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ABSTRACT
We present DAG-Rider, the first asynchronous Byzantine Atomic

Broadcast protocol that achieves optimal resilience, optimal amor-

tized communication complexity, and optimal time complexity.

DAG-Rider is post-quantum safe and ensures that all values pro-

posed by correct processes eventually get delivered. We construct

DAG-Rider in two layers: In the first layer, processes reliably broad-

cast their proposals and build a structured Directed Acyclic Graph

(DAG) of the communication among them. In the second layer, pro-

cesses locally observe their DAGs and totally order all proposals

with no extra communication.
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1 INTRODUCTION
The amplified need in scalable geo-replicated Byzantine fault-

tolerant reliability systems has motivated an enormous amount

of study on the Byzantine State Machine Replication (SMR) prob-

lem [17, 31]. Many variants of the problem were defined in recent

years [28, 32, 43] to capture the needs of blockchain systems. To ad-

dress the fairness issues that naturally arise in interorganizational

deployments, we focus on the classic long-lived Byzantine Atomic

Broadcast (BAB) problem [12, 19], which in addition to total order

and progress also guarantees that all proposals by correct processes
are eventually included.

Up until recently, asynchronous protocols for the Byzantine con-

sensus problem [12, 16, 26] have been considered too costly or

complicated to be used in practical SMR solutions. However, two

recent single-shot Byzantine consensus papers, VABA [1] and later

Dumbo [35], presented asynchronous solutions with (1) optimal re-

silience, (2) expected constant time complexity, and (3) optimal qua-

dratic communication and optimal amortized linear communication

complexity (for the latter). In this paper, we follow this recent line
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of work and present DAG-Rider : the first asynchronous BAB proto-

col with optimal resilience, optimal round complexity, and optimal

amortized communication complexity. In addition, given a perfect

shared coin abstraction, our protocol does not use signatures and

does not rely on asymmetric cryptographic assumptions. Therefore,

when using a deterministic threshold-based coin implementation

with an information theoretical agreement guarantee [13, 34], the

safety properties of our BAB protocol are post-quantum secure.

Overview. We construct DAG-Rider in two layers: a communica-

tion layer and a zero-overhead ordering layer. In the communication

layer, processes reliably broadcast their proposals with some meta-

data that help them form a Directed Acyclic Graph (DAG) of the
messages they deliver. That is, the DAG consists of rounds s.t. every

process broadcasts at most one message in every round and every

message has𝑂 (𝑛) references to messages in previous rounds, where

𝑛 is the total number of processes. The ordering layer does not re-

quire any extra communication. Instead, processes observe their

local DAGs and with the help of a little randomization (one coin

flip per 𝑂 (𝑛) decisions on values proposed by different processes)

locally order all the delivered messages in their local DAGs.

A nice feature of DAG-Rider is that the propose operation is

simply a single reliable broadcast. The agreement property of the

reliable broadcast ensures that all correct processes eventually see

the same DAG. Moreover, the validity property of the reliable broad-

cast guarantees that all broadcast messages by correct processes are

eventually included in the DAG. As a result, in contrast to the VABA

and Dumbo protocols that retroactively ignore half the protocol

messages and commit one value out of 𝑂 (𝑛) proposals, DAG-Rider
does not waste any of the messages and all proposed values by

correct processes are eventually ordered (i.e., there is no need to

re-propose).

Complexity. We measure time complexity as the asynchronous

time [16] required to commit 𝑂 (𝑛) values proposed by different

correct processes, and we measure communication complexity by

the number of bits processes send to commit a single value. To

compare DAG-Rider to the state-of-the-art asynchronous Byzan-

tine agreement protocols, we consider SMR implementations that

run an unbounded sequence of the VABA or Dumbo protocols to

independently agree on every slot. To compare apples to apples

in respect to our time complexity definition, we allow VABA and

Dumbo based SMRs to run up to 𝑛 slots concurrently. Note, how-

ever, that for execution processes must output the slot decisions in

a sequential order (no gaps). Therefore, based on the proof in [6],

the time complexity of VABA and Dumbo based SMRs is𝑂 (log(𝑛)).
Table 1 compares DAG-Rider to VABA and Dumbo based SMRs.

Since our protocol uses a reliable broadcast abstraction as a basic

building block, different instantiations yield different complexity.

For example, if we use the classic Bracha broadcast [11] to propose a
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Communication Expected time Post-Quantum Eventual

Complexity Complexity Safety Fairness

VABA SMR 𝑂 (𝑛2) 𝑂 (log(𝑛)) no no

Dumbo SMR amortized 𝑂 (𝑛) 𝑂 (log(𝑛)) no no

DAG-Rider + [11] amortized 𝑂 (𝑛2) 𝑂 (1) yes yes

DAG-Rider + [25] amortized 𝑂 (𝑛 log(𝑛)) 𝑂

(
log(𝑛)

log(log(𝑛))

)
yes (1-𝜖)-fair

DAG-Rider + [14] amortized O(n) 𝑂 (1) yes yes

Table 1: A comparison between our protocol with different reliable broadcast instantiations and VABA and Dumbo based SMR
protocols.

single value in eachmessage, we get a communication complexity of

𝑂 (𝑛3) per decision. This is because the Bracha broadcast complexity

is 𝑂 (𝑛2), and in order to form a DAG each message has to include

an 𝑂 (𝑛) references to previous messages. If we are willing to allow

a probability 𝜖 to violate progress, then we can use Guerraoui et al.’s

broadcast protocol [25] and reduce the complexity to 𝑂 (𝑛2 log(𝑛))
per decision.

Now, just as Dumbo amortizes VABA’s communication complex-

ity from quadratic to linear by using batching and adding a phase

of erasure coding to more economically distribute the data, we can

amortize our communication complexity to be linear per decision

as well. First, since we are anyway including a vector of𝑂 (𝑛) refer-
ences in every broadcast, batching𝑂 (𝑛) proposals in each message

shaves a factor of 𝑛 of the total communication complexity even

with Bracha broadcast. To arrive at the optimal linear complex-

ity, we can replace the reliable broadcast with the asynchronous

verifiable information dispersal of Cachin and Tessaro [14]. The

communication complexity of that protocol is 𝑂 (𝑛2 log(𝑛) + 𝑛 |𝑉 |),
where |𝑉 | is the message size, which allows us to batch𝑂 (𝑛 log(𝑛))
proposals to achieve optimal amortized communication complexity.

A final feature of our protocol, which is sometimes underesti-

mated and cannot be presented in a table, is elegance: (1) DAG-

Rider’s modularity clearly separates the communication layer from

the ordering logic; (2) the reliable broadcast abstraction’s different

instantiations yield protocols with different trade-offs, and; (3) the

entire detailed pseudocode of the ordering logic spans less than 30

lines.

The rest of this paper is structured as follows: §2 describes the

model and the building blocks used for DAG-Rider; §3 formally

defines the BAB problem; §4 describes the DAG construction layer;

§5 specifies the DAG-Rider protocol on top of the DAG layer; §6

proves the correctness of the protocol and analyzes its performance;

§7 describes related work; and lastly, §8 concludes the paper.

2 MODEL AND BUILDING BLOCKS
The system consists of a set Π = {𝑝1, . . . , 𝑝𝑛} of 𝑛 processes, up

to 𝑓 < 𝑛/3 of which can act arbitrarily, i.e., be Byzantine. For
simplicity, we consider a total of 𝑛 = 3𝑓 + 1 processes. The link

between every two correct processes is reliable. Namely, when a

correct process sends a message to another correct process, the

message eventually arrives and the recipient can verify the sender’s

identity. The communication is asynchronous, i.e., there is no bound

on the message delivery time. We consider an adaptive adversary

that can dynamically corrupt up to 𝑓 processes during the run. Once

the adversary corrupts a process, it can drop undelivered messages

previously sent from that process to others. The adversary controls

the arrival times of messages. As part of the construction, we use

two building blocks: a reliable broadcast layer and a delayed global

perfect coin, which we describe next.

Reliable broadcast. There are known algorithms such as Bracha

broadcast [11] to realize the reliable broadcast abstraction in the

asynchronous network model. There are also efficient gossip pro-

tocols [9, 10, 25, 27] that provide reliable broadcast whp at a sub-

quadratic communication cost in the number of processes, and

asynchronous verifiable information dispersal protocols [14, 35]

that use erasure codes to efficiently batch the broadcast values.

Since we are interested in constructing an asynchronous Atomic

Broadcast that satisfies liveness with probability 1, we define the

reliable rebroadcast abstraction accordingly to allow the use of

efficient gossip protocols. Formally, each sender process 𝑝𝑘 can send

messages by calling r_bcast𝑘 (𝑚, 𝑟 ), where𝑚 is a message, 𝑟 ∈ N is

a round number. Every process 𝑝𝑖 has an output r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ),
where𝑚 is a message, 𝑟 is a round number, and 𝑝𝑘 is the process

that called the corresponding r_bcast𝑘 (𝑚, 𝑟 ). The reliable broadcast
abstraction guarantees the following properties:

Agreement If a correct processes 𝑝𝑖 outputs

r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ), then every other correct process 𝑝 𝑗
eventually outputs r_deliver𝑗 (𝑚, 𝑟, 𝑝𝑘 ) with probability 1.

Integrity For each round 𝑟 ∈ N and process 𝑝𝑘 ∈ Π, a correct
process 𝑝𝑖 outputs r_deliver𝑖 (𝑚, 𝑟, 𝑝𝑘 ) at most once regardless

of𝑚.

Validity If a correct process 𝑝𝑘 calls r_bcast𝑘 (𝑚, 𝑟 ), then every

correct processes 𝑝𝑖 eventually outputs r_deliver𝑖 (𝑚, 𝑟, 𝑘) with
probability 1.

Global perfect coin. We use a global perfect coin, which is unpre-

dictable by the adversary. An instance 𝑤 , 𝑤 ∈ N, of the coin is

invoked by process 𝑝𝑖 ∈ Π by calling choose_leader𝑖 (𝑤). This call
returns a process 𝑝 𝑗 ∈ Π, which is the chosen leader for instance

𝑤 . Let 𝑋𝑤 be the random variable that represents the probabil-

ity that the coin returns process 𝑝 𝑗 as the return value of the call

choose_leader𝑖 (𝑤). The global perfect coin has the following guar-

antees:

Agreement If two correct processes call choose_leader𝑖 (𝑤) and
choose_leader𝑗 (𝑤) with respective return values 𝑝1 and 𝑝2, then

𝑝1 = 𝑝2.

Termination If at least 𝑓 + 1 processes call choose_leader(𝑤),
then every choose_leader(𝑤) call eventually returns.
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Unpredictability As long as less than 𝑓 + 1 processes call

choose_leader(𝑤), the return value is indistinguishable from a

random value except with negligible probability 𝜖 . Namely, the

probability 𝑝𝑟 that the adversary can guess the returned process

𝑝 𝑗 of the call choose_leader(𝑤) is 𝑝𝑟 ≤ Pr[𝑋𝑤 = 𝑝 𝑗 ] + 𝜖 .
Fairness The coin is fair, i.e.,∀𝑤 ∈ N,∀𝑝 𝑗 ∈ Π : Pr[𝑋𝑤 = 𝑝 𝑗 ] =
1/𝑛.

Such coins were used as part of previous Byzantine Agreement

protocols such as [1, 7, 13, 35]. Implementation examples can be

found in [13, 34]. One way to implement a global perfect coin is

by using PKI and a threshold signature scheme [8, 33, 42] with a

threshold of (𝑓 + 1)-of-𝑛. When a process invokes an instance𝑤 of

the coin, it signs𝑤 with its private key and sends the share to all the

processes. Once a process receives 𝑓 +1 shares, it can combine them

to get the threshold signature and hash it to get a random process.

Since the threshold signature value is deterministically determined

by the instance name 𝑤 such that any 𝑓 + 1 shares reveal it (e.g.,
the schema in [42] is based on Shamir’s secret sharing [41]), the

coin is perfect (all process agree on the leader) and its agreement

property has information theoretical guarantee. However, to en-

sure unpredictability, the PKI must be trusted to ensure that the

adversary cannot generate enough shares to reveal the randomness

before a correct process produces them. Usually, one assumes that

a trusted dealer is used to set up the random keys for all processes.

However, this assumption can be relaxed by executing an 𝑂 (𝑛4)
message complexity Asynchronous Distributed Key Generation

protocol [30]. Either way, this scheme remains unpredictable only

if the adversary is computationally bounded. However, since DAG-

Rider relies on the unpredictability property of the coin only for

liveness, its safety properties are post-quantum secure.

3 PROBLEM DEFINITION
The problem we solve is Byzantine Atomic Broadcast (BAB), which
allows processes to agree on a sequence of messages as needed for

State Machine Replication (SMR). Due to the FLP result [23], BAB

cannot be solved deterministically in the asynchronous setting, and

therefore we use the global perfect coin to provide randomness

that ensures liveness with probability 1. To avoid confusion with

the events of the underlying reliable broadcast abstraction, we

name the broadcast and deliver events of BAB as a_bcast(𝑚, 𝑟 ) and
a_deliver(𝑚, 𝑟, 𝑘), respectively, where 𝑚 is a message, 𝑟 ∈ N is a

sequence number, and 𝑝𝑘 ∈ Π is a process. The purpose of the

sequence numbers is to distinguish between messages broadcast by

the same process. For simplicity of presentation, we assume that

each process broadcasts infinitely many messages with consecutive

sequence numbers.

Definition 3.1 (Byzantine Atomic Broadcast). Each correct pro-

cess 𝑝𝑖 ∈ Π can call a_bcast𝑖 (𝑚, 𝑟 ) and output a_deliver𝑖 (𝑚, 𝑟, 𝑘),
𝑝𝑘 ∈ Π. A Byzantine Atomic Broadcast protocol satisfies reliable

broadcast (agreement, integrity, and validity) as well as:

Total order If a correct process 𝑝𝑖 outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚, 𝑟, 𝑘)
before 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖 (𝑚′, 𝑟 ′, 𝑘 ′), then no correct process 𝑝 𝑗
outputs 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑗 (𝑚′, 𝑟 ′, 𝑘 ′) without first outputting

𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑗 (𝑚, 𝑟, 𝑘).

In the context of Byzantine SMR (e.g., blockchains), the BAB

abstraction support the separation between sequencing of trans-

actions and execution as done in [2]. BAB provides a mechanism

to propose transactions and totally order them, and an execution

engine will have to validate the transactions before applying them

to the SMR.

Moreover, note that our BAB definition provides a stronger guar-

antee than the one provided by the sequencing protocols realized

in most Byzantine SMR systems. Our validity property requires

that all messages broadcast by correct processes are eventually or-

dered (with probability 1), whereas most Byzantine SMR protocols

(i.g., [17, 37, 43] require that in an infinite run, an infinite number of

decisions are made, but some proposals by correct processes can be

ignored. In addition, it is important to note that our BAB protocol

satisfies chain quality. That is, for every prefix of ordered messages

of size (2𝑓 + 1)𝑟 , 𝑟 ∈ N, at least (𝑓 + 1)𝑟 were broadcast by correct

processes.

Communication measurement. To analyze amortized communi-

cation complexity we assume that each message contains a block of

transactions, and we say that a transaction in a message𝑚 is ordered
when all honest parties 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 𝑚. We measure communication
complexity as the total number of bits sent by honest processes to

order a single transaction. To be able to measure the asynchronous

running time we follow [16] and define a time unit for every ex-

ecution 𝑟 to be the maximum time delay of all messages among

correct processes in 𝑟 . We measure time complexity as the expected

number of time units it takes for a correct party to deliver 𝑂 (𝑛)
values proposed by different correct processes starting from any

point in the execution.

4 DAG ABSTRACTION
Our BAB protocol, DAG-Rider, is based on a Directed Acyclic Graph

(DAG) abstraction, which represents the communication layer of

the processes. In a nutshell, each vertex in the DAG represents a

reliable broadcast message from a process, and each message con-

tains, among other data, references to previously broadcast vertices.

Those references are the edges of the DAG. Each correct process

maintains a copy of the DAG as it perceives it. Different correct

processes might observe different states of the DAG during different

times of the run, but reliable broadcast prevents equivocation and

guarantees that all correct processes eventually deliver the same

messages, so their views of the DAG eventually converge.

For each process 𝑝𝑖 , denote 𝑝𝑖 ’s local view of the DAG as 𝐷𝐴𝐺𝑖 ,

which is stored as an array 𝐷𝐴𝐺𝑖 []. As we shortly explain, each

vertex in the DAG is associated with a unique round number and

a source (its generating process). At any given time, 𝐷𝐴𝐺𝑖 [𝑟 ] for
𝑟 ∈ N is the set of all the vertices associated with round 𝑟 that 𝑝𝑖 is

aware of. Each round has at most 𝑛 vertices, each with a different

source. Due to the reliable broadcast, no process can generate two

vertices in the same round.

Each vertex 𝑣 in a round 𝑟 has two sets of outgoing edges: a

set of at least 2𝑓 + 1 strong edges and a set of up to 𝑓 weak edges.
Strong edges point to vertices in round 𝑟 − 1 and weak edges point

to vertices in rounds 𝑟 ′ < 𝑟 − 1 such that otherwise there is no path

from 𝑣 to them. As explained in detail in §5, strong edges are used

3
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Figure 1: Illustration of DAG1, i.e., the DAG at process 1, out of a total of four processes. On each horizontal dotted line are the
vertices from a single source, e.g, the bottom line shows the vertices delivered from process 4. Each vertical column of vertices
is a single round. Each completed round has at least 2𝑓 +1 = 3 vertices. Each vertex in the DAG has at least 2𝑓 +1 strong edges to
vertices from the previous round shown as black solid arrows. Each vertex can also have weak edges to vertices in case there
is no other path in the DAG to the vertex. E.g., 𝑣1 in the illustration has a weak edge to 𝑣2, shown as a dotted arrow to 𝑣2.

Algorithm 1 Data structures and basic utilities for process 𝑝𝑖

Local variables:
struct vertex 𝑣: ⊲ The struct of a vertex in the DAG

𝑣.round - the round of 𝑣 in the DAG

𝑣.source - the process that broadcast 𝑣
𝑣.block - a block of transactions

𝑣.strongEdges - a set of vertices in 𝑣.round − 1 that represent strong edges

𝑣.weakEdges - a set of vertices in rounds < 𝑣.round − 1 that represent weak edges

𝐷𝐴𝐺 [] - An array of sets of vertices, initially:

𝐷𝐴𝐺𝑖 [0] ← predefined hardcoded set of 2𝑓 + 1 vertices
∀𝑗 ≥ 1 : 𝐷𝐴𝐺𝑖 [ 𝑗 ] ← {}

blocksToPropose - A queue, initially empty, 𝑝𝑖 enqueues valid blocks of transactions from clients

1: procedure path(𝑣,𝑢) ⊲ Check if exists a path consisting of strong and weak edges in the DAG

2: return exists a sequence of 𝑘 ∈ N, vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 s.t.

𝑣1 = 𝑣, 𝑣𝑘 = 𝑢, and ∀𝑖 ∈ [2..𝑘 ] : 𝑣𝑖 ∈
⋃

𝑟≥1 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ (𝑣𝑖 ∈ 𝑣𝑖−1 .weakEdges ∪ 𝑣𝑖−1 .strongEdges)

3: procedure strong_path(𝑣,𝑢) ⊲ Check if exists a path consisting of only strong edges in the DAG

4: return exists a sequence of 𝑘 ∈ N, vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 s.t.

𝑣1 = 𝑣, 𝑣𝑘 = 𝑢, and ∀𝑖 ∈ [2..𝑘 ] : 𝑣𝑖 ∈
⋃

𝑟≥1 𝐷𝐴𝐺𝑖 [𝑟 ] ∧ 𝑣𝑖 ∈ 𝑣𝑖−1 .strongEdges

for agreement and weak edges make sure we eventually include all

vertices in the total order, to satisfy BAB’s validity property.

The data types and variables for process 𝑝𝑖 are specified in Algo-

rithm 1 and the DAG construction is specified in Algorithm 2. A

vertex 𝑣 is a struct that holds a round number 𝑟 , a source which is

the process that created 𝑣 , a block of valid transactions that was

previously 𝑎_𝑏𝑐𝑎𝑠𝑡 by the upper BAB protocol, strong edges to at

least 2𝑓 + 1 vertices in round 𝑟 − 1, and weak edges to vertices

in rounds 𝑟 ′ < 𝑟 − 1. Vertices in the DAG are reliably broadcast

(Line 15), and when the reliable broadcast layer delivers a vertex 𝑣

(Line 22), processes use the round number 𝑟 and the source process

which are available from the reliable broadcast and add them to 𝑣 .

Then, they verify that 𝑣 has strong edges to at least 2𝑓 + 1 vertices
from round 𝑟 − 1 and it to a buffer.

Each process 𝑝𝑖 continuously goes through its buffer to check

if there is a vertex 𝑣 in it that can be added to its 𝐷𝐴𝐺𝑖 (Line 6). A

vertex 𝑣 can be added to the DAG once the DAG contains all the

vertices that 𝑣 has a strong or weak edge to (Line 7). When 𝑝𝑖 has

at least 2𝑓 + 1 vertices in the current round, it moves to the next

round (Line 10) by creating and reliably broadcasting a new vertex

𝑣 ′. The new vertex 𝑣 ′ in round 𝑟 includes a block of transactions

𝑏 for which 𝑝𝑖 previously invoked 𝑎_𝑏𝑐𝑎𝑠𝑡 (𝑏, 𝑟 ) (we assume each

process atomically broadcast infinitely many blocks), strong edges

to the vertices in 𝐷𝐴𝐺𝑖 [𝑟 ] (Line 16), and weak edges to any vertices
with no path from 𝑣 ′ to them (Line 27). Note that a vertex might
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Algorithm 2 DAG Construction, pseudocode for process 𝑝𝑖
Local variables:

𝑟 ← 0 ⊲ round number

buffer← {}
5: while True do
6: for 𝑣 ∈ buffer : 𝑣.round ≤ 𝑟 do
7: if ∀𝑣′ ∈ 𝑣.strongEdges ∪ 𝑣.weakEdges : 𝑣′ ∈ ⋃𝑘≥1 𝐷𝐴𝐺 [𝑘 ] then ⊲ We have 𝑣’s predecessors

8: 𝐷𝐴𝐺 [𝑣.round] ← 𝐷𝐴𝐺 [𝑣.round] ∪ {𝑣 }
9: buffer← buffer \ {𝑣 }
10: if |𝐷𝐴𝐺 [𝑟 ] | ≥ 2𝑓 + 1 then ⊲ Start a new round

11: if 𝑟 mod 4 = 0 then ⊲ If a new wave is complete

12: wave_ready(𝑟/4) ⊲ Signal to Algorithm 3 that a new wave is complete

13: 𝑟 ← 𝑟 + 1
14: 𝑣 ← create_new_vertex(𝑟 )
15: r_bcast𝑖 (𝑣, 𝑟 )

16: procedure create_new_vertex(round)
17: wait until ¬blocksToPropose.empty() ⊲ atomic broadcast blocks are enqueued (Line 32)

18: 𝑣.block← blocksToPropose.dequeue() ⊲ We assume each process atomically broadcast infinitely many blocks

19: 𝑣.strongEdges← 𝐷𝐴𝐺 [round − 1]
20: set_weak_edges(𝑣, round)
21: return 𝑣

22: upon r_deliver𝑖 (𝑣, round, 𝑝𝑘 ) do ⊲ The deliver output from the reliable broadcast

23: 𝑣.source← 𝑝𝑘
24: 𝑣.round← round
25: if |𝑣.strongEdges | ≥ 2𝑓 + 1 then
26: buffer← buffer ∪ {𝑣 }

27: procedure set_weak_edges(𝑣, round) ⊲ Add weak edges to orphan vertices

28: 𝑣.weakEdges← {}
29: for 𝑟 = round − 2 down to 1 do
30: for every 𝑢 ∈ 𝐷𝐴𝐺𝑖 [𝑟 ] s.t. ¬path(𝑣,𝑢) do
31: 𝑣.weakEdges← 𝑣.weakEdges ∪ {𝑢 }

be delivered at 𝑝𝑖 ’s DAG after 𝑝𝑖 has moved to a later round. In

this case, the vertex is still added to the DAG, but 𝑝𝑖 ’s vertices do

not include strong edges to it. Weak edges are possible. As noted,

the weak edges are used to ensure the BAB’s Validity property. An

example of our DAG construction is illustrated in Fig. 1.

5 DAG-RIDER: DAG-BASED ASYNCHRONOUS
BAB PROTOCOL

In this section, we describe the DAG-Rider protocol, by equipping

the DAG from the previous section with a global perfect coin
1
and

show how the DAG and the coin can be used to construct a locally-

computed protocol for the BAB problem. That is, given our DAG

and a perfect coin, DAG-Rider does not require any extra commu-

nication among the processes. Instead, each process 𝑝𝑖 observes

its local 𝐷𝐴𝐺𝑖 and deduces which blocks of transactions to deliver

and in what order. The protocol is detailed in Algorithm 3. Below

we give a high-level intuition as well as a detailed description of

the protocol. Formal correctness proofs and complexity analyzes

are given in §6.

1
A possible implementation of the coin using threshold signatures is described in §2.

The coin can be easily implemented as part of the DAG itself by having each process

send its share of the threshold signature when reliably broadcasting a vertex.

When an a_bcast𝑖 (𝑏, 𝑟 ) is invoked, 𝑝𝑖 simply pushes 𝑏 to the

DAG layer (line 33), which in turn includes it in the 𝑟𝑡ℎ ver-

tex it reliably broadcasts. To interpret the DAG, each process

𝑝𝑖 divides its local 𝐷𝐴𝐺𝑖 into waves, where each wave con-

sists of 4 consecutive rounds. For example, 𝑝𝑖 ’s first wave con-

sists of 𝐷𝐴𝐺𝑖 [1], 𝐷𝐴𝐺𝑖 [2], 𝐷𝐴𝐺𝑖 [3], and 𝐷𝐴𝐺𝑖 [4]. Formally, the

𝑘𝑡ℎ round of wave 𝑤 , where 𝑘 ∈ [1..4],𝑤 ∈ N, is defined as

round(𝑤,𝑘) ≜ 4(𝑤 − 1) + 𝑘 . We also say that a process 𝑝𝑖 com-
pletes round 𝑟 once 𝐷𝐴𝐺𝑖 [𝑟 ] has at least 2𝑓 + 1 vertices, and a

process completes wave𝑤 once the process completes round(𝑤, 4).
In a nutshell, the idea is to interpret the DAG as a wave-by-

wave protocol and try to commit a randomly chosen single leader

vertex in every wave. Once the sequence of leaders is determined,

processes 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 all the blocks included in their causal histories

(in vertices that have paths from the leaders in the DAG). While

reading the high-level description below, bear in mind that due to

the reliable broadcast, Byzantine processes cannot equivocate, so

two correct processes cannot have different vertices with the same

source in the same round, leading to eventually consistent DAGs

among all correct processes.

When wave 𝑤 completes (Line 34), we use the global perfect

coin to retrospectively elect some process and consider its vertex

in the wave’s first round as the leader of wave 𝑤 (Line 35). The

goal of the protocol is to commit this leader, provided that it has

5
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Algorithm 3 DAG-Rider: Byzantine Atomic Broadcast based on DAG. Pseudocode for process 𝑝𝑖

Local Variables:
decidedWave← 0

deliveredVertices← {}
leadersStack← initialize empty stack with isEmpty(), push(), and pop() functions

32: upon a_bcast𝑖 (𝑏, 𝑟 ) do ⊲ Correct processes call this procedure with sequential round 𝑟 numbers, starting at 1

33: blocksToPropose.enqueue(𝑏) ⊲ pushes a block of transactions to Alg 2

34: upon wave_ready(𝑤) do ⊲ Signal from the DAG layer that a new wave is completed (Line 12)

35: 𝑣 ← get_wave_vertex_leader(𝑤)
36: if 𝑣 = ⊥ ∨ |{𝑣′ ∈ 𝐷𝐴𝐺𝑖 [round(𝑤, 4) ] : strong_path(𝑣′, 𝑣) } | < 2𝑓 + 1 then ⊲ No commit

37: return
38: leadersStack.push(𝑣)
39: for wave 𝑤′ from 𝑤 − 1 down to decidedWave + 1 do
40: 𝑣′ ← get_wave_vertex_leader(𝑤′)
41: if 𝑣′ ≠ ⊥ ∧ strong_path(𝑣, 𝑣′) then
42: leadersStack.push(𝑣′)
43: 𝑣 ← 𝑣′

44: decidedWave← 𝑤

45: order_vertices(leadersStack)

46: procedure get_wave_vertex_leader(𝑤)

47: 𝑝 𝑗 ← choose_leader𝑖 (𝑤)
48: if ∃𝑣 ∈ 𝐷𝐴𝐺 [round(𝑤, 1) ] s.t. 𝑣.𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑝 𝑗 then
49: return 𝑣 ⊲ There can only be one such vertex

50: return ⊥

51: procedure order_vertices(leadersStack)
52: while ¬leadersStack.isEmpty() do
53: 𝑣 ← leadersStack.pop()
54: verticesToDeliver ← {𝑣′ ∈ ⋃𝑟>0 𝐷𝐴𝐺𝑖 [𝑟 ] | 𝑝𝑎𝑡ℎ (𝑣, 𝑣′) ∧ 𝑣′ ∉ deliveredVertices}
55: for every 𝑣′ ∈ verticesToDeliver in some deterministic order do
56: output a_deliver𝑖 (𝑣′.block, 𝑣′.round, 𝑣′.source)
57: deliveredVertices← deliveredVertices ∪ {𝑣′ }

been observed by sufficiently many processes in the wave. Note

that since we advance rounds as soon as we deliver 2𝑓 + 1 of the
3𝑓 + 1 potential vertices, a process 𝑝𝑖 might not have𝑤 ’s leader in

its local 𝐷𝐴𝐺𝑖 when it completes 𝑤 . In this case, 𝑝𝑖 completes 𝑤

without committing any vertex and simply proceeds to the next

wave. Note, however, that some other correct process might have

𝑤 ’s leader in its local DAG and commit it in the same wave. Thus,

we need to make sure that if one correct process commits the wave

vertex leader 𝑣 , then all the other correct processes will commit 𝑣

later. To this end, we use standard quorum intersection. Process 𝑝𝑖
commits the wave𝑤 vertex leader 𝑣 if:��{𝑣 ′ ∈ 𝐷𝐴𝐺𝑖 [round(𝑤, 4)] : strong_path(𝑣 ′, 𝑣)

}�� ≥ 2𝑓 + 1 (Line 36).

In addition, if 𝑝𝑖 commits vertex 𝑣 in wave 𝑤 and there is a

strong path from 𝑣 to 𝑣 ′ such that 𝑣 ′ is an uncommitted leader

vertex in a wave 𝑤 ′ < 𝑤 , then 𝑝𝑖 commits 𝑣 ′ in 𝑤 as well. The

leaders committed in the same wave are ordered by their round

numbers, so that leaders of earlier waves are ordered before those

of later ones, meaning 𝑣 ′ is ordered before 𝑣 (Lines 39-43).

The next lemma, which is proven in Section 6, shows that our

commit rule guarantees that if a correct process commits a wave

leader vertex 𝑣 in some wave, then all wave vertex leaders in later

waves in the local DAGs of all correct processes have a strong path

to 𝑣 , ensuring the agreement property.

Lemma 1. If some process 𝑝𝑖 commits the leader vertex 𝑣 of a wave𝑤 ,
then for every leader vertex 𝑢 of a wave𝑤 ′ > 𝑤 and for every process
𝑝 𝑗 , if 𝑢 ∈ 𝐷𝐴𝐺 𝑗 [round(𝑤 ′, 1)], then strong_path(𝑢, 𝑣) returns true
in wave𝑤 ′.

We show below how we leverage the above lemma to satisfy

the total order property, but first, we give an intuition for liveness,

i.e., the validity and agreement properties. Our protocol achieves

progress in a constant number of waves, in expectation, by guaran-

teeing that for every wave, the probability for every correct process

to commit the wave leader is at least 2/3. To ensure this, we bor-

row the technique from the common-core abstraction [15], which

guarantees that after three rounds of all-to-all sending and collect-

ing accumulated sets of values, all correct processes have at least

2𝑓 + 1 common values. The set of these values is referred to as the

common-core. In respect to our DAG, we prove in Section 6 the

following lemma:

Lemma 2. Let 𝑝𝑖 be a correct process that completes wave 𝑤 .
Then there is a set 𝑉 ⊆ 𝐷𝐴𝐺𝑖 [round(𝑤, 1)] and a set 𝑈 ⊆
𝐷𝐴𝐺𝑖 [round(𝑤, 4)] s.t. |𝑉 | ≥ 2𝑓 + 1, |𝑈 | ≥ 2𝑓 + 1 and ∀𝑣 ∈ 𝑉 ,∀𝑢 ∈
𝑈 : strong_path(𝑢, 𝑣).

Note that by the commit rule, if the leader of a wave𝑤 belongs

to the set 𝑉 (from the lemma statement), then 𝑝𝑖 commits the
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Figure 2: Illustration of DAG1. The highlighted vertices 𝑣2 and 𝑣3 are the leaders of waves 2 and 3, respectively. The commit
rule is not met in wave 2 since there are less than 2𝑓 + 1 vertices in round 8 with a strong path to 𝑣2. However, the commit rule
is met in wave 3 since there are 2𝑓 + 1 vertices in round 12 with a strong path to 𝑣3. Since there is a strong path from 𝑣3 to 𝑣2
(highlighted), 𝑝𝑖 commits 𝑣2 before 𝑣3 in wave 3.

leader once it completes𝑤 . So to deal with an adversary that totally

controls the network, parties flip the global coin only after they

complete 𝑤 (Line 35). Therefore, by the coin’s unpredictability

property, the probability of the adversary to guess the wave’s leader

before the point after which it cannot manipulate the set 𝑉 is less

than
1

𝑛 +𝜖 . Thus, with a probability of at least 2/3−𝜖 ,𝑤 ’s leader is in

the set𝑉 and 𝑝𝑖 commits it. Thus, in expectation, correct processes

commit every 3/2 waves.
To satisfy total order, we leverage the property proven in

Lemma 1 to make sure all processes commit the same waves’ lead-

ers. Once we find a leader to commit in a wave𝑤 we check if it is

possible that some process committed a wave in between 𝑤 and

the previous wave we committed, let it be𝑤 ′. We do this iteratively

in Lines 39-43, we first check if it is possible that some process

committed the leader of 𝑤 − 1. We do it by checking if there is a

strong path from the leader of wave𝑤 to the leader of wave𝑤 − 1
in our local DAG (Line 41). If no such path exists, by Lemma 1,

no correct process will ever commit𝑤 − 1. Otherwise, we choose
to commit 𝑤 − 1 before 𝑤 . Now, if such a path indeed exists, we

recursively check if it is possible that some process committed a

wave in between𝑤 − 1 and𝑤 ′. Otherwise, if no such path exists,

we check if there is a path from the leader of wave𝑤 to the leader

of wave𝑤 − 2 and continue in the same way. The recursion ends

once we reach a wave that we previously committed, 𝑤 ′ in our

example. An illustration of this process is given in Fig. 2.

Since vertices are reliably broadcast and since we never add a

vertex 𝑣 to the DAG before we add all the vertices 𝑣 points to with

strong or weak edges, two correct processes always have the same

causal history for any vertex they both have in their DAGs. There-

fore, once we agree on a sequence of leaders, all that is left to do is

to order the causal histories of the leaders in some deterministic

order. To this end, we go through the waves’ committed leaders

one-by-one and 𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 , in some deterministic order, all the trans-

action blocks in their causal histories that we did not previously

deliver (procedure order_vertices in Line 51). The causal history of

a wave leader vertex 𝑣 in 𝐷𝐴𝐺𝑖 is the set {𝑢 ∈ 𝐷𝐴𝐺𝑖 | path(𝑣,𝑢)}.
The purpose of the weak edges is to satisfy the Validity property.

Recall that strong edges might not point to all vertices from the

previous round in the DAG because we might advance the round

before we deliver all the broadcasts of that round (we advance the

round once at least 2𝑓 +1 vertices are added to the DAG). Therefore,
without the weak edges, slow processes may not be able to get

vertices from higher rounds to point to theirs. So to satisfy Validity,

each correct process, when creating a new vertex, adds weak edges

to all vertices in its local DAG to which it otherwise does not point.

6 ANALYSIS
In §6.1 we prove the correctness of DAG-Rider, and in §6.2 we

analyze the communication and time complexity.

6.1 Correctness
We show that DAG-Rider satisfies the properties of the BAB prob-

lem, as defined in §3.

Proposition 1. DAG-Rider satisfies the integrity property of the
BAB problem.

Proof. By the code (Line 56), if a correct process 𝑝𝑖 outputs

𝑎_𝑑𝑒𝑙𝑖𝑣𝑒𝑟 (𝑏, 𝑟, 𝑝𝑘 ), then there is a vertex 𝑣 in 𝐷𝐴𝐺𝑖 s.t. (𝑏, 𝑟, 𝑝𝑘 ) =
(𝑣 .𝑏𝑙𝑜𝑐𝑘, 𝑣 .𝑟𝑜𝑢𝑛𝑑, 𝑣 .𝑠𝑜𝑢𝑟𝑐𝑒). Integrity follows from the fact that all

vertices are reliably broadcast, and thus by integrity property of

the reliable broadcast there are no two different vertices 𝑢,𝑢 ′ in
𝐷𝐴𝐺𝑖 s.t. 𝑢.𝑟𝑜𝑢𝑛𝑑 = 𝑢 ′.𝑟𝑜𝑢𝑛𝑑 and 𝑢.𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑢 ′.𝑠𝑜𝑢𝑟𝑐𝑒 . □
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Claim 1. When a correct process 𝑝𝑖 adds a vertex 𝑣 to its 𝐷𝐴𝐺𝑖

(Line 8), all of 𝑣 ’s causal history is already in 𝐷𝐴𝐺𝑖 .

Proof. We prove this claim by induction on the execution of

every correct process 𝑝𝑖 . Denote by 𝑣𝑘 the 𝑘-th vertex that 𝑝𝑖 adds

to 𝐷𝐴𝐺𝑖 . We show that for every 𝑘 ∈ N, after 𝑣𝑘 is added to the

DAG, the causal histories of all the vertices in the set {𝑣1, . . . , 𝑣𝑘 },
and in particular 𝑣𝑘 , are in 𝐷𝐴𝐺𝑖 .

In the base step of the induction, there are no vertices in the

DAG, and the property vacuously holds. Next, assume that after 𝑣𝑘
is added to the DAG at process 𝑝𝑖 , all the causal histories of all the

vertices in the set 𝑉 = {𝑣1, . . . , 𝑣𝑘 } are already in 𝐷𝐴𝐺𝑖 .

For 𝑣𝑘+1 to be added to the DAG at process 𝑝𝑖 , its strong andweak

edges must reference vertices that are already in 𝐷𝐴𝐺𝑖 (Line 7), i.e.,

𝑣𝑘+1’s edges are only to vertices in 𝑉 . Since all the vertices in 𝑉

already have their causal histories in the DAG, when 𝑣𝑘+1 is added
to the DAG, its causal history is in the DAG as well, and we are

done. □

Claim 2. If a correct process 𝑝𝑖 adds a vertex 𝑣 to its 𝐷𝐴𝐺𝑖 , then
eventually all correct processes add 𝑣 to their DAG.

Proof. By induction on rounds, for process 𝑝𝑖 to add a vertex

𝑣 in round 𝑟 to its 𝐷𝐴𝐺𝑖 , first 𝑣 needs to be delivered to 𝑝𝑖 by

the reliable broadcast layer (Line 22), and by the agreement of the

reliable broadcast, 𝑣 will be eventually delivered to all other correct

processes.

Next, 𝑣 has to be added to the buffer variable at 𝑝𝑖 , and this is

done if the process who broadcast 𝑣 added the correct 𝑣 .source and
𝑣 .round which are verified through the guarantees of the reliable

broadcast layer (Line 25). Therefore these checks will also pass

at any other correct process when 𝑣 is delivered to it. Finally, 𝑝𝑖
checks that the vertex has at least 2𝑓 + 1 strong edges to vertices
in round 𝑣 .round − 1. If 𝑣 passes this check in 𝑝𝑖 then it will pass

these two checks at any other correct process, since these checks

are computed locally based on 𝑣 ’s fields (𝑣 .block and 𝑣 .strongEdges).
Lastly, after 𝑣 is added to the buffer, for 𝑝𝑖 to add 𝑣 to its 𝐷𝐴𝐺𝑖 ,

𝑝𝑖 also checks that it has all the vertices that 𝑣 is referencing to (in

𝑉 = 𝑣 .strongEdges ∪ 𝑣 .weakEdges) in its 𝐷𝐴𝐺𝑖 as well (Line 7). By

the induction assumption, all correct processes’ DAGs contain the

same vertices in rounds < 𝑟 .

Thus, this ensures that any vertex 𝑣 that appears in any round at

𝐷𝐴𝐺𝑖 of some correct process, will eventually also appear in 𝐷𝐴𝐺 𝑗

of every other correct process 𝑝 𝑗 . □

Claim 3. If for some correct process 𝑝𝑖 there is a round 𝑟 with a set𝑉
of at least 2𝑓 + 1 vertices in 𝐷𝐴𝐺𝑖 [𝑟 ] s.t. ∀𝑣 ∈ 𝑉 : strong_path(𝑣,𝑢)
to some vertex 𝑢 ∈ 𝐷𝐴𝐺𝑖 , then every other process 𝑝 𝑗 that com-
pletes round 𝑟 has a set 𝑉 ′ ⊆ 𝐷𝐴𝐺 𝑗 [𝑟 ] s.t. |𝑉 ′ | ≥ 𝑓 + 1 and
∀𝑣 ′ ∈ 𝑉 ′ : strong_path(𝑣 ′, 𝑢).

Proof. Let 𝑉 ′ = 𝑉 ∩ 𝐷𝐴𝐺 𝑗 [𝑟 ]. Round 𝑟 is complete for 𝑝𝑖 and

𝑝 𝑗 when their DAGs have at least 2𝑓 + 1 vertices. Therefore, when
𝑝𝑖 and 𝑝 𝑗 complete round 𝑟 , |𝑉 ′ | ≥ 𝑓 + 1 by a standard quorum

intersection of 2𝑓 + 1 out of 3𝑓 + 1 possible vertices of round 𝑟 (due
to the reliable broadcast, Byzantine processes cannot equivocate).

Since every 𝑣 ′ ∈ 𝑉 ′ is already in 𝐷𝐴𝐺 𝑗 when 𝑝 𝑗 completes round

𝑟 , then 𝑢 is in 𝐷𝐴𝐺 𝑗 by 𝑡 as well (by Claim 1), and there is a strong

path between every 𝑣 ′ ∈ 𝑉 ′ to 𝑢 in 𝐷𝐴𝐺 𝑗 . □

For the next part, we say a vertex 𝑣 is a wave 𝑤 vertex leader

if 𝑣 is the return value of the get_wave_vertex_leader procedure
(Line 46). Next, we say a process commits a wave leader vertex 𝑣
when 𝑣 is popped from the stack (Line 53).

Claim 4. In every wave, at most one vertex 𝑣 can be a wave leader
vertex for all correct processes.

Proof. For a vertex 𝑣 to be a wave leader vertex in wave𝑤 it has

to be the return value from the get_wave_vertex_leader procedure
(Line 46). The procedure gets the wave’s chosen process 𝑝 𝑗 by the

global coin, and checks if the 𝐷𝐴𝐺𝑖 at process 𝑝𝑖 has the vertex

𝑣 from 𝑝 𝑗 in the first round of wave 𝑤 . Due to the agreement

property of the global perfect coin, the same process 𝑝 𝑗 is chosen

for all correct processes, and because of the agreement property of

the reliable broadcast, Byzantine processes cannot equivocate. □

Claim 5. If a correct process 𝑝𝑖 commits wave leader vertex 𝑣1 in
wave𝑤1 and after that 𝑝𝑖 commits vertex 𝑣2 in wave𝑤2, then𝑤1 <

𝑤2.

Proof. A vertex is committed when it is popped from the stack

(Line 53). Vertices are pushed to the stack in Lines 38 and 42, which

only happens in waves which vertices were not committed before,

since the for loop goes down only to decidedWave + 1 (Line 39),

where decidedWave is updated each time vertices are pushed to

the stack to be the maximum wave in which vertices were commit-

ted (Line 44). This means that vertices are pushed to the stack in

decreasing wave numbers.

Lastly, all the vertices in the stack are popped out and committed,

and this is done in reverse order to the order that they were pushed

to the stack, therefore, the wave numbers of committed waves are

in an increasing order. □

Lemma 1. If some process 𝑝𝑖 commits the leader vertex 𝑣 of a wave𝑤 ,
then for every leader vertex 𝑢 of a wave𝑤 ′ > 𝑤 and for every process
𝑝 𝑗 , if 𝑢 ∈ 𝐷𝐴𝐺 𝑗 [round(𝑤 ′, 1)], then strong_path(𝑢, 𝑣) returns true
in wave𝑤 ′.

Proof. Since vertex 𝑣 is committed by process 𝑝𝑖 in wave𝑤 , the

commit rule is met, i.e., at the end of wave𝑤 there are at least 2𝑓 +1
vertices in 𝐷𝐴𝐺𝑖 [round(𝑤, 4)] with a strong path to 𝑣 . By Claim 3,

every correct process 𝑝 𝑗 (whether it committs 𝑣 in𝑤 or not) has a

set 𝑉 of at least 𝑓 + 1 vertices in 𝐷𝐴𝐺 𝑗 [round(𝑤, 4)] with a strong

path to 𝑣 . Any future vertex 𝑣 ′ from waves 𝑤 ′ > 𝑤 , including 𝑢,

will have a strong path to at least one vertex in 𝑉 , resulting in a

strong path between 𝑢 and 𝑣 . □

Proposition 2. DAG-Rider satisfies the total order property of
the BAB problem.

Proof. By Claim 4, each wave has only one vertex that can

be committed. By Claim 5 every correct process commits vertices

in an increasing wave number. By Lemma 1, if a correct process

𝑝𝑖 commits a vertex 𝑣 , then there is a strong path to 𝑣 from any

vertex𝑢 in future waves that might be committed. By combining all

the claims, if two correct processes commit the same wave leader

vertices, they do so in the same order.

Once a correct process commits a wave vertex leader 𝑣 , it atomi-

cally delivers all of 𝑣 ’s causal history in some deterministic order,
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which is identical for all other correct processes. By Claim 1, when

𝑣 is committed, all of 𝑣 ’s causal history is already in the DAG. Thus,

since all correct processes commit the same wave leader vertices

in the same order, and since those vertices have the same causal

histories, all correct processes that deliver vertices, do so in the

same order. □

Lemma 2. Let 𝑝𝑖 be a correct process that completes wave 𝑤 .
Then there is a set 𝑉 ⊆ 𝐷𝐴𝐺𝑖 [round(𝑤, 1)] and a set 𝑈 ⊆
𝐷𝐴𝐺𝑖 [round(𝑤, 4)] s.t. |𝑉 | ≥ 2𝑓 + 1, |𝑈 | ≥ 2𝑓 + 1 and ∀𝑣 ∈ 𝑉 ,∀𝑢 ∈
𝑈 : strong_path(𝑢, 𝑣).

Proof. First, we show that there is a set 𝑉 , |𝑉 | ≥ 2𝑓 + 1 s.t.

when 𝑝𝑖 completes round(𝑤, 3) and broadcasts a new vertex 𝑣4 in

round(𝑤, 4), then 𝑣4 has a strong path to all the vertices in 𝑉 .

To this end, we use the common-core abstraction, that first ap-

peared in [15], and was adapted (and proven) for the Byzantine

case in [20]. The model for this abstraction is identical to our model.

Each correct process 𝑝𝑖 has some input value 𝑣𝑖 , and it returns a set

𝑉𝑖 of input values from different processes. The guarantee of the

common-core abstraction is that there is a subset𝑉 of at least 2𝑓 +1
values, s.t. for each correct process 𝑉 ⊆ 𝑉𝑖 , i.e., there is a common

core of at least 2𝑓 + 1 input values that appear in the returned

sets of all the correct processes that complete the common-core

abstraction.

The algorithm to realize the common-core abstraction consists

of three rounds of communication: in the first round, each process

sends its input value 𝑣𝑖 , and then waits for 2𝑓 + 1 input values from
other processes (including itself). Denote this first set at process 𝑝𝑖
as 𝐹𝑖 .

In the second stage, each process sends its 𝐹𝑖 set and waits until

it receives 2𝑓 + 1 𝐹 𝑗 sets from other processes (including itself).

When this stage ends, process 𝑝𝑖 creates the union of all the 𝐹 𝑗
sets it received. Denote this set of sets for process 𝑝𝑖 as 𝑆𝑖 . In the

third and last stage, process 𝑝𝑖 sends the set 𝑆𝑖 it created and again

waits to receive 2𝑓 +1 𝑆 𝑗 sets from other processes (including itself).

When this stage ends, process 𝑝𝑖 returns the union of all the 𝑆 𝑗 sets,

denoted 𝑇𝑖 , as the output of the common-core abstraction.

We show that the first three rounds of a wave𝑤 can be mapped

exactly to the three stages of the common-core algorithm. Denote

𝑟1, 𝑟2, 𝑟3, 𝑟4 as round(𝑤, 1), round(𝑤, 2), round(𝑤, 3), round(𝑤, 4), re-
spectively. When a correct process 𝑝𝑖 adds the vertex 𝑣1 created in

𝑟1 to 𝐷𝐴𝐺𝑖 [𝑟1], by Claim 2, eventually all other correct processes

add 𝑣1 to their DAG, which can be mapped to 𝑝𝑖 sending its in-

put value to all other processes in the common-core algorithm.

Next, 𝑝𝑖 moves to round 𝑟2 once it has at least 2𝑓 + 1 vertices in
𝑟1, which is mapped to 𝑝𝑖 waiting for 2𝑓 + 1 input values from

different processes in the common-core algorithm. When 𝑝𝑖 enters

𝑟2 it broadcasts a vertex 𝑣2 that references all the vertices it has

in 𝑟1, which is equivalent to 𝑝𝑖 sending 𝐹𝑖 at the beginning of the

second stage of the common-core algorithm. In a similar way, when

𝑝𝑖 completes 𝑟2 and enters 𝑟3, it broadcasts 𝑣3 which references

all the vertices it has in 𝑟2, which is equivalent to sending 𝑆𝑖 (by

Claim 1, when 𝑣3 is added to 𝐷𝐴𝐺 𝑗 [𝑟3] of some correct process 𝑝 𝑗 ,

then all the vertices 𝑝𝑖 has in 𝐷𝐴𝐺𝑖 [𝑟1] with a strong path from

𝑣3 are in the 𝐷𝐴𝐺 𝑗 [𝑟1] as well). To complete the mapping, when

𝑝𝑖 completes 𝑟3 and broadcasts 𝑣4 in round 𝑟4, then 𝑣4 has in its

causal history the same values that would have been in 𝑇𝑖 in the

equivalent common-core algorithm.

Note that since Byzantine processes cannot equivocate, and since

every round in the DAG has at least 2𝑓 + 1 vertices, any vertex that

𝑝𝑖 adds to 𝐷𝐴𝐺𝑖 [𝑟4] has to reference at least 𝑓 + 1 vertices that 𝑣4
also references, even vertices sent from Byzantine processes. Thus,

based on the common-core guarantee, there is a set 𝑉 ⊂ 𝐷𝐴𝐺𝑖 [𝑟1]
s.t. |𝑉 | ≥ 2𝑓 + 1 and ∀𝑣 ∈ 𝑉 : strong_path(𝑣4, 𝑣), and also this set 𝑉

appears in the DAG of any other correct process 𝑝 𝑗 that completes

round 𝑟3. Next, when 𝑝𝑖 completes wave𝑤 , i.e., when it completes

round 𝑟4, it has in𝐷𝐴𝐺𝑖 [𝑟4] at least 2𝑓 +1 vertices, and each of those
vertices has a path to each of the vertices in 𝑉 , which concludes

the proof. □

Claim 6. For every correct process 𝑝𝑖 and for every wave 𝑤 , the
expected number of waves, starting from𝑤 , until the commit rule is
met is equal to or smaller than 3/2 + 𝜖 .

Proof. By Lemma 2, in each wave 𝑤 , the probability that for

a correct process 𝑝𝑖 the commit rule is met is at least 𝑝𝑟 = (2𝑓 +
1)/(3𝑓 + 1) − 𝜖 . The number of waves until the commit rule is met

is geometrically distributed with a success probability of 𝑝𝑟 . Thus,

the expected number of waves is bounded by 3/2 + 𝜖 waves. □

Proposition 3. DAG-Rider guarantees the agreement property of
the BAB problem.

Proof. If a correct process 𝑝𝑖 outputs a_deliver𝑖 (𝑏, 𝑟, 𝑝𝑘 ) it
means that 𝑏 is a block of some vertex 𝑢 that is in the causal history

of some wave’s𝑤 leader vertex 𝑣 that, i.e., when process 𝑝𝑖 commits

a wave vertex leader 𝑣 , then 𝑢 is in 𝑣 ’s causal history.

By Claim 6, every other correct process 𝑝 𝑗 that has not committed

𝑣 yet will eventually, with probability 1, have a wave 𝑤 ′ > 𝑤 in

which the commit rule is met. When 𝑝 𝑗 commits𝑤 ′, by the proved

total order property, it will also commit 𝑣 , and thus decide on all of

𝑣 ’s causal history in the same order, including vertex 𝑢. □

Claim 7. Every vertex that is broadcast by a correct process is even-
tually added to the DAG of all correct processes.

Proof. We prove this by showing that for every correct process

𝑝𝑖 that broadcasts a vertex 𝑣 , 𝑣 is eventually added to 𝐷𝐴𝐺𝑖 , and

by Claim 2, 𝑣 is eventually added to the DAG of all other correct

processes.

When a correct process 𝑝𝑖 broadcasts a vertex 𝑣 (Line 15) it broad-

casts a valid vertex, i.e., a vertex that passes the external validity

check, and that references vertices that are already in 𝐷𝐴𝐺𝑖 . Be-

cause of the validity property of the reliable broadcast, 𝑜𝑖 eventually

delivers 𝑣 to itself, and when it does so, it adds 𝑣 to its own 𝐷𝐴𝐺𝑖 .

Thus, as explained, by Claim 2, 𝑣 is eventually added to the DAGs

of all other correct processes. □

Proposition 4. DAG-Rider guarantees the validity property of
the BAB problem.

Proof. When a correct process 𝑝𝑖 calls a_deliver with some

value, it is inserted into a queue (Line 33), and eventually will be

included in a vertex 𝑣 created by 𝑝𝑖 (Line 18). Vertex 𝑣 is eventually

reliably delivered to all the correct processes and added to their

DAGs (Claim 7).
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When a correct process reliably broadcasts a new vertex 𝑣 in

round 𝑟 it also makes sure that it has a path (either a strong path or

path that includes weak edges) to all the vertices in rounds 𝑟 ′ < 𝑟 ,

and if not, it adds weak edges to 𝑣 that guarantee this (Line 27),

therefore 𝑣 will eventually be included in the causal history of all

correct processes. Eventually, with probability 1, 𝑣 will be in the

causal history of a committed wave vertex leader, and therefore

atomically delivered. □

6.2 Communication and Time Complexity
We analyze DAG-Rider in terms of expected communication com-

plexity and expected time complexity.

Communication complexity. We analyze the communication

complexity of DAG-Rider when instantiated with Cachin and

Tesero’s [14] information dispersal protocol. A similar analysis can

be made for other broadcast implementations as well. For clarity,

in §4, we say that strongEdges and weakEdges are sets of vertices.

However, in order to refer to a vertex it is enough to only store

its source and round number.
2
We assume that any round number

during an execution can be expressed in a constant number of bits,

that is, the DAG never reaches round number 2
128

(note that round

numbers grow slower than slot numbers).

We count the number of bits sent by correct processes in every

round of the DAG and divide it by the total number of ordered values

therein. The complexity of [14] is 𝑂 (𝑛2 log(𝑛) + 𝑛𝑀), where𝑀 is

the message (vertex) size. Each message includes a set of proposed

values and 𝑛 references, and each reference includes a process id

of size log(𝑛). Thus, if we batch 𝑛 log(𝑛) values in every message,

the bit complexity is 𝑂 (𝑛2 log(𝑛) + 2𝑛2 log(𝑛)) = 𝑂 (𝑛2 log(𝑛)) for
a broadcast.

Since each process is allowed to broadcast a single message in

each round, a correct process will not participate in more than 𝑛

reliable broadcasts in a round, and thus the total bit complexity of

correct processes in a round is bounded by 𝑂 (𝑛3 log(𝑛)). On the

other hand, at least 2𝑓 + 1 = 𝑂 (𝑛) vertices are ordered in every

round. Thus,𝑂 (𝑛2 log(𝑛)) values are ordered in every round, which
means that the amortized communication complexity of DAG-Rider

is 𝑂 (𝑛).

Time complexity. By Claim 6, the number of waves, in expecta-

tion, between two waves that satisfy the commit rule in 𝐷𝐴𝐺𝑖 for

a correct process 𝑝𝑖 is expected constant. Since each wave consists

of constant size chains of messages, by the definition of time units,

the number of time units, in expectation, between two 𝑝𝑖 ’s commits

is constant. Every time 𝑝𝑖 commits a wave, it commits the wave’s

leader causal history, which contains at least 𝑂 (𝑛) proposals from
different correct processes. Therefore, DAG-Rider’s time complexity

is 𝑂 (1) in expectation.

7 RELATEDWORK
The first asynchronous Byzantine Agreement protocols [5, 39]

showed that the FLP [23] impossibility result can be circumvented

with randomization. Their communication and time complexity

was exponential and a significant amount of work has been done

2
It is also possible to store vertices hashes.

since then in attempt to achieve optimal complexity under dif-

ferent assumptions. Some works consider the information theo-

retical settings and present protocols with polylogarithmic com-

plexity that tolerate adversaries with unbounded computational

power [4, 26, 38]. Others follow a more practical approach and con-

sider a computationally bounded adversary in order to be able to

use cryptographic primitives to improve complexity [1, 12, 13, 35].

The pioneering crypto-based protocols [12, 13] were later realized

in HoneyBadgerBFT, the first asynchronous Byzantine SMR sys-

tem [36]. However, while the state-of-the-art asynchronous Byzan-

tine Agreement protocols VABA [1] and Dumbo [35] rely on crypto-

graphic assumptions for both safety and liveness, DAG-Rider uses

a hybrid alternative by providing safety with information theoreti-

cal guarantees and relying on cryptographic assumptions only for

liveness.

Many other works also presented protocols for the BAB problem

in the asynchronous setting. Some works like [29, 40] use crypto-

graphic schemes for safety, and others like [19] do not use signa-

tures. Other works like [22] encapsulate timing assumptions by

relying on a failure detector. All these works have higher expected

communication complexity.

The idea of building a communication DAG and locally interpret-

ing total order was considered before [18, 21]. To the best of our

knowledge, the only algorithms that realize this idea in the Byzan-

tine settings are HashGraph [3] and later Aleph [24]. In contrast

to DAG-Rider, HashGraph builds an unstructured DAG in which

processes (unreliably) send messages with 2 references to previ-

ous vertices and on top of it run an inefficient binary agreement

protocol, which leads to expected exponential time complexity.

Their communication complexity is not straightforward to analyze

since they did not clearly describe the mechanism that ensures that

eventually all DAG information is propagated to all processes, and

no analysis is provided. Aleph improves HashGraph’s complexity

by building a round-based DAG and using a more efficient binary

agreement protocol [13] to agree on whether to commit every ver-

tex in a round. They do not amortize complexity and have 𝑂 (𝑛3)
per decision. In contrast to DAG-Rider, both HashGraph and Aleph

(1) do not satisfy Validity; and (2) rely on signatures for safety and

thus are not post-quantum safe.

8 CONCLUSION
We presented DAG-Rider: an asynchronous Byzantine Atomic

Broadcast protocol with optimal resilience, optimal amortized com-

munication complexity, and optimal time complexity. DAG-Rider

does not rely on cryptographic assumptions for safety. Instead, it

rules out Byzantine equivocation by relying on the reliable broad-

cast to guarantee that all correct processes eventually see the same

DAG. Finally, we believe that DAG-Rider’s elegant design, perfect

load balancing, and modular separation of concerns make it an

adequate candidate for future Byzantine SMR systems.
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