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ABSTRACT
We present BullShark, the first directed acyclic graph (DAG) based

asynchronous Byzantine Atomic Broadcast protocol that is opti-

mized for the common synchronous case. Like previous DAG-based

BFT protocols [20, 26], BullShark requires no extra communication

to achieve consensus on top of building the DAG. That is, parties

can totally order the vertices of the DAG by interpreting their local

view of the DAG edges. Unlike other asynchronous DAG-based

protocols, BullShark provides a practical low latency fast-path that

exploits synchronous periods and deprecates the need for notori-

ously complex view-change and view-synchronization mechanisms.

BullShark achieves this while maintaining all the desired properties

of its predecessor DAG-Rider [26]. Namely, it has optimal amortized

communication complexity, it provides fairness and asynchronous

liveness, and safety is guaranteed even under a quantum adversary.

In order to show the practicality and simplicity of our approach,

we also introduce a standalone partially synchronous version of

BullShark, which we evaluate against the state of the art. The im-

plemented protocol is embarrassingly simple (200 LOC on top of

an existing DAG-based mempool implementation [20]). It is highly

efficient, achieving for example, 125,000 transactions per second

with a 2 seconds latency for a deployment of 50 parties. In the same

setting, the state of the art pays a steep 50% latency increase as it

optimizes for asynchrony.
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1 INTRODUCTION
Ordering transactions in a distributed Byzantine environment via a

consensus mechanism has become one of the most timely research

areas in recent years due to the blooming Blockchain use-case.

A recent line of work [9, 20, 22, 26, 34, 41] proposed an elegant

way to separate between the dissemination of transactions and the
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logic required to safely order them. The idea is simple. To propose

transactions, parties send them in a way that forms a casual order

among them. That is, messages contain blocks of transactions as

well as references to previously received messages, which together

form a directed acyclic graph (DAG). Interestingly, the structure of
the DAG encodes information that allow parties to totally order

the DAG by locally interpreting their view of it without sending

any extra messages. That is, once we build the DAG, implementing

consensus on top of it requires zero-overhead of communication.

The pioneering work of Hashgraph [9] constructed an unstruc-

tured DAG, where each message refers to two previous ones, and

used hashes of messages as local coin flips to totally order the DAG

in asynchronous settings. Aleph [22] later introduced a structured

round-based DAG and encoded a shared randomness in each round

via a threshold signature scheme to achieve constant latency in

expectation. The state of the art is DAG-Rider [26], which is built on

previous ideas. Every round in its DAG has at most 𝑛 vertices (one

for each party), each of which contains a block of transactions as

well as references (edges) to at least 2𝑓 + 1 vertices in the previous

round. Blocks are disseminated via reliable broadcast [12] to avoid

equivocation, and an honest party advances to the next round once

it reliably delivers 2𝑓 + 1 vertices in the current round. Remarkably,

by using the DAG to abstract away the communication layer, the

entire edges interpretation logic of DAG-Rider to totally order the

DAG spans less than 30 lines of pseudocode.

DAG-Rider is an asynchronous Byzantine atomic broadcast (BAB),

which achieves optimal amortized communication complexity (𝑂 (𝑛)
per transaction), post quantum safety, and some notion of fairness

(called Validity) that guarantees that every transaction proposed

by an honest party is eventually delivered (ordered). To achieve

optimal amortized communication DAG-Rider combines batching

techniques with an efficient asynchronous verifiable information

dispersal protocol [15] for the reliable broadcast building block. The

protocol is post quantum safe because it does not rely on primitives

that a quantum computer can break for the safety properties. That

is, a quantum adversary can prevent the protocol progress, but it

cannot violate safety guarantees.

Although DAG-based protocols have a solid theoretical founda-

tion, they have multiple gaps before being realistically deployable

in practice. First, they all optimize for the worst case asynchronous

network assumptions and do not take advantage of synchronous

periods, resulting to higher latency than existing consensus pro-

tocols [13, 42] in the good case. Second, they have some impracti-

cal assumptions such as needing unbounded memory in order to

preserve fairness. The only existing solution to this comes from
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Tusk [20], which uses a garbage collection mechanism but does not

allow for quantifiable fairness even during periods of synchrony.

On the other hand, existing partially synchronous consensus pro-

tocols are designed as a monolith, where the leader of the protocol

has to propose blocks of transactions in the critical path, resulting

in performance bottlenecks and relatively low throughput as shown

by Narwhal [20].

To the best of our knowledge, this paper is the first to optimize

the DAG-based BFT approach to the partially synchronous commu-

nication setting. First, we propose BullShark, which preserves all the

theoretical properties of DAG-Rider (including asynchronous worst

case liveness), and in addition, introduces a fast path that exploits

common-case synchronous network conditions. That is, BullShark

is the first BAB protocol with optimal amortized communication

complexity (𝑂 (𝑛) per transaction) and post quantum safety that

is optimized for the common case. BullShark needs only 2 round-

trips between commits during synchrony (thus a 75% improvement

compared to DAG-Rider), and maintains a 6 round-trip expected

latency in asynchronous executions (matching DAG-Rider). In ad-

dition, BullShark is built on top of Narwhal and thus inherits all

of its practical benefits (e.g., decoupling data dissemination from

the DAG construction and having an efficient reliable broadcast

implementation).

Second, based on BullShark’s fast path, we present an eventu-

ally synchronous variant of BullShark, which is the first partially

synchronous consensus protocol that is completely embedded into

a DAG. The protocol is fundamentally different from previous par-

tially synchronous protocols since it is symmetric, and does not
require a view-change or view synchronization mechanisms after a
faulty leader. The resulting protocol is embarrassingly simple and

extremely efficient, achieving 125k TPS and 2 second latency with

50 honest parties. As a final contribution, BullShark overcomes an

existing practical limitation of DAG-based protocols of having to

choose between fairness and garbage collection. BullShark garbage

collects vertices belonging to old DAG rounds, and also provides

fairness during synchronous periods. As an evidence to its practical-

ity, the partially synchronous version of BullShark has already been

productionized by Mysten Labs and is currently being integrated

by Aptos.

In summary, this paper makes the following contributions:

• We propose BullShark, the first slow-path/fast-path DAG-

based consensus protocol that achieves significantly lower

latency than prior work. BullShark takes 2 rounds in the good

case and 6 rounds in expectation (matching DAG-Rider) in

asynchrony.

• We simplify BullShark to work only in partial synchrony.

This version of BullShark results in a significantly simpler

partially synchronous consensus protocol than prior work

(extra 200LOC vs 4000LOC of Hotstuff over a DAG [20]).

BullShark additionally performs significantly better under

faults making it the most performant and resilient partially

synchronous protocol to date.

• We show how to build a practical DAG-based system that

allows for garbage collection and provides timely fairness

after GST, answering an open question of prior work [20, 26].

2 TECHNICAL CHALLENGES.
In order to design and implement BullShark we had to solve a

number of theoretical and practical challenges.

Theoretical challenges. The approach in current DAG-based

protocols is to advance rounds as soon as enough messages in the

current round are received (2𝑓 + 1 for Aleph and DAG-Rider). This

works perfectly for asynchronous consensus, but unfortunately

cannot guarantee deterministic liveness during synchronous pe-

riods [21], as required by the eventually synchronous variant of

BullShark. This is because the adversary can, for example, reorder

messages (within the synchrony bound) to make sure parties ad-

vance rounds before getting messages from the predefined leaders.

Note that this is inherent to any deterministic protocol. We consid-

ered and evaluated two alternatives (see Appendix B) and decided

to embed timeouts into the DAG construction as it provided better

performance. In a nutshell, if the first 2𝑓 + 1 messages in a round

do not contain one from the leader, then parties wait for a timeout

or a message from the leader before advancing to the next round.

A further challenge is to take advantage of a common-case syn-

chronous network without sacrificing latency in the asynchronous

worst case. To this end, BullShark introduces two types of votes -

steady-state for the predefined leader and fallback for the random

one. Similarly to DAG-Rider [26], BullShark rounds are grouped in

waves, each of which consists of 4 rounds. Intuitively, each wave

encodes the consensus logic. The first round of a wave has two

potential leaders - a predefined steady-state leader and a leader

that is chosen in retrospect by the randomness produced in the

fourth round of the wave. To reduce latency in synchronous pe-

riods, the third round of a wave also has a predefined leader. It

takes two rounds to commit a steady-state leader. Based on their

voting type, the vertices in the second round can potentially vote

for the steady-state leader in the first round and vertices in the

fourth round can potentially vote for the fallback leader in round

one or the steady-state leader in round three. Importantly, the same

vertex cannot vote for both the fallback and steady-state leaders in

the same wave. A vertex’s voting type is determined by whether

or not its source (the party that broadcasted it) committed a leader

in the previous wave. This information is encoded in the DAG and

since the DAG is built on top of a reliable broadcast abstraction,

even Byzantine parties cannot lie about their voting type.

A nice property of BullShark is that it does not require a view

change or view synchronization mechanisms to overcome faulty

or slow leaders. Instead of a view change, BullShark uses the in-

formation encoded in the DAG to maintain safety. Since all parties

agree on the causal histories of vertices they have in the DAG, after

a leader is committed each party locally “rides” the DAG (wave

by wave) backwards to see which leader-vertices could have been

committed by other parties. Synchronizing views is not required

because (as we show in our proofs) the DAG construction already

provides it. If the first leader in a wave after GST is honest, then all

parties advance to the third round of the wave roughly at the same

time.

Practical challenges. Finally, to evaluate BullShark we had to

resolve some practical challenges. First, all previous theoretical

solutions require unbounded memory to hold the entire DAG, and
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second, the reliable broadcast primitive we use to clearly describe

BullShark (used in DAG-Rider and Aleph as well) is inefficient in

the common-case. Fortunately, Narwhal [20] implemented a scal-

able DAG and dealt exactly with these problems. We started from

Narwhal’s open source codebase and adopt their approach to de-

couple data from metadata to implement an efficient broadcast.

Unfortunately, the Narwhal garbage collection mechanism directly

conflicts with BullShark’s mechanism to provide fairness. In fact,

providing meaningful fairness for all honest parties seems to be im-

possible with bounded memory implementations in asynchronous

networks since every message can be delayed to after the relevant

prefix of the DAG is garbage collected. To deal with this issue we

relax our fairness requirement. That is, our bounded memory im-

plementation of BullShark guarantees timely fairness only during

synchronous periods. This means that after GST all messages by

honest parties make it into the DAG in finite time and before the

garbage collection. For all the other messages (before GST) we use

Tusk’s approach of retransmission, where guarantees can only be

made for an unbounded execution.

3 PRELIMINARIES
3.1 Model
We consider a peer to peer message passing model with a set of 𝑛

parties Π = {𝑝1, . . . , 𝑝𝑛}, and a dynamic adversary that can corrupt

up to 𝑓 < 𝑛/3 of them during an execution. We say that corrupted

parties are Byzantine and all other parties are honest. Byzantine
parties may act arbitrarily, while honest ones follow the protocol.

We assume that the adversary is computationally bounded.

For the description of the protocol we assume that links between

honest parties are reliable. That is, all messages among honest

parties eventually arrive
1
. Moreover, for simplicity, we assume that

recipients can verify the senders identities. We assume a known Δ
and say that an execution of a protocol is eventually synchronous if
there is a global stabilization time (GST) after which all messages

sent among honest parties are deliveredwithinΔ time. An execution

is synchronous if GST occurs at time 0, and asynchronous if GST
never occurs.

For the protocol analysis we are interested in the practical per-

formance as well as theoretical complexity during synchronous and

asynchronous periods, or alternatively, before and after the GST.

To this end, we define consider the following scenarios:

• Worst case condition: asynchronous execution and 𝑓 byzan-

tine parties

• Common case condition: synchronous executions with no

failures
2

3.2 Building blocks
Similarly to DAG-Rider, we use the following known building blocks

for our modular protocol presentation:

Reliable broadcast Each party 𝑝𝑘 can broadcast messages by

calling r_bcast𝑘 (𝑚, 𝑟 ), where𝑚 is a message and 𝑟 ∈ N is a round

number. Every party 𝑝𝑖 has an output r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ), where𝑚
is a message, 𝑟 is a round number, and 𝑝𝑘 is the party that called the

1
We address this issues from a practical point of view in our implementation.

2
Same analysis apply to eventually synchronous failure-free executions after GST.

corresponding r_bcast𝑘 (𝑚, 𝑟 ). The reliable broadcast abstraction
guarantees the following properties:

Agreement If an honest party 𝑝𝑖 outputs r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ),
then every other honest party 𝑝 𝑗 eventually outputs

r_deliver𝑗 (𝑚, 𝑟, 𝑝𝑘 ).
Integrity For each round 𝑟 ∈ N and party 𝑝𝑘 ∈ Π, an honest

party 𝑝𝑖 outputs r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ) at most once regardless

of𝑚.

Validity If an honest party 𝑝𝑘 calls r_bcast𝑘 (𝑚, 𝑟 ), then every

honest party 𝑝𝑖 eventually outputs r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ).

Global perfect coin An instance𝑤 ,𝑤 ∈ N, of the coin is invoked

by party 𝑝𝑖 ∈ Π by calling choose_leader𝑖 (𝑤). This call returns a
party 𝑝 𝑗 ∈ Π, which is the chosen leader for instance𝑤 . Let 𝑋𝑤 be

the random variable that represents the probability that the coin

returns party 𝑝 𝑗 as the return value of the call choose_leader𝑖 (𝑤).
The global perfect coin has the following guarantees:

Agreement If two honest parties 𝑝𝑖 , 𝑝 𝑗 call choose_leader𝑖 (𝑤)
and choose_leader𝑗 (𝑤) with respective return values 𝑝1 and

𝑝2, then 𝑝1 = 𝑝2.

Termination If at least 𝑓 +1 honest parties call choose_leader(𝑤),
then every choose_leader(𝑤) call eventually returns.

Unpredictability As long as less than 𝑓 +1 honest parties call
choose_leader(𝑤), the return value is indistinguishable from

a random value except with negligible probability 𝜖 . Namely,

the probability 𝑝𝑟 that the adversary can guess the returned

party 𝑝 𝑗 of the call choose_leader(𝑤) is 𝑝𝑟 ≤ Pr[𝑋𝑤 = 𝑝 𝑗 ]+𝜖 .
Fairness The coin is fair, i.e., ∀𝑤 ∈ N,∀𝑝 𝑗 ∈ Π : Pr[𝑋𝑤 =

𝑝 𝑗 ] = 1/𝑛.
Implementation examples that use PKI and a threshold signa-

ture scheme [11, 30, 35] can be found in [14, 31]. See DAG-Rider

for more details on how a coin implementation can be integrated

into the DAG construction. It is important to note that the above

mentioned implementations satisfy Agreement, Termination, and

Fairness with information theoretical guarantees. That is, the as-

sumption of a computationally bounded adversary is required only

for the unpredictability property. As we later prove, the unpre-

dictability property is only required for Liveness. Therefore, since

similarly to DAG-Rider generating randomness is the only place

where cryptography is used, the Safety properties of BullShark are

post-quantum secure.

3.3 Problem Definition
Following DAG-Rider [26], our result focuses on the Byzantine
Atomic Broadcast (BAB) problem. To avoid confusion with the

events of the underlying reliable broadcast abstraction, the broad-

cast and deliver events of BAB are a_bcast(𝑚, 𝑟 ) and a_deliver(𝑚, 𝑟, 𝑝𝑘 ),
respectively, where𝑚 is a message, 𝑟 ∈ N is a sequence number,

and 𝑝𝑘 ∈ Π is a party. The purpose of the sequence numbers is

to distinguish between messages broadcast by the same party. We

assume that each party broadcasts infinitely many messages with

consecutive sequence numbers.

Definition 3.1 (Byzantine Atomic Broadcast). Each honest party

𝑝𝑖 ∈ Π can call a_bcast𝑖 (𝑚, 𝑟 ) and output a_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ), 𝑝𝑘 ∈
Π. A Byzantine Atomic Broadcast protocol satisfies reliable broad-

cast (agreement, integrity, and validity) as well as:
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Total order If an honest party 𝑝𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚, 𝑟, 𝑝𝑘 )
before 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚′, 𝑟 ′, 𝑝 ′𝑘 ), then no honest party 𝑝 𝑗 out-

puts 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑗 (𝑚′, 𝑟 ′, 𝑝 ′𝑘 ) before 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑗 (𝑚, 𝑟, 𝑝𝑘 ).

Note that the above definition is agnostic to the network as-

sumptions. However, in asynchronous executions, due to the FLP

result [21], BAB cannot be solved deterministically and therefore

we relax the validity property to hold with probability 1 in this case.

Moreover, the validity property cannot be satisfied in asynchronous

executions with bounded memory implementation. Therefore, as

we discuss more in Section 7, for the practical version of this prob-

lem, we require validity to be satisfied only after GST in eventually

synchronous executions.

Note that the BAB abstraction captures the core consensus logic

in permissioned blockchain systems as it provides a mechanism to

propose blocks of transactions and totally order them. Moreover,

similar to Hyperledger [8], it supports a separation between the

total order mechanism and transaction execution. Transaction val-

idation can therefore be done as part of the execution [8] before

applying it to the SMR.

4 DAG CONSTRUCTION
In this section we describe our DAG construction and explain how

it is different from the one in DAG-Rider [26]. In a nutshell, DAG-

Rider is a fully asynchronous atomic broadcast protocol and thus

rounds in its DAG advance in network speed as soon as 2𝑓 +1 nodes
from the current round are delivered. Here, we are interested in a

protocol that deterministically achieves better latency in synchro-

nous periods. Therefore, introducing timeouts into the system is

unavoidable [21]. We considered and evaluated two alternatives

(see Appendix B for more details) and decided to integrate timeouts

into the DAG construction. It is important to note that despite the

timeouts, our DAG still advances in network speed when the leader

is honest.

We present the background, structures, and basic utilities we

borrow from DAG-Rider in Section 4.1. We describe our DAG con-

struction in Section 4.2.

4.1 Background
We use a DAG to abstract the communication layer among parties

and enable the establishment of common knowledge. Each vertex in

the DAG represents a message disseminated via reliable broadcast

from a single party, containing, among other data, references to

previously broadcasted vertices. Those references are the edges of

the DAG. Each honest party maintains a local copy of the DAG, and

different honest parties might observe different views of it (depend-

ing on the order in which they deliver the vertices). Nevertheless,

reliable broadcast prevents equivocation and guarantees that all

honest parties eventually deliver the same messages, hence their

views of the DAG eventually converge.

The DAG data types and and basic utilities are specified in Algo-

rithm 1. For each party 𝑝𝑖 , we denote 𝑝𝑖 ’s local view of the DAG as

𝐷𝐴𝐺𝑖 , which is represented by an array of sets of vertices 𝐷𝐴𝐺𝑖 [].
Vertexes are created via the 𝑐𝑟𝑒𝑎𝑡𝑒_𝑛𝑒𝑤_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑟 ) procedure. Each
vertex in the DAG is associated with a unique round number 𝑟 and

the party who generated and reliably broadcasted it (the source). In

addition, each vertex 𝑣 contains a block of transactions that were

previously 𝑎_𝑏𝑐𝑎𝑠𝑡 by the BAB protocol that is implemented on top

of the DAG and two sets of outgoing edges. The set strong edges
contains at least 2𝑓 +1 references to vertexes associated with round

𝑟 − 1 and the set weak edges contains up to 𝑓 references to vertices

in rounds < 𝑟 − 1 such that otherwise there is no path from 𝑣 to

them. As explained in the next sections, strong edges are used for

Safety and weak edges make sure we eventually include all vertices

in the total order, to satisfy BAB’s validity property.

The entry 𝐷𝐴𝐺𝑖 [𝑟 ] for 𝑟 ∈ N stores a set of vertices associated

with round 𝑟 that 𝑝𝑖 previously delivered. By the reliable broadcast,

each party can broadcast at most 1 vertex in each round and thus

|𝐷𝐴𝐺𝑖 [𝑟 ] | ≤ 𝑛.

The procedures 𝑝𝑎𝑡ℎ(𝑣,𝑢) and 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ(𝑣,𝑢) get two ver-

texes and check if there is a path from 𝑣 to𝑢. The difference between

them is that 𝑝𝑎𝑡ℎ(𝑣,𝑢) considers all edges while 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ(𝑣,𝑢)
only considers the strong ones.

The procedure 𝑔𝑒𝑡_𝑓 𝑎𝑙𝑙𝑏𝑎𝑐𝑘_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 gets a wave num-

ber, computes the randomly elected leader of the wave and then

returns the vertex that the elected leader broadcast in the first

round of the wave, if it is included in the DAG. Otherwise, returns

⊥. Similarly, the procedures 𝑔𝑒𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 and

𝑔𝑒𝑡_𝑠𝑒𝑐𝑜𝑛𝑑_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 return the vertices broadcast by

the first and second predefined leaders of the wave, respectively.

We assume a predefined and known to all parties mapping waves

to steady-state leaders.

4.2 Our DAG protocol
A detailed pseudocode is given in Algorithm 2. Each party 𝑝𝑖 main-

tains three local variables: round stores the last round in which 𝑝𝑖
broadcast a vertex, buffer stores vertices that where reliably deliv-

ered but not yet added to the DAG, and wait is an Boolean that

indicate whether the timeout for the current round has already

expired. Each party 𝑝𝑖 is constantly trying to advance rounds and

calling the high-level BAB protocol to totally order all the vertices

in its DAG. When 𝑝𝑖 advances its round, it broadcast its vertex for

this round and start a timeout.

Our DAG protocol is triggered by one of two events: a vertex

delivery (via reliable broadcast) or a timeout expiration. Once a

party 𝑝𝑖 delivers a vertex it first checks if the vertex is legal, i.e., (1)

the source and round must match the reliable broadcast instance

to prevent equivocation, and (2) the vertex must has at least 2𝑓 + 1
strong edges. Then, 𝑝𝑖 checks if the vertex is ready to be added

to the DAG by calling 𝑡𝑟𝑦_𝑎𝑑𝑑_𝑡𝑜_𝐷𝐴𝐺 . The idea is to make sure

that the causal history of a vertex is always available in the DAG.

Therefore, a vertex is added to the DAG only if all the vertices it

includes as references are already delivered. If this is not yet the

case, the vertex is added to a buffer for a later retry. Once a vertex
𝑣 is added to the DAG, the high-level BAB protocol is invoked, via

the 𝑡𝑟𝑦_𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝑣) interface, to check if more vertices can now be

totally ordered.

We next describe the conditions for advancing rounds. Note that

since DAG-Rider only cares about the asynchronous case, rounds

are advanced as soon as 2𝑓 + 1 vertices in the current round are

delivered. We, in contrast, optimize for the common case conditions

and thus have to make sure that parties do not advance rounds

too fast. Otherwise, the adversary can prevent honest parties from
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Algorithm 1 Data structures and basic utilities for party 𝑝𝑖

Local variables:
struct vertex 𝑣: ⊲ The struct of a vertex in the DAG

𝑣.round - the round of 𝑣 in the DAG

𝑣.source - the party that broadcast 𝑣

𝑣.block - a block of transactions

𝑣.strongEdges - a set of vertices in 𝑣.round − 1 that represent strong edges

𝑣.weakEdges - a set of vertices in rounds < 𝑣.round − 1 that represent weak edges

𝐷𝐴𝐺𝑖 [] - An array of sets of vertices, initially:

𝐷𝐴𝐺𝑖 [0] ← predefined hardcoded set of 2𝑓 + 1 “genesis” vertices
∀𝑗 ≥ 1 : 𝐷𝐴𝐺𝑖 [ 𝑗 ] ← {}

blocksToPropose - A queue, initially empty, 𝑝𝑖 enqueues valid blocks of transactions from clients

1: procedure path(𝑣,𝑢) ⊲ Check if exists a path consisting of strong and weak edges in the DAG

2: return exists a sequence of 𝑘 ∈ N, vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 s.t.

𝑣1 = 𝑣, 𝑣𝑘 = 𝑢, and ∀𝑖 ∈ [2..𝑘 ] : 𝑣𝑖 ∈
⋃

𝑟≥1 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ (𝑣𝑖 ∈ 𝑣𝑖−1 .weakEdges ∪ 𝑣𝑖−1 .strongEdges)

3: procedure strong_path(𝑣,𝑢) ⊲ Check if exists a path consisting of only strong edges in the DAG

4: return exists a sequence of 𝑘 ∈ N, vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 s.t.

𝑣1 = 𝑣, 𝑣𝑘 = 𝑢, and ∀𝑖 ∈ [2..𝑘 ] : 𝑣𝑖 ∈
⋃

𝑟≥1 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ 𝑣𝑖 ∈ 𝑣𝑖−1 .strongEdges

5: procedure create_new_vertex(round)
6: wait until ¬blocksToPropose.empty()

7: 𝑣.𝑟𝑜𝑢𝑛𝑑 ← 𝑟𝑜𝑢𝑛𝑑

8: 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 ← 𝑝𝑖
9: 𝑣.block← blocksToPropose.dequeue()
10: 𝑣.strongEdges← 𝐷𝐴𝐺 [round − 1]
11: set_weak_edges(𝑣, round)
12: return 𝑣

13: procedure set_weak_edges(𝑣, round) ⊲ Add edges to orphan vertices

14: 𝑣.weakEdges← {}
15: for 𝑟 = round − 2 down to 1 do
16: for every 𝑢 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] s.t. ¬path(𝑣,𝑢) do
17: 𝑣.weakEdges← 𝑣.weakEdges ∪ {𝑢 }

18: procedure get_fallback_vertex_leader(𝑤)

19: 𝑝 ← choose_leader𝑖 (𝑤)
20: return 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑝, 4𝑤 − 3)

21: procedure get_first_steady_vertex_leader(𝑤)

22: 𝑝 ← get_first_predefined_leader(𝑤)
23: return 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑝, 4𝑤 − 3)

24: procedure get_second_steady_vertex_leader(𝑤)

25: 𝑝 ← get_second_predefined_leader(𝑤)
26: return 𝑔𝑒𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑝, 4𝑤 − 1)

27: procedure get_vertex(p,r)
28: if ∃𝑣 ∈ 𝐷𝐴𝐺 [𝑟 ] s.t. 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 then
29: return 𝑣

30: return ⊥

committing steady-state leaders since it controls which 2𝑓 + 1 ver-
texes parties deliver first even after GST. Therefore, we keep the

DAG-Rider necessary condition (in 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑) but extend

it to make sure that honest steady-state leaders are committed in

network speed after GST.

We distinguish between slow and up-to-date parties. As men-

tioned in the introduction, BullShark does not require an external

view-synchronization mechanism for slow parties. Instead, once 𝑝𝑖
delivers 2𝑓 + 1 vertices in a round 𝑟 > round, 𝑝𝑖 jumps forward to

round 𝑟 , broadcasts a vertex in round 𝑟 , and starts a new timeout.

For the up-to-date parties we need to be more careful. As we

explained more in the next section, each wave has a steady-state

leader in the first round and a steady-state leader in the third one.

Intuitively, the vertices of these leaders are interpreted as "propos-

als" and the vertices in immediately following rounds with strong

edges to the leaders’ vertices are interpreted as "votes". In addition,

each party can vote for the steady-state leaders in a wave only if its

voting type is steady-state for this wave. To make sure all honest

parties get a chance to vote for steady state leaders, an up-to-date

honest party 𝑝𝑖 will try to advance (via 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑) to the

second and forth rounds of a wave only if (1) the timeout for this

round expired or (2) 𝑝𝑖 delivered a vertex from the wave prede-

fined first and second steady-state leader, respectively. Similarly,

we need to make sure the adversary cannot prevent honest parties

from collecting enough votes to commit an honest leader after GST.

Therefore, before trying to advance (via 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑) to the

third round a wave or the first round of the next wave, 𝑝𝑖 waits

for either the timeout expiration or to deliver 2𝑓 + 1 vertices in the

current round with steady-state voting type and strong edges to

the first and second steady-leader, respectively. In Section C.2, we

prove that after GST timeouts never expire for honest leaders and

the DAG advances in network speed.

5 THE BULLSHARK PROTOCOL
In this section we present a detailed description of BullShark. Simi-

larly to DAG-Rider [26], the ordering logic of BullShark requires

no communication on top of building the DAG. Instead, each party

observes its local copy of the DAG and totally order its vertices

by interpreting the edges as "votes". In order to optimize for the

common case conditions while guaranteeing liveness under worst

case asynchronous conditions, BullShark has two types of leaders:

steady-state and fallback. Themain challenge in designing BullShark

is the interplay between them as we need to make sure parties can-

not vote for both types at the same round. Illustration of BullShark

can be found in Figure 1. We divide the protocol description into

two parts. In Section 5.1 we describe the commit rule of each leader,

and in Section 5.2 we explain how parties totally order leaders’

causal histories. In Section 6 we preset an eventually synchronous

version of BullShark and in Section 7 we discuss the details of our

garbage collection mechanism. For space limitations, we provide

formal proofs for both versions on BullShark in Appendix C.
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Algorithm 2 DAG construction, protocol for process 𝑝𝑖

Local variables:
round← 1; 𝑏𝑢𝑓 𝑓 𝑒𝑟 ← {}; wait← 𝑡𝑟𝑢𝑒

31: upon r_deliver𝑖 (𝑣, 𝑟, 𝑝) do
32: if 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 ∧ 𝑣.𝑟𝑜𝑢𝑛𝑑 = 𝑟 ∧ |𝑣.strongEdges | ≥ 2𝑓 + 1 then
33: if ¬𝑡𝑟𝑦_𝑎𝑑𝑑_𝑡𝑜_𝑑𝑎𝑔 (𝑣) then
34: buffer← buffer ∪ {𝑣 }
35: else
36: for 𝑣 ∈ 𝑏𝑢𝑓 𝑓 𝑒𝑟 : 𝑣.𝑟𝑜𝑢𝑛𝑑 ≤ 𝑟 do
37: 𝑡𝑟𝑦_𝑎𝑑𝑑_𝑡𝑜_𝑑𝑎𝑔 (𝑣)
38: if 𝑟 = 𝑟𝑜𝑢𝑛𝑑 then
39: w← ⌈𝑟/4⌉ ⊲ steady state wave number

40: if 𝑟 𝑚𝑜𝑑 4 = 1 ∧ (¬wait ∨ ∃𝑣 ∈ 𝐷𝐴𝐺 [𝑟 ] : 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 =

𝑔𝑒𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (w)) then
41: 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑 ()
42: if 𝑟 𝑚𝑜𝑑 4 = 3 ∧ (¬wait ∨ ∃𝑣 ∈ 𝐷𝐴𝐺 [𝑟 ] : 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 =

𝑔𝑒𝑡_𝑠𝑒𝑐𝑜𝑛𝑑_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (w)) then
43: 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑 ()
44: if 𝑟 𝑚𝑜𝑑 4 = 0 ∧ (¬wait ∨ ∃𝑈 ⊆ 𝐷𝐴𝐺 [𝑟 ] : |𝑈 | =

2𝑓 + 1 and ∀𝑢 ∈ 𝑈 ,𝑢.𝑠𝑜𝑢𝑟𝑐𝑒 ∈ steadyVoters[𝑤 ]) ∧
𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑢,𝑔𝑒𝑡_𝑠𝑒𝑐𝑜𝑛𝑑_𝑠𝑡𝑒𝑎𝑑𝑦_𝑙𝑒𝑎𝑑𝑒𝑟 (w)) then

45: 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑 ()
46: if 𝑟 𝑚𝑜𝑑 4 = 2 ∧ (¬wait ∨ ∃𝑈 ⊆ 𝐷𝐴𝐺 [𝑟 ] : |𝑈 | =

2𝑓 + 1 and ∀𝑢 ∈ 𝑈 ,𝑢.𝑠𝑜𝑢𝑟𝑐𝑒 ∈ steadyVoters[𝑤 ]) ∧
𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑢,𝑔𝑒𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦_𝑙𝑒𝑎𝑑𝑒𝑟 (w)) then

47: 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑 ()

48: upon timeout do
49: wait← 𝑓 𝑎𝑙𝑠𝑒

50: 𝑡𝑟𝑦_𝑎𝑑𝑣𝑎𝑛𝑐𝑒_𝑟𝑜𝑢𝑛𝑑 ()

51: procedure try_add_to_dag(𝑣)
52: if ∀𝑣′ ∈ 𝑣.strongEdges ∪ 𝑣.weakEdges : 𝑣′ ∈ ⋃

𝑘≥1
𝐷𝐴𝐺 [𝑘 ] then

53: 𝐷𝐴𝐺 [𝑣.𝑟𝑜𝑢𝑛𝑑 ] ← 𝐷𝐴𝐺 [𝑣.𝑟𝑜𝑢𝑛𝑑 ] ∪ {𝑣 }
54: if |𝐷𝐴𝐺 [𝑣.𝑟𝑜𝑢𝑛𝑑 ] | ≥ 2𝑓 + 1 ∧ 𝑣.𝑟𝑜𝑢𝑛𝑑 > round then
55: round← 𝑣.𝑟𝑜𝑢𝑛𝑑 ; start timer ; wait← 𝑡𝑟𝑢𝑒 ⊲ Synchronize waves

56: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑣.𝑟𝑜𝑢𝑛𝑑)
57: buffer← buffer \ {𝑣 }
58: 𝑡𝑟𝑦_𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 (𝑣)
59: return true

60: return false

61: procedure try_advance_round()
62: if |𝐷𝐴𝐺 [𝑟𝑜𝑢𝑛𝑑 ] | ≥ 2𝑓 + 1 then
63: round← round + 1; start timer ; wait← 𝑡𝑟𝑢𝑒

64: 𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡_𝑣𝑒𝑟𝑡𝑒𝑥 (𝑟𝑜𝑢𝑛𝑑)

65: procedure broadcast_vertex(r)
66: 𝑣 ← create_new_vertex(𝑟 )
67: 𝑡𝑟𝑦_𝑎𝑑𝑑_𝑡𝑜_𝑑𝑎𝑔 (𝑣)
68: r_bcast𝑖 (𝑣, 𝑟 )

5.1 Voting Types
Similarly to DAG-Rider, to interpret the DAG, each party 𝑝𝑖 divides

its local view of the DAG, 𝐷𝐴𝐺𝑖 , into waves of 4 rounds each.

Unlike DAG-Rider, which has one potential leader in every wave,

BullShark has three. One fallback leader in the first round of each

wave, which is elected retrospectively via the randomness produced

in the forth round of thewave (as in DAG-Rider), and two predefined

steady-state leaders in the first and third rounds of each wave.

In the common case, during synchronous periods, both steady-

state leaders are committed in each wave, meaning that it takes

two rounds on the DAG to commit a leader. During asynchronous

periods, each fallback leader is committed with probability of at

least 2/3. Meaning that during asynchrony, a fallback leader is

Figure 1: Illustration of the DAG at party P1. The columns repre-
sent the round numbers and the rows are all the vertices from a
particular party (P1, P2, P3, P4 top to bottom). S1A denotes the first
steady state leader of wave 1 (in round 1), and S1B denotes the sec-
ond steady state leader ofwave 1 (in round 3). F1 denotes the fallback
leader of wave 1 (in round 1). All parties start off with a steady state
vote type in wave 1. In round 2, P1 observes 3 (2f + 1) steady state
votes for S1A (denoted in red), so P1 commits S1A. In round 4, P1 only
observes 1 vote for the second steady state leader S1B, so P1 does
not commit S1B. Since P1 does not commit the second steady state
leader, it has a fallback vote type in wave 2. From the DAG in round
5, P1 also observes that P2, P3, P4 did not commit S1B, so all parties
have a fallback vote type in wave 2. Thus S2A and S2B (the first and
second steady state leaders in wave 2 respectively) cannot be com-
mitted since all vote types are fallback. In round 8, P1 observes 3
(2f + 1) fallback votes for the fallback leader F2 (denoted in blue), so
P1 commits F2. Once P1 commits F2, it checks to see whether any
previous leader it did not commit, could have been committed. In
round 4, P1 only observes 1 steady state vote for S1B (less than f + 1),
so it does not commit S1B since if it would have been committed by
some party then P1 would observed at least 𝑓 + 1 votes.

committed every 6 rounds in expectation and BullShark has liveness

with probability 1.

A nice property of the common case execution of BullShark is

that it does not require external view-change and view-synchronization

mechanisms. When switching from asynchrony to synchrony, the

first two rounds of each wave make sure that if the first leader is

honest then all honest parties start the third round roughly at the

same time. View-change is not required because the DAG encodes

all the information needed for safety. In particular, parties can see

what information other parties had when they interpreted the DAG,

and decide accordingly.

The pseudocode appears inAlgorithm 3. The procedure try_ordering

is called every time a new vertex is added to the DAG. Since Bull-

Shark has two types of leaders in each wave, we need to ensure that

fallback and steady-state leaders are never committed in the same

wave. To this end, parties cannot vote for both types of leaders in

the same wave. That is, every party is assigned with a voting type

in every wave that is either fallback or steady-state. When a party

𝑝𝑖 interprets its local copy of the DAG it keeps track of other parties

voting types in steadyVoters[w] and fallbackVoters[w], where𝑤 is a

wave number.

Intuitively, a party is in steadyVoters[w] if it has committed ei-

ther the second steady-state or the fallback leader in wave𝑤 − 1.
Specifically, party 𝑝𝑖 determines 𝑝 𝑗 ’s voting type in wave𝑤 when

it delivers 𝑝 𝑗 ’s vertex 𝑣 in the first round of wave𝑤 , which triggers
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Algorithm 3 BullShark part 1: 𝑝𝑖 ’s alg. to update parties vote type

Local variables:
steadyVoters[1] ← Π; fallbackVoters[1] ← {}
For every 𝑗 > 1, steadyVoters[ 𝑗 ], fallbackVoters[ 𝑗 ] ← {}

69: upon a_bcast𝑖 (𝑏, 𝑟 ) do
70: blocksToPropose.enqueue(𝑏)

71: procedure try_ordering(𝑣)
72: 𝑤 ← ⌈𝑣.𝑟𝑜𝑢𝑛𝑑/4⌉
73: votes← 𝑣.strongEdges
74: if v.round mod 4 = 1 then ⊲ first round of a wave

75: determine_party_vote_type(v.source, votes, w)
76: else if v.round mod 4 = 3 then
77: try_steady_commit(votes, get_first_steady_vertex_leader(w), 𝑤)

78: procedure determine_party_vote_type(𝑝, 𝑣𝑜𝑡𝑒𝑠, 𝑤)

79: 𝑣𝑠 ← get_second_steady_vertex_leader(w-1)
80: 𝑣𝑓 ← get_fallback_vertex_leader(w-1)
81: if try_steady_commit(votes, 𝑣𝑠 ,𝑤−1)∨ try_fallback_commit(votes, 𝑣𝑓 ,𝑤−1)

then
82: steadyVoters[𝑤 ] ← steadyVoters[𝑤 ] ∪ {𝑝 }
83: else
84: fallbackVoters[𝑤 ] ← fallbackVoters[𝑤 ] ∪ {𝑝 }

85: procedure try_steady_commit(votes, 𝑣, 𝑤)

86: if | {𝑣′ ∈ votes : 𝑣′.𝑠𝑜𝑢𝑟𝑐𝑒 ∈ staedyVoters[w] ∧
𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣′, 𝑣) } | ≥ 2𝑓 + 1 then

87: 𝑐𝑜𝑚𝑚𝑖𝑡_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣)
88: return true

89: return false

90: procedure try_fallback_commit(votes, 𝑣, 𝑤)

91: if | {𝑣′ ∈ votes : 𝑣′.𝑠𝑜𝑢𝑟𝑐𝑒 ∈ fallbackVoters[w] ∧
𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣′, 𝑣) } | ≥ 2𝑓 + 1 then

92: 𝑐𝑜𝑚𝑚𝑖𝑡_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣)
93: return true

94: return false

the call to the determine_party_vote_type procedure. If the causal

history of 𝑣 has enough information to commit one of these leaders,

then 𝑝𝑖 determines 𝑝 𝑗 ’s voting type as steady-state, otherwise, as

fallback. By the properties of reliable broadcast, all parties see the

same causal history of vertex 𝑣 , and thus agree on 𝑝 𝑗 ’s voting type

in round 𝑤 (even Byzantine parties cannot lie about their voting

type).

To commit a leader in wave𝑤 − 1 based on a vertex 𝑣 in the first

round of a wave𝑤 , 𝑝𝑖 considers the set of vertices pointed by 𝑣 ’s

strong edges as potential "votes". Note that these vertices belong to

wave 𝑤 − 1 and each of them has a voting type that was already

previously determined by 𝑝𝑖 . To commit the fallback leader of wave

𝑤 − 1, at least of 2𝑓 + 1 out of the potential votes must have strong

paths to the leader and a fallback voting type. Similarly, to commit

the second steady-state leader of wave 𝑤 − 1, at least 2𝑓 + 1 out
of the potential votes must to have strong paths to the leader and

steady-state voting type. Committing the first steady-state leader

of a wave is similar but in this case the strong edges of a vertex

in the third round of the wave are considered as potential votes.

Note that since even a Byzantine party cannot lie about its voting

type, quorum intersection guarantees that leaders with different

types cannot be committed in the same wave. This is the reason we

ask for 2𝑓 + 1 strong paths unlike Tusk where 𝑓 + 1 strong paths
are sufficient for safety. As we describe next, when a leader 𝑣 is

committed then the procedure commit_leader is called to totally

order 𝑣 ’s causal history.

5.2 Ordering The DAG
So far we described the wave commit rules and how parties use

them to determine other parties voting types. Next we describe how

we totally order the DAG. The pseudocode appears in Algorithm 4.

Once a party 𝑝𝑖 commits a (steady-state or fallback) leader vertex

𝑣 it calls 𝑐𝑜𝑚𝑚𝑖𝑡_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣). To totally order the causal history of

𝑣 , 𝑝𝑖 first tries to commit previous leaders for which the commit

rule in its local copy of the DAG was not satisfied. To do this, 𝑝𝑖
traverses back the rounds of its DAG until the last round in which

it committed a leader and check whether it is possible that other

honest parties committed leaders in these rounds based on their

local copy of the DAG. If 𝑝𝑖 encounters such a leader, it orders it

before 𝑣 . Note that this part is much trickier than in DAG-Rider

since BullShark has three potential leaders in every wave.

Algorithm 4 BullShark part 2: the commit alg. for party 𝑝𝑖

Local variables:
committedRound← 0

deliveredVertices← {}
leaderStack← initialize empty stack

95: procedure commit_leader(𝑣)

96: leaderStack.𝑝𝑢𝑠ℎ (𝑣)
97: 𝑟 ← v.round − 2 ⊲ There is a potential leader to commit every two rounds

98: while 𝑟 > committedRound do
99: 𝑤 ← ⌈𝑟/4⌉
100: ssPotentialVotes← {𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 + 1] | 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣, 𝑣′) }
101: if 𝑟 𝑚𝑜𝑑 4 == 1 then ⊲ two potential leaders in this round

102: 𝑣𝑠 ← 𝑔𝑒𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑤)
103: 𝑣𝑓 ← 𝑔𝑒𝑡_𝑓 𝑎𝑙𝑙𝑏𝑎𝑐𝑘_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑤)
104: ssVotes← {𝑣′ ∈ ssPotentialVotes : 𝑣′.𝑠𝑜𝑢𝑟𝑐𝑒 ∈

steadyVoters[𝑤 ] ∧ 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣′, 𝑣𝑠 ) }
105: if 𝑣.𝑟𝑜𝑢𝑛𝑑 = 𝑟 + 2 then
106: fbVotes← {} ⊲ fallback leader could not be committed since

107: there at least 2𝑓 + 1 steady-state vote types in this wave

108: else
109: fbPotentialVotes← {𝑣′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 + 3] | 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣, 𝑣′) }
110: fbVotes← {𝑣′ ∈ fbPotentialVotes : 𝑣′.𝑠𝑜𝑢𝑟𝑐𝑒 ∈

fallbackVoters[𝑤 ] ∧ 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣′, 𝑣𝑓 ) }
111: else ⊲ 𝑟 𝑚𝑜𝑑 4 == 3

112: 𝑣𝑠 ← 𝑔𝑒𝑡_𝑠𝑒𝑐𝑜𝑛𝑑_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑤)
113: ssVotes← {𝑣′ ∈ ssPotentialVotes : 𝑣′.𝑠𝑜𝑢𝑟𝑐𝑒 ∈

steadyVoters[𝑤 ] ∧ 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣′, 𝑣𝑠 ) }
114: 𝑣𝑓 ← ⊥; fbVotes← {}
115: if |ssVotes | ≥ 𝑓 + 1 ∧ |fbVotes | < 𝑓 + 1 then
116: 𝑙𝑒𝑎𝑑𝑒𝑟𝑠𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑣𝑠 )
117: 𝑣 ← 𝑣𝑠

118: if |ssVotes | < 𝑓 + 1 ∧ |fbVotes | ≥ 𝑓 + 1 then
119: 𝑙𝑒𝑎𝑑𝑒𝑟𝑠𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑣𝑓 )
120: 𝑣 ← 𝑣𝑓

121: 𝑟 ← 𝑟 − 2
122: committedRound← 𝑣.𝑟𝑜𝑢𝑛𝑑

123: 𝑜𝑟𝑑𝑒𝑟_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ()

124: procedure 𝑜𝑟𝑑𝑒𝑟_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ()
125: while ¬leadersStack.isEmpty() do
126: 𝑣 ← leadersStack.pop()
127: verticesToDeliver ← {𝑣′ ∈ ⋃𝑟>0 𝐷𝐴𝐺𝑖 [𝑟 ] | 𝑝𝑎𝑡ℎ (𝑣, 𝑣′) ∧ 𝑣′ ∉

deliveredVertices}
128: for every 𝑣′ ∈ verticesToDeliver in some deterministic order do
129: output a_deliver𝑖 (𝑣′.block, 𝑣′.round, 𝑣′.source)
130: deliveredVertices← deliveredVertices ∪ {𝑣′ }

By quorum intersection and the non-equivocation property of

the DAG, if some party commits either a fallback or a steady-state

leader by seeing 2𝑓 + 1 votes, then all other parties see at least

𝑓 + 1 of these votes. Moreover, since a party cannot vote for both
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types of leaders in the same wave, if 𝑝𝑖 sees 𝑓 + 1 votes for the

fallback (steady-state) leader, then no party could have committed

the steady-state (fallback) leader since in this case there are at most

2𝑓 votes with steady-state (fallback) type.

To make sure 𝑝𝑖 orders the leaders that precedes 𝑣 consistently

with the other parties, we need to make sure that parties consider

the same potential votes when deciding whether to order one of

them. To this end, to decide whether to order a steady-state leader 𝑣 ′,
𝑝𝑖 sets the potential votes to be all the vertices in round 𝑣 ′.𝑟𝑜𝑢𝑛𝑑 +1
in its DAG such that there is a strong path between the last leader

𝑝𝑖 previously ordered and 𝑣 ′. For a fallback leader 𝑣 ′, the potential
votes are set in a similar way but round 𝑣 ′ + 3 is used instead of

𝑣 ′ + 1 to be consistent with the commit rule.

After computing the potential votes, 𝑝𝑖 checks if one of the

leaders in the round it is currently traversing could be committed

by other honest parties. First, 𝑝𝑖 checks the potential votes type

and the existence of strong paths to the leaders to determines the

sets of votes for the steady-state and fallback leaders. Note that the

set of votes for the fallback leader is empty in rounds without a

fallback leader or if a steady-state leader was already committed

in this wave. Then, 𝑝𝑖 checks if one of the leaders 𝑢 in the round

has at least 𝑓 + 1 votes while the other has at most 𝑓 . If this is

the case 𝑝𝑖 orders 𝑢 by pushing it to the leader’s stack leaderStack
and continues its traversal to the next rounds to check if there are

leaders to order before 𝑢. Otherwise, 𝑝𝑖 skips the leaders of the

current round as it is guaranteed that none if them could have been

committed.

As we prove in Appendix C, all honest parties order the same

leaders and in the same order. All that is left is to apply some deter-

ministic rule to order their causal histories one by one. Therefore,

after committing a leader 𝑣 (and finishing ordering all leaders that

proceeds 𝑣 for which the commit rule was not satisfied), party 𝑝𝑖
calls 𝑜𝑟𝑑𝑒𝑟_𝑣𝑒𝑟𝑡𝑒𝑥 (). This function goes over the ordered leaders

one by one, and for each of them delivers, by some deterministic

order, all the blocks in the vertices in it causal history (strong and

weak edges) that have not yet been delivered.

6 EVENTUALLY SYNCHRONOUS
BULLSHARK

In this section we present an eventually synchronous version of the

Bullshark protocol. This protocol is embarrassingly simple, and as

we demonstrate in Section 9, very efficient. To the best of our knowl-

edge, this is the first eventually synchronous BFT protocol that does

not require view-change or view-synchronization mechanism. The

presentation here is based on the terminology of Section 5. An

intuitive illustration can be found in Appendix A and an extended

description in [3].

In a nutshell, there are no fallback leaders in the eventually syn-

chronous version of BullShark. Instead, parties keep trying to com-

mit the steady-state leaders. The pseudocode, which overwrites the

𝑡𝑟𝑦_𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔 procedure, appears in Algorithm 5 (Note that some

procedures from previous Algorithms are called). In section C.2 we

give a formal proof of Safety and Liveness. In a nutshell, the safety

proof has a similar proof structure as BullShark with fallback, and

for liveness we show that after GST two consecutive honest prede-

fined leaders guarantee that the second leader will be committed by

all honest parties. In particular, we show that if the first leader of

wave𝑤 is honest, then all honest parties advance to the third round

of 𝑤 roughly at the same time. Moreover, if the second leader is

honest than all honest parties will wait for the second leader before

advancing to the fourth round, and thus all honest will see at least

2𝑓 + 1 votes for the second leader in𝑤 and commit it.

Algorithm 5 Eventually synchronous BullShark: alg. for party 𝑝𝑖 .

Local variables:
committedRound← 0

leaderStack← initialize empty stack

131: procedure try_ordering(𝑣)
132: 𝑤 ← ⌈𝑣.𝑟𝑜𝑢𝑛𝑑/4⌉
133: votes← 𝑣.strongEdges
134: if v.round mod 4 = 1 then ⊲ try committing second leader of prev wave

135: try_commit(votes, get_second_steady_vertex_leader(w-1))
136: else if v.round mod 4 = 3 then ⊲ try committing first leader of this wave

137: try_commit(votes, get_first_steady_vertex_leader(w))

138: procedure try_commit(𝑣𝑜𝑡𝑒𝑠, 𝑣)

139: if | {𝑣′ ∈ 𝑣𝑜𝑡𝑒𝑠 : 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣′, 𝑣) } | ≥ 𝑓 + 1 then
140: 𝑐𝑜𝑚𝑚𝑖𝑡_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑣)

141: procedure commit_leader(𝑣)

142: 𝑙𝑒𝑎𝑑𝑒𝑟𝑠𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑣)
143: 𝑟 ← 𝑣.𝑟𝑜𝑢𝑛𝑑 − 2
144: while r > committedRound do
145: 𝑤 ← ⌈𝑣.𝑟𝑜𝑢𝑛𝑑/4⌉
146: if 𝑟 𝑚𝑜𝑑 4 == 1 then
147: 𝑣𝑠 ← 𝑔𝑒𝑡_𝑓 𝑖𝑟𝑠𝑡_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑤)
148: else ⊲ 𝑟 𝑚𝑜𝑑 4 == 3

149: 𝑣𝑠 ← 𝑔𝑒𝑡_𝑠𝑒𝑐𝑜𝑛𝑑_𝑠𝑡𝑒𝑎𝑑𝑦_𝑣𝑒𝑟𝑡𝑒𝑥_𝑙𝑒𝑎𝑑𝑒𝑟 (𝑤)
150: if 𝑠𝑡𝑟𝑜𝑛𝑔_𝑝𝑎𝑡ℎ (𝑣, 𝑣𝑠 ) then
151: 𝑙𝑒𝑎𝑑𝑒𝑟𝑠𝑆𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ (𝑣𝑠 )
152: 𝑣 ← 𝑣𝑠

153: 𝑟 ← 𝑟 − 2
154: committedRound← 𝑣.𝑟𝑜𝑢𝑛𝑑

155: 𝑜𝑟𝑑𝑒𝑟_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 () ⊲ see Algorithm 4

7 GARBAGE COLLECTION IN BULLSHARK
One of the main practical challenges and a potential reason that

DAG-based BFT protocols are not yet widely deployed is the need

for unbounded memory to guarantee validity and fairness. In other

words, the question of how to satisfy fairness and at the same time

garbage collect old parts of the DAG from the working memory of

the system.

For example, HashGraph [9] constructs an unstructured DAG,

and thus has to keep inmemory the entire prefix of the DAG in order

to verify the validity of new blocks. DAG-Rider[26], Aleph [22],

and Narwhal [20] use a round-based structured DAG, but do not

provide a solution to the aforementioned question. The only DAG-

based BFT we are aware of that proposed a garbage collection

mechanism is Narwhal [20]. Their mechanism uses the consensus

decision in order to agree what rounds in the DAG can be cleaned.

However their protocol sacrifices the Validity (fairness) property

of the BAB problem. It does not provide fairness to all parties since

blocks of slow parties can be garbage collected before they have

a chance to be totally ordered. DAG-Rider[26], on the other hand,

make use of weak links to refer to yet unordered blocks in previous

rounds, which guarantees that every block is eventually ordered.

The solution works well in theory, but it is unclear how to garbage

collect it.
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In fact, through our investigation we realized that providing

the BAB’s validity (fairness) property with bounded memory in

fully asynchronous executions is impossible since blocks of honest

parties can be arbitrarily delayed. Similarly to the core observation

in the FLP [21] impossibility result, in asynchronous settings, it

is impossible to distinguish between faulty parties that will never

broadcast a block and slow parties for which we need to wait before

garbage collecting old rounds.

Fairness after GST. In the BullShark implementation we propose

a practical alternative. We maintain bounded memory at the cost

of providing fairness only after GST. What we need is a 3𝑃 failure

detector [19, 29] whichwill be strong and complete after GST letting

us garbage collect rounds even if we did not get vertices from all

parities (i.e., we do not need to wait forever for faulty parties).We do

it by leveraging the structure of our DAG and introducing the notion

of timestamp as described below. Formally, our implementation of

BullShark maintains bounded memory and satisfies the following:

Definition 7.1. If an honest party 𝑝𝑘 calls r_bcast𝑘 (𝑚, 𝑟 ) after
GST, then every honest party 𝑝𝑖 eventually outputs r_deliver𝑖 (𝑚, 𝑟, 𝑘).

For the garbage collection mechanism we add a timestamp for

every vertex. That is, an honest party specify in 𝑣 .𝑡𝑠 the time when

it broadcast its vertex 𝑣 . In addition, parties maintain a garbage

collection round, GCround, and never add vertices to the DAG in

rounds below it. Note that the latency of the reliably broadcast

building block we use is bounded after GST, but depends on the

specific implementation. For the protocol description we assume

that the time it takes to reliably broadcast a message after GST

is Δ. The pseudocode, in which we describe how to change the

function order_vertices that is used by both versions of BullShark,

appears in Algorithm 6. The idea is simple. For every leader 𝑣 we

order, we assign a timestamp 𝑡𝑠 , which is computed as the median

of all the timestamp of 𝑣 ’ parents (i.e., 𝑣 ’s strong edges). Then,

while traversing 𝑣 ’s causal history to find vertices to order, we

compute a timestamp for every round in a similar way (the median

of timestamps of the vertices in this round). If the difference between

the timestamp is above 3Δ the round is garbage collected.

Since by the properties of the underling reliable broadcast all

parties agree on the causal histories of the leaders, once parties

agree which leaders to order they also agree what rounds to garbage

collect. Therefore, the garbage collection mechanism preserves the

safety and liveness properties we prove in Appendix C. Below we

argue that when announced with the above garbage collection, Bull-

Shark satisfies Definition 7.1 while preserving bounded memory.

Boundedmemory. In Appendix Cwe show that for every round 𝑟

there is a round 𝑟 ′ > 𝑟 in which a leader is committed. In particular,

this means that for every round 𝑟 with median timestamp 𝑡𝑠 , there

will be eventually a committed leader with a high enough timestamp

for 𝑟 to be garbage collected.

Fairness. First note that since every round has at least 2𝑓 + 1
vertices, the median timestamp of a round always belongs to an

honest party. Let 𝑝𝑖 be a party that broadcast a vertex 𝑣 at some

round 𝑟 at time 𝑡 after GST, we show that all honest parties order

𝑣 . By the assumption on the reliable broadcast latency, all honest

parties reliably deliver 𝑣 before time 𝑡 + Δ. Let 𝑝 𝑗 be the first party

Algorithm 6 Garbage collection. Algorithm for party 𝑝𝑖 .

Local variables:
GCround← 0

1: procedure 𝑜𝑟𝑑𝑒𝑟_𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ()
2: while ¬leadersStack.isEmpty() do
3: 𝑣 ← leadersStack.pop()
4: if 𝑣.𝑟𝑜𝑢𝑛𝑑 > 1 then
5: parents← {𝑢 ∈ 𝐷𝐴𝐺𝑖 [𝑣.𝑟𝑜𝑢𝑛𝑑 − 1] | 𝑝𝑎𝑡ℎ (𝑣,𝑢) }
6: leaderTS← median( {𝑣.𝑡𝑠 | 𝑣 ∈ parents})
7: verticesToDeliver← parents ∪ {𝑣 }
8: else
9: verticesToDeliver← {𝑣 }
10: 𝑟 ← GCround + 1
11: while 𝑟 < 𝑣.𝑟𝑜𝑢𝑛𝑑 − 1 do
12: candidates← {𝑢 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] | 𝑝𝑎𝑡ℎ (𝑣,𝑢) }
13: candidatesTS← median( {𝑣.𝑡𝑠 | 𝑣 ∈ candidates})
14: verticesToDeliver← verticesToDeliver∪ candidates \ deliveredVertices
15: if leaderTS - candidatesTS > 3Δ then
16: GCround← 𝑟

17: 𝐷𝐴𝐺𝑖 [𝑟 ] ← {} ⊲ garbage collect old rounds

18: 𝑟 ← 𝑟 + 1
19: for every 𝑣′ ∈ verticesToDeliver do ⊲ in some deterministic order

20: output a_deliver𝑖 (𝑣′.block, 𝑣′.round, 𝑣′.source)
21: deliveredVertices← deliveredVertices ∪ {𝑣′ }

that advances to round 𝑟 . In Appendix C we show that if an honest

party advances to round 𝑟 at time 𝑡 after GST, then all honest

parties advance to round 𝑟 no later than at time 𝑡 + 2Δ. Therefore,
𝑝 𝑗 advanced to round 𝑟 not before 𝑡 − 2Δ. Therefore, the timestamp

of round 𝑟 is at least 𝑡 − 2Δ. Thus, round 𝑟 is garbage collected only
after a leader 𝑣 ′ with timestamp higher than 𝑡 + Δ is ordered. By

the way the leader’s timestamp is computed there is at least one

vertex 𝑣 ′′ in 𝑣 ′.strongEdges that broadcast by an honest party after

time 𝑡 + Δ. Therefore, by the manner weak edges are added, there

is an edge between 𝑣 ′′ and 𝑣 . Fairness follows since 𝑣 and 𝑣 ′′ are in
𝑣 ′’s casual history and thus both ordered together with 𝑣 ′.

8 IMPLEMENTATION
We implement a networked multi-core eventually synchronous

BullShark party forking the Narwhal project
3
. Narwhal provides

the structured DAG used at the core of BullShark, which we modify

to support fast-path in partial synchrony as described in Section 4.2.

Additionally, it provides well-documented benchmarking scripts

to measure performance in various conditions, and it is close to

a production system (it provides real networking, cryptography,

and persistent storage). It is implemented in Rust, uses tokio4

for asynchronous networking, ed25519-dalek5 for elliptic curve
based signatures, and data-structures are persisted using Rocksdb6.
It uses TCP to achieve reliable point-to-point channels, necessary

to correctly implement the distributed system abstractions. By de-

fault, the Narwhal codebase runs the Tusk consensus protocol [20];

we modify the proposer module of the primary crate and the

consensus crate to use BullShark instead. Implementing BullShark

requires editing less than 200 LOC, and does not require any extra

3
https://github.com/facebookresearch/narwhal

4
https://tokio.rs

5
https://github.com/dalek-cryptography/ed25519-dalek

6
https://rocksdb.org

https://github.com/facebookresearch/narwhal
https://tokio.rs
https://github.com/dalek-cryptography/ed25519-dalek
https://rocksdb.org
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protocol message or cryptographic tool. We are open-sourcing Bull-

Shark
7
along with any Amazon web services orchestration scripts

and measurements data to enable reproducible results
8
.

9 EVALUATION
We evaluate the throughput and latency of our implementation of

BullShark through experiments on AWS. We particularly aim to

demonstrate that (i) BullShark achieves high throughput even for

large committee sizes, (ii) BullShark has low latency even under

high load, in the WAN, and with large committee sizes, and (iii)

BullShark is robust when some parts of the system inevitably crash-

fail. Note that evaluating BFT protocols in the presence of Byzantine

faults is still an open research question [10].

We deploy a testbed on AWS, using m5.8xlarge instances across
5 different AWS regions: N. Virginia (us-east-1), N. California (us-

west-1), Sydney (ap-southeast-2), Stockholm (eu-north-1), and Tokyo

(ap-northeast-1). Parties are distributed across those regions as

equally as possible. Each machine provides 10Gbps of bandwidth,

32 virtual CPUs (16 physical core) on a 2.5GHz, Intel Xeon Plat-

inum 8175, 128GB memory, and runs Linux Ubuntu server 20.04.

We select these machines because they provide decent performance

and are in the price range of ‘commodity servers’.

In the following sections, each measurement in the graphs is the

average of 2 independent runs, and the error bars represent one

standard deviation; errors bars are sometimes too small to be visible

on the graph. Our baseline experiment parameters are 10 honest

parties, a maximum block size of 500KB, and a transaction size of

512B. We instantiate one benchmark client per party (collocated

on the same machine) submitting transactions at a fixed rate for a

duration of 5 minutes. The leader timeout value is set to 5 seconds.

When referring to latency, we mean the time elapsed from when

the client submits the transaction to when the transaction is com-

mitted by one party. We measure it by tracking sample transactions

throughout the system.

9.1 Benchmark in the common case
Figure 2 illustrates the latency and throughput of BullShark, Tusk

and HotStuff for varying numbers of parties.

HotStuff The maximum throughput we observe for HotStuff is

70,000 tx/s for a committee of 10 parties, and lower (up to 50,000

tx/s) for a larger committee of 20, and even lower (around 30,000

tx/s) for a committee of 50. The experiments demonstrate that

HotStuff does not scale well when increasing the committee size.

However, its latency before saturation is low, at around 2 seconds.

Tusk Tusk exhibits a significantly higher throughput thanHotStuff.

It peaks at 110,000 tx/s for a committee of 10 and at around 160,000

tx/s for larger committees of 20 and 50 parties. It may seem counter-

intuitive that the throughput increases with the committee size: this

is due to the implementation of the DAG not using all resources

(network, disk, CPU) optimally. Therefore, more parties lead to

increased multiplexing of resource use and higher performance [20].

7
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Despite its high throughput, Tusk’s latency is higher than HotStuff,

at around 3 secs (for all committee sizes).

BullShark BullShark strikes a balance between the high through-

put of Tusk and the low latency of HotStuff. Its throughput is

significantly higher than HotStuff, reaching 110,000 tx/s (for a com-

mittee of 10) and 130,000 tx/s (for a committee of 50); BullShark’s

throughput is over 2x higher than HotStuff’s. Bullshark is built from

the same DAG as Tusk and thus inherits its scalability allowing it to

maintain high performance for large committee sizes. BullShark’s

selling point over Tusk is its low latency, at around 2 sec no matter

the committee size. BullShark’s latency is lower than Tusk since it

commits within 2 DAG rounds while Tusk requires 4. BullShark’s

latency is comparable to HotStuff and 33% lower than Tusk. Figure 3

highlights this trade-off by showing the maximum throughput that

can be achieved by HotStuff, Tusk, and Bullshark while keeping

the latency under 2.5s and 5s. Tusk and Bullshark scale better than

HotStuff when increasing the committee size; there is no dotted

line for Tusk since it cannot commit transactions in less than 2.5s.

9.2 Benchmark under crash-faults
Figure 4 depicts the performance of HotStuff, Tusk, and BullShark

when a committee of 10 parties suffers 1 to 3 crash-faults (the maxi-

mum that can be tolerated in this setting). HotStuff suffers a massive

degradation in throughput as well as a dramatic increase in latency.

For 3 faults, the throughput of HotStuff drops by over 10x and its

latency increases by 15x compared to no faults. In contrast, both

Tusk and BullShark maintain a good level of throughput: the un-

derlying DAG continues collecting and disseminating transactions

despite the crash-faults, and is not overly affected by the faulty

parties. The reduction in throughput is in great part due to losing

the capacity of faulty parties. When operating with 3 faults, both

Tusk and BullShark provide a 10x throughput increase and about

7x latency reduction with respect to HotStuff.

9.3 Performance under asynchrony
HotStuff has no liveness guarantees when the eventual synchrony

assumption does not hold (before GST), either due to (aggressive)

DDoS attacks targeted against the leaders [38] or adversarial de-

lays on the leaders’ messages as experimentally proven in prior

work [20, 23] . That is, the throughput of the system falls to 0. The

same can happen to the partially synchronous version of BullShark.

The reason is that whenever a party becomes the leader for some

round, its proposal can be delayed such that all other parties timeout

for that round. In order to avoid this attack, Tusk and DAG-Rider

elects leaders unpredictably after the DAG is constructed which

makes such attacks impossible. The purpose of the fallback mode of

BullShark is to maintain the same liveness properties as Tusk and

DAG-Rider under asynchrony without compromising on perfor-

mance during periods of synchrony. If the voting type of all parties

is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-

Shark thus renounces to its latency advantage with respect to Tusk

in order to remain live under asynchrony. As any asynchronous pro-

tocol, the performance of both Tusk and BullShark during periods

of asynchrony can be arbitrarily bad as they depend on the network

conditions (which guarantee delivery after unbounded time). When

https://github.com/asonnino/narwhal/tree/bullshark
https://github.com/asonnino/narwhal/tree/bullshark/benchmark/data
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Figure 2: Comparative throughput-latency performance of HotStuff, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,

500KB maximum block size and 512B transaction size.
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Shark, keeping the latency under 2.5s and 5s. WAN measurements with

10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B

transaction size.

the period of asynchrony ends, parties change their voting type to

steady-state, and BullShark offers again its state-of-the-art latency.

10 RELATEDWORK
In this Section we discuss other prior works relevant to BullShark

and a more in depth comparison with the systems against which

we evaluate.

Performance comparisons: We compare BullSharkwith Tusk [20]

and HotStuff [42]. Tusk is the most similar system to BullShark.

It is a zero-message consensus protocol built on top of the same

structured DAG as BullShark. It is however fully asynchronous

while BullShark is partially-synchronous fast path. HotStuff is an

established partially-synchronous protocol running at the heart

of a number of projects [1, 2, 4–6], and a successor of the popular

Tendermint [13].
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Figure 4: Comparative throughput-latency under crash-faults of HotStuff,

Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and

three crash-faults, 500KB maximum block size and 512B transaction size.

We aim to compare BullShark with related systems as fairly as

possible. An important reason for selecting Tusk
9
and HotStuff

10
is

because they both have open-source implementations sharing deep

similarities with our own. They are both written in Rust using the

same network, cryptographic and storage libraries than ours. They

are both designed to take full advantage of multi-core machines

and to run in the WAN.

We limit our comparison to these two systems, thus omitting a

number of important related works such as [13, 17, 18, 25, 27, 39, 41].

A practical comparison with those systems would hardly be fair as

they do not provide an open-source implementations comparable

to our own. Some selected different cryptographic libraries, use

different cryptographic primitives (such as threshold signatures),

9
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or entirely emulate all cryptographic operations. A number of them

are written in different programming languages, do not provide

persistent storage, use a different network stack, or are not multi-

threaded thus under-utilizing the AWS machines we selected. Most

implementations of prior works are not designed to run in theWAN

(e.g., have no synchronizer), or are internally sized to process empty

transactions and are thus not adapted to the 512B transaction size

we use. Instead, we provide below a discussion on the performance

of alternatives based on their reported work.

Partially-synchronous protocols: Hotstuff-over-Narwhal [20]

and Mir-BFT [40] are the most performant partially synchronous

consensus protocols available. The performance of the former is

close to BullShark under no faults given that they share the same

mempool implementation. However, BullShark performs consid-

erably better under faults and the engineering effort of Hotstuff-

over-Narwhal is double that of BullShark. The extra code required

to implement BullShark over Narwhal is about 200 LOC
11

(Alg. 5)

whereas the extra code of Hotstuff is more than 4k LOC. Addition-

ally, BullShark adapts to an asynchronous environment with the

fallback protocol unlike Hotstuff that will completely forfeit live-

ness during asynchrony leading to an explosion of the confirmation

latency (see Figure 4 of Section 9).

For Mir-BFT with transaction sizes of about 500B (similar to our

benchmarks), the peak performance achieved on a WAN for 20

parties is around 80,000 tx/sec under 2 seconds – a performance

comparable to our baseline HotStuff. Impressively, this throughput

decreases only slowly for large committees up to 100 nodes (at

60,000 tx/sec). Crash-faults lead to throughput dropping to zero for

up to 50 seconds, and then operation resuming after a reconfigura-

tion to exclude faulty nodes. BullShark offers higher performance

(almost 2x), at the same latency.

DAG-based protocols: The DAG have been used in the context

of Blockchains in multiple systems. Hashgraph [9] embeds an asyn-

chronous consensus mechanism into a DAG without a round-by-

round step structure which results to unclear rules on when consen-

sus is reached. This consequently results on an inability to imple-

ment garbage collection and potentially unbounded state. Finally,

Hashgraph uses local coins for randomness, which can potentially

lead to exponential latency.

A number of blockchain projects build consensus over a DAG

under open participation, partial synchrony or asynchrony net-

work assumptions. GHOST [36] proposes a finalization layer over

a proof-of-work consensus protocol, using sub-graph structures

to confirm blocks as final potentially before a judgment based on

longest-chain / most-work chain fork choice rule can be made.

Tusk [20] is the most similar system to BullShark. It is an asynchro-

nous consensus using the same structured DAG as BullShark. A

limitation of any reactive asynchronous protocol, such as Tusk, is

that slow parties are indistinguishable from faulty ones, and as a re-

sult the protocol proceeds without them. This creates issues around

fairness and incentives, since honest, but geographically distant

authorities may never be able to commit transactions submitted to

them. Further, Tusk relies on clients to re-submit a transaction if it

is not sequenced in time, due to leaders being faulty. In contrast,

11
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both versions of BullShark satisfy fairness after GST while ensuring

bounded memory via a garbage collection mechanism.

Dual-Mode Consensus Protocols: The idea of having optimistic

and fallback paths in BFT consensus has first been explored by Kura-

sawe et al [28] with followup improvements [33, 37] on the com-

munication complexity. However, these papers are theoretical and

not designed for high-load applications hence their implementation

would at best be close to the Hotstuff baseline.

The seminal work from Guerraoui et al [24] introduced Abstract,

a framework in which developers can plug and play multiple con-

sensus protocols based on the environment they plan to deploy

the protocol. A followup work called the Bolt-Dumbo Transformer

(BDT) [32], can be seen as instantiating of Abstract for the specific

use case of a dual-mode consensus protocol. BDT takes Abstract’s

general proposal and instantiates it by composing three separate

consensus protocols as black boxes. Every round starts with 1) a

partially synchronous protocol (HotStuff), times-out the leader and

runs 2) an Asynchronous Binary Agreement in order to move on

and run 3) a fully asynchronous consensus protocol [25] as a fall-

back. Ditto [23] follows another approach that does not require

these black boxes. Instead, it combines a 2-phase variant of Hotstuff

with a variant of the asynchronous VABA [7] protocol for fallback.

As a result it reduces the latency cost of BDT significantly, but

cannot be generalized to a plug-and-play framework.

All the protocols above solve the problem of consensus in asyn-

chrony, but they include the actual transactions in the proposals,

hence their throughput is bounded by the one of Hotstuff. A way to

increase their throughput would be to adopt the Narwhal-HS [20]

approach introduced in prior work, which substitute the transac-

tion dissemination with Narwhal as a mempool and includes only

hashes of mempool batches in the proposals. This would poten-

tially achieve similar performance to BullShark. However it would

come at the steep costs of maintaining two code-bases (one for the

mempool and one for the consensus), higher latency (since Nar-

whal does a reliable broadcast which is usually the first step of a

consensus protocol) and loss of quantum-safety (since they all use

threshold signatures to provide Safety with lower communication

complexity). Unlike these “hybrids”, BullShark provides both the

theoretical contribution of being the first BAB with all the good

properties we already described, the practical contribution of sig-

nificant latency gains in synchrony and the usability contribution

of modifying only 200 LOC from the base-protocol Tusk.

11 DISCUSSION
On the foundational level BullShark is the first DAG-based zero

overhead BFT protocol that achieves the best of both worlds of

partially synchronous and asynchronous protocols. It keeps all the

desired properties of DAG-Rider, including optimal amortized com-

plexity, asynchronous liveness, and post quantum security, while

also allowing a fast-path during periods of synchrony. BullShark’s

parties switch their voting type to fallback after every unsuccessful

wave. An interesting future direction is to add an adaptive mecha-

nism for parties to learn when is best to switch between the types.

Interestingly, since the DAG provides full information, this mecha-

nism can be also implemented without extra communication.

https://github.com/asonnino/narwhal/tree/bullshark
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The partially synchronous version of BullShark is extremely sim-

ple (200 LOC) and highly efficient. In particular, it does not need

any view-change or view-synchronization mechanisms since the

DAG already encodes all the required information. When imple-

mented over the Narwhal mempool it has 2𝑥 the throughput of

the partially synchronous HotStuff protocol and 33% lower latency

than the asynchronous Tusk protocol over Narwhal.
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A PARTIALLY SYNCHRONOUS BULLSHARK
ILLUSTRATION

Figure 5 illustrates the partially synchronous Bullshark protocol for

𝑛 = 4 and 𝑓 = 1. Each odd round in the DAG has a predefined leader

vertex (highlighted in solid green) and the goal is to first decide

which leaders to commit. Then, to totally order all the vertices in

the DAG, a party goes one by one over all the committed leaders

and deterministically orders their causal histories.

Each vertex in an even round can contribute one vote for the

previous round leader. In particular, a vertex in round r votes for

the leader of round 𝑟 − 1 if there is an edge between them. The

commit rule is simple: a leader is committed if it has at least 𝑓 + 1
votes. In Figure 5, L3 is committed with 3 votes, whereas L1 and L2

have less then 2 = 𝑓 + 1 votes and are not committed.

Due to the asynchronous nature of the network, the local views

of the DAG might differ for different parties. That is, some vertices
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Figure 5: Illustration of the partially synchronous Bullshark.

might be delivered and added to the local view of the DAG of some

of the parties but not yet delivered by the others. Therefore, even

though some validators have not committed L1, others might have.

To guarantee all parties commit the same leaders, Bullshark relies

on quorum intersection:

Since the commit rule requires 𝑓 + 1 votes and each
vertex in the DAG has at least 𝑛 − 𝑓 edges to vertices
from the previous round, it is guaranteed that if some
validator commits a leader L then all future leaders will
have a path to at least one vertex that voted for L, and
thus will have a path to L.

Therefore: If there is no path to a leader L from a future
leader, then no party committed L and it is safe to skip L.

The logic to order leaders is the following: when a leader 𝑖 is

committed, the party checks if there is a path between leader 𝑖 to

leader 𝑖 − 1. If this is the case, leader 𝑖 − 1 is ordered before leader 𝑖

and the logic is recursively restarted from 𝑖 − 1.
Otherwise, leader 𝑖 − 1 is skipped and the party checks if there

is a path between 𝑖 to 𝑖 − 2. If there is a path, leader 𝑖 − 2 is ordered
before 𝑖 and the logic is recursively restarted from 𝑖 − 2. Otherwise,
leader 𝑖 − 2 is skipped and the process continues in the same way.

The process stops when it reaches a leader that was previously

ordered.

In Figure 5, leaders L1 and L2 do not have enough votes to be

committed and once the party commits L3 it has to decide whether

to order L1 and L2. Since there is no path from L3 to L2, L2 can be

skipped. However, since there is a path between L3 and L1, L1 is

ordered before L3. Now, to totally order the vertices of the DAG,

the party first orders the causal history of L1 (nothing to order in

this example) by some deterministic rule and then orders the causal

history of L3.

B LOGICAL VS PHYSICAL DAG
As mentioned above, to provide deterministic fast path, introducing

timeouts is unavoidable [21]. After implementing and evaluating

two alternatives, we decided to embed the timeouts into the DAG

construction as described above. Intuitively, it might look inefficient

as the DAG does not advance in network speed, but as we shorty

explain, it is the other way round.

The other approach we consider is a virtual consensus DAG layer

on top of the physical DAG. In this case the physical level has no

timeouts and is very similar to the DAG construction in DAG-Rider,

which advances rounds in networks speed once 2𝑓 + 1 nodes in the

current round are delivered. To encode timeouts, some of the nodes

in the physical DAG have “consensus” headers indicating that they

belong to the virtual level. The logic to advance consensus rounds

is almost similar to the one described in Alg 2. That is, consensus

nodes indicate in their consensus header to which virtual nodes they

refer as parents. This virtual nodes can be in arbitrary physical DAG

rounds but they are at exactly one less (𝑟 −1) consensus round. As a
result, now timeouts are only needed at the virtual level and do not

interfere with the physical DAG advancement. The only difference

from Alg 2 is that weak links are not required on the virtual level

since the weak links on the physical level already guarantee the

validity property. All in all, the physical DAG advances in network

speed and the virtual DAG provides the functionality required by

the BullShark consensus protocol.

We implemented and evaluated this logical DAG construction,

however, the results were not encouraging (around 50% latency

increase without any significant throughput benefit). After investi-

gation we attributed this to two main reasons:

• Since BullShark is built on top of Narwhal, it inherent the

data dissemination decoupling from the DAG construction.

That is, data is disseminated at network speed regardless

of the DAG construction, which contains only metadata.

Therefore, if the DAG advances rounds slower, then each

vertex in the DAG simply contains more metadata and the

throughput is not compromised.

• The logical split between virtual and physical DAG intro-

duces a decoupling between delays/timeouts for the consen-

sus messages and delays for the block creation. This results

to a common pattern where a physical DAG blocks is created

milliseconds before a vote is ready to be cast, but the vote

missed the block and needs to wait for the next round to

be cast. This introduces a small delay per vote but since we

need 2f+1 votes to commit a consensus round the latency of

the DAG moves from the median latency to the tail-latency

of the 66th percentile.

• Moreover, the smaller the DAG the less resources are re-

quired to manage it. For example, less memory to store it

and less bandwidth to construct it.

C PROOFS
We provide proofs of correctness for both versions of BullShark.

C.1 BullShark With Fallback

Total order. Note that at any given time partiesmight have slightly

different local DAGs. This is because some vertices may be delivered

at some parties but not yet at others. However, since we use reliable

broadcast for each vertex 𝑣 , and wait for the entire causal history of

𝑣 to be added to the before we add 𝑣 , we get the following important

observation:

Observation 1. For every two honest parties 𝑝𝑖 and 𝑝 𝑗 we get:

• For every round 𝑟 ,
⋃

𝑟>0 𝐷𝐴𝐺𝑖 [𝑟 ] is eventually equal to⋃
𝑟>0 𝐷𝐴𝐺 𝑗 [𝑟 ].

• For any given time 𝑡 and round 𝑟 , if 𝑣 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ 𝑣 ′ ∈
𝐷𝐴𝐺𝑖 [𝑟 ] s.t. 𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑣 ′.𝑠𝑜𝑢𝑟𝑐𝑒 , then 𝑣 = 𝑣 ′. Moreover, for
every round 𝑟 ′ < 𝑟 , if 𝑣 ′′ ∈ 𝐷𝐴𝐺𝑖 [𝑟 ′] and there is a path from
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𝑣 to 𝑣 ′′, then 𝑣 ′′ ∈ 𝐷𝐴𝐺 𝑗 [𝑟 ′] and there is a path between 𝑣 ′

to 𝑣 ′′.

To totally order the vertices in the DAG, each party 𝑝𝑖 locally

interprets𝐷𝐴𝐺𝑖 (there is no extra communication on top of building

the DAG). To this end, 𝑝𝑖 divides its DAG into waves of 4 rounds

each. Every wave has 3 leaders that can potentially be committed:

2 steady-state leaders and one fallback leader. The steady-state

leaders are two pre-defined vertices, one in the first round of the

wave and the other in the third. The fallback leader is a vertex in the

first round of the wave that is selected by the randomness produced

in the fourth round of the wave. To make sure a fallback leader

and a steady state leader are not committed in the same wave, each

party can only vote for either the fallback leader or the steady-

state ones. In the code, steadyVoters[w] fallbackVoters[w] contain
all the parties that can vote for steady-state or fallback leaders in

wave 𝑤 , respectively. We say that a party 𝑝𝑖 determines 𝑝 𝑗 vote
type to be a steady-state (fallback) in wave𝑤 if its steadyVoters[𝑤]
(𝑓 𝑎𝑙𝑙𝑏𝑎𝑐𝑘𝑉𝑜𝑡𝑒𝑟𝑠 [𝑤]) contains 𝑝 𝑗 . Moreover, as we show in the

next claim, all parties agree on 𝑝 𝑗 ’s vote type in wave𝑤 . This, in

particular, means that Byzantine parties cannot equivocate or hide

their vote (a nice property that we get from using reliable broadcast

as a building block).

Claim 1. For every party 𝑝𝑖 and round 𝑟 , each party 𝑝 𝑗 deter-
mines at most one vote type for 𝑝𝑖 in wave 𝑤 . Moreover if 𝑝 𝑗 and
𝑝𝑘 determine vote type 𝑇 and 𝑇 ′ for 𝑝𝑖 in wave𝑤 , respectively, then
𝑇 = 𝑇 ′.

Proof: The first part of the claim follows from the code of function

determine_party_vote_type. This function is called by a party 𝑝 𝑗
whenever it adds a new vertex 𝑣 to 𝐷𝐴𝐺 𝑗 [𝑟 ] such that 𝑟 is the first

round of a wave, and the source of the vertex (a party 𝑝𝑖 ) is either

added to steadyVoters[w] or fallbackVoters[w]. The second part of

the claim follows from Observation 1 and the fact (by the code

of try_add_to_DAG) that 𝑣 is added to the DAG only after all its

causal history is added. This guarantees that for every wave𝑤 and

party 𝑝𝑖 try_steady_commit and try_fallback_commit are called

with the same parameters and thus return the same result. This in

turn guarantees that all parities that determine 𝑝𝑖 ’s vote type in

wave𝑤 see the same type.

There are two possible ways to commit a leader 𝑣 in BullShark.

The first is to directly commit it when either try_steady_commit or

try_fallback_commit, called with 𝑣 , return true. The second option

is to indirectly commit it when it is added to leaderStack in Line 116

or 119. In both cases, to commit a leader in wave𝑤 , we count the

number of vertices in some round (depending on the leader type

and whether we directly or indirectly commit it) in𝑤 that have a

strong path to the leader and their vote corresponds to the leader’s

type. We first show that steady state and fallback leaders cannot be

directly committed in the same wave.

Claim 2. If a party 𝑝𝑖 directly commits a steady-state leader in
wave 𝑤 , then no party commits (directly or indirectly) a fallback
leader in wave𝑤 , and vice versa.

Proof: Consider a steady state leader vertex 𝑣 committed by a

party 𝑝𝑖 in round 𝑟 in wave 𝑤 . By the code, to directly commit a

leader vertex a party need to determine the vote type of at least

2𝑓 + 1 parties in the wave to be the same as the leaders. Similarly,

to indirectly commit a vertex leader, a party needs to determine

the vote type of at least 𝑓 + 1 parties in the wave to be the same

as the leaders. Since 𝑝𝑖 directly commits state leader vertex 𝑣 in

wave𝑤 , it determines 2𝑓 + 1 parties as steady state voters in wave

𝑤 . Since there are 3𝑓 + 1 parties in total, by Claim 1, no other

party determines more than 𝑓 parties as fallback voters in wave𝑤 .

Therefore, no other party commit (directly or indirectly) a fallback

leader in wave 𝑤 . From symmetry, the same argument works in

the other direction.

For the proof of the next lemmas we say that a party 𝑝𝑖 consecu-
tively directly commit leader vertices 𝑣𝑖 and 𝑣 ′𝑖 if 𝑝𝑖 directly commits

them in rounds 𝑟𝑖 and 𝑟
′
𝑖
> 𝑟𝑖 , respectively, and does not directly

commit any leader vertex between 𝑟𝑖 and 𝑟
′
𝑖
. In the next claims we

are going to show that honest parties commit the same leaders and

in the same order:

Claim 3. Let 𝑣𝑖 and 𝑣 ′𝑖 be two leader vertices consecutively directly
committed by a party 𝑝𝑖 in rounds 𝑟𝑖 and 𝑟 ′𝑖 > 𝑟𝑖 , respectively. Let
𝑣 𝑗 and 𝑣 ′𝑗 be two leader vertices consecutively directly committed by
a party 𝑝 𝑗 in rounds 𝑟 𝑗 and 𝑟 ′

𝑗
> 𝑟 𝑗 , respectively. If 𝑟𝑖 ≤ 𝑟 𝑗 ≤ 𝑟 ′

𝑖
,

then both 𝑝𝑖 and 𝑝 𝑗 (directly or indirectly) commit the same leader in
round𝑚𝑖𝑛(𝑟 ′

𝑖
, 𝑟 ′

𝑗
).

Proof: Claim 2 implies that that there is at most one committed

leader in each round. Thus, if 𝑟 ′
𝑖
= 𝑟 ′

𝑗
we are done. Otherwise,

assume without lost of generality that 𝑟 ′
𝑖
< 𝑟 ′

𝑗
. Thus, if 𝑟 𝑗 = 𝑟 ′

𝑖
we

are done. Otherwise, we need to show that 𝑝 𝑗 indirectly commits

𝑣 ′
𝑖
in 𝑟 ′

𝑖
.

By the code of commit_leader, after 𝑝 𝑗 directly commits 𝑣 ′
𝑗
in

round 𝑟 ′
𝑗
it tries to indirectly commit leaders in round numbers

smaller than 𝑟 ′ until it reaches round 𝑟 𝑗 < 𝑟 ′
𝑖
. Let 𝑟 ′

𝑖
< 𝑟 < 𝑟 ′

𝑗
, be

the smallest number between 𝑟 ′
𝑖
and 𝑟 ′

𝑗
in which 𝑝 𝑗 (directly or

indirectly) commits a leader 𝑣 . Consider two cases:

• Vertex 𝑣 ′
𝑖
is a steady-state leader. Note that 𝑟 > 𝑟 ′

𝑖
+ 1 since

only odd rounds have potential leaders. Since 𝑝𝑖 directly

commits 𝑣 ′
𝑖
in round 𝑟 ′

𝑖
, there is a set 𝐶 of 2𝑓 + 1 vertices in

𝐷𝐴𝐺𝑖 [𝑟 ′𝑖 + 1] with strong paths to 𝑣 ′
𝑖
and with 𝑣 ′

𝑖
’s types. By

observation 1, Claim 1, and quorum intersection, there are

at least 𝑓 + 1 vertices in 𝐷𝐴𝐺 𝑗 [𝑟 ′𝑖 + 1] with 𝑣 ′
𝑖
’s vote type

and strong paths from the 𝑣 to them.

• Vertex 𝑣 ′
𝑖
is a fallback leader. By Claim 2, no leader is commit-

ted in round 𝑟 + 2. Thus, 𝑟 > 𝑟 ′
𝑖
+ 3. Since 𝑝𝑖 directly commits

𝑣 ′
𝑖
in round 𝑟 ′

𝑖
and 𝑣𝑖 , there is a set 𝐶 of 2𝑓 + 1 vertices in

𝐷𝐴𝐺𝑖 [𝑟 ′
1
+ 3] with strong paths to 𝑣 ′

𝑖
and with 𝑣 ′

𝑖
’s types. By

observation 1, Claim 1, and quorum intersection, there are

at least 𝑓 + 1 vertices in 𝐷𝐴𝐺 𝑗 [𝑟 ′𝑖 + 3] with 𝑣 ′
𝑖
’s vote type

and strong paths from the 𝑣 to them.

In both cases 𝑝 𝑗 counts (in ssVotes or fbVotes) at least 𝑓 + 1 votes
for the leader. In addition, by observation 1 and Claim 1, since in

both cases there are at least 2𝑓 + 1 vertices with the 𝑣 ’s type, there

are at most 𝑓 vertices with the opposite type. Thus, 𝑝 𝑗 counts at

most 𝑓 votes for the other leader. Therefore, by Lines 115-120 in

commit_leader, 𝑝 𝑗 indirectly commits 𝑣 ′
𝑖
.

Claim 4. Let 𝑣𝑖 and 𝑣 ′𝑖 be two leader vertices consecutively directly
committed by a party 𝑝𝑖 in rounds 𝑟𝑖 and 𝑟 ′𝑖 > 𝑟𝑖 , respectively. Let
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𝑣 𝑗 and 𝑣 ′𝑗 be two leader vertices consecutively directly committed by
a party 𝑝 𝑗 in rounds 𝑟 𝑗 and 𝑟 ′

𝑗
> 𝑟 𝑗 , respectively. Then 𝑝𝑖 and 𝑝 𝑗

commits the same leaders between rounds𝑚𝑎𝑥 (𝑟𝑖 , 𝑟 𝑗 ) and𝑚𝑖𝑛(𝑟 ′
𝑖
, 𝑟 ′

𝑗
),

and in the same order.

Proof: If 𝑟 ′
𝑖
< 𝑟 𝑗 or 𝑟

′
𝑗
< 𝑟𝑖 , then we are trivially done because

there are no rounds between𝑚𝑎𝑥 (𝑟𝑖 , 𝑟 𝑗 ) and𝑚𝑖𝑛(𝑟 ′
𝑖
, 𝑟 ′

𝑗
). Otherwise,

assumewithout lost of generality that 𝑟𝑖 ≤ 𝑟 𝑗 ≤ 𝑟 ′
𝑖
. By Claim 3, both

𝑝𝑖 and 𝑝 𝑗 (directly or indirectly) commit the same leader in round

𝑚𝑖𝑛(𝑟 ′
𝑖
, 𝑟 ′

𝑗
). Assume without lost of generality that𝑚𝑖𝑛(𝑟 ′

𝑖
, 𝑟 ′

𝑗
) = 𝑟 ′

𝑖
.

Thus, by Claim 2, both 𝑝𝑖 and 𝑝 𝑗 commit 𝑣 ′
𝑖
in round 𝑟 ′

𝑖
and 𝑣 𝑗 in

round 𝑟 𝑗 . By the code of commit_leader, after (directly or indirectly)

committing a leader, parties try to indirectly commit leaders in

smaller round numbers until they reach a round in which they

previously directly committed a leader. Therefore both 𝑝𝑖 and 𝑝 𝑗
will try to indirectly commit all leaders going down from 𝑟 ′

𝑖
=

𝑚𝑖𝑛(𝑟 ′
𝑖
, 𝑟 ′

𝑗
) to 𝑟 𝑗 =𝑚𝑎𝑥 (𝑟𝑖 , 𝑟 𝑗 ). Since 𝑣 ′𝑖 appears in both 𝐷𝐴𝐺𝑖 and

𝐷𝐴𝐺 𝑗 , by Observation 1, all vertices in 𝐷𝐴𝐺𝑖 such that there is a

path from 𝑣 ′
𝑖
to them appear also in 𝐷𝐴𝐺 𝑗 . The claim follows from

the deterministic code of the function commit_leader.

By inductively applying Claim 4 for every pair of honest parties

we get the following:

Corollary C.1. Honest parties commit the same leaders and in
the same order.

For the next lemma we say that the causal history of a vertex

leader 𝑣 in the DAG is the set of all vertices such that there is a path

from 𝑣 to them.

Lemma C.2. Algorithms 1, 2, 3, and 4 satisfy Total order.

Proof: By Corollary C.1, honest parties commit the same leaders

and in the same order. By the code of the order_vertices procedure,

parties iterate on the committed leaders according to their order

and a_deliver all vertices in their causal history by a pre-defined

deterministic rule. The lemma follows by Observation 1 since all

honest parties has the same casual history in their DAG for every

committed leader.

Agreement and Validity.

Lemma C.3. Algorithms 1, 2, 3, and 4 satisfy Agreement.

Proof: Assume some honest party 𝑝𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑣𝑖 .𝑏𝑙𝑜𝑐𝑘,
𝑣𝑖 .𝑟𝑜𝑢𝑛𝑑, 𝑣𝑖 .𝑠𝑜𝑢𝑟𝑐𝑒). We will show that every honest party 𝑝 𝑗 out-

puts it as well. By the code of order_vertices, there is a leader vertex

𝑣 that 𝑝𝑖 committed such that 𝑣𝑖 is in 𝑣 ’s casual history. By Ob-

servation 1, the 𝑣 ’s casual histories in 𝐷𝐴𝐺𝑖 and 𝐷𝐴𝐺 𝑗 are the

same. Thus, by code of order_vertices, we only need to show that

𝑝 𝑗 eventually commit leader vertex 𝑣 . Let 𝑣 ′ be the leader vertex
with the lowest number that is higher than 𝑣 .𝑟𝑜𝑢𝑛𝑑 that 𝑝𝑖 directly

commits. Let 𝑣 ′′ be the vertex that triggers this direct commit, i.e.,

the vertex 𝑣 ′′ that passed to the try_ordering function that calls

determine_party_vote_type, which in turn commits 𝑣 ′. By Obser-

vation 1, 𝑝 𝑗 eventually add 𝑣 ′′ to 𝐷𝐴𝐺 𝑗 and call try_ordering with

𝑣 ′′. By Observation 1 again, the casual history of 𝑣 ′′ in 𝐷𝐴𝐺𝑖 is

equivalent the casual history of 𝑣 ′′ in 𝐷𝐴𝐺 𝑗 . Hence, 𝑝 𝑗 directly

commits 𝑣 ′ as well. Since the casual history of 𝑣 ′ in 𝐷𝐴𝐺𝑖 is also

equivalent the casual history of 𝑣 ′ in 𝐷𝐴𝐺 𝑗 , 𝑝 𝑗 also commits 𝑣 .

By the Liveness (Agreement and Validity) properties of reliable

broadcast and since it is enough for parties to deliver 2𝑓 + 1 ver-
tices in a round in order to move to the next one, the DAG grows

indefinitely:

Observation 2. For every round 𝑟 and honest party 𝑝𝑖 , 𝐷𝐴𝐺𝑖 [𝑟 ]
eventually contains a vertex for every honest party.

In the next to claims we show that for every round 𝑟 there is an

honest party 𝑝𝑖 that commit a leader in a round higher than 𝑟 with

probability 1. First, we show that if it is not the case, then starting

from some point the vote type of all parties is fallback. Note that

this is true also for Byzantine parties since thanks to the reliable

broadcast Byzantine parties cannot lie about their casual history.

Claim 5. Consider an honest party 𝑝𝑖 . If there is a wave𝑤 after
which no honest party commits a leader, then in all waves𝑤 ′ > 𝑤 + 1
𝑝𝑖 determines the vote type of all parties that reach 𝑤 ′ in 𝐷𝐴𝐺𝑖 as
fallback.

Proof: Let 𝑤 ′ > 𝑤 + 1 be a wave that start after 𝑤 . By the claim

assumption no honest party commits a leader in wave𝑤 ′ − 1. Let
𝑟 be the first round of wave 𝑤 ′. Consider a party 𝑝 𝑗 for which 𝑝𝑖
has a vertex 𝑣 𝑗 in 𝐷𝐴𝐺𝑖 [𝑟 ] By the code, 𝑝𝑖 calls try_ordering with

𝑣 𝑗 , which in turn calls determine_party_vote_type to determine

𝑝 𝑗 ’s vote type for𝑤
′
. By Observation 1, the casual history of 𝑣 𝑗 in

𝐷𝐴𝐺 𝑗 is equivalent to the casual history of 𝑣 𝑗 in 𝐷𝐴𝐺𝑖 . The claim

follows from the code of determine_party_vote_type. Since 𝑝 𝑗 did

not commit a leader in wave𝑤 ′, both functions try_steady_commit

and try_fallback_commit return falls 𝑝𝑖 ’ invocation of

determine_party_vote_type. Therefore, 𝑝𝑖 sets 𝑝 𝑗 ’s vote type in𝑤
′

to fallback.

The following claim is a known property of all to all communi-

cation, which sometimes referred as common core [16]. We provide

proof for completeness.

Claim 6. For every wave𝑤 and party 𝑝𝑖 . Let 𝑟 be the first round
of 𝑤 . If |𝐷𝐴𝐺𝑖 [𝑟 + 𝑘] | ≥ 2𝑓 + 1, 𝑘 ∈ {0, 1, 2, 3}, then there is a set
𝐶 ⊆ 𝐷𝐴𝐺𝑖 [𝑟 ] such that |𝐶 | = 2𝑓 + 1 and for every vertex 𝑣 ∈ 𝐶 there
are 2𝑓 + 1 vertices in 𝐷𝐴𝐺𝑖 [𝑟 + 3] with strong paths to 𝑣 .

Proof: The proof follows from the fact that every vertex in every

round of the DAG has at least 2𝑓 + 1 strong edges to vertices in

the previous round. In particular, it is easy to show by a counting

argument that there is one vertex 𝑢 ∈ 𝐷𝐴𝐺𝑖 [𝑟1] such that 𝑓 + 1
vertices in𝐷𝐴𝐺𝑖 [𝑟 +2] has a strong edge to𝑢. Therefore, by quorum
intersection, every vertex in 𝐷𝐴𝐺𝑖 [𝑟 + 3] has a strong path to 𝑢.

Let 𝐶 ⊆ 𝐷𝐴𝐺𝑖 [𝑟 ], |𝐶 | = 2𝑓 + 1 be the set of vertices that 𝑢 has a

strong path to, then every vertex in 𝐷𝐴𝐺𝑖 [𝑟 + 3] has a strong path

to every vertex in 𝐶 . The lemma follows since there are at least

2𝑓 + 1 vertices in 𝐷𝐴𝐺𝑖 [𝑟 + 3].

Next, we use the fact that fallback leaders are hidden from ad-

versary until the last round of a wave to prove the following:

Claim 7. Consider a party 𝑝𝑖 and a wave𝑤 such that 𝑝𝑖 determines
the vote type of all parties that reach 𝑤 in 𝐷𝐴𝐺𝑖 as fallback. Then
the probability of 𝑝𝑖 to commit the fallback vertex leader of 𝑤 is at
least 2/3.
Proof: Let 𝑟 be the first round of𝑤 . By the assumption, the vote

type of all parties with vertices in𝐷𝐴𝐺𝑖 [𝑟 +3] is fallback. Therefore,
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by Claim 6, there are at least 2𝑓 + 1 vertices in the first round of𝑤

that satisfy the fallback commit rule. That is, there is a set𝐶 of 2𝑓 +1
parties such that if any of them is elected to be the fallback leader,

then 𝑝𝑖 will commit it. Since the fallback leader is elected with

the randomness produced in round 𝑟 + 3, the set 𝐶 is determined

before the adversary learns the leader. Therefore, even though

the adversary fully controls delivery times, the probability for the

elected leader to be in 𝐶 is at least 2𝑓 + 1/3𝑓 + 1 > 2/3.

Claim 8. For every wave 𝑤 , there is an honest party that with
probability 1 commits a leader in a wave higher than𝑤 .

Proof: Assume by a way of contradiction no honest party commits

a leader in a wave higher than𝑤 . By Observation 2, for every round

𝑟 and honest party 𝑝𝑖 , 𝐷𝐴𝐺𝑖 [𝑟 ] eventually contains at least 2𝑓 + 1
vertices. Moreover, by Claim 5, there is an honest party 𝑝𝑖 that

determines the vote type of all parties that reach 𝑤 ′ > 𝑤 + 1 in

𝐷𝐴𝐺𝑖 as fallback. Therefore, by Claim 7, the probability of 𝑝𝑖 to

commit the fallback leader in any wave 𝑤 ′ > 𝑤 + 1 is at least 2

3
.

Hence, with probability 1, there is a wave higher than 𝑤 that 𝑝𝑖
commits.

We next use Claim 8 to prove Validity.

Lemma C.4. Algorithms 1, 2, 3, and 4 satisfy Validity.

Proof: Let 𝑝𝑖 be an honest party that calls 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑏, 𝑟 ), we need
to show that all honest parties output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏, 𝑟, 𝑝𝑖 ) with prob-

ability 1. By the code 𝑝𝑖 pushes 𝑏 in the blockToPropose queue. By
Observation 2, 𝑝𝑖 advanced unbounded number of rounds and thus

creates unbounded number of vertices. Therefore, eventually 𝑝𝑖 will

create a vertex 𝑣𝑖 with 𝑏 and reliably broadcast it. By the Validity

property of reliably broadcast, all honest parties will eventually

add it to their DAG. That is, for every honest party 𝑝 𝑗 , there is

a round number 𝑟𝑖 such that 𝑣𝑖 ∈ 𝐷𝐴𝐺 𝑗 [𝑟𝑖 ]. By the code of cre-

ate_new_vertex, every vertex that 𝑝 𝑗 creates after 𝑣𝑖 is added to

𝐷𝐴𝐺 𝑗 [𝑟𝑖 ] have a path to 𝑣𝑖 (either with strong links or weak links).

Therefor, by Claim 8, there is an honest party 𝑝 𝑗 that with prob-

ability 1 commits a leader vertex with a path to 𝑣𝑖 . Thus, by the

code of order_vertices, 𝑝𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏, 𝑟, 𝑝𝑖 ) with probabil-

ity 1. Since 𝑝𝑖 is honest, we get that by Lemma C.3 (Agreement), all

honest parties output 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏, 𝑟, 𝑝𝑖 ) with probability 1.

Integrity.

Lemma C.5. Algorithms 1, 2, 3, and 4 satisfy Integrity.

Proof: An honest party 𝑝𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑣 ′.𝑏𝑙𝑜𝑐𝑘, 𝑣 ′.𝑟𝑜𝑢𝑛𝑑,
𝑣 ′.𝑠𝑜𝑢𝑟𝑐𝑒) only if node 𝑣 ′ is in 𝑝𝑖 ’s DAG (i.e., 𝑣 ′ ∈ ⋃𝑟>0 𝐷𝐴𝐺𝑖 [𝑟 ]).
Node 𝑣 ′ is added to 𝑝𝑖 ’s DAG upon the reliable broadcast

𝑟_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑣 ′, 𝑣 ′.𝑟𝑜𝑢𝑛𝑑, 𝑣 ′.𝑠𝑜𝑢𝑟𝑐𝑒) event. Therefore, the Lemma fol-

lows from the Integrity property of reliable broadcast.

C.2 Partially Synchronous BullShark
The proof of the Integrity property is identical to the proof of

Lemma C.5. For the rest of the properties, due to similarities be-

tween the protocols and to avoid argument duplication, we will

follow the structure of Section C.1 and sometimes explain how to

adapt claims’ proofs.

To be consistent with the BullShark with fallback presentation,

waves here are also consist of 4 rounds, each with a pre-defined

leader in the first and fourth rounds (we could have waves of 2

rounds since we do not have the fallback leader).

Total order. Observation 1 applies in this case as well because the

protocol to build the DAG is the same. Claim 1 trivially holds here

since there is only one possible vote type and Claim 2 holds since

there are no fallback leaders. The proofs of Claims 3 and 4 apply to

Algorithm 5 as well. Therefore, Corollary C.1 applies and since we

use the same order_vertices procedure in both protocols we get:

Lemma C.6. Algorithms 1, 2, 3, and 5 satisfy Total order.

Agreement and Validity.
The proof of the Agreement property is identical to the proof of

Lemma C.3 and Observation 2 holds since the algorithm to build

the DAG is the same as in BullShark with fallback. To proof Validity

for the eventually synchronous variant of BullShark we do not need

Claims 5 and 8. Instead, we use the fact that GST eventually occurs.

We prove the protocol under the assumption that honest parties set

their timeouts to be larger than 3Δ and the following holds for the

reliable broadcast building block:

Property 1. Let 𝑡 be a time after GST. If an honest party reliably
broadcasts a message at time 𝑡 or an honest party delivers a message
at time 𝑡 , then all honest parties deliver it by time 𝑡 + Δ.

The above property is the equivalent to the reliable broadcast

Validity and Agreement properties in the asynchronous model. To

the best of our knowledge, it is satisfied by all reliable broadcast

protocol since before delivering a message honest parties echo it to

all other honest parties.

Claim 9. Let𝑤 be a wave such that all honest parties advances to
the first round of𝑤 after GST. Let 𝑝1 and 𝑝2 be their first and second
pre-defined leaders of 𝑤 , respectively. If 𝑝1 and 𝑝2 are honest, then
all honest parties commit a leader in𝑤 .

Proof: let 𝑟 be the first round of𝑤 . First we show that all honest

parties advance to round 𝑟 + 1 within 2Δ time of each other. By

Observation 2, all honest parties eventually advance to round 𝑟 + 1.
Let party 𝑝𝑖 be the first honest party that advances to round 𝑟+1 and
denote by 𝑡 the time it happened. By the code of try_advance_round,

|𝐷𝐴𝐺𝑖 [𝑟 ] | ≥ 2𝑓 +1. By Property 1, by time 𝑡 +Δ |𝐷𝐴𝐺 𝑗 [𝑟 ] | ≥ 2𝑓 +1
for all honest parties. Therefore, by Line 55, all honest party advance

to round 𝑟 by time 𝑡 +Δ. In particular, the first leader of wave𝑤 , 𝑝1.

Thus, 𝑝1 broadcasts its vertex 𝑣1 in round 𝑟 no later than time 𝑡 +Δ,
and by Property 1, all honest deliver it by time 𝑡 + 2Δ. Therefore,
by Line 40 and the code of try_advance_round, all honest parties

advance to round 𝑟 + 2 by time 𝑡 + 2Δ.
Next we show that all honest parties advance to round 𝑟 + 2 with

3Δ time of each other. Since all honest parties advance to round

𝑟 + 1 within 2Δ time of each other, then they start their timeouts

at round 𝑟 + 1 within 2Δ time of each other. Let party 𝑝 𝑗 be the

first honest party that advances to round 𝑟 + 2. If the first honest
party waits for timeout (the if in Line 46) to advance to round 𝑟 + 2,
then all honest parties advance to round 𝑟 + 2 within 2Δ. Otherwise,
𝑝 𝑗 has 2𝑓 + 1 vertices in 𝐷𝐴𝐺 𝑗 [𝑟 + 1] with strong path to 𝑣 ′. By
property 1, all other honest parties will deliver this vertices and

advance to round 𝑟 + 2 within 3Δ from 𝑝 𝑗 .
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By the assumption, the second leader of the wave, 𝑝2, is honest

and will broadcast vertex 𝑣2 in round 𝑟 + 2 at most 3Δ after the first

honest party advances to 𝑟 + 2. Since the timeouts are larger than

4Δ, all honest will advance to round 𝑟 + 3 within Δ of each other

(by Line 42, all honest wait to deliver the leader’s vertex or for a

timeout). Moreover, they will all add a strong edge to 𝑣2 in their

vertex in round 𝑟 + 3.
Since all honest advance to round 𝑟 + 3 within Δ of each other

and the timeouts are larger than 2Δ, they will all wait for each

other’s vertices before advancing to the next round. Therefore, all

honest will get 2𝑓 + 1 vertices in round 𝑟 + 3 with strong paths to

the second vertex leader of the wave 𝑣2. Thus, all honest commit a

leader in wave𝑤 .

The Validity property is proved under the assumption that even-

tually (after GST) there will be a wave in which both leaders are

honest. For example, this assumption holds for every full permuta-

tion of the parties or if we maintain a fixed leader for the full wave.

To avoid repetition, we omit the proof of the following lemma as it

is similar to the proof of Lemma C.4. All we need to do to adapt it

is to remove all appearances of "with probability 1" and replace the

reference to Claim 8 with Claim 9.

Lemma C.7. Algorithms 1, 2, 3, and 5 satisfy Validity.
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