Blood-Brain molecular alterations in depressed suicides

Adolfo Sequeira PhD

Associate Research Professor Psychiatry and Human Behavior Functional Genomics Laboratory

UNIVERSITY of CALIFORNIA • IRVINE

The suicide epidemic

- 3rd cause of death in men between 18-44 in the US
- 1.4 million attempts and 48,000 deaths per year in the US
- Men die by suicide four times more often than women
- 1 week after patients leave psychiatric care suicide death rate is increased by 300%
- ~45% of those who die by suicide see a clinician in the <u>month</u> prior to death and a third see a healthcare professional within the <u>week</u> of dying by suicide

Risk factors for suicide

- Previous attempt
- Family history of suicide
- History of depression or other mental illness
- History of alcohol or drug abuse
- Stressful life event or loss
- Easy access to lethal methods
- Aggression and impulsivity
- Hopelessness
- High cortisol levels
- Psychological pain

Currently no risk prediction algorithm

Suicide specific biomarkers in MDDs

- A high proportion of patients visit a health-care provider in the month prior to dying by suicide but there is currently no accurate way to predict who is at risk for suicide
- GWAS and functional studies (methylation, gene expression) often compared MDD-Suicides to Controls or studied suicidal behaviors
- Most studies to date have looked at Brain or Blood independently
- Post-mortem Blood
 - Difficult to collect when PMI is high
 - □ High levels of coagulation and cell lysis
- Not always collected in blood tubes with a preservation buffer
- RNA often too degraded for qPCR, microarrays or RNA-Seq
- AFSP: Can we combine brain and blood expression signatures to develop a transcriptional (mRNA) blood test to assess suicide risk?

Novel target identification and validation

- Postmortem brain gene expression data:
 - □ Proprietary (McGill, Pritzker) and public (PsychENCODE, Allen Institue, GTEx, etc.)
- Analysis of data using commercial and proprietary Bioinformatics tools
- Integration of proprietary/public genetic and other relevant biological data
 - UK Biobank, GWAS database extraction of nominally significant associated SNPs)
- Classification on GO, Ingenuity pathway analysis, KEGG
- Selection of targets based on:
 - Differential expression in tissue or circuit of interest
 - Genetic association
 - Drug-Target specificity

Translational biomarkers of response (SNPs, expression, methylation) tested in humans

Global Brain Gene Expression Analysis Links Glutamatergic and GABAergic Alterations to Suicide and Major Depression

Adolfo Sequeira^{1¤}, Firoza Mamdani¹, Carl Ernst¹, Marquis P. Vawter⁴, William E. Bunney⁴, Veronique Lebel¹, Sonia Rehal¹, Tim Klempan¹, Alain Gratton¹, Chawki Benkelfat², Guy A. Rouleau³, Naguib Mechawar¹, Gustavo Turecki^{1*}

1 McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada, 2 Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada, 3 Ste Justine Hospital, Université de Montréal, Montreal, Quebec, Canada, 4 Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, California, United States of America

The vast majority of gene expression (from 16 brain regions) changes associated with depression and suicide involve GABA and glutamate receptors and transporters.

Post-mortem psychological autopsy

- □ Interviews with family and friends
- Medical files
- □ Coroner notes/investigation
- Toxicological reports
- Hospital files
- □ 144 item questionnaire based on the DSM-IV and the SCID

Coronal brain slicing

- Brain is encased in alginate to keep the shape/integrity and to prevent deformation/warping while slicing
- Coronal slicing (1 cm) is done using a precise guide with the ventral surface up to avoid damage to ventral areas

NanoString Platform

The NanoString platform allows for the direct counting of mRNA molecules (no cDNA) using a barcode-probe system

RNA degradation (<1000 bp) is a problem for cDNA production (qPCR, microarrays) and for RNA-Seq.</p>

Some degradation in post-mortem blood still allows the extraction of enough RNA (>100 bp) to reliably detect changes in gene expression using NanoString

QC was improved by loading more RNA for blood samples compared to brain samples

NanoString Platform

Imaging QC = <u>FOV Counted</u> Total FOV (data robustness-RNA degradation)

Binding density = Fluorescent spots/µ² (saturation-RNA degradation)

Field of view count (FOV) or total number of FOVs imaged per lane is used to control for possible RNA quality differences

	Average FOV	FOV Stdev	% FOV	Min % FOV	Max % FOV
Brain	533.94	10.84	96.21	85.23	98.74
Blood	540.06	8.27	97.31	92.43	99.64

Biomarker Signature for Suicide

Pilot study in post-mortem BRAIN and BLOOD using NanoString technology to study 117 genes relevant for suicide:

tim.blog/onepagei

Sample	Diagnosis	Ν	Gender		Age	
			Males	Females	Males	Females
Brain	Control	21	17	4	45.71	47.50
	MDD-NS	24	11	13	50.73	50.92
	MDD-S	24	11	13	42.82	37.83
Blood	Control	16	12	4	43.08	45.20
	MDD-NS	18	11	7	51.45	55.57
	MDD-S	19	12	7	42.83	36.57

 □ Highly significant differences in peripheral gene activity were identified in MDD-Suicides versus MDD Non-Suicides for eleven genes (Q ≤ 0.1, FDR corrected)
Mandani et al, Translational Psychiatry, 2022

Gene expression changes in suicide - DLPFC

Gene expression changes in suicide - Blood

Mamdani et al, Translational Psychiatry, 2022

Biomarker Signature for Suicide

Circadian Telomeres

Telomeres

Telomeres in brain cells

Stan Watson (University of Michigan)

Telomere

DLPFC

Depression specific shortening of telomeres in the hippocampus

Hippocampal telomere shortening in depression

 Protective caps at the end of chromosomes formed by a repetitive sequence (TTAGGG).

MDDs have shorter telomeres in the hippocampus.

 In future studies suicide specific effects and cellular differences will be investigated.

Circadian changes

Top three genes significantly affected by adjusted* time of death in the DLPFC

<u>Column ID</u>	p (Sex)	p (Age)	p (Status)	<u>p (adjdec*)</u>	p (MDD-S vs. MDD-NS)	FC(MDD-S vs. MDD-NS)
PER2	0.00030212	0.0572825	0.204982	0.00251788 [†]	0.158159	1.19292
CRY1	0.0126436	0.0338407	0.503564	0.0155696 [†]	0.880263	1.01376
CRH	0.00149369	0.0148091	0.0644279	0.0298922	0.0216211	1.3836

* adjusted time of death from sunrise corrected by daylight savings time † significant after FDR correction

PER2 gene expression correlated with "time of death" in the brain (DLPFC)

Inflammation-stress response

Stress - FKBP5

Blood-P=0.014 DLPFC-P=0.035

Blood specific inflammation in suicide

Suicide biomarker signature that can be evaluated in non-preserved blood

We think some of these clinical manifestations and molecular changes are involved in the transition from thinking about suicide to attempting and dying by suicide Brain circuits involved in stress, depression and suicide: DLPFC-Hippocampus-NAcc-Amygdala.

□Single nuclei/cell RNA-Seq

Telomere changes in depression, association with the stress hormone cortisol and suicide risk

Test a suicidal behaviors "blood test" (expression/metabolomics) to identify at-risk patients for suicide in a clinical sample followed over time (baseline, 1 and 2 year follow-ups)

BrainGENIE using paired blood-brain transcriptome data from the GTEx dataset

Translational Psychiatry volume 13, Article number: 98 (2023)

Post-mortem

Clinical

Acknowledgements

- UCI Psychiatry and Functional Genomics Lab
 - 🗖 Firoza Mamdani
 - Richard Stein
 - Preston Cartagena
 - Blynn Bunney
 - Mark Vawter
 - William Bunney
- Pritzker Consortium
 - Allan Schatzberg (Stanford)
 - Huda Akil (Michigan)
 - Stanley Watson (Michigan)
 - Rick Myers (Hudson Alpha)
 - Francis Lee (Cornell)
 - Jack Barchas (Cornell)

Awarding NARSAD Grants

Depression

Differentially expressed genes between MDDs (regardless of the suicide status) and controls

Blood

Gene	Mean(Control)	Mean(MDD-NS)	Mean(MDD-S)	P (MDD vs. Control)	Q Value (MDD vs. Control)	FC (MDD vs. Control)	FC Direction
ODC1	7.747	8.723	8.643	0.007	0.070	1.878	UP
ACD	8.306	7.556	7.724	0.013	0.103	-1.543	DOWN
POT1	6.624	6.886	7.403	0.013	0.117	1.511	UP
EIF5A	9.528	9.873	10.272	0.013	0.103	1.505	UP
TERC	11.089	10.318	10.666	0.019	0.103	-1.466	DOWN
HTR2A	3.361	2.843	2.209	0.024	0.103	-1.783	DOWN
MT-ND6	13.714	13.262	12.791	0.029	0.103	-1.664	DOWN
PMFBP1	5.426	4.690	4.781	0.032	0.103	-1.552	DOWN
SRM	7.273	7.429	7.761	0.038	0.191	1.346	UP
MT1H	5.345	4.760	4.071	0.040	0.103	-1.929	DOWN
SAT1-002	6.361	7.195	7.177	0.040	0.124	1.706	UP
NOP10	8.876	9.439	9.482	0.042	0.103	1.412	UP

Brain

Gene	Mean(Control)	Mean (MDD-NS)	Mean(MDD-S)	P (MDD vs. Control)	Q Value (MDD vs. Control)	FC (MDD vs. Control)	FC Direction
CRY2	10.478	10.382	10.377	0.013	0.548	-1.121	DOWN
SMOX	9.355	9.551	9.444	0.017	0.283	1.127	UP
ODC1	9.388	9.553	9.436	0.017	0.283	1.092	UP
FKBP5	9.071	10.055	9.085	0.037	0.283	1.327	UP