise

where r, denotes the radius of the (prospective) parent segment
and Y >1 a “growth stimulator” (see below). This definition has
the following motivation. According to Murray’s law, generating
the new sprout at the inter node results in either enlargement of
the proximal segment or narrowing of the distal segment (or both).
Crude downsizing of the distal segment may have severe implica-
tions on the morphological and functional properties of the distal
subtree. Therefore, we in fact try to maintain the radius of the distal
segment and compensate for the additional blood demand by
enlarging the proximal segment accordingly. To this end, we define
the scaling factor i > 1 that determines the maximum dilation r}, of
the proximal segment. Given this upper bound, we keep the distal
segment’s radius unchanged at r, and compute the resulting “ex-
pected” radius r, for the new sprout according to Murray’s law. Fi-
nally, we randomly choose the new segment radius r; from the
interval [rmin,7;] using a uniform distribution (/). The choice of
effectively determines the upper bound of ry, e.g., r; = 0.331r,, for
Y=1.1and y=3.

For given segment radius r,, the segment length is inferred from
Eq. (10) and the proximal segment radius is adjusted using Mur-
ray’s law. Growth direction, segment radius and length uniquely
define the new sprout. However, the resulting bifurcation configu-
ration is non-optimal w.r.t. bifurcation angles. Similar to the bifur-
cation case, we optimize the tentative bifurcation configuration by
relocating the bifurcation node according to Eq. (3).

2.4. Tree remodeling

As sprouting inter nodes and bifurcating leaf nodes in general
spoil the bifurcation law on a global scale, additional tree remodel-
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ing is required to reinforce global optimality of the evolving vascu-
lar tree model. Local adaption of a single vessel branch hence
implicates global effects on the morphology of the entire vascular
tree.

In a first step, the segment radii are being updated along the
path from the site of growth up to the root node according to Mur-
ray’s law. Adjusting the radii, in turn, impairs the optimality of
branching angles. Therefore, bifurcation optimality is recovered
by relocating non-optimal bifurcation nodes according to Eq. (3).
Applying this back-propagation scheme for vessel radii results in
continuously growing tree segments as investigated in our previ-
ous work (Schneider et al., 2011). Depending on the initial condi-
tions, this may produce rather unrealistic morphologies due to
the inherent assumption of unlimited blood and oxygen supply
at the root nodes. Prescribing the vessel radius at each root seg-
ment easily circumvents this phenomenon but requires further
adjustment in order to reinforce the additional boundary condi-
tion. If the radius of the root segment r deviates from the pre-
scribed radius ro after back-propagation (1’ #ry), all tree
segments have to be rescaled by ro/r'. This symmetric rescaling
with constant scaling factor does not affect the validity of Murray’s
law nor the optimality of the bifurcation angles (see Eqs. (1) and
(2)). The rescaling might reduce the radius of some tree branches
to unreasonably small values. Therefore, we iteratively prune tiny
terminal segments with radius r < rpryne, Where rpryne denotes a
constant radius threshold. The pruning step will be explained in
more detail in the next section. The different steps for tree remod-
eling are summarized in Algorithm 5 in Appendix B.

2.5. Vascular degeneration

Vascular growth is a highly dynamic process subject to contin-
uous reorganization. This comprises not only the formation of new
sprouts but also the reorganization and degeneration of non-uti-
lized vascular structures (Kurz et al., 2003). For our tree construc-
tion, we rely on a simplified vascular degeneration step which
counterbalances the generative growth process and thus allows
for morphological reorganization to a certain extent. The degener-
ation proceeds in three steps:

First of all, we shrink prominent terminal branches. It is well
known that in the (normal) circulatory system, the arterial and ve-
nous part are connected by the capillary bed. Aside from prearteri-
oles and arteriovenous shunts (Pries et al., 2010), which are
neglected in our tree model anyway, blood cells pass the capillary
network to deliver oxygen and nutrients on their path from the
arterial to the venous side. Therefore, the terminal branch radii
of our tree model should ultimately be in the capillary range.
Non-capillary terminal segments can occur due to the choice of
the segment radius in the constructive growth process but also
due to vascular degeneration itself (see below). We try to over-
come this problem by shrinking terminal branches with radius
T > I'qegen. The reduced radius is computed by linear interpolation
as 1 = (1 — A)r + AsTprune. In order to recover the consistency, the
vascular tree has to be remodeled subsequently as explained in
Section 2.4.

In the second step, potentially unnecessary vessel segments are
being pruned. Intuitively, one could think of fluid dynamic mea-
sures, e.g., blood flow rate at terminal segments, to decide whether
or not a capillary should be sustained or not. This would require a
full-fledged multiphysics simulation of the fluid dynamic proper-
ties of the tree model after each iteration, which is computationally
expensive, though. What is more, setting reasonable boundary
conditions at the root and terminal segments is difficult since the
evolving tree model does not represent a meaningful vasculature
until the end of the construction process. We therefore use a more
heuristic approach to judge the importance of a capillary sprout in

the first place, namely the VEGF concentration. If the local VEGF
concentration at any terminal node falls below a certain threshold,
we consider the corresponding terminal segment as potentially
dispensable. Since this is a somewhat vague criterion, we discard
each candidate segment only with a small probability in order to
avoid excessive pruning.

Finally, we supplement the VEGF criterion by the employed
branch length statistics in Eq. (10). If the bifurcation probability
at a terminal node exceeds a threshold close to 1, this is a good
indicator that the terminal branch shows an abnormally high as-
pect ratio, i.e., the branch is abnormally long for given vessel ra-
dius. In this case we prune the corresponding leaf segment in
order to counteract this deviation.

Tree remodeling is required once more when pruning an entire
vessel branch which may consist of a single vessel segment only.
Removing the terminal branch converts the proximal source node
of the branch from a bifurcation node to an inter node. In order to
recover consistency of the inter node configuration, we rescale the
distal subtree radii by r,/rq, where r, and ry denote the segment ra-
dii of the proximal and distal segment, respectively. Additionally,
we relocate the former bifurcation node in order to smoothen
the resulting branch. The new location is chosen as the center of
the neighboring proximal and distal node.

Pseudo code for the vascular degeneration and the pruning of
terminal vessels is provided in Algorithms 6 and 7 in Appendix B.

2.6. Iterative tree construction

Finally, we are able to put together the different building blocks
that have been presented in the previous sections to a self-
contained tree construction algorithm. It pursues an iterative
multiscale approach as summarized in Algorithm 2 in Appendix
B. We will first explain the iterative construction and address the
multiscale aspect at the end of this section.

The input to the algorithm is an initial tree model, a metabolic
map indicating the oxygen metabolism of the surrounding tissue
and a simulation domain. The initial tree is then iteratively refined
as follows: In a first step, the total oxygenation along with the in-
duced steady-state VEGF concentration map are computed on the
simulation domain as explained in Section 2.2 and Appendix A in
more detail. Following the basic principle of sprouting angiogenesis,
the VEGF field is then used to find excited tree nodes that are poten-
tial candidates for vascular growth in response to the VEGF stimu-
lus. To this end, we uniformly sample a set of random N, points
from the simulation domain and pick the one with maximum VEGF
concentration. From the randomly sampled points, the picked one
hence indicates the “hot spot”, i.e., the location of highest VEGF sig-
naling as a result of hypoxic tissue cells lacking oxygen supply. From
the N, closest tree nodes to this hot spot, we again choose the node p
with maximum VEGF concentration as the presumably best suited
node to counteract the local VEGF stimulus. If the VEGF concentra-
tion at node p exceeds a critical threshold 6., we consider this node
to be excited and hence locally refine the tree model using the
mechanisms for vascular growth and tree remodeling as explained
in Sections 2.3 and 2.4. The remodeled tree is then used as input
for the next iteration. This process is repeated until the tissue cells
in the simulation domain are sufficiently perfused. A single cell is
considered sufficiently perfused if the local oxygen consumption
exceeds 0"", i.e., the cell does not secrete any extra VEGF in the
sense of Eq. (6). Based on this, the entire domain is defined as suffi-
ciently perfused if the ratio of perfused cells (voxels) to the total
number of cells (voxels) exceeds the threshold 0p,.

The iterative tree construction is encapsulated in a multiscale
framework. The simulation scale has been introduced to emulate
virtual staged growth of the simulation domain (tissue) starting
from a downscaled instance to the real simulation domain. In fact,
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the simulation scale s> 0 defines a coordinate transformation T
mapping from the real domain Q, (world coordinates) to the re-
scaled simulation domain €, (simulation coordinates):

Ts : QO — Qs
o me (16)
Xi>s5y™ R,

where sy denotes the initial scale and N; the total number of scales.
In particular, Ty, is the identity. The arterial tree models can be
transformed similarly by scaling all tree node coordinates and linear
measures, e.g., vessel radii.

Finishing the generative growth phase for a given simulation
scale, we perform a tree degeneration step as described in
Section 2.5 before advancing to the next scale. During the iterative
growth phase, a somewhat alleviated degeneration strategy is
applied which only affects leaf nodes with low VEGF concentration.
If a leaf node is being sampled as the best suited candidate close to
the hot spot but not excited due to low local VEGF concentration,
the corresponding leaf segment is being pruned.

3. Numerical experiments and analysis
3.1. Experimental setup

The proposed iterative tree construction approach was applied
in an experimental setup that is geared to the cerebral anatomy
and physiology. The simulation domain is defined as an axis-
aligned cuboid with its longitudinal axis orthogonal to the cortex
surface (z = 0). For subsequent analysis, we further define a cylin-
drical region of interest (ROI) that is located in the center of the
simulation domain as shown in Fig. 4a.

The steady-state metabolic demand of the tissue is approxi-
mated by measurements of cytochrome oxidase (COX) activity fol-
lowing Weber et al. (2008). In this study, COX staining has been
applied to the macaque visual cortex V1 in order to measure the
COX activity along the cortical depth (Weber et al., 2008, Fig. 4).
We apply a linear transformation to map the relative COX
measurements to the absolute cerebral metabolic rate of oxygen
consumption, where the base consumption rate is set to
RE?® =5.08 x 10 * m3 m2,. s~ assuming an average brain den-
sity of 1.05 g/ml (Powers et al., 1985). Cubic spline interpolation
is used to compute a continuous metabolic profile which is embed-
ded in the simulation domain as shown in Fig. 4b.

The tree construction is initialized by descending cortical vessel
stubs perpendicularly plunging into the cortex. To this end, micro-
scopic images of the pial network of the macaque visual cortex
have been used to segment the entry points on the cortex surface
as shown in Fig. 4c. According to the entry point map and the COX
profile, the dimensions of the box-shaped simulation domain € are
chosen as 992 x 864 x 1760 um?>. For the cylindrical ROI R we set

the height to 1536 um and the major and minor diameters to
648 pm and 552 pm, respectively. The domains are discretized
by a regular grid with an isotropic voxel spacing of 32 pm. As illus-
trated in Fig. 4a, the length of the initial stubs is set to /=100 pm
with a normally distributed radius r=15 £ 1.25 um (Weber et al,,
2008).

All simulations are conducted for Ng = 16 scales. The initial scal-
ing factor sq is chosen such that the radius of the smallest initial
vessel stub is mapped to the absolute minimum radius
T'prune = 2 UM at the initial scale s=1 (see Eq. (16)). In order to
account for statistical variation of the constructed trees, all simula-
tions are repeated four times using different seeds for the em-
ployed pseudo random number generator (PRNG). The default
simulation parameters are summarized in Table 1. Note that we
use the mean m;, and variance v, to parametrize the log-normal
branch length distribution of Eq. (10).

Fig. 5 visualizes the evolving vasculature at different scales for a
single realization using the default parameter set. Single connected
tree chunks are displayed separately for different simulation
parameters in Fig. 6.

We have analyzed the constructed arterial tree models with
regard to their structural and functional properties. For now, we
consider the simulations for the default parameter set.

3.2. Global morphometry

For the morphometrical analysis we consider vessel segments
within the ROI only. In this way, the influence of artifacts close
to the boundary of the simulation domain are being reduced. First
of all, we analyzed the characteristics of the length and diameter
distributions over all vessel branches (within the ROI). In accor-
dance with Lauwers et al., 2008, the logarithm of the length and
the inverse of the square root of the segment diameter can be
approximated by a normal distribution with similar mean and
median, skewness close to zero, kurtosis close to three (see
Fig. 7). The sharp peak at d = 6 pm in the normalized diameter dis-
tribution results from the choice of the minimum radius
T'min = 3 HM.

Besides branch diameter and length, we also investigated the
bifurcation configurations w.r.t. the optimality principles of our
arterial tree model, namely Murray’s law and the optimality of
bifurcation angles (see Eqgs. (1) and (2)). The former is strictly en-
forced intrinsically by design of the algorithm. The latter, in con-
trast, is applied as a soft constraint, i.e., we allow for small
deviations (0, =5") from the supposedly optimal bifurcation angle.
Computing the average angular deviations for all bifurcation nodes,
we note that the differences stay well below the tolerance 0, as
shown in Fig. 8a.

In order to compare our tree model to the prescribed branch
length statistics, we compute the aspect ratio x=I/r for each

RO/ Rbase X .
(b) /55 S — (c) —648 ym—|
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Fig. 4. (a) Box-shaped simulation domain € with inscribed cylindrical region of interest R. The initial stubs on the cortex surface (z = 0) are rendered as red cylinders with
normally distributed radius r=15 + 1.25 um and constant length [ = 100 pm, respectively. (b) Metabolic activity R? relative to base consumption rate Rga:“ as a function over
cortical depth z based on COX data (red circles) taken from Weber et al. (2008, Fig. 4). The black bars indicate the depth range of the simulation domain and the ROL
(c) Arterial entry point map on the cortex surface for simulation domain Q. The dashed ellipse outlines the region of interest R.



1404 M. Schneider et al./ Medical Image Analysis 16 (2012) 1397-1414

s=4

radius [pm]
l 17
— 10
8.0

2.0

Fig. 5. Evolution of an arterial tree model at different scales s. The simulation domains have been rescaled to the size of the target domain (right) for better comparability. The
segment radii are color-coded on a logarithmic scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

branch within the ROI, where [ and r are the branch length and
diameter, respectively. The aspect ratio distributions are plotted
along with the prescribed log-normal distribution of Eq. (10) for
different mean values in Fig. 8b-d.

3.3. Topology

For the topological analysis, we classify vessel branches accord-
ing to the well-established diameter-defined Strahler system intro-
duced by Kassab et al. (1993). In this classification scheme, leaf
segments are assigned Strahler order zero. The Strahler order of
the remaining branches is iteratively computed along the path
from the leaf segments towards the root node. Based on the Strah-
ler order, consecutively connected vessel branches of the same or-
der form a Strahler vessel.

The diameter-defined Strahler orders of a single connected
component is illustrated in Fig. 9a. Note that the topological anal-
ysis based on the Strahler system is only meaningful on the un-
cropped trees, i.e., also including vessel segments outside the
ROL The semi-log plot of Fig. 9b shows the total number of Strahler
vessels per Strahler order. Similarly, the semi-log plot of Fig. 9c re-
lates the Strahler order to the average length and diameter of the
Strahler vessels.

3.4. Microvascular structure

We further analyzed the microvascular structure of the tree
models. Common characteristics for microvascular analysis are
the volume fraction and length density which have proven to
strongly correlate with the steady-state metabolic demand of the
tissue (Weber et al., 2008). In order to validate these findings for
our models, we have repeated our simulations with the same input
parameters but constant metabolic activity throughout the entire
simulation domain. The metabolic level was set to the base level,
i.e., each cell metabolizes oxygen at the constant rate R'(’)ise. The
resulting microvascular structures have been analyzed and com-
pared to the original trees for the COX-based metabolism. To this
end, the simulation domain was sliced along the z-axis into thin
slabs of height 64 um. The average length density and volume frac-
tion of the microvascular structure was then computed for each
slab. Vessels with a diameter of less than 8 pm were considered
to be capillaries (Weber et al., 2008). The analysis was again re-
stricted to the ROI in order to exclude boundary artifacts. Fig. 10
compares these quantitative descriptors of the microvasculature
across the cortical depth for the two different models.

3.5. Hemodynamic analysis

A simulation framework proposed by Reichold et al. (2009) was
used to simulate the pressure and blood flow through the tree
model which is treated as a flow network in this context. The resis-
tance of each (vessel) segment is computed based on the Hagen-
Poiseuille equation where the viscosity follows the in vivo effective
blood viscosity taking into account the local hematocrit as well as
the endothelial surface layer (Pries and Secomb, 2005). Pressure
boundary conditions are set at the feeding arteries (root nodes)
and the capillaries (terminal nodes) using literature values (Lipow-
sky, 2005). The pressure and flow information was used to perform
a basic plausibility check w.r.t. the balance of oxygen supply and
demand. The total oxygen consumption rate within the ROI R is
Q = [[/xR(2)dx dy dz, where R?(z) is the metabolic activity at
cortical depth z (see Fig. A.12b). For the parameters of our experi-
mental setup, this yields Q. =219 pl/s assuming constant
metabolic level R? = jose and Q_,, = 264 pl/s for the COX profile
of Fig. 4b. The total amount of oxygen delivered by the vasculature
can be approximated based on the following considerations. The
concentration of oxygen in blood can be computed as

Co, = 1.34 ml/g cup So, +0.003 ml/dl mmHg p,, (17)

where cyp, denotes the hemoglobin concentration in blood, so, the
oxygen saturation of hemoglobin, and p , the partial pressure of
oxygen in blood. Assuming cyp, = 15 g/dl and p,, = 95 mmHg, this
yields ¢, =191.8 pl/ml at the feeding vessels (s o, = 94%),
respectively ¢gi* = 153.6 p/ml at the capillaries for so, = 0.75 (Boas
et al., 2008). Using these values, the total amount of oxygen deliv-
ered by the vasculature to the cells within the ROI can be approxi-
mated as Q7 = (cg; - c%‘;‘)ZtQ(t). where Q(t) denotes the blood
flow rate at terminal segment t.

We have performed a small parameter study to investigate the
influence of different simulation parameters on the flow-dynamic
properties of the tree models. For this, the simulations have been
repeated for the COX-based and the constant metabolic level with
the mean value of the branch length statistics mj, € {12,14,16} and
Murray’s exponent to y € {3.0,3.5}. The remaining parameters are
left unchanged. Each simulation is repeated four times with differ-
ent seeds for the PRNG. The resulting pressure and flow velocity
distributions for the different parameter sets are illustrated in
Fig. 11 along with the reference values from Lipowsky (2005).
The corresponding values of oxygen supply (Q") and demand
(Q7) are listed in Table 2.
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Fig. 6. Synthetic tree models for different simulation parameters. Left: Complete tree model. Right: Isolated single connected tree components. The segment radii are color-
coded on a logarithmic scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Characteristics of segment length | and diameter d distributions computed over all vessel segments within the ROI In accordance with Lauwers et al., 2008, the
distribution of the diameter (a) and the branch lengths (c) can be normalized by the inverse of the square root (b) and the logarithm (d), respectively.

4. Discussion

The presented angiogenesis and vascular growth models in-
volve many parameters. Even though some of them have a direct
interpretation and can partly be chosen based on literature values,
it is still difficult to predict their ultimate influence on the out-
come. We have performed small sensitivity studies to investigate
the effect of the different parameters on the structural and func-
tional properties of the tree by individually varying a single param-
eter in a reasonable range while fixing the others at the reported
default values. In the presented experimental results, we show
the effect of two factors we found most significant, namely the
metabolic demand of the surrounding tissue and the branching
pattern including Murray’s exponent and the prescribed branch
length statistics. A more extensive sensitivity analysis of the
parameters without reference values from the literature using
brute-force grid search is computationally prohibitive considering
the algorithmic complexity. Besides, the lack of effective quality
criteria renders a rigorous and compact evaluation of different
parameter configurations very difficult.

As described in Section 2.4, tree remodeling has global effects
on the morphology of the vascular model. Therefore, the perfusion
and VEGF concentration maps have to be recomputed after each
iteration, which clearly represents the computationally most
expensive operation involved in the generation process. In spite
of the numerical optimization of the angiogenesis model (see
Appendix A), the total computation time for the simulations pre-

sented in Section 3 is still about three hours in average, while cer-
tainly depending on the parameter values using a multi-threaded
C++ implementation on state-of-the-art hardware (quad-core
CPU at 2.8 GHz and 8 GB of RAM).

Explicit comparison of the synthetic tree models with real vas-
cular systems is difficult. Considering the structural complexity
and the inherently stochastic nature of vessel formation, particu-
larly at the microvascular scale, comparing functional properties
and structural statistics is a reasonable approach to investigate
the similarity of vascular structures.

From a visual point of view, the synthetic trees correspond well
to real cerebral arteries reported in the literature (Cassot et al.,
2006; Weber et al., 2008; Cassot et al., 2010), even if the microvas-
cular structures are not modeled with the required complexity as a
result of the binary tree model. Vasculatures close to the boundary
of the simulation domain are notably affected by simulation arti-
facts and show abnormal structures. For this reason, the analysis
of the generated vasculature has been restricted to the ROI when-
ever possible.

Morphological analysis reveals good agreement of the branch
length distribution with the prescribed statistics. This result can-
not be taken for granted. Even though each single branch is created
according to the reference statistics, all branches undergo heavy
remodeling in the course of the iterative construction process.
Nonetheless, the overall distribution is largely preserved with
slight deviations especially for small aspect ratios (see Fig. 8b-d).
We also note a small peak on the right shoulder of the distribution
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Fig. 8. (a) Average bifurcation angle deviation over diameter-defined Strahler order for different simulation parameters. The correction threshold 6, = 5" is indicated by the
dashed line. (b)-(d) Comparison of prescribed branch length statistics with the average frequency of the aspect ratio I/r over all vessel branches within the ROI for different
statistics parameters. The error bars indicate the standard deviation over the four simulations for different seeds.

close before the 90% quantile. This artifact is a result of the vascular
degeneration where excessively long branches are pruned such
that their aspect ratio drops below 0, = 0.9. In this work, the branch
length statistics was chosen heuristically as a showcase. Further
analysis of real vasculatures is required to investigate the relation-
ship of branch lengths and vessel diameter in more detail.

Similar to the prescribed branch length statistics, the intrinsic
optimality of bifurcation configurations has been validated as mea-
sured by angular deviation. Since, by design, bifurcations are con-
structed with optimal angular configuration, distal bifurcations
(small Strahler order) show the smallest deviations. In comparison
to bifurcations close to the root (large Strahler order), they are
more likely to be created at a rather late stage of the tree construc-
tion and hence less exposed to remodeling effects impairing the
optimality of the bifurcation configuration. In total, the angular
deviations stay below the correction threshold 0, =5".

The semi-log plots of the Strahler order against the average fre-
quency of Strahler vessels, their average length and diameter,
respectively, almost follow a linear relationship, which indicates
the fractal nature of the synthetic trees. Cassot et al. (2006) have
performed a similar analysis on cerebrovascular networks of the
human cortex with very similar findings but still better linear fits
of the semi-log plots. In our results, the distribution of the Strahler
vessel length, in particular, deviates significantly from the linear
assumption with large standard deviations over the different trees
(see Fig. 9¢). This is mainly caused by degenerate trees that are af-
fected by simulation artifacts at the boundaries. Due to the “bot-
tom-up” definition of the Strahler system, the orders have to be
computed for the uncropped trees, i.e., including vessel segments
outside the ROI. Therefore, the degenerated structures at the
boundaries are included in the analysis and spoil the distributions.

Another interesting result is revealed by the analysis of the
microvascular structure. The average capillary density as measured
by the total microvascular volume fraction and length density is
strongly correlated with the metabolic profile (see Fig. 10). This
is comprehensible from a physiological point of view, since oxygen
delivery takes place at the capillary level for the most part. Larger
vessels with thicker vessel walls constrain oxygen diffusion into
the tissue. Very similar findings on the correlation of metabolic de-
mand and capillary density have been reported in Weber et al.
(2008) for the microvascular system of the macaque visual cortex.
The sensitivity of the tree construction is remarkable, considering
the fact that the relative metabolic level as defined by the COX-
profile ranges from 1 to 1.4 times the base consumption rate as
compared to the baseline model at constant level 1.

The angiogenesis-based construction is affected by the micro-
vascular structures since they contribute most to the oxygenation
of the surrounding tissue. However, the employed binary tree
model is not able to model real network-like capillary structures.
Therefore, the results of the microvascular analysis have to be
interpreted carefully. A quantitative comparison of our results
with the figures of the study by Weber et al. (2008) clearly indi-
cates that the vascular density of our trees is smaller by a factor
of two to three. This can partly be explained by the fact that the
venous system is not modeled in this work and hence not in-
cluded in our analysis. Besides, there are different possibilities
to adjust the simulation parameters in order to specifically in-
crease the microvascular density, e.g., by reducing the perfusion
radius. This would still not resolve the shortcoming of the under-
lying binary tree model, though. Explicitly modeling network-like
microvascular structures would require a more general graph
model.
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The fluid-dynamic analysis of the constructed trees provides
further insight into the functional properties. For the default simu-
lation parameters (m,; = 14,y = 3.0) we found that the flow veloci-
ties exceed the reference values reported by Lipowsky (2005) by
a factor of about 1.5 (see Fig. 11b). As the pressure values at the
boundaries, i.e., root and leaf nodes, have been set according to
the reference values, the total pressure drop from the feeding ves-
sels to the capillaries remains constant. The flow is hence purely
determined by the morphology of the tree structure. Therefore,

the increased blood flow rates clearly indicate that the overall
resistance of our trees is too small compared to real vasculatures.
The resistance of a single branch is directly proportional to the
branch length. An obvious possibility to increase the overall resis-
tance is provided by the choice of the branch length statistics. In
fact, the velocity profiles for increased values of the average branch
length m; show smaller flow values especially for large branches.

Another strong assumption of our approach is Murray’s
law which is intrinsically enforced at each bifurcation node.
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Fig. 11. Fluid-dynamic properties of the tree models with regard to the average pressure (a) and blood flow velocity (b) over branch radius. The profiles are plotted for
different values of the average branch length m, and Murray exponent y with an overlay of the reference values from Lipowsky, 2005.

Table 2

Comparison of oxygen inflow Q" and outflow Q™ for different values of the average branch length mj,, Murray exponent 7, and metabolic models.

my y Metabolic model Q" (plfs) Q (pl/s) Q/Q Q" const/cox Q" const/cox
12 3.0 const 1609 + 108 219 7.34 0.824 0.830
cox 1952 +44 264 7.39
35 const 1113179 219 5.08 0.940
cox 1184 65 264 4.48
14 3.0 const 1099 +92 219 5.02 0.850
cox 1293 +99 264 4.90
3.5 const 76170 219 3.47 0.792
cox 961 + 144 264 3.64
16 3.0 const 873+117 219 3.98 0.867
cox 1007 £ 51 264 3.81
35 const 621 + 60 219 2.83 0.910
cox 682 +97 264 2.58

Morphometric analysis of real vasculatures has revealed different
values for the Murray exponent ranging from 7 = 2.0 to y = 3.0 (Arts
et al., 1979; Fung, 1997; Schreiner and Buxbaum, 1993; Zamir,
2000). In another study of the human cerebral cortex, Cassot
et al. (2009) found a large spread in the distribution of Murray
exponents with an average value of y = 3.59. From that, the authors
concluded that Murray’s law is acceptable as macroscopic approx-
imation but does not appropriately model the architecture of cere-
brovascular bifurcations. For the tree generation, increasing the
value of the Murray exponent allows to form trees with more
bifurcation levels. Comparing the fluid-dynamic properties of the
trees for different Murray exponents and constant average branch
length shows that the flow at the feeding vessels increases sub-
stantially as the total resistance of the tree dropped (see Fig. 11).
At the same time, the average flow at the terminal segments de-
creases, which means that the pressure drop at the microvascular
level relative to the large vessels has declined.

The presented angiogenesis model includes different simplifica-
tions concerning the reaction-diffusion model for oxygen and
VEGF transport. Also, the fluid-dynamic properties of the tree are
not incorporated into the construction process. Therefore, the sim-
ulated profiles and resulting concentration maps have to be con-
sidered as approximations to guide the construction. Accurate
computations of the oxygenation require more sophisticated mul-
tiphysics simulations which is computationally infeasible at con-
struction time. On a global scale, however, the comparison of the
total amount of oxygen delivered by the tree and the expected
metabolic demand of the tissue serves as a first plausibility check.
In line with the flow velocity profiles, the figures in Table 2 indicate
an oxygen excess, i.e., the trees provide more oxygen than de-
manded by the tissue (Q*/Q~ > 1). The oxygen excess is a direct re-
sult of the increased velocity profiles. For increasing segment

length (larger resistance), the total amount of oxygen delivered de-
creases. For the increased Murray exponent 7y = 3.5, the oxygen ex-
cess ratio decreases even further. The relative comparison of
oxygen supply and demand for different metabolic models (Q~
const/cox, Q" const/cox) shows good agreement of the values, in
general. For the standard parameter set, the ratio of the total
amount of oxygen delivered by the tree for constant and COX-
based metabolism is 0.85 in average. The expected value as given
by the ratio of oxygen demand is 0.83. This indicates once more
that the oxygen excess is the result of a systematic error, which
is mainly attributed to the lack of capillary complexity in our tree
model. Nonetheless, it is unreasonable to expect a perfect match of
oxygen supply and consumption since the vasculature should be
able to handle short-term fluctuations of the metabolic demand
without major remodeling.

5. Conclusions

We presented an iterative multi-scale approach for the con-
struction of optimized 3-D arterial tree models based on physiolog-
ical principles. The driving force of our simulations is a simplified
angiogenesis model using case-specific information about the met-
abolic demand of the tissue in the considered domain. Besides,
branch length statistics and morphological optimality principles
are incorporated into the construction process.

Synthetic vasculatures were generated in an experimental set-
up geared to the cerebral anatomy and physiology. Our experi-
ments demonstrated the ability of the construction algorithm to
build optimized arterial trees under prescribed morphological
and metabolic constraints. We analyzed the structural and func-
tional properties of the tree structures and compared our findings
to other studies on the cerebrovascular structure. Clearly,
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additional comparison to real data will be needed for full valida-
tion of the proposed method. A fluid-dynamic analysis revealed
consistent oxygen excess as a systematic error in the oxygen sup-
ply which is mainly attributed to the lack of capillary complexity
captured by our arterial tree model.

Further improvements can be expected from an advanced vas-
cular tree model which allows for network-like structures at the
microvascular scale and anastomoses. However, this transition im-
plies a fundamental redesign of the construction process since the
capillary bed inherently has different structural and functional
properties as compared to arterioles and arteries. A hybrid model-
ing approach using an explicit model for precapillary structures
and an implicit model for the capillary bed might be an option to
reduce the overall complexity.

Another challenge which has not been addressed in this work is
the construction of the venous vasculature that matches the arte-
rial side. In principle, the venous counterpart could be constructed
based on the same principles with potentially adjusted statistics as
it is well known that arteries and veins have slightly different
structure. Mutually connecting the terminal segments of the arte-
rial and venous tree would ultimately produce a vascular network.
Additional mechanisms such as “inter-vessel” signaling might be
required to match the terminal segment density.

We have started to investigate the possibility to adapt the pro-
posed method to be used for the reconstruction of physiologically
consistent full-fledged vascular networks from high-resolution im-
age data (Reichold et al., 2009). Within this context, a lot of infor-
mation on the vessel morphology and topology is extracted from
the images. These data open up new opportunities to replace or ex-
tend missing or faulty regions by synthetic vasculatures to over-
come shortcomings of the reconstruction technique or limitations
of the imaging modality.
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Appendix A. Numerical implementation of the angiogenesis
model

In this section we will provide more details on the implementa-
tion of the simplified angiogenesis model that has been introduced
in Section 2.2. Essentially, we will show how to compute the
oxygen perfusion map and the corresponding steady-state VEGF
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concentration map for a given arterial tree. We will use approxi-
mate solutions to the governing reaction-diffusion equations
rather than perform full-fledged multiphysics simulations. This is
for mainly two reasons. First of all, the reaction-diffusion system
has to be computed frequently in our iterative tree construction
framework, which renders elaborate multiphysics simulations
computationally infeasible. Secondly, the total oxygenation map
depends on the fluid dynamics of the vasculature that had to be
simulated as well to obtain accurate results. Since we deal with
evolving and partly incomplete vascular trees in our construction
framework, it remains unclear how to set reasonable boundary
conditions for these vasculatures in order to solve the
hemodynamics.

The oxygenation map for a given vascular tree is approximated
by superposition as follows. Let us first consider a vascular tree
consisting of a single vessel segment embedded in tissue with con-
stant metabolic demand. For this simplified vasculature, we solve
the reaction-diffusion problem defined in Eq. (4) assuming radial
0, diffusion with a Dirichlet boundary condition on the surface
of the artery wall. The oxygen concentration inside the vessel lu-
men is in fact considered constant ¢} = 203.9 ul/ml, assuming
So, = 100%, cup =15 g/dl, and p,, = 95 mmHg using the notation
of Eq. (17) (Boas et al., 2008). The O, concentration c§ on the sur-
face of the artery wall was chosen heuristically as a function of
the vessel radius r:

c?(r):;c%exp (1 —i>. (A1)

To

The function is plotted in Fig. A.12a. The value of ¢ can be consid-
ered as the “perfusion capability” that is attributed to a given ves-
sel. It peaks for small vessels with capillary radius ro: c(rp) = K
and quickly declines for larger vessels. The peak perfusion level
was chosen as k = 2%c} . This choice corresponds to a maximum
0, diffusion distance in tissue of approximately 100 um (Secomb
et al.,, 2004; Bauer et al., 2007) for ro=3.5 um and R? = R‘g;je (see
Fig. A.12b).

The numerical simulations have been implemented in the com-
mercially available simulation software Comsol Multiphysics
(Comsol, xxxx). The computed steady-state oxygen concentration
maps are illustrated in Fig. A.12b, for different levels of ¢? and R?.

These basic simulations have been computed for constant met-
abolic demand of the surrounding tissue. In our tree construction
framework, however, we have to deal with spatial variations of
the oxygen metabolism, in general. Due to the very limited diffu-
sivity of oxygen in tissue, the perfused area of a single vessel seg-
ment is likewise very limited as can be seen from Fig. A.12b. If we
assume the metabolic activity of tissue to be locally smooth, we

1 & A(r)/r =025
A(r)/k =05
—di(r)/r=1

—o—RY/R&SC =05
— RY/RBS =1
—— RY/RE" =2

—&-RY/RE° =4

0.25 &

80 100 d

Fig. A.12. (a) Radius-dependent oxygen concentration at the surface of an arterial wall used as Dirichlet boundary conditions for simulations. (b) Steady-state oxygen
concentration c; for varying metabolic saturation levels R? and different vessel radii r as a function of the distance d to the vessel surface.
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may approximate the steady-state oxygen concentration as a func-
tion of the distance to the vessel surface and the local metabolic
demand. We implement this approximate computation scheme
by precomputing a set of perfusion profiles for different vessel radii
and metabolic activities such as those illustrated in Fig. A.12b.
These profiles are then assembled to a big look-up table (LUT)
which finally allows us to compute the oxygenation by a single
vessel segment at any point of the simulation domain for given
metabolic map M using linear interpolation between the closest
LUT profiles. For more complex arterial trees consisting of a multi-
tude of vessel segments, we approximate the total oxygenation by
superimposing the individual perfusion maps of each single tree
segment.

Given the total oxygenation map, we subsequently compute an
approximate solution to the VEGF reaction-diffusion problem gi-
ven in Eq. (9). In this problem, each tissue cell (voxel) acts as a
source secreting VEGF at a distinct rate which is defined in Eq.
(6) as a function of the local O, concentration. For now, let us con-
sider this problem for a single point source, i.e., a single tissue cell
emitting VEGF at a fixed rate while surrounded by non-emitting
cells. Fig. A.13 shows the steady-state solution to this simplified
problem as a function of the distance to the VEGF point source.
Moreover, we note that the solution linearly scales with the (con-
stant) VEGF secretion rate. In other words, if the concentration pro-
file C is solution to the the problem for secretion rate R, then aC
solves for oRY.

Coming back to the original problem with each cell representing
a source, we again use superposition as approximate solution to
the reaction-diffusion problem. With the definitions of the previ-
ous paragraph we thus obtain:
o) = [ -3 (A2)

e R
where Q denotes the simulation domain. In order to efficiently
compute a discrete version of this superposition solution, we essen-
tially approximate the profile function as a weighted sum of Gaus-
sians with an additional correction term:

C(%) = Wodox + 1G1 (X) + 02G2(X), (A3)

w; are constant scaling factors, § denotes the Kronecker delta, and
Gi = G(X; 0;) the Gaussian kernel with standard deviation ¢; and zero
mean. The parameters are computed by solving the weighted least-
square problem:

Cz/C(O)l
C
16—
O C= wodo+w1G1+w2Ga
— w1 G1 +w2Ga
0.75 1 wi G
wo/C(0) w2 Ga

Fig. A.13. Normalized steady-state VEGF concentration profile C as a function over
the Euclidean distance x to the VEGF source (single point source). The radial
symmetric profile can be discretized and approximated by a weighted sum of
Gaussians C on a discrete 3-D grid with isotropic voxel spacing 4,. The function
values at the discrete samples are marked by circles.
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where 4, denotes the step size corresponding to the (isotropic) vox-
el spacing of the discretized simulation domain. The approximated
VEGF concentration profile C is illustrated in Fig. A.13. Even though
the approximation is inappropriate in the interval (0, 4,), these val-
ues will never be used in the implementation.

Plugging the approximated profile of Eq. (A.3)into Eq. (A.2)yields

- Ry($)~, o . .. 1 ~ L
Cz(X):/ 29 c<ux—s||)ds:—0/Rz@)cu\x—su)ds
e R R; Je

2

1

R

(C+Ry)(R)

- % [00Ra(3) + (161 +202) + Ra) ®)]. (A5)

2
where * denotes the convolution operator. In effect, the computa-
tion of the discrete VEGF concentration map essentially boils down
to simple convolution operations that can be computed efficiently
due to the separability of the Gaussian kernels.

As specified in Eq. (9), VEGF is subject to decay with rate v. More
precisely, VEGF decrease is due to natural decay on the one hand
and uptake by endothelial cells (EC) on the other (Milde et al.,
2008). The decay rate employed in Eq. (9) hence can be written as
V = Vo + VecCec, Where vg denotes the natural decay rate, cgc the EC
concentration, and vgc the VEGF uptake rate. In our approximate
VEGF diffusion model we assume a homogeneous EC concentration,
which renders the computation of the VEGF concentration indepen-
dent of the vascular tree model, in particular, and set v = 4v.

This concludes finally the numerical implementation of the sim-
plified angiogenesis model which is summarized in Algorithm 1.

Algorithm 1. Angiogenesis Model — Section 2.2, Appendix A

Require: arterial tree 7, simulation domain €,
metabolic map M

1: /| Perfusion map ¢,
2: ¢ < 01/ initialize to zero
3: for all voxels X in Q2 do
4: for all tree segments s in 7 do
5: p — orthogonal projection of ¥ onto segment s
6: if p inside s then
7: Cs— LUT(H)? -l /vl()?)) using linear interpolation
8: 1(X) — c1(X) + ¢
9: end if
10: end for
11: end for
12: [/ VEGF concentration map c;
13: Ry — VEGF secretion map (c;) Eq.(6)
140 ¢, o 1/a [w0R2+(wlg] +60292)*R2]
Eq. (A5)
15: return (c,c,)

Appendix B. Algorithms for the iterative tree construction

In this section, we provide pseudo code for the different algo-
rithms used for iterative tree construction. The algorithm parame-
ters are provided in Table B.3.
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Table B.3

Algorithm parameters.
Parameter Value Unit Source Text
So 0.1 - n/a Algorithm 2
N 16 - n/a
0c 1.05 - n/a
0p 0.95 - n/a
N, 32 - n/a Algorithm 3
N, 2 - n/a
04 5 x /180 rad n/a Algorithm 5
Tprune 2.0x10°° m Cassot et al. (2006)
T'degen 50 x10°° m n/a Algorithm 6
Js 0.25 - n/a
0, 0.25 - n/a
0p 0.9 - n/a

Algorithm 2. Arterial Tree Construction

— Section 2.6

Require: initial arterial tree 7, simulation domain Qy c R3,
metabolic map M,

1: for simulation scale s — 1 to N; do
2 /| Coordinate rescaling Section 2.6
3 (T, s, M) «— rescale T5_1, Qs_1, Ms_1 Eq. (16)
4 /| Iterative tree construction
5: repeat
6: /| Angiogenesis model Section 2.2
7 /| O, perfusion map c;, VEGF concentration map c,
8 (c1, c3) «+ angiogenesis model (7, Qs, Ms)
Algorithm 1
9: /| Vascular growth Section 2.3
10: p « sample tree node (7, €, ¢3) Algorithm 3
11: if c;(P) > 0. then
12: T s « vascular growth (p, Ts, ¢3) Algorithm 4
13: T « tree remodeling (P, 7s) Algorithm 5
14: else if p is leaf node then
15: s « leaf segment proximal to p
16: T < prune terminal vessel (s, 7) Algorithm 7
17: end if
18: /| Perfusion level reached?
19: P « voxels in Qg with ¢; > O?igh Eq. (6)
20: until |P|/|Qs| > 0,
21: /| Degeneration step Section 2.5
22: T, « tree degeneration (7, Q;, M) Algorithm 6
23: end for

24: return 7

Algorithm 3. Sample Tree Node

— Section 2.6

Require: arterial tree 7, simulation domain €2, VEGF
concentration map ¢,

O oYU A WN =

fori—1toN,do

%; — randomly sample point in domain Q c R>
end for
k « argmax; ¢, C2 (X;) /|| max VEGF concentration at X
fori—1toN, do

pi < find i-th closest tree node to X,
end for
| — argmax; .y, C2(B;) /| max VEGF concentration at p
return p;

Algorithm 4. Vascular Growth

— Section 2.3

Require: tree node p, arterial tree 7, VEGF map c;

—_

if p is leaf node then
p » + bifurcation probability at node p
if p, > 4(0,1) then
7T « form bifurcation (p, 7, c3)
else
T — elongate leaf segment (p, 7, ¢3)
end if
else if j is inter node then
ps— sprouting probability at node p
if p; > ¢/(0,1) then
T « form new sprout (p, 7, ¢3)
end if
end if
return 7

Eq.(11)
Section 2.3

Section 2.3

Eq. (14)

Section 2.3

Algorithm 5. Tree Remodeling

— Section 2.4

Require: tree node p, arterial tree T

1:

QURWN

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

/| Radius back-propagation along path from p to root
for all nodes ¢ along path from p to root do
recompute proximal branch radius
end for
/| Optimize bifurcations along path from p to root
for all bifurcation nodes g along path from p to root node
do
¢1, ¢— optimal bifurcation angles at
é1, ¢r — observed bifurcation angles at §
if (I — &l + ¢y — &r])/2 > 0q then
relocate bifurcation node g
end if
end for
/| Reinforce radius boundary condition
ro— prescribed radius at root
r" «— real radius at root after back-propagation
rescale all segment radii by ro/1’
/| Prune tiny sprouts
repeat
for all terminal branches s in 7 do
if branch radius r < rprype then
T « prune terminal branch (s, 7)
end if
end for
until no more segments pruned
return 7

Eq. (1)

Eq. (2)

Eq. (3)

Algorithm 7

Algorithm 6. Tree Degeneration

— Section 2.5

Require: arterial tree 7, simulation domain €,
metabolic map M

1
2
3
4:
5.
6

/| Shrink prominent leaf segments
for all leaf nodes p in 7 do
if proximal segment radius r > r'gegen then
T (] - ;“S)r+ s Tprune
T — remodel tree (p, 7)
end if

Algorithm 5



M. Schneider et al./Medical Image Analysis 16 (2012) 1397-1414 1413

7: end for
/| Prune leaf nodes with low VEGF signal
9: /|0, perfusion map cq, VEGF concentration map ¢, (cy, ¢2)

]

« angiogenesis model (7, 2, M) Appendix A
10: for all leaf nodes p in 7 do
11: if c2(p) < 0. and 0, > 1(0,1) then
12: s « leaf segment proximal to p
13: 7T — prune terminal segment (s, 7') Algorithm 7
14: end if
15: end for

16: |/ Degenerate excessively long leaf branches
17: for all leaf nodes p in 7 do

18: p» « bifurcation probability at node p

19: if Db > 0p then

Eq. (11)

20: s « leaf segment proximal to p

21: T « prune terminal segment (s, 7) Algorithm 7
22: end if

23: end for

24: return 7

Algorithm 7. Prune Terminal Vessel — Section 2.5

Require: terminal vessel branch/segment s, arterial tree 7
1: // Remove node from tree

21 b« source node of vessel segment/branch s
3: T < remove vessel branch/segment s from 7°
4: [/ Transition bifurcation node — inter node
5. if b is inter node then
6: /| Avoid sharp bendings
7: p « source node of proximal segment of b
8: G « target node of distal segment of b
9: relocate inter node b — 0.5 - (§ + q)
10: /| Correct distal subtrees
11: rp < radius of proximal segment of node b
12: rq « radius of distal segment of node b
13: rescale distal subtree radii of b by 1p/rq
14: end if

15: return 7

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.media.2012.04.009.
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