Using genome-wide approaches to understand the genetic etiology of suicide-related behaviors and substance use disorders

> Emma C Johnson, PhD Department of Psychiatry

American Foundation for Suicide Prevention

Why genetics?

- Scientific impact: a better understanding of genetic risk, in conjunction with socioenvironmental factors → identification of atrisk groups
- Societal impact: a better understanding of genetic and biological mechanisms → reduce stigma around suicide

Ø	

Background

- Suicidal thoughts and behaviors are transdiagnostic, heterogeneous, and partly heritable
- Linear spectrum of liability?

Background

- Suicidal thoughts and behaviors are transdiagnostic, heterogeneous, and partly heritable
- Linear spectrum of liability?

"The genetic and environmental etiologies of suicide attempt and death are **partially overlapping**, exhibit modest sex differences, and shift across the life course" –Edwards et al., 2021

"While suicide attempt and suicide death are substantially genetically correlated, a model that proposes that they reflect quantitatively different **degrees of severity on the same continuum of liability can be ruled out**" –Kendler et al., 2020

Outline of today's talk

- 1. How does genetic predisposition for depression, risk-taking, and cognitive function relate to different suicidal thoughts and behaviors?
- 2. What are the genetic relationships between suicidal thoughts and behaviors themselves, and substance use disorders?
- 3. Current directions:
 - Cross-disorder analysis of problematic alcohol use, depression, and suicide attempt
 - Multi-PRS models predicting detailed suicide-related phenotypes

Overarching goal: use genome-wide data to better understand genetic etiology of suicide.

Outline of today's talk

- 1. How does genetic predisposition for depression, risk-taking, and cognitive function relate to different suicidal thoughts and behaviors?
- 2. What are the genetic relationships between suicidal thoughts and behaviors themselves, and substance use disorders?
- 3. Current directions:
 - Cross-disorder analysis of problematic alcohol use, depression, and suicide attempt
 - Multi-PRS models predicting detailed suicide-related phenotypes

How do depression, risk-taking, and cognitive function relate to suicidal thoughts and behaviors?

Methods: target sample

- We tested whether polygenic scores for depression, risk-taking, and cognitive performance are associated with suicidal thoughts and behaviors and NSSI in a high-risk sample (N = 10,843)
- Target sample: Collaborative Study on the Genetics of Alcoholism (COGA)
 - Case families ascertained for high prevalence of alcohol use disorders
 - Some families have high prevalence of other psychiatric disorders as well

Outcome measure	African-ancestry N reporting 'yes' (% of analytic N)	European-ancestry N reporting 'yes' (% of analytic N)				
Suicidal ideation	880 (32.8%)	2,990 (41.5%)				
Persistent ideation (7 consecutive days, in those reporting any ideation)	249 (28.3%)	943 (31.6%)				
Suicide attempt	300 (11.2%)	776 (10.8%)				
Non-suicidal self-injury	149 (6.0%)	548 (8.7%)				

Methods: GWAS for creating polygenic scores

	GWAS Phenotype (EA)	GWAS Phenotype (AA)	Sample Size (EA)	Sample Size (AA)
	Self-harm (UK Biobank)	NA	$N_{cases} = 5,099$ $N_{controls} = 112,634$	NA
)	Depression meta- analysis (Howard et al., 2019)	Generalized Anxiety Scores (Levey et al., 2020)	$N_{cases} = 170,756$ $N_{controls} = 329,443$	N = 24,448
	Risk-taking behaviors (Linner et al., 2019)	Self-reported risk taker (Pan UKB)	N = 315,894	N = 6,101
	Cognitive performance meta-analysis (Lee et al., 2018)	Fluid intelligence sum score (Pan UKB)	N = 257,828	N = 3,280

Methods: Polygenic score creation

- We used PRS-CS (Ge et al. 2019) and PRS-CSx ('meta' option) to create polygenic scores (**PGS**) in the COGA sample
- Logistic mixed effect regression models controlled for sex, age, array type, AUD case or control family background, and 10 genetic ancestry principal components as fixed effects, and for family ID as a random intercept

Outcome	PGS	Beta	SE	FDR <i>q</i> value	R^{2} (%)
Suicidal ideation	Self-harm	0.097	0.027	5.15E-04*	0.24
Persistent ideation	Self-harm	0.128	0.038	0.001*	0.39
Suicide attempt	Self-harm	0.178	0.041	5.29E-05*	0.68
NSSI	Self-harm	0.162	0.051	0.002*	0.50
Suicidal ideation	Depression	0.278	0.028	3.41E-22*	1.96
Persistent ideation	Depression	0.264	0.040	2.18E-10*	1.73
Suicide attempt	Depression	0.339	0.043	4.38E-14*	2.49
NSSI	Depression	0.167	0.054	0.002*	0.58
Suicidal ideation	Risky behaviors	0.124	0.027	2.00E-05*	0.40
Persister Not signific	cant when controlling for	or DSM-IV	alcohol	dependence	0.37
Suicide attempt	Risky and abuse sym	otom cour	t10.042	$1.01E - 04^*$	0.62
NSSI	Risky and abuse sym	0.132	0.052	0.014^{*}	0.30
Suicidal ideation	Cognitive performance	0.027	0.027	0.360	0.02
Persistent ideation	Cognitive performance	0.026	0.039	0.545	0.01
Suicide attempt	Cognitive performance	-0.159	0.042	3.76E-04*	0.57
NSSI	Cognitive performance	0.006	0.052	0.911	0.00

Starred rows indicate significance after multiple testing corrections (FDR < 0.05). COGA, Collaborative Study on the Genetics of Alcoholism; NSSI, nonsuicidal self-injury; PGS, polygenic score.

Summary & limitations

- Genetic liability for depression broadly associated with suicidal thoughts & behaviors
- Genetic predisposition for decreased cognitive performance *only* associated with increased risk of suicide attempts
- No significant PGS associations in the African-ancestry subset of COGA, most likely due to smaller discovery GWAS sample sizes – need larger discovery GWAS in non-European ancestry populations
- PGS not predictive on an individual level

Outline of today's talk

Sarah Colbert

- 1. How does genetic predisposition for depression, risk-taking, and cognitive function relate to different suicidal thoughts and behaviors?
- 2. What are the genetic relationships between suicidal thoughts and behaviors themselves, and substance use disorders?
- 3. Current directions:
 - Cross-disorder analysis of problematic alcohol use, depression, and suicide attempt
 - Multi-PRS models predicting detailed suicide-related phenotypes

Alexander Hatoum

Background

- It is well established that SUDs load onto common factor
- Genetics of suicide-related behaviors less well-characterized

Methods

- LD score regression
 - Genetic correlations

Suicide

- Genomic structural equation modeling (gSEM)
 - Genetic factor structure

		Phenotype	PMID	Sample Size	SNP-heritability (s.e.)
SUDs		PAU	32451486	N = 435,563	0.07 (0.004)
		CUD	33096046	N = 358,534; N _{cases} = 14,808	0.12 (0.011)
		OUD	32492095	N = 82,707; N _{cases} = 10,544	0.11 (0.018)
		FTND	33144568	N = 46,213	0.09 (0.012)
phenotypes		Death by suicide	32998551	N = 18,223; N _{cases} = 3,413	0.25 (0.04)
			Suicide attempt	30116032	N = 50,264; N _{cases} = 6,024
Risk factors p		Ever self- harmed	PMID not available	N = 117,733; N _{cases} = 5,099	0.05 (0.028)
	\int	Depression	30718901	N = 500,199; N _{cases} = 170,756	0.09 (0.003)
Risk f		Risk tolerance	30643258	N = 466,571	0.05 (0.001)

Genetic correlations

All significant with FDR < 5%

Strong positive correlations among SUDs

Risk tolerance	0.3	0.4	0.23	0.22	0.29	0.33	0.27	0.14	1
Depression -	0.38	0.32	0.35	0.38	0.42	0.55	0.66	1	0.14
Ever self-harmed	0.38	0.6	0.38	0.33	0.57	1.05	1	0.66	0.27
Suicide attempt -	0.52	0.62	0.59	0.62	0.66	1	1.05	0.55	0.33
Suicide death	0.34	0.33	0.53	0.43	1	0.66	0.57	0.42	0.29
FTND -	0.33	0.45	0.5	1	0.43	0.62	0.33	0.38	0.22
OUD -	0.7	0.79	1	0.5	0.53	0.59	0.38	0.35	0.23
CUD -	0.59	1	0.79	0.45	0.33	0.62	0.6	0.32	0.4
PAU -	1	0.59	0.7	0.33	0.34	0.52	0.38	0.38	0.3
	PAN	CUD	OUD	FIND Suit	ide death Suicit	e attempt	Inhaimed D	apression pist	tolerance

Genetic correlations

All significant with FDR < 5%

Strong positive correlations among SUDs

Strong positive correlations among suicide-related behaviors

										_	
Risk tolerance	0.3	0.4	0.23	0.22	0.29	0.33	0.27	0.14	1		
Depression -	0.38	0.32	0.35	0.38	0.42	0.55	0.66	1	0.14		
Ever self-harmed	0.38	0.6	0.38	0.33	0.57	1.05	1	0.66	0.27		
Suicide attempt -	0.52	0.62	0.59	0.62	0.66	1	1.05	0.55	0.33		
Suicide death	0.34	0.33	0.53	0.43	1	0.66	0.57	0.42	0.29		
FTND -	0.33	0.45	0.5	1	0.43	0.62	0.33	0.38	0.22		
OUD -	0.7	0.79	1	0.5	0.53	0.59	0.38	0.35	0.23		
CUD -	0.59	1	0.79	0.45	0.33	0.62	0.6	0.32	0.4	-	
PAU -	1	0.59	0.7	0.33	0.34	0.52	0.38	0.38	0.3		
PAU CUD OUD FIND Suicide atempt saturation Depression Risktoletance											

Genetic correlations

All significant with FDR < 5%

Strong positive correlations among SUDs

Strong positive correlations among suicide-related behaviors

Strong positive correlations among SUDs and suicide-related behaviors + comparable to correlations among depression and suicide-related behaviors

Risk tolerance	0.3	0.4	0.23	0.22	0.29	0.33	0.27	0.14	1
Depression -	0.38	0.32	0.35	0.38	0.42	0.55	0.66	1	0.14
Ever self-harmed	0.38	0.6	0.38	0.33	0.57	1.05	1	0.66	0.27
Suicide attempt	0.52	0.62	0.59	0.62	0.66	1	1.05	0.55	0.33
Suicide death -	0.34	0.33	0.53	0.43	1	0.66	0.57	0.42	0.29
FTND -	0.33	0.45	0.5	1	0.43	0.62	0.33	0.38	0.22
OUD -	0.7	0.79	1	0.5	0.53	0.59	0.38	0.35	0.23
	0.59	1	0.79	0.45	0.33	0.62	0.6	0.32	0.4
PAU -	1	0.59	0.7	0.33	0.34	0.52	0.38	0.38	0.3
PAU CUD OUD FIND Suicide attempt set named Depression Risk toleance									

Common SUD and specific suicide-related behaviors model with covariates Even accounting for depression and

Depression was most strongly associated with ever self-harmed and least strongly associated with suicide death. ($\chi^2_{diff}(2) = 13.28$, p = 0.001)

Associations between risk tolerance and suicide-related behaviors are somewhat less variable. $(\chi^2_{diff}(2) = 5.17, p = .08)$

Model fit statistics: X² = 11.16, df = 11, p_X² = 0.43 AIC = 79.16 CFI = 0.9999 SRMR = 0.0464

Summary & limitations

- We found significant correlations between SUDs and suicide-related behaviors, accounting for depression and risk tolerance
- Interestingly, correlations b/w SUDs and suicide phenotypes rival correlations between depression and suicide
- Limited data on death by suicide and non-suicidal self-injury
- Genetic correlations, but no evidence of causality; larger studies (or alternative designs) needed

Outline of today's talk

- 1. How does genetic predisposition for depression, risk-taking, and cognitive function relate to different suicidal thoughts and behaviors?
- 2. What are the genetic relationships between suicidal thoughts and behaviors themselves, and substance use disorders?

3. Current directions:

- Cross-disorder analysis of problematic alcohol use, depression, and suicide attempt
- Multi-PRS models predicting detailed suicide-related phenotypes

Sarah Colbert

Zooming in on alcohol use, depression, and suicide attempt

in prep; Sarah Colbert will be presenting at RSA annual meeting in June 2022

In follow-up models,

 self-harm ideation, depression, and suicide attempt PRS remained associated w/ suicidal ideation in multi-PRS model

suicide attempt

 self-harm ideation, depression, suicide attempt, and suicide death PRS remained associated.
 suicide attempt

manuscript in prep

Summary

- Suicidal thoughts and behaviors are genetically complex
- Embracing that complexity will lead to better research and better outcomes
- By incorporating this complexity into undergraduate education, we aim to reduce stigma

Thanks

- My AFSP mentor, Dr. Arpana Agrawal
- Collaborators: Sarah Colbert, Alexander Hatoum, Anna Docherty, Hilary Coon, Elliot Nelson, COGA collaborators, PGC-SUD working group
- All the generous participants in these studies

Washington University School of Medicine in St. Louis

• Past and current funding support from AFSP, BBRF, NIAAA, NIDA, and NIMH

National Institute of Mental Health

National Institute on Alcohol Abuse and Alcoholism

National Institute on Drug Abuse