
Transparency Logs via Append-Only Authenticated Dictionaries
Alin Tomescu

Massachusetts Institute of Technology
Vivek Bhupatiraju
Lexington High School

MIT PRIMES

Dimitrios Papadopoulos
Hong Kong University of Science and

Technology

Charalampos Papamanthou
University of Maryland

Nikos Triandopoulos
Stevens Institute of Technology

Srinivas Devadas
Massachusetts Institute of Technology

ABSTRACT
Transparency logs allow users to audit a potentially malicious ser-
vice, paving the way towards a more accountable Internet. For
example, Certificate Transparency (CT) enables domain owners
to audit Certificate Authorities (CAs) and detect impersonation
attacks. Yet, to achieve their full potential, transparency logs must
be bandwidth-efficient when queried by users. Specifically, every-
one should be able to efficiently look up log entries by their key
and efficiently verify that the log remains append-only. Unfortu-
nately, without additional trust assumptions, current transparency
logs cannot provide both small-sized lookup proofs and small-sized
append-only proofs. In fact, one of the proofs always requires band-
width linear in the size of the log, making it expensive for everyone
to query the log. In this paper, we address this gap with a new
primitive called an append-only authenticated dictionary (AAD).
Our construction is the first to achieve (poly)logarithmic size for
both proof types and helps reduce bandwidth consumption in trans-
parency logs. This comes at the cost of increased append times and
high memory usage, both of which remain to be improved to make
practical deployment possible.

CCS CONCEPTS
• Security and privacy→Keymanagement; • Theory of com-
putation → Cryptographic primitives; Data structures de-
sign and analysis.

KEYWORDS
append-only; transparency logs; authenticated dictionaries; Merkle
trees; bilinear accumulators; RSA accumulators; polynomials

ACM Reference Format:
Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalampos
Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. 2019. Trans-
parency Logs via Append-Only Authenticated Dictionaries. In 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’19),
November 11–15, 2019, London, United Kingdom. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3319535.3345652

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11. . . $15.00
https://doi.org/10.1145/3319535.3345652

1 INTRODUCTION
Security is often bootstrapped from a public-key infrastructure (PKI).
For example, on the web, Certificate Authorities (CAs) digitally sign
certificates that bind a website to its public key. This way, a user who
successfully verifies the certificate can set up a secure channel with
the website. In general, many systems require a PKI or assume one
exists [39, 40, 60, 84]. Yet, despite their necessity, PKIs have proven
difficult to secure as evidenced by past CA compromises [1, 63, 77].

To address such attacks, transparency logs [29, 36, 59] have been
proposed as a way of building accountable (and thus more secure)
PKIs. A transparency log is a dictionary managed by an untrusted
log server. The server periodically appends key-value pairs to the
dictionary and is queried by mutually-distrusting users, who want
to know certain keys’ values. For example, in key transparency [8, 23,
55, 59, 65, 88, 95, 104], CAs are required to publicly log certificates
they issue (i.e., values) for each domain (i.e., keys). Fake certificates
can thus be detected in the log and CAs can be held accountable
for their misbehavior.

Transparency logging is becoming increasingly important in
today’s Internet. This is evident with the widespread deployment
of Google’s Certificate Transparency (CT) [59] project. Since its
initial March 2013 deployment, CT has publicly logged over 2.1
billion certificates [44]. Furthermore, since April 2018, Google’s
Chrome browser requires all new certificates to be published in a
CT log [93]. In the same spirit, there has been increased research
effort into software transparency schemes [2, 38, 49, 78, 94, 96] for
securing software updates. Furthermore, Google is prototyping
general transparency logs [36, 45] via their Trillian project [45].
Therefore, it is not far-fetched to imagine generalized transparency
improving our census system, our elections, and perhaps our gov-
ernment. But to realize their full potential, transparency logs must
operate correctly or be easily caught otherwise. Specifically:

Logs should remain append-only. In a log-based PKI, a devas-
tating attack is still possible: a malicious CA can publish a fake
certificate in the log but later collude with the log server to have it
removed, which prevents the victim from ever detecting the attack.
Transparency logs should therefore prove that they remain append-
only, i.e., the new version of the log still contains all entries of the
old version. One trivial way to provide such a proof is to return the
newly-added entries to the user and have the user enforce a subset
relation. But this is terribly inefficient. Ideally, a user with a “short”
digest ℎold should accept a new digest ℎnew only if it comes with a
succinct append-only proof computed by the log. This proof should
convince the user that the old log with digest ℎold is a subset of the
new log with digest ℎnew.

https://doi.org/10.1145/3319535.3345652
https://doi.org/10.1145/3319535.3345652

Logs should support lookups.When users have access to digests
(instead of whole logs), the central question becomes: How can
a user check against their digest which values are registered for
a certain key 𝑘 in the log? Ideally, a small lookup proof should
convince the user that the server has returned nothing more or less
than all values of key 𝑘 . Otherwise, the server could equivocate and
present one set of values 𝑉 for 𝑘 to a user and a different set 𝑉 ′ to
some other user, even though both users have the same digest and
should thus see the same set of values for key 𝑘 .
Logs should remain fork-consistent. An unavoidable issue is
that a malicious log server can also equivocate about digests and
fork users [29, 60]. For example, at time 𝑖 , the server can append
(𝑘, 𝑣) to one user’s log while appending (𝑘, 𝑣 ′) to another user’s log.
Since the two users’ logs will differ at location 𝑖 , their digests will
also differ. Intuitively, fork consistency [60, 61] guarantees that if
two users are given two different digests as above, theymust forever
be given different digests. Thus, users can gossip [28, 32, 94, 96] to
check if they are seeing different digests and detect forks.
Challenges. Building transparency logs with succinct lookup and
append-only proofs is a long-standing open problem. At first glance,
a Merkle-based [68] solution seems possible. Unfortunately, it ap-
pears very difficult to organize a Merkle tree so as to support both
succinct append-only proofs and succinct lookup proofs. On one
hand, trees with chronologically-ordered leaves [29, 64, 97] support
logarithmic-sized append-only proofs but at the cost of linear-sized
lookup proofs. On the other hand, trees can be lexicographically-
ordered by key [6, 23, 30, 79] to support succinct lookup proofs at
the cost of linear append-only proofs (see Section 6.2).

It might seem natural to combine the two and obtain succinct
lookup proofs via the lexicographic tree and succinct append-only
proofs via the chronologic tree [88]. But this does not work either,
since there must be a succinct proof that the two trees “correspond”:
they are correctly built over the same set of key-value pairs. While
previous transparency logs [88, 104] work around this by having
users “collectively” verify that the two trees correspond [26, 88, 104],
this requires a sufficiently high number of honest users and can
result in slow detection. An alternative, which we discuss in Sec-
tion 7.1, is to use SNARKs [42, 48]. At second glance, cryptographic
accumulators [13, 76] seem useful for building transparency logs
(see Section 2.1). Unfortunately, accumulators are asymptotically-
inefficient, requiring linear time to compute proofs or to update
proofs after a change to the set. As a result, a computationally-
efficient accumulator-based solution is not obvious.
Our contribution. We introduce a novel cryptographic primitive
called an append-only authenticated dictionary (AAD). An AAD
maps a key to one or more values in an append-only fashion and
is an abstraction for a transparency log. We are the first to give
security definitions for AADs. We are also the first to instantiate
asymptotically efficient AADs from bilinear accumulators [76] (see
Section 5). Importantly, our design does not rely on collective veri-
fication by users or on trusted third parties and assumes only an
untrusted log server. Our AADoffers logarithmic-sized append-only
proofs, polylogarithmic-sized lookup proofs and polylogarithmic
worst-case time appends (see Table 1).

We implement our AAD in C++ and evaluate it. Our code is
available at https://github.com/alinush/libaad-ccs2019. Our lookup

Table 1: Asymptotic costs of our construction versus previ-
ous work. 𝑛 is the number of key-value pairs in the dictio-
nary and 𝜆 is the security parameter.

Time & bandwidth Space Append
time

Lookup
proof size

Append-only
proof size

Lexicographic trees [65, 88] 𝑛 log𝑛 log𝑛 log𝑛 𝑛

Chronologic trees [29, 59] 𝑛 log𝑛 𝑛 log𝑛

AAD (this work) 𝜆𝑛 𝜆 log3 𝑛 log2 𝑛 log𝑛

and append-only proofs are in the order of tens of KiBs and our
verification time is in the order of seconds. For example, a proof
for a key with 32 values in a dictionary of 106 entries is 94 KiB
and verifies in 2.5 seconds. While our lookup proof sizes are larger
than in previous work, our small-sized append-only proofs can
help significantly reduce the overall bandwidth consumption in
transparency logs, as we show in Section 6.2.1.

Limitations of our approach. Our construction has high append
times (i.e., a few seconds per append) and high memory usage (i.e.,
hundreds of GiBs for an AAD of size 220). This means it is not
yet practical and we discuss how future work might improve it in
Sections 6.1.1 and 6.1.4. The security of our construction relies on
the𝑞-PKE “knowledge” assumption (commonly used in SNARKs [43,
47]). Hence, we need a large set of public parameters that must be
generated via a trusted setup phase, which complicates deployment.
We discuss how the trusted setup can be decentralized in Section 7.

Overview of techniques. We first build an efficient append-only
authenticated set (AAS), instead of an AAD. An AAS is an append-
only set of elementswith proofs of (non)membership of any element.
If we let elements be revoked certificates, then an AAS efficiently
implements Revocation Transparency (RT) [58]. But to efficiently
implement any transparency log, we must modify our AAS into an
AAD, which is more “expressive.” Specifically, an AAD can provably
return all values of a key, while an AAS can only prove that an
element is or is not in the set. One could attempt to build an AAD
from an AAS in “black-box” fashion by representing an AAD key-
value pair as an AAS element. Unfortunately, this is not sufficient
if we want to convince AAD verifiers that all values of a key have
been returned via a lookup proof. In Section 5, we describe a non-
black-box modification of our AAS into an AAD.

Our first observation is that a bilinear accumulator (see Sec-
tion 2.1) is already an AAS, albeit an expensive one. Specifically, up-
dating the set and computing (non)membership proofs and append-
only proofs takes time linear in the size of the set, which is prohibi-
tive. Our work reduces these times to polylogarithmic, but at the
cost of increasing proof sizes from constant to polylogarithmic in
the size of the set. First, we introduce bilinear trees, a hierarchical
way to precompute all membership proofs in a bilinear accumu-
lator in quasilinear time (instead of quadratic). Second, instead
of “accumulating” the elements directly, we build a “sparse” pre-
fix tree (or trie) over all elements and accumulate the tree itself.
Then, we precompute non-membership proofs for all prefixes at
the frontier of this tree (see Figure 2) in quasilinear time. As a result,
non-membership of an element is reduced to non-membership of
one of its prefixes. (This frontier technique was originally proposed
in [70].) Finally, we use classic amortization techniques [80, 81] to
append in polylogarithmic time and to precompute append-only
proofs between any version 𝑖 and 𝑗 of the set.

https://github.com/alinush/libaad-ccs2019

1.1 Related Work
The key difference between AADs and previous work [8, 23, 55, 59,
65, 88, 95, 104] is that we offer succinct proofs for everything while
only relying on a single, untrusted log server. In contrast, previous
work either has large proofs [59, 65], requires users to “collectively”
verify the log [88, 104] (which assumes enough honest users and
can make detection slow), or makes some kind of trust assumption
about one or more actors [8, 55, 59, 95]. On the other hand, previ-
ous work only relies on collision-resistant hash functions, digital
signatures and verifiable random functions (VRFs) [71]. This makes
previous work much cheaper computationally, but since bandwidth
is more expensive than computation, we believe this is not necessar-
ily the right trade-off. In contrast, our bilinear construction requires
trusted setup, large public parameters, and non-standard assump-
tions. Unlike previous work, our construction is not yet practical
due to high append times and memory usage (see Sections 6.1.1
and 6.1.4). Finally, previous work [8, 55, 95, 104] addresses in more
depth the subtleties of log-based PKIs, while our work is focused
on improving the transparency log primitive itself by providing
succinct proofs with no trust assumptions.
CT and ECT. Early work proposes the use of Merkle trees for
public-key distribution but does not tackle the append-only prob-
lem, only offering succinct lookup proofs [23, 56, 75]. Accumulators
are dismissed in [23] due to trusted setup requirements. Certifi-
cate Transparency (CT) [59] provides succinct append-only proofs
via history trees (HTs). Unfortunately, CT does not offer succinct
lookup proofs, relying on users to download each update to the
log to discover fake PKs, which can be bandwidth-intensive (see
Section 6.2.1). Alternatively, users can look up their PKs via one
or more CT monitors, who download and index the entire log. But
this introduces a trust assumption that a user can reach at least
one honest CT monitor. Enhanced Certificate Transparency (ECT)
addresses CT’s shortcomings by combining a lexicographic tree
with a chronologic tree, with collective verification by users (as
discussed before). Alternatively, ECT can also rely on one or more
“public auditors” to verify correspondence of the two trees, but this
introduces a trust assumption.
A(RP)KI and PoliCert. Accountable Key Infrastructure (AKI) [55]
introduces a checks-and-balances approach where log servers man-
age a lexicographic tree of certificates and so-called “validators”
ensure log servers update their trees in an append-only fashion.
Unfortunately, AKI must “assume a set of entities that do not collude:
CAs, public log servers, and validators” [55]. At the same time, an ad-
vantage of AKI is that validators serve as nodes in a gossip protocol,
which helps detect forks. ARPKI [8] and PoliCert [95] extend AKI by
providing security against attackers controlling 𝑛−1 out of 𝑛 actors.
Unfortunately, this means ARPKI and PoliCert rely on an anytrust
assumption to keep their logs append-only. On the other hand, AKI,
ARPKI and PoliCert carefully consider many of the intricacies of
PKIs in their design (e.g., certificate policies, browser policies, de-
ployment incentives, interoperability). In addition, ARPKI formally
verifies their design.
CONIKS and DTKI. CONIKS [65] uses a hash chain to periodi-
cally publish a digest of a lexicographic tree. However, users must
collectively verify the tree remains append-only. Specifically, in
every published digest, each user checks that their own public key

has not been removed or maliciously changed. Unfortunately, this
process can be bandwidth-intensive (see Section 6.2.1). DTKI [104]
observes that relying on a multiplicity of logs (as in CT) creates
overhead for domain owners who must check for impersonation
in every log. DTKI introduces a mapping log that associates sets of
domains to their own exclusive transparency log. Unfortunately,
like ECT, DTKI also relies on users to collectively verify its many
logs. To summarize, while previous work [8, 55, 95, 104] addresses
many facets of the transparent PKI problem, it does not address
the problem of building a transparency log with succinct proofs
without trust assumptions and without collective verification.
Byzantine Fault Tolerance (BFT). If one is willing to move away
from the single untrusted server model, then a transparency log
could be implemented using BFT protocols [25, 57, 72]. In fact,
BFT can trivially keep logs append-only and provide lookup proofs
via sorted Merkle trees. With permissioned BFT [25], one must
trust that 2/3 of BFT servers are honest. While we are not aware
of permissioned implementations, they are worth exploring. For
example, in the key transparency setting, it is conceivable that CAs
might act as BFT servers. With permissionless BFT [72, 102], one
needs a cryptocurrency secured by proof-of-work or proof-of-stake.
Examples of this are Namecoin [73], Blockstack [4] and EthIKS [18].
Formalizations. Previouswork formalizes Certificate Transparency
(CT) [27, 34] and general transparency logs [27]. In contrast, our
work formalizes append-only authenticated dictionaries (AAD) and
sets (AAS), which can be used as transparency logs. Our AAD
abstraction is more expressive than the dynamic list commitment
(DLC) abstraction introduced in [27]. Specifically, DLCs are append-
only lists with non-membership by insertion time, while AADs
are append-only dictionaries with non-membership by arbitrary
keys. Furthermore, AADs can be easily extended to support non-
membership by insertion time. Finally, previous work carefully
formalizes proofs of misbehavior for transparency logs [27, 34]. Al-
though misbehavior in AADs is provable too, we do not formalize
this in the paper. Neither our work nor previous work adequately
models the network connectivity assumptions needed to detect
forks in a gossip protocol. Lastly, previous work improves or ex-
tends transparency logging in various ways but does not tackle the
append-only problem [31, 37, 83].

2 PRELIMINARIES
Notation. Let 𝜆 denote our security parameter. Let H denote a
collision-resistant hash function (CRHF) with 2𝜆-bits output. We
use multiplicative notation for all algebraic groups in this paper.
Let F𝑝 denote the finite field “in the exponent” associated with a
group G of prime order 𝑝 . Let poly(·) denote any function upper-
bounded by some univariate polynomial. Let log𝑥 be shorthand
for log2 𝑥 . Let [𝑛] = {1, 2, . . . , 𝑛} and [𝑖, 𝑗] = {𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗}.
Let PP𝑞 (𝑠) = ⟨𝑔𝑠 , 𝑔𝑠

2
, . . . , 𝑔𝑠

𝑞 ⟩ denote 𝑞-SDH public parameters.
and PP𝑞 (𝑠, 𝜏) = ⟨𝑔𝑠 , 𝑔𝑠

2
, . . . , 𝑔𝑠

𝑞
, 𝑔𝜏𝑠 , 𝑔𝜏𝑠

2
, . . . , 𝑔𝜏𝑠

𝑞 ⟩ denote 𝑞-PKE
public parameters (see Appendix A). Let 𝜀 denote the empty string.
Cryptographic assumptions. Our work relies on the use of pair-
ings or bilinear maps [51, 67]. Recall that a bilinear map 𝑒 (·, ·) has
useful algebraic properties: 𝑒 (𝑔𝑎, 𝑔𝑏) = 𝑒 (𝑔𝑎, 𝑔)𝑏 = 𝑒 (𝑔,𝑔𝑏)𝑎 =

𝑒 (𝑔,𝑔)𝑎𝑏 . To simplify exposition, throughout the paper we assume

symmetric (Type I) pairings (although our implementation in Sec-
tion 6 uses asymmetric pairings). Our assumptions can be re-stated
in the setting of (themore efficient) asymmetric (Type II and III) pair-
ings in a straightforward manner. Our AAS and AAD constructions
from Sections 3 and 5 are provably secure under the 𝑞-SBDH [46]
and 𝑞-PKE assumptions [47], which we define in Appendix A.

The 𝑞-PKE assumption is non-standard and often referred to as
“non-falsifiable” in the literature. This terminology can be confusing,
since previous, so-called “non-falsifiable” assumptions have been
falsified [9]. Naor explored the nuance of these types of assumptions
and proposed thinking of them as “not efficiently falsifiable” [74].
For example, to falsify 𝑞-PKE one must find an adversary and math-
ematically prove that all extractors fail for it.

2.1 Bilinear Accumulators
A bilinear accumulator [33, 76] is a cryptographic commitment to a
set 𝑇 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}, referred to as the accumulated set.

Committing to a set. Let C𝑇 (𝑥) = (𝑥 − 𝑒1) (𝑥 − 𝑒2) · · · (𝑥 − 𝑒𝑛)
denote the characteristic polynomial of 𝑇 and 𝑠 denote a trapdoor
that nobody knows. The accumulator acc(𝑇) of 𝑇 is computed as
acc(𝑇) = 𝑔C𝑇 (𝑠) = 𝑔 (𝑠−𝑒1) (𝑠−𝑒2) ·· · (𝑠−𝑒𝑛) . The trapdoor 𝑠 is gen-
erated during a trusted setup phase after which nobody knows 𝑠 .
Specifically, given an upper-bound 𝑞 on the set size, this phase
returns 𝑞-SDH public parameters PP𝑞 (𝑠) = ⟨𝑔𝑠 , 𝑔𝑠

2
, . . . , 𝑔𝑠

𝑞 ⟩. This
can be done via MPC protocols [20, 21, 54] as detailed in Section 7.
Given coefficients 𝑐0, 𝑐1, . . . , 𝑐𝑛 of C𝑇 (·) where 𝑛 ≤ 𝑞, the accumu-
lator is computed without knowing 𝑠 as follows:

acc(𝑇) = 𝑔𝑐0 (𝑔𝑠)𝑐1 (𝑔𝑠
2
)𝑐2 · · · (𝑔𝑠

𝑛

)𝑐𝑛 = 𝑔𝑐0+𝑐1𝑠+𝑐2𝑠
2 · · ·𝑐𝑛𝑠𝑛 = 𝑔C𝑇 (𝑠)

In other words, the server computes a polynomial commitment [53,
76] to the characteristic polynomial of𝑇 . Since the accumulator only
supports elements from F𝑝 , we assume a functionHF : D → F𝑝
that maps elements to be accumulated from any domainD to values
in F𝑝 . If |D| > |F𝑝 |, thenHF can be a CRHF.

Membership proofs. A prover who has 𝑇 can convince a veri-
fier who has acc(𝑇) that an element 𝑒𝑖 is in the set 𝑇 . The prover
simply convinces the verifier that (𝑥 − 𝑒𝑖) | C𝑇 (𝑥) by presenting
a commitment 𝜋 = 𝑔𝑞 (𝑠) to a quotient polynomial 𝑞(·) such that
C𝑇 (𝑥) = (𝑥 − 𝑒𝑖)𝑞(𝑥). Using a bilinear map, the verifier checks the
property above holds at 𝑥 = 𝑠 , which is secure under 𝑞-SDH [53]:

𝑒 (𝑔, acc(𝑇)) ?
= 𝑒 (𝜋,𝑔𝑠/𝑔𝑒𝑖) ⇔ 𝑒 (𝑔,𝑔)C𝑇 (𝑠) ?

= 𝑒 (𝑔,𝑔)𝑞 (𝑠) (𝑠−𝑒𝑖)

Subset and disjointness proofs. To prove that 𝐴 ⊆ 𝐵, the prover
shows that C𝐴 (𝑥) | C𝐵 (𝑥). Specifically, the prover presents a com-
mitment 𝜋 = 𝑔𝑞 (𝑠) of a quotient polynomial 𝑞(·) such that C𝐵 (𝑥) =
𝑞(𝑥)C𝐴 (𝑥). The verifier checks that 𝑒 (𝑔, acc(𝐵)) = 𝑒 (𝜋, acc(𝐴)).

To prove that𝐴∩𝐵 = ∅, the prover uses the Extended Euclidean
Algorithm (EEA) [98] to compute Bézout coefficients 𝑦 (·) and 𝑧 (·)
such that 𝑦 (𝑥)C𝐴 (𝑥) + 𝑧 (𝑥)C𝐵 (𝑥) = 1. The proof consists of com-
mitments to the Bézout coefficients 𝛾 = 𝑔𝑦 (𝑠) and 𝜁 = 𝑔𝑧 (𝑠) . The
verifier checks that 𝑒 (𝛾, acc(𝐴))𝑒 (𝜁 , acc(𝐵)) = 𝑒 (𝑔,𝑔). By setting
𝐵 = {𝑒}, we get another type of non-membership proof for 𝑒 ∉ 𝐴.

Figure 1: Our model: a single malicious server manages a set
and many clients query the set. Clients will not necessarily
have the digest of the latest set. The clients can (1) append a
new element to the set, (2) query for an element and (3) ask
for an updated digest of the set.

Fast Fourier Transform (FFT). We use FFT [99] to speed up
polynomial multiplication and division. For polynomials of degree-
bound 𝑛, we divide and multiply them in 𝑂 (𝑛 log𝑛) field opera-
tions [85].We interpolate a polynomial from its𝑛 roots in𝑂 (𝑛 log2 𝑛)
field operations [100]. We compute Bézout coefficients for two poly-
nomials of degree-bound𝑛 using the Extended Euclidean Algorithm
(EEA) in 𝑂 (𝑛 log2 𝑛) field operations [98].

3 APPEND-ONLY AUTHENTICATED SETS
We begin by introducing a new primitive called an append-only
authenticated set (AAS). An AAS can be used for Revocation Trans-
parency (RT) as proposed by Google [58]. In Section 5, we modify
our AAS into an append-only authenticated dictionary (AAD), which
can be used for generalized transparency [36].
Overview. An AAS is a set of elements managed by an untrusted
server and queried by clients. The server is the sole author of the
AAS: it can append elements on its own and/or accept elements
from clients. Clients can check membership of elements in the set
(see Steps 3-5 in Figure 1). Clients, also known as users, are mutually-
distrusting, potentially malicious, and do not have identities (i.e., no
authorization or authentication). Initially, the set starts out empty
at version zero, with new appends increasing its size and version
by one. Importantly, once an element has been appended to the set,
it remains there forever: an adversary cannot remove nor change
the element. After each append, the server signs and publishes a
new, small-sized digest of the updated set (e.g., Step 2).

Clients periodically update their view of the set by requesting a
new digest from the server (e.g., Step 6 and 7). The new digest could
be for an arbitrary version 𝑗 > 𝑖 , where 𝑖 is the previous version of
the set (not just for 𝑗 = 𝑖 + 1). Importantly, clients always ensure
the set remains append-only by verifying an append-only proof 𝜋𝑖, 𝑗
between the old and new digest (e.g., Step 8). This way, clients can
be certain the malicious server has not removed any elements from
the set. Clients will not necessarily have the latest digest of the
set. Finally, clients securely check if an element 𝑘 is in the set via a
(non)membership proof (e.g., Steps 3-5 in Figure 1).

A malicious server can fork clients’ views [60], preventing them
from seeing each other’s appends. To deal with this, clients maintain

a fork consistent view [60, 61] of the set by checking append-only
proofs. As a consequence, if the server ever withholds an append
from one client, that client’s digest will forever diverge from other
clients’ digests. To detect such forks, clients can gossip [28, 32, 94, 96]
with one another about their digests. This is crucial for security in
transparency logs.

This model is the same as in history trees (HTs) [29], assuming
only a gossip channel and no trusted third parties. It also arises in
encrypted web applications [39, 52, 84], Certificate Transparency
(CT) [59] and software transparency schemes [38, 78]. Unlike the
2- and 3-party models [6, 82, 86], there is no trusted source that
signs appends in this model. A trusted source trivially solves the
AAS/AAD problem as it can simply vouch for the data structure’s
append-only property with a digital signature. Unfortunately, this
kind of solution is useless for transparency logs [59, 65, 88], which
lack trusted parties.

Server-side API. The untrusted server implements:

Setup(1𝜆, 𝛽) → 𝑝𝑝,𝑉𝐾 . Randomized algorithm that returns public
parameters 𝑝𝑝 used by the server and a verification key 𝑉𝐾 used
by clients. Here, 𝜆 is a security parameter and 𝛽 is an upper-
bound on the number of elements 𝑛 in the set (i.e., 𝑛 ≤ 𝛽).

Append(𝑝𝑝,S𝑖 , 𝑑𝑖 , 𝑘) → S𝑖+1, 𝑑𝑖+1. Deterministic algorithm that
appends a new element 𝑘 to the version 𝑖 set, creating a new
version 𝑖 + 1 set. Succeeds only if the set is not full (i.e., 𝑖 + 1 ≤ 𝛽).
Returns the new authenticated set S𝑖+1 and its digest 𝑑𝑖+1.

ProveMemb(𝑝𝑝,S𝑖 , 𝑘) → 𝑏, 𝜋 . Deterministic algorithm that proves
(non)membership for element 𝑘 . When 𝑘 is in the set, generates
a membership proof 𝜋 and sets 𝑏 = 1. Otherwise, generates a
non-membership proof 𝜋 and sets 𝑏 = 0.

ProveAppendOnly(𝑝𝑝,S𝑖 ,S𝑗) → 𝜋𝑖, 𝑗 . Deterministic algorithm that
proves S𝑖 ⊆ S𝑗 . In other words, generates an append-only proof
𝜋𝑖, 𝑗 that all elements in S𝑖 are also present in S𝑗 . Importantly,
a malicious server who removed elements from S𝑗 that were
present in S𝑖 cannot construct a valid append-only proof.

Client-side API. Clients implement:

VerMemb(𝑉𝐾,𝑑𝑖 , 𝑘, 𝑏, 𝜋) → {𝑇, 𝐹 }. Deterministic algorithm that
verifies proofs returned by ProveMemb(·) against the digest 𝑑𝑖 .
When 𝑏 = 1, verifies 𝑘 is in the set via the membership proof 𝜋 .
When 𝑏 = 0, verifies 𝑘 is not in the set via the non-membership
proof 𝜋 . (We formalize security in Section 3.1.)

VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑖, 𝑗) → {𝑇, 𝐹 }. Deterministic algo-
rithm that ensures a set remains append-only. Verifies that 𝜋𝑖, 𝑗
correctly proves that the set with digest 𝑑𝑖 is a subset of the set
with digest 𝑑 𝑗 . Also, verifies that 𝑑𝑖 and 𝑑 𝑗 are digests of sets at
version 𝑖 and 𝑗 respectively, enforcing fork consistency.

Using the API. To use an AAS scheme, first, public parameters
need to be computed using a call to Setup(·). If the AAS scheme
is trapdoored, a trusted party or MPC protocol runs Setup(·) and
forgets the trapdoor (see Section 7). Once computed, the parameters
can be reused by different servers for different append-only sets.
Setup(·) also returns a public verification key 𝑉𝐾 to all clients.

Then, the server broadcasts the initial digest 𝑑0 of the empty set
S0 to its many clients. Clients can concurrently start appending
elements using Append(·) calls. If the server is honest, it serial-
izes Append(·) calls. Eventually, the server returns a new digest

𝑑𝑖 to clients along with an append-only proof 𝜋0,𝑖 computed using
ProveAppendOnly(·). Some clients might be offline but eventually
they will receive either 𝑑𝑖 or a newer 𝑑 𝑗 , 𝑗 > 𝑖 . Importantly, when-
ever clients transition from version 𝑖 to 𝑗 , they check an append-only
proof 𝜋𝑖, 𝑗 using VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑖, 𝑗).

Clients can look up elements in the set. The server proves (non)-
membership of an element using ProveMemb(·). A client verifies
the proof using VerMemb(·) against their digest. As more elements
are added by clients, the server continues to publish a new digest
𝑑 𝑗 and can prove it is a superset of any previous digest 𝑑𝑖 using
ProveAppendOnly(·).

3.1 AAS Correctness and Security Definitions
We first introduce some helpful notation for our correctness def-
initions. Consider an ordered sequence of 𝑛 appends (𝑘𝑖)𝑖∈[𝑛] .
Let S′, 𝑑 ′ ← Append+ (𝑝𝑝,S, 𝑑, (𝑘𝑖)𝑖∈[𝑛]) denote a sequence of
Append(·) calls arbitrarily interleaved with other ProveMemb(·)
andProveAppendOnly(·) calls such thatS′, 𝑑 ′←Append(𝑝𝑝,S𝑛−1,
𝑑𝑛−1, 𝑘𝑛), S𝑛−1, 𝑑𝑛−1 ← Append(𝑝𝑝,S𝑛−2, 𝑑𝑛−2, 𝑘𝑛−1), . . . , S1, 𝑑1
← Append(𝑝𝑝,S, 𝑑, 𝑘1). Finally, let S0 denote an empty AAS with
empty digest 𝑑0.

Definition 3.1 (Append-only Authenticated Set). (Setup, Append,
ProveMemb, ProveAppendOnly, VerMemb, VerAppendOnly) is a
secure append-only authenticated set (AAS) if ∃ a negligible func-
tion 𝜀, ∀ security parameters 𝜆, ∀ upper-bounds 𝛽 = poly(𝜆) and
∀𝑛 ≤ 𝛽 it satisfies the following properties:

Membership correctness. ∀ordered sequences of appends (𝑘𝑖)𝑖∈[𝑛] ,
for all elements 𝑘 , where 𝑏 = 1 if 𝑘 ∈ (𝑘𝑖)𝑖∈[𝑛] and 𝑏 = 0 otherwise,

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽),

(S, 𝑑) ← Append+ (𝑝𝑝, S0, 𝑑0, (𝑘𝑖)𝑖∈[𝑛]),
(𝑏′, 𝜋) ← ProveMemb(𝑝𝑝, S, 𝑘) :

𝑏 = 𝑏′ ∧ VerMemb(𝑉𝐾,𝑑, 𝑘,𝑏, 𝜋) = 𝑇

 ≥ 1 − 𝜀 (𝜆)

Observation: Note that this definition compares the returned bit 𝑏 ′
with the “ground truth” in (𝑘𝑖)𝑖∈[𝑛] and thus provides membership
correctness. Also, it handles non-membership correctness since 𝑏 ′
can be zero. Finally, the definition handles all possible orders of
appending elements.
Membership security. ∀ adversaries A running in time poly(𝜆),

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽),
(𝑑, 𝑘, 𝜋, 𝜋 ′) ← A(𝑝𝑝,𝑉𝐾) :

VerMemb(𝑉𝐾,𝑑, 𝑘, 0, 𝜋,) = 𝑇 ∧
VerMemb(𝑉𝐾,𝑑, 𝑘, 1, 𝜋 ′,) = 𝑇

 ≤ 𝜀 (𝜆)
Observation: This definition captures the lack of any “ground truth”
about what was inserted in the set, since there is no trusted source
in our model. Nonetheless, given a fixed digest 𝑑 , our definition pre-
vents all equivocation attacks about the membership of an element
in the set.
Append-only correctness. ∀𝑚 < 𝑛,∀ sequences of appends
(𝑘𝑖)𝑖∈[𝑛] where 𝑛 ≥ 2,

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽)

(S𝑚, 𝑑𝑚) ← Append+ (𝑝𝑝, S0, 𝑑0, (𝑘𝑖)𝑖∈[𝑚]),
(S𝑛, 𝑑𝑛) ← Append+ (𝑝𝑝, S𝑚, 𝑑𝑚, (𝑘𝑖)𝑖∈[𝑚+1,𝑛]),

𝜋 ← ProveAppendOnly(𝑝𝑝, S𝑚, S𝑛) :
VerAppendOnly(𝑉𝐾,𝑑𝑚,𝑚,𝑑𝑛, 𝑛, 𝜋) = 𝑇

≥ 1 − 𝜀 (𝜆)

Append-only security. ∀ adversaries A running in time poly(𝜆),

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽)

(𝑑𝑖 , 𝑑 𝑗 , 𝑖 < 𝑗, 𝜋𝑎, 𝑘, 𝜋, 𝜋
′) ← A(𝑝𝑝,𝑉𝐾) :

VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑎) = 𝑇 ∧
VerMemb(𝑉𝐾,𝑑𝑖 , 𝑘, 1, 𝜋) = 𝑇 ∧
VerMemb(𝑉𝐾,𝑑 𝑗 , 𝑘, 0, 𝜋 ′) = 𝑇

≤ 𝜀 (𝜆)

Observation: This definition ensures that elements can only be added
to an AAS.
Fork consistency. ∀ adversaries A running in time poly(𝜆),

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽)

(𝑑𝑖 ≠ 𝑑 ′𝑖 , 𝑑 𝑗 , 𝑖 < 𝑗, 𝜋𝑖 , 𝜋
′
𝑖
) ← A(𝑝𝑝,𝑉𝐾) :

VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑖) = 𝑇 ∧
VerAppendOnly(𝑉𝐾,𝑑 ′

𝑖
, 𝑖, 𝑑 𝑗 , 𝑗, 𝜋

′
𝑖
) = 𝑇

 ≤ 𝜀 (𝜆)
Observation: This is our own version of fork consistency that cap-
tures what is known in the literature about fork consistency [29, 61].
Specifically, it allows a server to fork the set at version 𝑖 by present-
ing two different digests 𝑑𝑖 and 𝑑 ′𝑖 and prevents the server from
forging append-only proofs that “join” the two forks into some
common digest 𝑑 𝑗 at a later version 𝑗 .

4 AAS FROM ACCUMULATORS
This section presents our accumulator-based AAS construction. We
focus on bilinear accumulators here and discuss how our construc-
tion would benefit from RSA accumulators in Section 7. We give a
more formal algorithmic description in Appendix B.

As mentioned in Section 1, a bilinear accumulator over 𝑛 el-
ements is already an AAS, albeit an inefficient one. Specifically,
proving (non)membership in a bilinear accumulator requires an
𝑂 (𝑛) time polynomial division. As a consequence, precomputing all
𝑛 membership proofs (naively) takes 𝑂 (𝑛2) time, which is prohibi-
tive for most use cases. Even worse, for non-membership, one must
precompute proofs for all possible missing elements, of which there
are exponentially many (in the security parameter 𝜆). Therefore,
we need new techniques to achieve our desired polylogarithmic
time complexity for computing both types of proofs in our AAS.
A bilinear tree accumulator. Our first technique is to deploy the
bilinear accumulator in a tree structure, as follows.We start with the
elements 𝑒𝑖 as leaves of a binary tree (see Figure 2b). Specifically,
each leaf will store an accumulator over the singleton set {𝑒𝑖 }.
Every internal node in the tree will then store an accumulator
over the union of the sets corresponding to its two children. For
example, the parent node of the two leaves corresponding to {𝑒𝑖 }
and {𝑒𝑖+1} stores the accumulator of the set {𝑒𝑖 , 𝑒𝑖+1}. In this way,
the root is the accumulator over the full set 𝑆 = {𝑒1, . . . , 𝑒𝑛} (see
Figure 2). We stress that all these accumulators use the same public
parameters. The time to compute all the accumulators in the tree is
𝑇 (𝑛) = 2𝑇 (𝑛/2) +𝑂 (𝑛 log𝑛) = 𝑂 (𝑛 log2 𝑛) where 𝑂 (𝑛 log𝑛) is the
time to multiply the characteristic polynomials of two sets of size 𝑛
in the tree. We call the resulting structure a bilinear tree over set 𝑆 .
Membership proofs in bilinear trees. A membership proof for
element 𝑒𝑖 will leverage the fact that sets along the path from
𝑒𝑖 ’s leaf to the root of the bilinear tree are subsets of each other.
The proof will consist of a sequence of subset proofs that validate
this (computed as explained in Section 2.1). Specifically, the proof
contains the accumulators along the path from 𝑒𝑖 ’s leaf to the root,

Figure 2: On the left side, we depict a trie over set 𝑆 = {𝑎, 𝑏, 𝑐}.
Each element is mapped to a unique path of length 4 in the
trie. Nodes that are not in the trie but are at its frontier are
depicted in red. On the right side, we depict a bilinear fron-
tier tree (BFT) corresponding to the set 𝑆 . To prove that an
element is not in 𝑆 , we prove one of its prefixes is in the BFT.

as well as the accumulators of all sibling nodes along this path
(see Figure 2b). The client verifies all these subset proofs, starting
from the singleton set {𝑒𝑖 } in the leaf. This convinces him that
𝑒𝑖 is contained in the parent’s accumulated set, which in turn is
contained in its parent’s accumulated set and so on, until the root.

Our bilinear tree approach gives us membership proofs of log-
arithmic size and thus logarithmic verification time. Importantly,
computing a bilinear tree in 𝑂 (𝑛 log2 𝑛) time implicitly computes
all membership proofs “for free”! In contrast, building a standard
billinear accumulator over 𝑆 would yield constant-size proofs but
in𝑂 (𝑛2) time for all 𝑛 proofs. Unfortunately, our bilinear tree struc-
ture does not (yet) support precomputing non-membership proofs.
We devise new techniques that address this next.
Bilinear prefix trees to the rescue. To efficiently precompute
non-membership proofs, we slightly modify our bilinear tree. In-
stead of storing an element 𝑒𝑖 ∈ 𝑆 , the 𝑖th leaf will store the set
of prefixes of the binary representation of 𝑒𝑖 . We assume this rep-
resentation is 2𝜆 bits (or is made so using a CRHF) and can be
mapped to an element in F𝑝 (which is also of size ≈ 2𝜆 bits) and
thus can be accumulated. For example, a leaf that previously stored
element 𝑒1 with binary representation 0001, will now store the set
𝑃 (𝑒1) = {𝜀, 0, 00, 000, 0001} (i.e., all the prefixes of the binary repre-
sentation of 𝑒1, including the empty string 𝜀). In general, for each
element 𝑒𝑖 , 𝑃 (𝑒𝑖) is the set of all 2𝜆+1 prefixes of 𝑒𝑖 . Also, for any set
𝑆 = {𝑒1, . . . , 𝑒𝑛}, we define its prefix set as 𝑃 (𝑆) = 𝑃 (𝑒1)∪· · ·∪𝑃 (𝑒𝑛).
For example, let 𝑆 = {𝑎 = 0001, 𝑏 = 0101, 𝑐 = 1110}. The root of
𝑆’s bilinear tree will contain an accumulator over 𝑃 (𝑆) = 𝑃 (𝑎) ∪
𝑃 (𝑏) ∪ 𝑃 (𝑐) = {𝜀, 0, 1, 00, 01, 11, 000, 010, 111, 0001, 0101, 1110}.

We refer to such a bilinear tree as a bilinear prefix tree (BPT)
over 𝑆 . The time to build a BPT for 𝑆 is 𝑂 (𝜆𝑛 log2 𝑛) since there
are 𝑂 (𝜆𝑛) prefixes across all leaves. Note that membership proofs
in a BPT are the same as in bilinear trees, with a minor change.
The internal nodes of the tree still store accumulators over the
union of their children. However, the children now have common
prefixes, which will only appear once in the parent. For example,
two children sets have the empty string 𝜀 while their parent set only
has 𝜀 once (because of the union). As a result, it is no longer the
case that multiplying the characteristic polynomials of the children
gives us the parent’s polynomial. Therefore, we can no longer rely
on the siblings as subset proofs: we have to explicitly compute
subset proofs for each child w.r.t. its parent. We stress that this does
not affect the asymptotic time complexity of computing the BPT. As

Figure 3: A forest starting empty and going through a se-
quence of five appends. A forest only has trees of exact size
2𝑗 for distinct 𝑗 ’s. A forest of 𝑛 leaves has at most log𝑛 trees.

before, the client starts the proof verification from the leaf, which
now stores a prefix set 𝑃 (𝑒𝑖) rather than a singleton set {𝑒𝑖 }.
Efficient non-membership proofs. But how does a BPT help
with precomputing non-membership proofs for any element 𝑒 ′ ∉ 𝑆?
First, note that, because of our use of prefixes, to prove 𝑒 ′ ∉ 𝑆

it suffices to show that any one prefix 𝜌 of 𝑒 ′ is not contained in
𝑃 (𝑆). Second, note that there might exist other elements 𝑒 ′′ who
share 𝜌 as a prefix. As a result, the non-membership proof for
𝑒 ′ could be “reused” as a non-membership proof for 𝑒 ′′. This is
best illustrated in Figure 2a using our previous example where
𝑆 = {𝑎, 𝑏, 𝑐}. Consider elements 𝑑 = 0111 and 𝑓 = 0110 that are not
in 𝑆 . To prove non-membership for either element, it suffices to
prove the same statement: 011 ∉ 𝑃 (𝑆). Thus, if we can identify all
such shared prefixes, we can use them to prove the non-membership
of (exponentially) many elements. (This technique is also used in
Micali et al.’s zero-knowledge sets [70].)

To do this, we insert all elements from 𝑆 in a trie as depicted
in Figure 2a. Next, we keep track of the prefixes at the “frontier”
of the trie depicted in red in Figure 2a. We immediately notice
that to prove non-membership of any element, it suffices to prove
non-membership of one of these frontier prefixes! In other words,
elements that are not in 𝑆 will have one of these as a prefix. Thus,
we formally define the frontier of 𝑆 as:

𝐹 (𝑆) = {𝜌 ∈ {0, 1}≤2𝜆 : 𝜌 ∉ 𝑃 (𝑆) ∧ parent(𝜌) ∈ 𝑃 (𝑆)},
where parent(𝜌) is 𝜌 without its last bit (e.g., parent(011) = 01).
Note that the size of 𝐹 (𝑆) is 𝑂 (𝜆𝑛), proportionate to 𝑃 (𝑆).

Most importantly, from the way 𝑃 (𝑆) and 𝐹 (𝑆) are defined, for
any element 𝑒 ′ it holds that 𝑒 ′ ∉ 𝑆 if, and only if, some prefix of 𝑒 ′
is in 𝐹 (𝑆). Therefore, proving non-membership of 𝑒 ′ boils down to
proving two statements: (i) some prefix of 𝑒 ′ belongs to 𝐹 (𝑆), and (ii)
𝑃 (𝑆)∩𝐹 (𝑆) = ∅. We stress that the latter is necessary as a malicious
server may try to craft 𝐹 (𝑆) in a false way (e.g., by adding some
prefixes both in 𝑃 (𝑆) and in 𝐹 (𝑆)). To prove (i), we build a bilinear
tree over 𝐹 (𝑆) which gives us precomputed membership proofs for
all 𝜌 ∈ 𝐹 (𝑆). We refer to this tree as the bilinear frontier tree (BFT) for
set 𝑆 and to the proofs as frontier proofs. To prove (ii), we compute
a disjointness proof between sets 𝑃 (𝑆) and 𝐹 (𝑆), as described in
Section 2.1 (i.e., between the root accumulators of the BFT and the
BPT of 𝑆). The time to build a BFT for 𝑆 is 𝑂 (𝜆𝑛 log2 𝑛) since 𝐹 (𝑆)
has 𝑂 (𝜆𝑛) elements. The disjointness proof can be computed in
𝑂 (𝜆𝑛 log2 𝑛) time.
Static AAS construction. Combining all the above techniques, we
obtain a static AAS that does not support updates efficiently (nor
append-only proofs). This construction consists of: (a) a BPT for
𝑆 , (b) a BFT for 𝑆 , and (c) a proof of disjointness between 𝑃 (𝑆) and
𝐹 (𝑆) (i.e., between the root BPT and BFT accumulators). The height
of the BPT is 𝑂 (log𝑛) and the height of the BFT is 𝑂 (log (𝜆𝑛))

Figure 4: A dynamic AAS with 𝜆 = 2 for set {𝐵,𝐶, 𝐷, 𝐸, 𝐹, 𝐻, 𝐽 }.
Our AAS is a forest of BPTs with corresponding BFTs. Each
node stores a BPT accumulator (and subset proof), depicted
as a trie, in yellow. Root nodes store a BFT, depicted as the
missing red nodes.

so the size and verification time of a (non)membership proof is
𝑂 (log𝑛). The digest is just the root accumulator of the BPT.
Handling appends efficiently. So far, we only discussed the case
of a static set 𝑆 . However, our AAS should support appending new
elements to 𝑆 . The main challenge here is efficiency since updating
the BPT and BFT as well as the disjointness proof after each update
is very expensive (at least linear). To address this we use a classic
“amortization” trick from Overmars [80] also used in [87].

Specifically, our AASwill consist not of one BPT for the entire set
𝑆 , but will be partitioned into a forest of BPTs and their correspond-
ing BFTs. Initially, we start with no elements in the AAS. When the
first element 𝑒1 is appended, we build its tree-pair : a BPT over the
set {𝑒1}, its BFT and a disjointness proof. When the second element
𝑒2 is appended, we “merge”: we build a size-2 tree-pair over {𝑒1, 𝑒2}.
The rule is we always merge equal-sized tree-pairs. When 𝑒3 is
appended, we cannot merge it because there’s no other tree-pair
of size 1. Instead, we create a tree-pair over {𝑒3}. In general, after
2ℓ − 1 appends, we end up with ℓ separate tree-pairs corresponding
to sets of elements 𝑆1, . . . , 𝑆ℓ . The final set is 𝑆 =

⋃ℓ
𝑗=1 𝑆 𝑗 where

|𝑆 𝑗 | = 2𝑗 . The evolution of such a forest is depicted in Figure 3 and
the final data structure can be seen in Figure 4.

Let us analyze the time to merge two size-𝑛 tree-pairs for 𝑆1 and
𝑆2 into a size-2𝑛 tree-pair for 𝑆 = 𝑆1 ∪ 𝑆2. To compute 𝑆 ’s BPT, we
need to (i) compute its root accumulator, (ii) set its children to the
“old” root accumulators of 𝑆1 and 𝑆2 and (iii) compute subset proofs
𝑆1 ⊂ 𝑆 and 𝑆2 ⊂ 𝑆 . Since |𝑆1 | = |𝑆2 | = 𝑛, operations (i), (ii) and
(iii) take 𝑂 (𝜆𝑛 log2 𝑛) time. Finally, we can compute 𝑆’s BFT from
scratch in 𝑂 (𝜆𝑛 log2 𝑛) time.

To analyze the append time, consider the time 𝑇 (𝑛) to create an
AAS over a set 𝑆 with 𝑛 = 2ℓ elements (without loss of generality).
Then, 𝑇 (𝑛) is just the time to create a tree-pair over 𝑆 and can be
broken into (i) the time to create a tree-pair over the children of 𝑆
of size 𝑛/2 (i.e., 2𝑇 (𝑛/2)) (ii) the time to merge these two children
BPTs (including computing subset proofs) and (iii) the time to com-
pute the BFT of 𝑆 . More formally, 𝑇 (𝑛) = 2𝑇 (𝑛/2) +𝑂 (𝜆𝑛 log2 𝑛)
which simplifies to 𝑇 (𝑛) = 𝑂 (𝜆𝑛 log3 𝑛) time for 𝑛 appends. Thus,
the amortized time for one append is 𝑂 (𝜆 log3 𝑛) and can be de-
amortized into worst-case time using generic techniques [80, 81].

The downside of our amortized approach is that proving non-
membership becomes slightly more expensive than in the static
AAS data structure from above. Specifically, now the server needs

to prove non-membership in each tree-pair separately, requiring an
𝑂 (log𝑛) frontier proof in each of the𝑂 (log𝑛) BFTs. This increases
the non-membership proof size to𝑂 (log2 𝑛). On a good note, mem-
bership proofs remain unaffected: the server just sends a path to
a leaf in one of the BPTs where the element is found. Finally, the
AAS digest is set to the root accumulators of all BPTs and has size
𝑂 (log𝑛). We analyze the complexity of our AAS in Appendix D.
Efficient append-only proofs. Our append-only proofs are sim-
ilar to the ones in history trees [29]. An append-only proof must
relate the root BPT accumulator(s) in the old AAS to the root BPT
accumulator(s) in the new AAS. We’ll refer to these as “old roots”
and “new roots” respectively. Specifically, it must show that every
old root either (i) became a new root or (ii) has a path to a new
root with valid subset proofs at every level. Such a path is verified
by checking the subset proofs between every child and its parent,
exactly as in a membership proof. At the same time, note that there
might be new roots that are neither old roots nor have paths to old
roots (e.g., root 111 in 𝐹5 from Figure 3). The proof simply ignores
such roots since they securely add new elements to the set. To
summarize, the append-only proof guarantees that each old root
(1) has a valid subset path to a new root or (2) became a new root.
Ensuring fork-consistency. For gossip protocols to work [28, 32],
our AAS must be fork-consistent. Interestingly, append-only proofs
do not imply fork-consistency. For example, consider a server who
computes an AAS for set {𝑒1} and another one for the set {𝑒2}. The
server gives the first set’s digest to user 𝐴 and the second digest
to user 𝐵. Afterwards, he appends 𝑒2 to the first set and 𝑒1 to the
second one, which “joins” the two sets into a common set {𝑒1, 𝑒2}.
The append-only property was not violated (as the two users can
deduce independently) but fork-consistency has been: the two users
had diverging views that were subsequently merged.

To avoid this, we will “Merkle-ize” each BPT using a CRHFH in
the standard manner (i.e., a node hashes its accumulator and its two
children’s hashes). Our AAS digest is now set to the Merkle roots
of all BPTs, which implicitly commit to all root accumulators in the
BPTs. As a result, after merging BPTs for elements 𝑒1 and 𝑒2, the
Merkle root of the merged BPT will differ based on how appends
were ordered: (𝑒1, 𝑒2), or (𝑒2, 𝑒1). Thus, violating fork-consistency
becomes as hard as finding a collision inH (see Appendix C).

5 FROM SETS TO DICTIONARIES
In this section, we turn our attention to constructing an append-
only authenticated dictionary (AAD). Recall that an AAS stores
elements and supports (non)membership queries of the form “Is
𝑒 ∈ 𝑆?” In contrast, an AAD stores key-value pairs and supports
lookups of the form “Is 𝑉 the complete set of values for key 𝑘?” In
other words, an AAD maps a key 𝑘 to a multiset of values 𝑉 in
an append-only fashion. Specifically, once a value has been added
to a key, it cannot be removed nor changed. For example, if a key
is a domain name and its values are certificates for that domain,
then an AAD can be used as a Certificate Transparency (CT) log.
In general, keys and values can have any application-specific type,
as long as they can be hashed to a bit string.

Our construction has great similarities with the AAS of Section 4.
However, the different functionality calls for modifications. Indeed,
even the security notion for AADs is different (see Appendix E).

Specifically, in an AAS, no malicious server can simultaneously
produce accepting proofs of membership and non-membership for
the same element 𝑒 with respect to the same digest. In contrast, in
an AAD, no malicious server can simultaneously produce accepting
proofs for two different sets of values𝑉 ,𝑉 ′ for a key 𝑘 with respect
to the same digest. This captures the related notion for an AAS
since one of the sets of values may be empty (indicating 𝑘 has never
been registered in the dictionary) and the other non-empty. Next,
we describe how we modify our AAS from Section 4 to get an AAD.
Encoding key-value pairs. An AAS construction can trivially
support key-value pairs (𝑘, 𝑣) by increasing the size of the domain
of the underlying AAS from 2𝜆 bits to 4𝜆 bits so as to account for
the value 𝑣 . That is, (𝑘, 𝑣) would be inserted in the AAS as 𝑘 |𝑣 , using
the same algorithms from Appendix B. Thus AAD clients now have
twice the number of public parameters: 𝑔𝜏 , (𝑔𝑠𝑖)4𝜆+1

𝑖=0 .
Proving lookups. For simplicity, let us restrict ourselves to an
AAD of size 2𝑖 (i.e., with just one tree-pair). For a key 𝑘 with no
values, a lookup proof is simply a frontier proof for a prefix of 𝑘
in the BFT, much like a non-membership proof in the AAS (see
Section 4). What if 𝑘 has one or more values? First, the lookup proof
contains paths to BPT leaves with 𝑘’s values (i.e., with elements of
the form 𝑘 |𝑣), much like a membership proof in an AAS. But what
is to guarantee completeness of the response? What if a malicious
server leaves out one of the values of key 𝑘? (This is important in
transparency logs where users look up their own PKs and must
receive all of them to detect impersonation attacks.) We use the
same frontier technique as in the AAS to convince clients values are
not being left out. Specifically, the server proves specific prefixes
for the missing values of 𝑘 are not in the BPTs (and thus are not
maliciously being left out). This is best illustrated with an example.

Suppose the server wants to prove 𝑘 = 0000 has complete set
of values 𝑉 = {𝑣1 = 0001, 𝑣2 = 0011}. Consider a trie over 𝑘 |𝑣1
and 𝑘 |𝑣2 and note that 𝐹 [𝑘] = {(0000|1), (0000|01), (0000|0000),
(0000|0010)} is the set of all frontier prefixes for the missing values
of 𝑘 . We call this set the lower frontier of 𝑘 relative to 𝑉 . The key
idea to prove completeness is to prove all lower frontier prefixes are
in the BFT via frontier proofs (as discussed in Section 4). Note that
|𝐹 [𝑘] | = 𝑂 (𝜆) and each frontier proof is 𝑂 (log𝑛)-sized, resulting
in an 𝑂 (𝜆 log𝑛)-sized proof. This idea generalizes to AADs of arbi-
trary size: the server (i) proves non-membership of 𝑘 in BPTs with
no values for 𝑘 (via the BFT) and (ii) proves 𝑉𝑖 is the complete set
of values of 𝑘 in each remaining BPT 𝑖 (via the BFT lower frontier
technique). In that case, a lookup proof for a key 𝑘 with a single
value 𝑣 consists of (1) an 𝑂 (log𝑛)-sized path in some BPT with an
𝑂 (𝜆 log𝑛)-sized frontier proof in its corresponding BFT (to guar-
antee completeness) and (2) an 𝑂 (log𝑛)-sized frontier proof for 𝑘
in all other 𝑂 (log𝑛) BFTs, to prove 𝑘 has no values there.
Smaller lookup proofs. When 𝑘 has one value, it follows from
above that a lookup proof for 𝑘 is𝑂 (𝜆 log𝑛)-sized. However, we can
easily decrease its size to 𝑂 (log2 𝑛). Note that the main overhead
comes from having to prove that all 𝑂 (𝜆) lower frontier prefixes
of 𝑘 are in a BFT. The key idea is to group all of 𝑘’s lower frontier
prefixes into a single BFT leaf, creating an accumulator over all of
them. As a result, instead of having to send 𝑂 (𝜆) frontier proofs
(one for each lower frontier prefix), we send a single𝑂 (log𝑛)-sized
frontier proof for a single BFT leaf which contains all lower frontier

prefixes of 𝑘 . We can generalize this idea: when 𝑘 has |𝑉𝑖 | values
in the 𝑖th BFT in the forest, 𝑘’s lower frontier relative to 𝑉𝑖 has
𝑂 (|𝑉𝑖 |𝜆) prefixes. Then, for each BFT 𝑖 , we split the lower frontier
prefixes of 𝑘 associated with𝑉𝑖 into separate BFT leaves each of size
at most 4𝜆+1. We remind the reader that clients have enough public
parameters (𝑔𝑠𝑖)4𝜆+1

𝑖=0 to reconstruct the accumulators in these BFT
leaves and verify the frontier proof.
Supporting large domains and multisets. To handle keys and
values longer than 2𝜆 bits, we storeH(𝑘) |H (𝑣) in the AAD (rather
than 𝑘 |𝑣), whereH is a CRHF and we can retrieve the actual value
𝑣 from another repository. To support multisets (same 𝑣 can be
inserted twice for a 𝑘), the server can insertH(H(𝑣) |𝑖) for the 𝑖-th
occurrence of (𝑘, 𝑣).
Supporting inclusion proofs. Another useful proof for a trans-
parency log is an inclusion proof which only returns one of the
values of key 𝑘 (while lookup proofs return all values of a key 𝑘).
For example, in Certificate Transparency (CT), browsers are sup-
posed to verify an inclusion proof of a website’s certificate before
using it. Our AAD supports inclusion proofs too. They consist of a
path to a BPT leaf with the desired key-value pair. Since they do not
require frontier proofs, inclusion proofs are only 𝑂 (log𝑛)-sized.

6 EVALUATION
In this section, we evaluate our AAD (not AAS) construction’s proof
sizes, append times and memory usage. We find that append times
and memory usage are too high for a practical deployment and dis-
cuss how they might be improved in future work (see Sections 6.1.1
and 6.1.4). If they are improved, we find AADs can save bandwidth
relative to CT and CONIKS and we describe exactly when and how
much in Section 6.2.1.
Codebase and testbed.We implemented our amortized AAD con-
struction from Section 5 in 5700 lines of C++. Its worst-case append
time is𝑂 (𝜆𝑛 log2 𝑛) while its amortized append time is𝑂 (𝜆 log3 𝑛).
We used Zcash’s libff [90] as our elliptic curve library with sup-
port for a 254-bit Barretto-Naehrig curve with a Type III pairing [7].
We used libfqfft [91] to multiply polynomials and libntl [92]
to divide polynomials and compute GCDs. Our code is available at:

https://github.com/alinush/libaad-ccs2019.
We ran our evaluation in the cloud on Amazon Web Services (AWS)
on a r4.16xlarge instance type with 488 GiB of RAM and 64 VCPUs,
running Ubuntu 16.04.4 (64-bit). This instance type is “memory-
optimized” which, according to AWS, means it is “designed to de-
liver fast performance for workloads that process large data sets in
memory.”

6.1 Microbenchmarks
6.1.1 Append times. Starting with an empty AAD, we append key-
value pairs to it and keep track of the cumulative average append-
time. Recall that appends are amortized in our construction (but can
be de-amortized using known techniques [80, 81]). As a result, in our
benchmark some appends are very fast (e.g., 25 milliseconds) while
others are painfully slow (e.g., 1.5 hours). To keep the running time
of our benchmark reasonable, we only benchmarked 213 = 8192
appends. We also investigate the effect of batching on append times.
Batching 𝑘 = 2𝑖 appends together means we only compute one

BFT for the full tree of size 𝑘 created after inserting the batch. In
contrast, without batching, we would compute 𝑘 BFTs, one for each
new forest root created after an append. Figure 5c shows that the
average append time is 5.75 seconds with no batching and 0.76
seconds with batch size 8192. (For batch sizes 32, 64, . . . , 4096, the
average times per append in milliseconds are 3422, 3064, 2644, 2361,
1848, 1548, 1353 and 976 respectively.) These times should increase
by around 3.5 seconds if we benchmarked 220 appends.
Speeding up appends. The bottleneck for appends is comput-
ing the BFTs. Although we used libff’s multi-threaded multi-
exponentiation to compute accumulators faster, there are other
ways to speed up appends that we have not explored. First, we can
parallelize computing (1) the polynomials on the same level in a
BFT, (2) the smaller accumulators at lower levels of the BFT, where
multi-threaded multi-exponentiation does not help as much and (3)
the subset proofs in the forest. Second, we can reuse some of the
previously computed accumulators when computing a new BFT.
Third, our BPT and BFT constructions require “extractable” counter-
parts of the accumulators, which almost triple the time to commit
to a polynomial. We hope to remove this expensive requirement
by proving our construction secure in the generic group model,
similar to new SNARK constructions [48]. Finally, techniques for
distributed FFT could speed up polynomial operations [103].

6.1.2 Lookup proofs. We investigate three factors that affect lookup
proof size and verification time: (1) the dictionary size, (2) the num-
ber of trees in the forest and (3) the number of values of a key. Our
benchmark creates AADs of ever-increasing size 𝑛. For speed, in-
stead of computing accumulators, we simply pick them uniformly
at random. (Note that this does not affect the proof verification
time.) We measure average proof sizes for keys with ℓ values in an
AAD of size 𝑛, where ℓ ∈ {0, 1, 2, 4, 8, 16, 32}. (Recall that a key with
ℓ values requires ℓ frontier proofs.) To get an average, for every
ℓ , we set up 10 different target keys so each key has ℓ values. The
rest of the inserted keys are random (and simply ignored by the
benchmark). Importantly, we randomly disperse the target key-
value pairs throughout the forest to avoid having all values of a
key end up in consecutive forest leaves, which would artificially
decrease the proof size. Once the dictionary reaches size 𝑛, we go
through every target key with ℓ values, compute its lookup proof,
and measure the size and verification time. Then, for each ℓ , we
take an average over its 10 target keys. We repeat the experiment
for increasing dictionary sizes 𝑛 and summarize the numbers in
Figures 5a and 5b. Proof verification is single-threaded.
Worst-case versus best-case dictionary sizes. Recall that some
dictionary sizes are “better” than others because they have fewer
trees in the forest. For example, a dictionary of (worst-case) size 2𝑖−1
will have 𝑖 trees in the forest and thus 𝑖 BFTs. Thus, a lookup proof
must include frontier proofs in all 𝑖 BFTs. In contrast, a dictionary
of size 2𝑖 only has a single tree in the forest, so a lookup proof needs
only one frontier proof. Indeed, our evaluation shows that lookup
proofs are smaller in AADs of size 10𝑖 (see Figure 5b) compared to
2𝑖 − 1 (see Figure 5a). For example, for a key with 32 values, the
proof averages 95 KiB for size 106 and 118 KiB for size 220 − 1.

6.1.3 Append-only proofs. This benchmark appends random key-
value pairs until it reaches a target size 𝑛 = 2𝑖+1 − 1. Then, it

https://github.com/alinush/libaad-ccs2019

(a) Lookup proof (worst-case AAD sizes) (b) Lookup proof (average-case AAD sizes) (c) Append times (↑) and append-only proofs (↓)

Figure 5: The x-axes always indicate AAD sizes. Sections 6.1.1 to 6.1.3 explain the experiments. In Figure 5c (↑), “spikes” occur
when two trees of size 𝐵 are merged, which triggers a new BFT computation, where 𝐵 is the batch size.

measures the append-only proof size (and verification time) be-
tween AADs of size 𝑛 and𝑚 = 2𝑖 − 1. We benchmarked on 2𝑖 − 1
AAD sizes to illustrate worst-case Θ(𝑖) append-only proof sizes.
To speed up the benchmark, we randomly pick accumulators in
the forest. Append-only proof verification is single-threaded. Our
results show append-only proofs are reasonably small and fast to
verify (see Figure 5c). For example, the append-only proof between
sizes 219 − 1 and 220 − 1 is 3.5 KiB and verifies in 45 milliseconds.

6.1.4 Memory usage. Our lookup proof benchmark was the most
memory-hungry: it consumed 263 GiB of RAM for AAD size 𝑛 =

220 − 1. In contrast, the append-only proof benchmark consumed
only 12.5 GiBs of memory, since it did not need BFTs. As an example,
when 𝑛 = 220 − 1, all BFTs combined have no more than 390𝑛
nodes. Since we are using Type III pairings, each node stores three
accumulators (two inG1 and one inG2) in 384 bytes (due to libff’s
3x overhead). Thus, the BFT accumulators require no more than 147
GiB of RAM. The rest of the overhead comes from our pointer-based
BFT implementation and other bookkeeping (e.g., polynomials). The
𝑞-PKE public parameters could have added 64 GiBs of RAM, but
these two benchmarks did not need them.

Improvingmemory. A new security proof could eliminate the ad-
ditional G1 and G2 accumulators and reduce BFT memory by 2.66x
and the size of the public parameters by 1.33x (see Section 6.1.1). A
more efficient representation of group elements than libff’s could
also reduce BFT memory by 3x. An efficient array-based imple-
mentation of BPTs and BFTs could further reduce memory by tens
of gigabytes. Finally, the 390x overhead of BFTs can be drastically
reduced by carefully grouping upper frontier prefixes together in
a BFT leaf, similar to the grouping of lower frontier prefixes from
Section 5. However, doing this without increasing the lookup proof
size too much remains to be investigated.

6.2 Comparison to Merkle tree approaches
How do AADs compare to Merkle prefix trees or History Trees
(HTs), which are used in CONIKS and Certificate Transparency (CT)
respectively? First of all, appends in AADs are orders of magnitude
slower because of the overheads of cryptographic accumulators
and remain to be improved in future work (see Section 6.1.1).

Lookup proofs in prefix trees are much smaller than in AADs. In
a prefix tree of size 220, a proof consisting of a Merkle path would
be around 640 bytes. In comparison, our proofs for a key with
32 values are 152 times to 189 times more expensive (depending
on the number of trees in the forest). On the other hand, append-
only proofs in AADs are 𝑂 (log𝑛), much smaller than the 𝑂 (𝑛)
in prefix trees. For example, our Golang implementation of prefix
trees, shows that the append-only proof between trees of size 219
and 220 is 32 MiB (as opposed to 3.5 KiB in AADs). The proof gets
a bit smaller when the size gap between the dictionaries is larger
but not by much: 14.6 MiB between 105 and 106.

Lookup proofs in history trees (HTs) are 𝑂 (𝑛)-sized, compared
to 𝑂 (log2 𝑛) in AADs. This is because, to guarantee completeness,
the HT proof must consist of all key-value pairs. On the other hand,
append-only proofs in AADs are slightly larger than in HTs. While
our proofs contain approximately the same number of nodes as
in HT proofs, our nodes store two BPT accumulators in G1 and a
subset proof in G2 (in addition to a Merkle hash). This increases
the per-node proof size from 32 bytes to 32 + 64 + 64 = 160 bytes.

6.2.1 When do AADs reduce bandwidth? Asymptotically, AAD
proof sizes outperform previous work. But in practice, our evalua-
tion shows AAD proof sizes are still larger than ideal, especially
lookup proofs. This begs the question: In what settings do AADs
reduce bandwidth in transparency logs? We answer this question
below while acknowledging that AAD append times and memory

usage are not yet sufficiently fast for a practical deployment (see
Section 6.1.1).

Consider a key transparency log with approximately one billion
entries (i.e., an entry is a user ID and its PK). If this were a CONIKS
log, then each user must check their PK in every digest published
by the log server. Let D denote the number of digests published per
day by the log server. This means the CONIKS log server will, on
average, send 960 · D bytes per day per user (without accounting
for the overhead of VRFs [71] in CONIKS). If this were an AAD log,
then each user (1) gets the most recent digest via an append-only
proof and (2) checks their PK only in this digest via a lookup proof.
Let C denote the number of times per day a user checks his PK
(and note that, in CONIKS, 𝐶 = 𝐷). Since the lookup proof is for
the user’s PKs not having changed, it only needs to contain frontier
proofs. Extrapolating from Figure 5b, such an average-case lookup
proof is 40 KiB (in an AAD of size one billion). Similarly, an append-
only proof would be 7 KiB. This means the AAD log server will,
on average, send 47 · 1024 ·𝐶 bytes per day per user. Thus, AADs
are more efficient when .0199 · 𝐷/𝐶 > 1. In other words, AADs
will be more bandwidth-efficient in settings where log digests must
be published frequently (i.e., 𝐷 is high) but users check their PK
sporadically (i.e., 𝐶 is low). For example, if 𝐷 = 250 (i.e., a new
digest every 6 minutes) and 𝐶 = 0.5 (i.e., users check once every
two days), then AADs result in 10x less bandwidth.

What about CT? Recall that CT lacks succinct lookup proofs. As
a result, domains usually trust one or more monitors to download
the log, index it and correctly answer lookup queries. Alternatively,
a domain can act as a monitor itself and keep up with every update
to the log. We call such domainsmonitoring domains. Currently, CT
receives 12.37 certificates per second on average [44], with a mean
size of 1.4 KiB each [35]. Thus, a CT log server will, on average,
send 12.37 · 1.4 · 1024 = 17, 733.63 bytes per second per monitoring
domain. In contrast, AADs require 47 · 1024 ·𝐶/86, 400 = .557 ·𝐶
bytes per second per monitoring domain. As before,𝐶 denotes how
many times per day a monitoring domain will check its PK in the
log. Thus, AADs are more efficient when 31, 837/𝐶 > 1. So even if
domains monitor very frequently (e.g., 𝐶 = 100), AADs are more
bandwidth efficient. However, we stress that our append times
and memory usage must be reduced for a practical deployment to
achieve these bandwidth savings (see Sections 6.1.1 and 6.1.4).

7 DISCUSSION

Privacy via VRFs.When a user’s identity (e.g., email address) is
hashed to determine a path in the tree, the existence of the path
leaks that the user is registered. To avoid this, CONIKS proposed
using a verifiable random function (VRF) [65, 71] to map users to
paths in the tree in a private but verifiable manner. We note that
our construction is compatible with VRFs as well and can provide
the same guarantees. For fairness, our comparison to CONIKS from
Section 6.2.1 assumes CONIKS does not use VRFs.

Constant-sized digests.Digests in our constructions are𝑂 (log𝑛)-
sized where 𝑛 is the size of the set (or dictionary). We can make the
digest constant-sized by concatenating and hashing all Merkle roots.
Then, we can include the Merkle roots as part of our append-only
and lookup proofs, without increasing our asymptotic costs.

Large, bounded public parameters.Our bilinear-based construc-
tions from Sections 4 and 5 are bounded: they support at most 𝑁
appends (given 𝑞 ≈ 4𝜆𝑁 public parameters). One way to get an
unbounded construction might be to use RSA accumulators as ex-
plained later in this section. Another way is to simply start a new
data structure, when the old one gets “full,” similar to existing CT
practices [62]. The old digest could be committed in the new data
structure to preserve the append-only property and fork consis-
tency. (This will slightly increase our proof sizes for users who are
not caught up with the latest digest.)
Trusted setup ceremony. Previous work shows how to securely
generate public parameters for QAP-based SNARKs [47, 48] via
MPC protocols [20, 21]. For our AAD, we can leverage simplified
versions of these protocols, since our public parameters are a “sub-
set” of SNARK parameters. In particular, the protocol from [21]
makes participation very easy: it allows any number of players to
join, participate and optionally drop out of the protocol. In contrast,
the first protocol [20] required a fixed, known-in-advance set of
players. For our scheme, we believe tech companies with a demon-
strated interest in transparency logs such as Google, Facebook and
Apple can be players in the protocol. Furthermore, any other in-
terested parties can be players too, thanks to protocols like [21].
Finally, the practicality of these MPC protocols has already been
demonstrated. In 2016, six participants used [20] to generate public
parameters for the Sprout version of the Zcash cryptocurrency [50].
Two years later, nearly 200 participants used [21] to generate new
public parameters for the newer Sapling version of Zcash.
RSA-based construction. In principle, the bilinear accumulator in
our constructions from Sections 4 and 5 could be replacedwith other
accumulators that support subset proofs and disjointness proofs.
Very recent work by Boneh et al. [17] introduces new techniques
for aggregating non-membership proofs in RSA accumulators. We
believe their techniques can be used to create constant-sized dis-
jointness proofs for RSA accumulators. This, in turn, can be used
to build an alternative AAD as follows.

Let us assume we have an RSA accumulator over𝑚 elements.
First, RSA accumulators allow precomputing all constant-sizedmem-
bership proofs in 𝑂 (𝑚 log𝑚) time [89]. In contrast, our bilinear
tree precomputes all logarithmic-sized proofs in 𝑂 (𝑚 log2𝑚) time.
As a result, frontier proofs would be constant-sized rather than
logarithmic-sized (i.e., the frontier tree corresponding to an RSA
accumulator would be “flat”). This decreases our AAD lookup
proof size from 𝑂 (log2 𝑛) to 𝑂 (log𝑛). This asymptotic improve-
ment should also translate to a concrete improvement in proof
sizes. Our memory consumption should also decrease, since BFTs
are no longer required. Second, RSA accumulators have constant-
sized parameters rather than linear in dictionary size. This requires
a simpler trusted setup ceremony [41] and further saves memory
on the server. However, unless RSA accumulators can be sped up,
it would result in even slower appends, due to more expensive
exponentiations. We leave it to future work to instantiate this RSA
construction and prove it secure.

7.1 Constructions from argument systems
A promising direction for future work is to build AADs from generic
argument systems [5, 10, 11, 24, 42, 47, 48, 69, 101]. Such AAD

constructions would also require non-standard assumptions [43],
possibly different than 𝑞-PKE (e.g., random oracle model, generic
group model, etc.). Depending on the argument system, they might
or might not require trusted setup and large public parameters.

A static AAD can be built from an argument system (e.g., a
SNARK [42, 48]) as follows. The AAD maintains one unsorted tree
𝑈 and one sorted tree 𝑆 whose leaves are sorted by key. The digest
of the AAD consists of (1) the Merkle roots (𝑑 (𝑆), 𝑑 (𝑈)) of 𝑆 and
𝑈 and (2) a SNARK proof of “correspondence” 𝜋 (𝑆,𝑈) between 𝑆
and𝑈 . This proof shows that 𝑆 ’s leaves are the same as𝑈 ’s but in
a different, sorted by key, order. The SNARK circuit takes as input
𝑈 ’s leaves and 𝑆 ’s leaves, hashes them to obtain 𝑑 (𝑈) and 𝑑 (𝑆) and
checks that 𝑆 ’s leaves are sorted by key.

Now, given a digest (𝑑 (𝑆), 𝑑 (𝑈), 𝜋 (𝑆,𝑈)), lookups can be effi-
ciently proven using Merkle proofs in the sorted tree 𝑆 . The append-
only property of two digests (𝑑 (𝑆), 𝑑 (𝑈), 𝜋 (𝑆,𝑈)) and (𝑑 (𝑆 ′), 𝑑 (𝑈 ′),
𝜋 (𝑆 ′,𝑈 ′)) can be efficiently proven using a history tree append-
only proof between 𝑑 (𝑈) and 𝑑 (𝑈 ′). This proves 𝑈 is a subset of
𝑈 ′ and, crucially, it also proves that 𝑆 is a subset of 𝑆 ′, since the
SNARK 𝜋 (𝑆,𝑈) proves that 𝑆 “corresponds” to 𝑈 and 𝑆 ′ to 𝑈 ′. Un-
fortunately, updates would invalidate the SNARK proof and take
time at least linear in the dictionary size to recompute it. However,
we can apply the same Overmars technique [80, 81] to make up-
dates polylogarithmic time. (This would now require a family of
circuits, one for each size 2𝑖 of the trees.)

This approach would result in much shorter lookup proofs while
maintaining the same efficiency for append-only proofs, since
state-of-the-art SNARKs have proofs consisting of just 3 group
elements [48]. On the other hand, this approach might need more
public parameters and could have slower appends. This is because,
even with SNARK-friendly hashes (e.g., Ajtai-based [12], MiMC [3]
or Jubjub [105]), we estimate the number of multiplication gates
for hashing trees of size 220 to be in the billions. (And we are not
accounting for the gates that verify tree 𝑆 is sorted.) In contrast,
the degrees of the polynomials in our bilinear-based constructions
are only in the hundreds of millions for dictionaries of size 220.

Nonetheless, optimizing such a solution would be interesting
future work. For example, replacing SNARKs with STARKs [10]
would eliminate the large public parameters and the trusted setup,
at the cost of larger append-only proofs. This may well be worth it
if the proof size and prover time are not too large. Other argument
systems such as Hyrax [101], Ligero [5] and Aurora [11] could
achieve the same result. Unfortunately, Aurora and Ligero would
increase the append-only proof verification time to linear, which
could be prohibitive. Bulletproofs [24] would further increase this
verification time to quasilinear. Hyrax can make this time sublinear
if the circuit is sufficiently parallel or has “a wiring pattern [that]
satisfies a technical regularity condition” [101].

Recursively-composable arguments. Another interesting ap-
proach is to obtain AADs from recursively-composable SNARKs [12,
14]. Such SNARKs could structure the verification of the append-
only property recursively so that circuits need not operate on the
entire dictionary, thus lowering overheads. We are aware of concur-
rent work that explores this approach, but unfortunately it is not
peer-reviewed nor published in an online archive. While such an
approach could be very promising, currently implemented systems

operate at the 80-bit security level. This is because increasing the se-
curity of the elliptic curves used in recursive SNARK constructions
is costly, since they have low embedding degree [12]. In contrast,
our implementation is 100-bit-secure after accounting for recent
progress on computing discrete logs [66] and our 𝑞-SDH assump-
tion with 𝑞 = 220 [16]. We can increase this to 118 bits, with no loss
in performance, by adopting 128-bit-secure BLS12-381 curves [19].

8 CONCLUSION
In this work, we introduced the first append-only authenticated
dictionary (AAD) that achieves polylogarithmic proof sizes and ap-
pend times. Unlike previous work, our construction only assumes
a single fully-malicious server and does not rely on users to “col-
lectively” verify the dictionary. Our analysis shows that AADs can
reduce the bandwidth in current CT logs and in CONIKS logs that
publish digests much more frequently than users check their PK
in the log. However, as our evaluation shows, AADs are not yet
practical enough for deployment, particularly because they have
high append times and memory usage. We hope future work can
overcome this by optimizing the construction, the implementation
or both. Finally, we also introduced the first efficient append-only
authenticated set (AAS), which can be used to implement Google’s
Revocation Transparency (RT) [58].

Open problems. We identify two interesting directions for future
work. First, can we build efficient AADs with polylogarithmic proof
sizes from standard assumptions, such as the existence of CRHFs?
If not, what are the lower bounds? Second, can we obtain “zero-
knowledge” AADs which leak nothing during queries?

ACKNOWLEDGMENTS
We would like to thank Marten van Dijk for suggesting the “sparse”
prefix tree approach and Madars Virza for productive conversations
that helped steer this work.We also thank the anonymous reviewers
for their useful feedback. This research was supported in part from
USA NSF under CNS grants 1413920, 1718782, 1514261, 1652259,
by DARPA & SPAWAR under grant N66001-15-C-4066, by HK RGC
under grant ECS-26208318, and by a NIST grant.

REFERENCES
[1] Heather Adkins. 2011. An update on attempted man-in-the-middle at-

tacks. http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-
man-in-middle.html. Accessed: 2015-08-22.

[2] Mustafa Al-Bassam and Sarah Meiklejohn. 2018. Contour: A Practical System
for Binary Transparency. In Data Privacy Management, Cryptocurrencies and
Blockchain Technology.

[3] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge
Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with
Minimal Multiplicative Complexity. In ASIACRYPT’16.

[4] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J. Freedman. 2016. Blockstack:
A Global Naming and Storage System Secured by Blockchains. In USENIX
ATC’16.

[5] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubra-
maniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup. In ACM CCS’17.

[6] Aris Anagnostopoulos, Michael T. Goodrich, and Roberto Tamassia. 2001. Persis-
tent Authenticated Dictionaries and Their Applications. In Information Security.

[7] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic
Curves of Prime Order. In Selected Areas in Cryptography.

[8] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and
Pawel Szalachowski. 2014. ARPKI: Attack Resilient Public-Key Infrastructure.
In ACM CCS’14.

http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html
http://googleonlinesecurity.blogspot.com/2011/08/update-on-attempted-man-in-middle.html

[9] Mihir Bellare and Adriana Palacio. 2004. The Knowledge-of-Exponent Assump-
tions and 3-Round Zero-Knowledge Protocols. In CRYPTO’04.

[10] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046. https://eprint.iacr.org/2018/046.

[11] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P. Ward. 2019. Aurora: Transparent Succinct Arguments
for R1CS. In EUROCRYPT’19.

[12] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2017. Scal-
able Zero Knowledge Via Cycles of Elliptic Curves. Algorithmica 79, 4 (01 Dec
2017).

[13] Josh Benaloh and Michael de Mare. 1994. One-Way Accumulators: A Decentral-
ized Alternative to Digital Signatures. In EUROCRYPT’93.

[14] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recur-
sive Composition and Bootstrapping for SNARKS and Proof-carrying Data. In
STOC’13.

[15] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. 2014. On the Existence
of Extractable One-way Functions. In STOC’14.

[16] Dan Boneh and Xavier Boyen. 2008. Short signatures without random oracles
and the SDH assumption in bilinear groups. Journal of Cryptology 21, 2 (2008).

[17] Dan Boneh, Benedikt Bünz, and Ben Fisch. 2018. Batching Techniques for
Accumulators with Applications to IOPs and Stateless Blockchains. Cryptology
ePrint Archive, Report 2018/1188. https://eprint.iacr.org/2018/1188.

[18] Joseph Bonneau. 2016. EthIKS: Using Ethereum to audit a CONIKS key trans-
parency log. BITCOIN’16.

[19] Sean Bowe. 2017. Switch from BN254 to BLS12-381. https://github.com/zcash/
zcash/issues/2502. Accessed: 2019-02-03.

[20] Sean Bowe, Ariel Gabizon, and Matthew D. Green. 2018. A Multi-party Protocol
for Constructing the Public Parameters of the Pinocchio zk-SNARK. In Financial
Cryptography ’18.

[21] Sean Bowe, Ariel Gabizon, and Ian Miers. 2017. Scalable Multi-party Compu-
tation for zk-SNARK Parameters in the Random Beacon Model. Cryptology
ePrint Archive, Report 2017/1050. https://eprint.iacr.org/2017/1050.

[22] Elette Boyle and Rafael Pass. 2015. Limits of Extractability Assumptions with
Distributional Auxiliary Input. In ASIACRYPT’15.

[23] Ahto Buldas, Peeter Laud, and Helger Lipmaa. 2000. Accountable Certificate
Management using Undeniable Attestations. In ACM CCS’00.

[24] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, PieterWuille, and
Gregory Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions
and More. In IEEE S&P’18.

[25] M. Castro and B. Liskov. 2002. Practical Byzantine Fault Tolerance and Proactive
Recovery. TOCS 20, 4 (2002).

[26] Melissa Chase, Apoorvaa Deshpande, and Esha Ghosh. 2018. Privacy Preserving
Verifiable Key Directories. Cryptology ePrint Archive, Report 2018/607. https:
//eprint.iacr.org/2018/607.

[27] Melissa Chase and Sarah Meiklejohn. 2016. Transparency Overlays and Appli-
cations. In ACM CCS’16.

[28] Laurent Chuat, Pawel Szalachowski, Adrian Perrig, Ben Laurie, and EranMesseri.
2015. Efficient gossip protocols for verifying the consistency of Certificate logs.
In IEEE CNS’15.

[29] Scott A. Crosby and Dan S. Wallach. 2009. Efficient Data Structures for Tamper-
evident Logging. In USENIX Security ’09.

[30] Scott A. Crosby and Dan S. Wallach. 2011. Authenticated Dictionaries: Real-
World Costs and Trade-Offs. ACM Transactions on Information and System
Security 14, 2, Article 17 (Sept. 2011).

[31] Rasmus Dahlberg and Tobias Pulls. 2018. Verifiable Light-Weight Monitoring
for Certificate Transparency Logs. In NordSec 2018: Secure IT Systems.

[32] Rasmus Dahlberg, Tobias Pulls, Jonathan Vestin, Toke Høiland-Jørgensen, and
Andreas Kassler. 2018. Aggregation-Based Gossip for Certificate Transparency.
CoRR abs/1806.08817 (2018). arXiv:1806.08817 http://arxiv.org/abs/1806.08817

[33] Ivan Damgård and Nikos Triandopoulos. 2008. Supporting Non-membership
Proofs with Bilinear-map Accumulators. Cryptology ePrint Archive, Report
2008/538. http://eprint.iacr.org/2008/538.

[34] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. 2016.
Secure Logging Schemes and Certificate Transparency. In ESORICS’16.

[35] Graham Edgecombe. 2016. Compressing X.509 certificates. https://www.
grahamedgecombe.com/blog/2016/12/22/compressing-x509-certificates. Ac-
cessed: 2018-04-12.

[36] Adam Eijdenberg, Ben Laurie, and Al Cutter. 2016. Verifiable Data
Structures. https://github.com/google/trillian/blob/master/docs/papers/
VerifiableDataStructures.pdf. Accessed: 2018-04-12.

[37] Saba Eskandarian, Eran Messeri, Joseph Bonneau, and Dan Boneh. 2017. Cer-
tificate Transparency with Privacy. PoPETs 2017, 4 (2017).

[38] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Smrcek, and
Matthew Smith. 2014. Hey, NSA: Stay Away from My Market! Future Proofing
App Markets Against Powerful Attackers. In ACM CCS’14.

[39] Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward W. Fel-
ten. 2012. Social Networking with Frientegrity: Privacy and Integrity with an

Untrusted Provider. In USENIX Security ’12.
[40] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Fel-

ten. 2010. SPORC: Group Collaboration Using Untrusted Cloud Resources. In
OSDI’10.

[41] Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas.
2018. Fast Distributed RSA Key Generation for Semi-honest and Malicious
Adversaries. In CRYPTO’18.

[42] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. 2013. Qua-
dratic Span Programs and Succinct NIZKs without PCPs. In EUROCRYPT’13.

[43] Craig Gentry and Daniel Wichs. 2011. Separating Succinct Non-interactive
Arguments from All Falsifiable Assumptions. In STOC’11.

[44] Google. 2016. HTTPS encryption on the web: Certificate transparency. https:
//transparencyreport.google.com/https/certificates. Accessed: 2018-04-12.

[45] Google. 2016. Trillian: General Transparency. https://github.com/google/trillian.
Accessed: 2018-04-12.

[46] Vipul Goyal. 2007. Reducing Trust in the PKG in Identity Based Cryptosystems.
In CRYPTO’07.

[47] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Argu-
ments. In ASIACRYPT’10.

[48] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments. In
EUROCRYPT’16.

[49] Benjamin Hof and Georg Carle. 2017. Software Distribution Transparency and
Auditability. CoRR abs/1711.07278 (2017). arXiv:1711.07278 http://arxiv.org/
abs/1711.07278

[50] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. 2015. Zcash
Protocol Specification. https://github.com/zcash/zips/blob/master/protocol/
protocol.pdf. Accessed: 2017-11-17.

[51] Antoine Joux. 2000. A One Round Protocol for Tripartite Diffie–Hellman. In
Algorithmic Number Theory.

[52] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.
2016. Verena: End-to-End Integrity Protection for Web Applications. In IEEE
S&P’16.

[53] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size
Commitments to Polynomials and Their Applications. In ASIACRYPT’10.

[54] Aggelos Kiayias, Ozgur Oksuz, and Qiang Tang. 2015. Distributed Parameter
Generation for Bilinear Diffie Hellman Exponentiation and Applications. In
Information Security.

[55] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perring, Collin Jackson, and
Virgil Gligor. 2013. Accountable Key Infrastructure (AKI): A Proposal for a
Public-key Validation Infrastructure. In WWW’13.

[56] Paul C. Kocher. 1998. On certificate revocation and validation. In Financial
Cryptography ’98.

[57] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 20.

[58] Ben Laurie. 2015. Revocation Transparency. https://www.links.org/files/
RevocationTransparency.pdf. Accessed: 2018-07-31.

[59] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. RFC: Certificate Trans-
parency. http://tools.ietf.org/html/rfc6962. Accessed: 2015-5-13.

[60] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. 2004. Secure
Untrusted Data Repository (SUNDR). In OSDI’04.

[61] Jinyuan Li and David Maziéres. 2007. Beyond One-third Faulty Replicas in
Byzantine Fault Tolerant Systems. In NSDI’07.

[62] Vincent Lynch. 2018. Scaling CT Logs: Temporal Sharding. https://www.digicert.
com/blog/scaling-certificate-transparency-logs-temporal-sharding/. Accessed:
2019-02-03.

[63] Ravi Mandalia. 2012. Security breach in CA networks - Comodo, DigiNotar,
GlobalSign. http://blog.isc2.org/isc2_blog/2012/04/test.html. Accessed: 2015-08-
22.

[64] Petros Maniatis and Mary Baker. 2003. Authenticated Append-only Skip Lists.
CoRR cs.CR/0302010 (2003). http://arxiv.org/abs/cs.CR/0302010

[65] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. 2015. Bringing Deployable Key Transparency to End Users.
In USENIX Security ’15.

[66] Alfred Menezes, Palash Sarkar, and Shashank Singh. 2017. Challenges with
Assessing the Impact of NFS Advances on the Security of Pairing-Based Cryp-
tography. In Mycrypt’16.

[67] Alfred Menezes, Scott Vanstone, and Tatsuaki Okamoto. 1991. Reducing Elliptic
Curve Logarithms to Logarithms in a Finite Field. In STOC’91.

[68] Ralph C. Merkle. 1982. Method of providing digital signatures.
[69] Silvio Micali. 2000. Computationally Sound Proofs. SIAM J. Comput. 30, 4

(2000).
[70] Silvio Micali, Michael Rabin, and Joe Kilian. 2003. Zero-Knowledge Sets. In

FOCS’03.
[71] Silvio Micali, Salil Vadhan, and Michael Rabin. 1999. Verifiable Random Func-

tions. In FOCS’99.
[72] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:

//bitcoin.org/bitcoin.pdf. Accessed: 2017-03-08.
[73] Namecoin. 2011. Namecoin. https://namecoin.info/. Accessed: 2015-08-23.

https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/1188
https://github.com/zcash/zcash/issues/2502
https://github.com/zcash/zcash/issues/2502
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2018/607
https://eprint.iacr.org/2018/607
http://arxiv.org/abs/1806.08817
http://arxiv.org/abs/1806.08817
http://eprint.iacr.org/2008/538
https://www.grahamedgecombe.com/blog/2016/12/22/compressing-x509-certificates
https://www.grahamedgecombe.com/blog/2016/12/22/compressing-x509-certificates
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/papers/VerifiableDataStructures.pdf
https://transparencyreport.google.com/https/certificates
https://transparencyreport.google.com/https/certificates
https://github.com/google/trillian
http://arxiv.org/abs/1711.07278
http://arxiv.org/abs/1711.07278
http://arxiv.org/abs/1711.07278
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://www.links.org/files/RevocationTransparency.pdf
https://www.links.org/files/RevocationTransparency.pdf
http://tools.ietf.org/html/rfc6962
https://www.digicert.com/blog/scaling-certificate-transparency-logs-temporal-sharding/
https://www.digicert.com/blog/scaling-certificate-transparency-logs-temporal-sharding/
http://blog.isc2.org/isc2_blog/2012/04/test.html
http://arxiv.org/abs/cs.CR/0302010
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://namecoin.info/

[74] Moni Naor. 2003. On Cryptographic Assumptions and Challenges. In
CRYPTO’03.

[75] Moni Naor and Kobbi Nissim. 1998. Certificate Revocation and Certificate
Update. In USENIX Security ’98.

[76] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In
CT-RSA’05.

[77] André Niemann and Jacqueline Brendel. 2014. A Survey on CA Compromises.
[78] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,

Linus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. 2017. CHAINIAC:
Proactive Software-Update Transparency via Collectively Signed Skipchains
and Verified Builds. In USENIX Security ’17.

[79] Alina Oprea and Kevin D. Bowers. 2009. Authentic Time-Stamps for Archival
Storage. In ESORICS’09.

[80] Mark H. Overmars. 1987. Design of Dynamic Data Structures.
[81] Mark H. Overmars and Jan van Leeuwen. 1981. Worst-case optimal insertion

and deletion methods for decomposable searching problems. Inform. Process.
Lett. 12, 4 (1981).

[82] Charalampos Papamanthou and Roberto Tamassia. 2007. Time and Space Effi-
cient Algorithms for Two-Party Authenticated Data Structures. In Information
and Communications Security.

[83] Roel Peeters and Tobias Pulls. 2016. Insynd: Improved Privacy-Preserving
Transparency Logging. In ESORICS’16.

[84] Raluca Ada Popa, Emily Stark, Jonas Helfer, Steven Valdez, Nickolai Zeldovich,
M. Frans Kaashoek, and Hari Balakrishnan. 2014. Building Web Applications
on Top of Encrypted Data Using Mylar. In NSDI’14.

[85] Franco P. Preparata and Dilip V. Sarwate. 1977. Computational Fourier Trans-
forms Complexity of Over Finite Fields. Math. Comp. 31, 139 (1977).

[86] Tobias Pulls and Roel Peeters. 2015. Balloon: A Forward-Secure Append-Only
Persistent Authenticated Data Structure. In ESORICS’15.

[87] Leonid Reyzin and Sophia Yakoubov. 2016. Efficient Asynchronous Accumula-
tors for Distributed PKI. In Security and Cryptography for Networks.

[88] Mark D. Ryan. 2014. Enhanced certificate transparency and end-to-end en-
crypted mail. In NDSS’14.

[89] Tomas Sander, Amnon Ta-Shma, and Moti Yung. 2001. Blind, Auditable Mem-
bership Proofs. In Financial Cryptography ’01.

[90] SCIPR Lab. 2016. libff. https://github.com/scipr-lab/libff. Accessed: 2018-07-28.
[91] SCIPR Lab. 2016. libfqfft. https://github.com/scipr-lab/libfqfft. Accessed:

2018-07-28.
[92] Victor Shoup. 2016. libntl. https://www.shoup.net/ntl/. Accessed: 2018-07-28.
[93] Ryan Sleevi. 2017. Certificate Transparency in Chrome - Change to Enforcement

Date. https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_
3W_xKBNY/6jq2ghJXBAAJ. Accessed: 2018-04-20.

[94] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly, I.
Khoffi, and B. Ford. 2016. Keeping Authorities “Honest or Bust” with Decentral-
ized Witness Cosigning. In IEEE S&P’16.

[95] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. 2014. PoliCert:
Secure and Flexible TLS Certificate Management. In ACM CCS’14.

[96] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient Non-equivocation
via Bitcoin. In IEEE S&P’17.

[97] Jelle van den Hooff, M Frans Kaashoek, and Nickolai Zeldovich. 2014. VerSum:
Verifiable Computations over Large Public Logs. In ACM CCS’14.

[98] Joachim von zur Gathen and Jurgen Gerhard. 2013. Fast Euclidean Algorithm.
In Modern Computer Algebra (3rd ed.). Cambridge University Press, New York,
NY, USA, Chapter 11, 313–333.

[99] Joachim von zur Gathen and Jurgen Gerhard. 2013. Fast Multiplication. In
Modern Computer Algebra (3rd ed.). Cambridge University Press, New York, NY,
USA, Chapter 8, 221–254.

[100] Joachim von zur Gathen and Jurgen Gerhard. 2013. Fast polynomial evaluation
and interpolation. In Modern Computer Algebra (3rd ed.). Cambridge University
Press, New York, NY, USA, Chapter 10, 295–310.

[101] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish.
2018. Doubly-Efficient zkSNARKs Without Trusted Setup. In IEEE S&P’18.

[102] Gavin Wood. 2015. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. http://gavwood.com/paper.pdf. Accessed: 2016-05-15.

[103] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion
Stoica. 2018. DIZK: A Distributed Zero Knowledge Proof System. In USENIX
Security ’18.

[104] Jiangshan Yu, Vincent Cheval, and Mark Ryan. 2016. DTKI: A New Formalized
PKI with Verifiable Trusted Parties. Comput. J. 59, 11 (2016).

[105] Zcash. 2017. What is Jubjub. https://z.cash/technology/jubjub/. Accessed:
2019-02-03.

A CRYPTOGRAPHIC ASSUMPTIONS
Definition A.1 (Bilinear pairing parameters). Let G(·) be a ran-
domized polynomial algorithm with input a security parameter 𝜆.

Then, ⟨G,G𝑇 , 𝑝, 𝑔, 𝑒⟩ ← G(1𝜆) are called bilinear pairing parame-
ters if G and G𝑇 are cyclic groups of prime order 𝑝 where discrete
log is hard, G = ⟨𝑔⟩ (i.e., G has generator 𝑔) and if 𝑒 is a bilinear
map, 𝑒 : G × G→ G𝑇 such that G𝑇 = ⟨𝑒 (𝑔,𝑔)⟩.

Our security analysis utilizes the following two cryptographic
assumptions over elliptic curve groups with bilinear pairings.

Definition A.2 (𝑞-SBDH Assumption). Given security parame-
ter 𝜆, bilinear pairing parameters ⟨G,G𝑇 , 𝑝, 𝑔, 𝑒⟩ ← G(1𝜆), public
parameters ⟨𝑔,𝑔𝑠 , 𝑔𝑠2 , . . . , 𝑔𝑠𝑞 ⟩ for some 𝑞 = poly(𝜆) and some 𝑠
chosen uniformly at random from Z∗𝑝 , no probabilistic polynomial-

time adversary can output a pair ⟨𝑐, 𝑒 (𝑔,𝑔)
1

𝑠+𝑐 ⟩ for some 𝑐 ∈ Z𝑝 ,
except with probability negligible in 𝜆.

Definition A.3 (𝑞-PKE Assumption). The 𝑞-power knowledge of
exponent assumption holds for G if for all probabilistic polynomial-
time adversaries 𝐴, there exists a probabilistic polynomial time ex-
tractor 𝜒𝐴 such that for all benign auxiliary inputs 𝑧 ∈ {0, 1}poly(𝜆)

Pr

⟨G,G𝑇 , 𝑝, 𝑔, 𝑒⟩ ← G(1𝜆); ⟨𝑠, 𝜏⟩ ← Z∗𝑝 ;
𝜎 ← ⟨G,G𝑇 , 𝑝, 𝑔, 𝑒,PP𝑞 (𝑠, 𝜏)⟩;

⟨𝑐, 𝑐;𝑎0, 𝑎1, . . . , 𝑎𝑞⟩ ← (𝐴| |𝜒𝐴) (𝜎, 𝑧) :
𝑐 = 𝑐𝜏 ∧ 𝑐 ≠ 𝑔

∏𝑞

𝑖=0 𝑎𝑖𝑠
𝑖

 = negl(𝜆)

where ⟨𝑦1;𝑦2⟩ ← (𝐴| |𝜒𝐴) (𝑥) means 𝐴 returns 𝑦1 on input 𝑥 and
𝜒𝐴 returns 𝑦2 given the same input 𝑥 and 𝐴’s random tape. Aux-
iliary input 𝑧 is required to be drawn from a benign distribution
to avoid known negative results associated with knowledge-type
assumptions [15, 22].

B AAS ALGORITHMS
Here, we give detailed algorithms that implement our AAS from
Section 3. Recall that our AAS is just a forest of BPTs with corre-
sponding BFTs. In particular, observe that each forest node has a
BPT accumulator associated with it, while root nodes in the forest
have BFTs associated with them. Our algorithms described below
operate on this forest, adding new leaves, merging nodes in the
forest and computing BFTs in the roots.
Trees notation. The | symbol denotes string concatenation. A
tree is a set of nodes denoted by binary strings in a canonical
way. The root of a tree is denoted by the empty string 𝜀 and the
left and right children of a node 𝑤 are denoted by 𝑤 |0 and 𝑤 |1
respectively. If 𝑏 ∈ {0, 1}, then the sibling of 𝑤 = 𝑣 |𝑏 is denoted
by sibling(𝑤) = 𝑣 |𝑏, where 𝑏 = 1 − 𝑏. A path from one node 𝑣
to its ancestor node 𝑤 is denoted by path[𝑣,𝑤] = {𝑢1 = 𝑣,𝑢2 =

parent(𝑢1), . . . , 𝑢ℓ = parent(𝑢ℓ−1) = 𝑤}. The parent node of 𝑣 =

𝑤 |𝑏 is denoted by parent(𝑣) = parent(𝑤 |𝑏) = 𝑤 . We also use
path[𝑣,𝑤) = path[𝑣,𝑤] − {𝑤}.
Forest notation. Let 𝐹𝑖 denote a forest of up to 𝛽 leaves that only
has 𝑖 leaves in it (e.g., see Figure 3). Intuitively, a forest is a set of
trees where each tree’s size is a unique power of two (e.g., see 𝐹5
in Figure 3). The unique tree sizes are maintained by constantly
merging trees of the same size. Let bin𝛽 (𝑥) denote the ⌈log 𝛽⌉-
bit binary expansion of a number 𝑥 (e.g., bin14 (6) = 0110). (Note
that bin1 (𝑥) = 𝜀,∀𝑥 because ⌈log 1⌉ = 0.) In our AAS, bin𝛽 (𝑖)
denotes the 𝑖th inserted leaf, where 𝑖 starts at 0 (e.g., see leaves
000 through 111 in 𝐹5 in Figure 3). Let roots(𝐹𝑖) denote all the
roots of all the trees in the forest (e.g., roots(𝐹5) = {0, 111} in

https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libfqfft
https://www.shoup.net/ntl/
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_3W_xKBNY/6jq2ghJXBAAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/sz_3W_xKBNY/6jq2ghJXBAAJ
http://gavwood.com/paper.pdf
https://z.cash/technology/jubjub/

Figure 3). Let leaves(𝐹𝑖) denote all the leaves in the forest (e.g.,
leaves(𝐹3) = {000, 001, 010} in Figure 3).
AAS notation. Note that assert(·) ensures a condition is true or
fails the calling function otherwise. Let Dom(𝑓) be the domain of
a function 𝑓 . We use 𝑓 (𝑥) = ⊥ to indicate 𝑥 ∉ Dom(𝑓). Let S𝑖
denote our AAS with 𝑖 elements. Each node𝑤 in the forest stores
extractable accumulators a𝑤 , â𝑤 of its BPT together with a Merkle
hash h𝑤 . Internal nodes (i.e., non-roots) store a subset proof 𝝅𝑤
between a𝑤 and aparent(𝑤) . The digest 𝑑𝑖 of S𝑖 maps each root
𝑟 to its Merkle hash h𝑟 . Every root 𝑟 stores a disjointness proof
𝝍𝑟 between its BPT and BFT. For simplicity, we assume server
algorithms implicitly parse out the bolded blue variables from
S𝑖 .
Server algorithms. Setup(·) generates large enough 𝑞-PKE public
parameters PP𝑞 (𝑠, 𝜏) (see Definition A.3), given an upper bound
𝛽 on the number of elements. Importantly, the server forgets the
trapdoors 𝑠 and 𝜏 used to generate the public parameters. In other
words, this is a trusted setup phase (see Section 7).

Algorithm 1 Computes public parameters (trusted setup)

1: function Setup(1𝜆, 𝛽)→ (𝑝𝑝,𝑉𝐾) ⊲ Generates 𝑞-PKE public parameters
2: ℓ ← 2⌊log 𝛽⌋ 𝑞 ← (2𝜆 + 1)ℓ (G,G𝑇 , 𝑝, 𝑔, 𝑒 (·, ·)) ← G(1𝜆)
3: 𝑠

$← F𝑝 𝜏
$← F𝑝 𝑉𝐾 = ((𝑔𝑠𝑖)2𝜆+1

𝑖=0 , 𝑔𝜏)
4: return (((G,G𝑇 , 𝑝, 𝑔, 𝑒 (·, ·)), 𝛽, PP𝑞 (𝑠, 𝜏)),𝑉𝐾)

Append(·) creates a new leaf ℓ for the element 𝑘 (Lines 2 to 3).
Recursively merges equal-sized BPTs in the forest, as described in
Section 4 (Lines 5 to 9). In this process, computes subset proofs
between old BPT roots and the new BPT. Merging ends when the
newly created BPT 𝑤 has no equal-sized BPT to be merged with.
Recall from Section 2.1 thatHF maps elements to be accumulated
to field elements in F𝑝 .

Algorithm 2 Appends a new 𝑖th element to the AAS, 𝑖 ∈ [0, 𝛽 − 1]
1: function Append(𝑝𝑝, S𝑖 , 𝑑𝑖 , 𝑘)→ (S𝑖+1, 𝑑𝑖+1)
2: 𝑤 ← bin𝛽 (𝑖) S𝑤 ← {𝑘 } ⊲ Create new leaf 𝑤 for element 𝑘
3: (𝛼𝑤 , a𝑤 , ·) ← Accum(𝑃 (S𝑤)) h𝑤 ← H(𝑤 |⊥ |a𝑤 |⊥)
4: ⊲ “Merge” old BPT roots with new BPT root (recursively)
5: while sibling(𝑤) ∈ roots(𝐹𝑖) do
6: ℓ ← sibling(𝑤) 𝑝 ← parent(𝑤) S𝑝 ← Sℓ ∪ S𝑤
7: (𝛼𝑝 , a𝑝 , â𝑝) ← Accum(𝑃 (S𝑝)) h𝑝 = H(𝑝 |hℓ |a𝑝 |h𝑤)
8: (·,𝝅 ℓ , ·) ← Accum(𝑃 (S𝑝 \ Sℓ))
9: (·,𝝅𝑤 , ·) ← Accum(𝑃 (S𝑝 \ S𝑤)) 𝑤 ← 𝑝

10: ⊲ Invariant: 𝑤 is a new root in 𝐹𝑖+1 . Next, computes 𝑤’s frontier.
11: (𝜙𝑤 ,𝝈𝑤) ← CreateFrontier(𝐹 (S𝑤))
12: (𝑦, 𝑧) ← ExtEuclideanAlg(𝛼𝑤 , 𝜙𝑤) 𝝍𝑤 ← (𝑔𝑦 (𝑠) , 𝑔𝑧 (𝑠))
13: Store updated AAS state (i.e., the bolded blue variables) into S𝑖+1
14: 𝑑𝑖+1 (𝑟) ← h𝑟 , ∀𝑟 ∈ roots(𝐹𝑖+1) ⊲ Set new digest
15: return S𝑖+1, 𝑑𝑖+1
16: function Accum(𝑇)
17: return (𝛼,𝑔𝛼 (𝑠) , 𝑔𝜏𝛼 (𝑠)) where 𝛼 (𝑥) = ∏

𝑤∈𝑇 (𝑥 − HF (𝑤))

If 𝑘 is in the set, ProveMemb(·) sends a Merkle path to 𝑘’s leaf
in some tree with root 𝑟 (Lines 3 to 5) via ProvePath(·) (see Algo-
rithm 3). This path contains subset proofs between every node’s
accumulator and its parent node’s accumulator. If 𝑘 is not in the
set, then ProveMemb(·) sends frontier proofs in each BFT in the
forest (Lines 6 to 8) via ProveFrontier(·) (see Algorithm 6).

Algorithm 3 Constructs a (non)membership proof

1: function ProveMemb(𝑝𝑝, S𝑖 , 𝑘)→ (𝑏, 𝜋)
2: Let ℓ ∈ leaves(𝐹𝑖) be the leaf where 𝑘 is stored or ⊥ if 𝑘 ∉ S𝑖
3: if 𝑘 ∈ S𝑖 then ⊲ Construct Merkle path to element
4: Let 𝑟 ∈ roots(𝐹𝑖) be the root of the tree where 𝑘 is stored
5: 𝜋 ← ProvePath(S𝑖 , ℓ, 𝑟 ,⊥) 𝑏 ← 1
6: else ⊲ Prove non-membership in all BFTs
7: 𝜒𝑟 ← ProveFrontier(S𝑖 , 𝑟 , 𝑘), ∀𝑟 ∈ roots(𝐹𝑖)
8: 𝜋 ← ProveRootAccs(S𝑖 , 𝜋) 𝑏 ← 0
9: return 𝑏, (ℓ, 𝜋, (𝜒𝑟)𝑟∈roots(𝐹𝑖) , (𝝍𝑟)𝑟∈roots(𝐹𝑖))
10: function ProvePath(S𝑖 ,𝑢, 𝑟, 𝜋)→ 𝜋 ⊲ Precondition: 𝑟 is a root in 𝐹𝑖
11: 𝜋 (𝑟) ← (⊥, a𝑟 , â𝑟 ,⊥)
12: ⊲ Overwrites 𝜋 (𝑤) set by previous ProvePath call (if any)
13: 𝜋 (𝑤) ← (⊥, a𝑤 , â𝑤 ,𝝅𝑤), ∀𝑤 ∈ path[𝑢, 𝑟)
14: ⊲ Only sets 𝜋 (sibling(𝑤)) if not already set from previous ProvePath call!
15: for 𝑤 ∈ path[𝑢, 𝑟) where sibling(𝑤) ∉ Dom(𝜋) do
16: 𝜋 (sibling(𝑤)) ← (hsibling(𝑤) ,⊥,⊥,⊥)
17: return 𝜋
18: function ProveRootAccs(S𝑖 , 𝜋)→ 𝜋

19: 𝜋 (𝑟) ← (⊥, a𝑟 , â𝑟 ,⊥), ∀𝑟 ∈ roots(𝐹𝑖),
20: 𝜋 (𝑟 |𝑐) ← (h𝑟 |𝑐 ,⊥,⊥,⊥), ∀𝑟 ∈ roots(𝐹𝑖), ∀𝑐 ∈ {0, 1}

For each root 𝑟 in 𝐹𝑖 , ProveAppendOnly(·) sends a Merkle path
to an ancestor root in 𝐹 𝑗 , if any. The Merkle path contains subset
proofs between all BPT accumulators along the path. It also contains
the root BPT accumulators from 𝐹𝑖 , which the client will verify
against his digest 𝑑𝑖 .
Client algorithms. VerAppendOnly(·) first ensures that 𝑑𝑖 and
𝑑 𝑗 are digests at version 𝑖 and 𝑗 respectively (Lines 7 to 8). Before
checking subset proofs, VerAppendOnly(·) validates the old root
BPT accumulators in 𝜋𝑖, 𝑗 against the Merkle roots in 𝑑𝑖 (Lines 11
to 13). Then, checks that each root 𝑟 from 𝐹𝑖 is a subset of some root
in 𝐹 𝑗 by checking subset proofs (Line 16) via VerPath(·) (see Algo-
rithm 5). VerAppendOnly(·) enforces fork-consistency implicitly
when verifying Merkle hashes.

Algorithm 4 Creates and verifies append-only proofs

1: function ProveAppendOnly(𝑝𝑝, S𝑖 , S𝑗)→ 𝜋

2: if roots(𝐹𝑖) ⊂ roots(𝐹 𝑗) then return ⊥
3: Let 𝑅 = {roots ∈ 𝐹𝑖 but ∉ 𝐹 𝑗 } and 𝑟 ′ ∈ roots(𝐹 𝑗) be their ancestor root
4: 𝜋 ← ProvePath(S𝑗 , 𝑟 , 𝑟 ′, 𝜋), ∀𝑟 ∈ 𝑅 𝜋 ← ProveRootAccs(S𝑖 , 𝜋)
5: return 𝜋
6: function VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑖,𝑗)→ {𝑇, 𝐹 }
7: assert 𝑑𝑖 (𝑟) ≠ ⊥ ⇔ 𝑟 ∈ roots(𝐹𝑖) ⊲ Is valid version 𝑖 digest?
8: assert 𝑑 𝑗 (𝑟) ≠ ⊥ ⇔ 𝑟 ∈ roots(𝐹 𝑗) ⊲ Is valid version 𝑗 digest?
9: assert ∀𝑟 ∈ roots(𝐹𝑖) ∩ roots(𝐹 𝑗), 𝑑𝑖 (𝑟) = 𝑑 𝑗 (𝑟)
10: Let 𝑅 = {roots ∈ 𝐹𝑖 but ∉ 𝐹 𝑗 } ⊲ i.e., old roots with paths to new root
11: for all 𝑟 ∈ roots(𝐹𝑖) do ⊲ Check proof gives correct old root accumulators
12: (·, 𝑎𝑟 , ·, ·) ← 𝜋 (𝑟) (ℎ𝑟 |𝑏 , ·, ·, ·) ← 𝜋 (𝑟 |𝑏), ∀𝑏 ∈ {0, 1}
13: assert 𝑑𝑖 (𝑟) = H(𝑟 |ℎ𝑟 |0 |𝑎𝑟 |ℎ𝑟 |1)
14: ∀𝑟 ∈ 𝑅, fetch ℎ𝑟 from 𝑑𝑖 (𝑟) and update 𝜋𝑖,𝑗 (𝑟) with it
15: assert 𝜋𝑖,𝑗 is well-formed Merkle proof for all roots in 𝑅
16: assert ∀𝑟 ∈ 𝑅,VerPath(𝑑 𝑗 , 𝑟 , 𝜋𝑖,𝑗)

If 𝑘 is stored at leaf ℓ in the AAS, VerMemb(·) reconstructs ℓ ’s ac-
cumulator from 𝑘 . Then, checks if there’s a valid Merkle path from ℓ

to some root, verifying subset proofs along the path via VerPath(·)
(see Algorithm 5). If 𝑘 is not in the AAS, VerMemb(·) verifies fron-
tier proofs for 𝑘 in each BFT in the forest via VerFrontier(·) (see
Algorithm 6).

Algorithm 5 Verifies a (non)membership proof

1: function VerMemb(𝑉𝐾,𝑑𝑖 , 𝑘, 𝑏, 𝜋𝑘)→ {𝑇, 𝐹 }
2: Parse 𝜋𝑘 as ℓ, 𝜋, (𝜒𝑟)𝑟∈roots(𝐹𝑖) , (𝑦𝑟 , 𝑧𝑟)𝑟∈roots(𝐹𝑖)
3: if 𝑏 = 1 then ⊲ This is a membership proof being verified
4: (·, 𝑎ℓ , 𝑎ℓ) ← Accum(𝑃 ({𝑘 })) ℎℓ ← H(ℓ |⊥ |𝑎ℓ |⊥)
5: Update 𝜋 (ℓ) with ℎℓ and accumulators 𝑎ℓ and 𝑎ℓ
6: assert 𝜋 is well-formed Merkle proof for leaf ℓ ∧ VerPath(𝑑𝑖 , ℓ, 𝜋)
7: else ⊲ This is a non-membership proof being verified
8: for all 𝑟 ∈ roots(𝐹𝑖) do ⊲ Check BFTs
9: (·, 𝑎𝑟 , ·, ·) ← 𝜋 (𝑟) (𝑜𝑟 , ·) ← 𝜒𝑟 (𝜀)
10: (ℎ𝑟 |𝑏 , ·, ·, ·) ← 𝜋 (𝑟 |𝑏), ∀𝑏 ∈ {0, 1}
11: assert 𝑑𝑖 (𝑟) = H(𝑟 |ℎ𝑟 |0 |𝑎𝑟 |ℎ𝑟 |1)
12: assert 𝑒 (𝑎𝑟 , 𝑦𝑟)𝑒 (𝑜𝑟 , 𝑧𝑟) = 𝑒 (𝑔,𝑔) ∧ VerFrontier(𝑘, 𝜒𝑟)
13: function VerPath(𝑑𝑘 , 𝑤, 𝜋)→ {𝑇, 𝐹 }
14: Let 𝑟 ∈ roots(𝐹𝑘) denote the ancestor root of 𝑤
15: ⊲ Walk path invariant: 𝑢 is not a root node (but parent(𝑢) might be)
16: for 𝑢 ← 𝑤;𝑢 ≠ 𝑟 ;𝑢 ← parent(𝑢) do
17: 𝑝 ← parent(𝑢) ⊲ Check subset proof and extractability (below)
18: (·, 𝑎𝑢 , 𝑎𝑢 , 𝜋𝑢) ← 𝜋 (𝑢) (·, 𝑎𝑝 , 𝑎𝑝 , ·) ← 𝜋 (𝑝)
19: assert 𝑒 (𝑎𝑢 , 𝜋𝑢) = 𝑒 (𝑎𝑝 , 𝑔) ∧ 𝑒 (𝑎𝑢 , 𝑔𝜏) = 𝑒 (𝑎𝑢 , 𝑔)
20: assert 𝑑𝑘 (𝑟) = MerkleHash(𝜋, 𝑟) ⊲ Invariant: 𝑢 equals 𝑟 now
21: assert 𝑒 (𝑎𝑟 , 𝑔𝜏) = 𝑒 (𝑎𝑟 , 𝑔) ⊲ Is root accumulator extractable?
22: functionMerkleHash(𝜋, 𝑤)→ ℎ𝑤 ⊲ Precondition: 𝜋 is well-formed proof
23: (ℎ𝑤 , 𝑎𝑤 , ·, ·) ← 𝜋 (𝑤)
24: if ℎ𝑤 = ⊥ then
25: return H(𝑤 |MerkleHash(𝜋, 𝑤 |0) |𝑎𝑤 |MerkleHash(𝜋, 𝑤 |1))
26: else
27: return ℎ𝑤

Frontier algorithms. CreateFrontier(·) creates a BFT level by
level, starting from the leaves, given a set of frontier prefixes 𝐹 .
Given a key 𝑘 ∉ S𝑖 and a root 𝑟 , ProveFrontier(·) returns a frontier
proof for 𝑘 in the BFT at root 𝑟 . VerFrontier(·) verifies a frontier
proof for one of 𝑘’s prefixes against a specific root BFT accumulator.

Algorithm 6 Manages BFT of a set

1: function CreateFrontier(𝐹)→ (𝜙, 𝜎)
2: 𝑖 ← 0 𝑆𝑤 ← ∅, ∀𝑤
3: for 𝜌 ∈ 𝐹 do ⊲ First, build BFT leaves, with 𝑔𝑠−HF (𝜌) for each prefix 𝜌
4: 𝑤 ← bin|𝐹 | (𝑖) 𝑆𝑤 ← 𝜌 𝑖 ← 𝑖 + 1
5: (𝜙𝑤 , 𝑜, 𝑜) ← Accum(𝑆𝑤) 𝜎 (𝑤) ← (𝑜, 𝑜)
6: for 𝑖 ← ⌈log |𝐹 | ⌉; 𝑖 ≠ 0; 𝑖 ← 𝑖 − 1 do ⊲ Then, build BFT level by level
7: 𝑗 ← 0 levelSize← 2𝑖 𝑢 ← binlevelSize (0)
8: while 𝑆𝑢 ≠ ∅ do ⊲ Merge sibling accumulators on level 𝑖
9: 𝑝 ← parent(𝑢) 𝑆𝑝 ← 𝑆𝑢 ∪ 𝑆sibling(𝑢) 𝑗 ← 𝑗 + 2
10: (𝜙𝑝 , 𝑜, 𝑜) ← Accum(𝑆𝑝) 𝜎 (𝑝) ← (𝑜, 𝑜) 𝑢 ← binlevelSize (𝑗)
11: return (𝜙𝜀 , 𝜎)
12: function ProveFrontier(S𝑖 , 𝑟 , 𝑘)→ 𝜒

13: Let 𝜌 be the smallest prefix of 𝑘 that is not in 𝑃 (S𝑟)
14: Let ℓ denote the leaf where 𝝈𝑟 (ℓ) = 𝑔 (𝑠−HF (𝜌))
15: 𝜒 (𝜀) ← 𝝈𝑟 (𝜀) ⊲ Copy root BFT accumulator
16: for 𝑤 ∈ path[ℓ, 𝜀) do ⊲ Copy path to 𝜌 ’s BFT leaf
17: 𝜒 (𝑤) ← 𝝈𝑟 (𝑤)
18: if 𝝈𝑟 (sibling(𝑤)) ≠ ⊥ then
19: 𝜒 (sibling(𝑤)) ← 𝝈𝑟 (sibling(𝑤))
20: else
21: 𝜒 (sibling(𝑤)) ← (𝑔,𝑔𝜏)
22: return 𝜒
23: function VerFrontier(𝑘, 𝜒)→ {𝑇, 𝐹 }
24: ⊲ Find leaf ℓ in 𝜒 with a prefix 𝜌 for 𝑘 , or fail.
25: assert ∃ℓ, ∃𝜌 s.t. 𝜌 ∈ 𝑃 ({𝑘 }) ∧ 𝑔 (𝑠−HF (𝜌)) = 𝜒 (ℓ)
26: assert 𝑒 (𝑜,𝑔𝜏) = 𝑒 (𝑜𝑤 , 𝑔) where (𝑜, 𝑜) ← 𝜒 (𝜀)
27: for 𝑤 ∈ path[ℓ, 𝜀) do ⊲ Verify 𝜌 ’s membership in the BFT
28: (𝑐𝑤 , 𝑐𝑤) ← 𝜒 (𝑤) (𝑠𝑤 , ·) ← 𝜒 (sibling(𝑤))
29: (𝑝𝑤 , ·) ← 𝜒 (parent(𝑤))
30: assert 𝑒 (𝑐𝑤 , 𝑠𝑤) = 𝑒 (𝑝𝑤 , 𝑔) ∧ 𝑒 (𝑐𝑤 , 𝑔𝜏) = 𝑒 (𝑐𝑤 , 𝑔)

Theorem B.1. Under the 𝑞-SBDH and 𝑞-PKE assumptions, and
assuming that H is a secure CRHF, our construction is a secure
AAS as per Definition 3.1.

We prove Theorem B.1 in Appendix C.

C AAS SECURITY PROOFS
Membership and append-only correctness follow from close inspec-
tion of the algorithms. Here, we prove our AAS construction offers
membership and append-only security, as well as fork-consistency.
Membership security. Assume there exists a polynomial-time ad-
versary A that produces digest 𝑑 , element 𝑘 and inconsistent proofs
𝜋, 𝜋 ′ such thatVerMemb(𝑉𝐾,𝑑, 𝑘, 1, 𝜋) andVerMemb(𝑉𝐾,𝑑, 𝑘, 0, 𝜋 ′)
both accept. We will now describe how A can either find a collision
inH (used to hash the BPTs) or break the 𝑞-SBDH assumption.

First, let us focus on the membership proof 𝜋 , which consists of
a path to 𝑘’s leaf in some BPT of size 2ℓ leaves. Let 𝑎0, 𝑎1, . . . , 𝑎ℓ be
the accumulators along this path (part of 𝜋), where 𝑎0 is the leaf
accumulator for element 𝑘 with characteristic polynomial 𝐴0 (𝑥) =∏
𝑐∈𝑃 (𝑘) (𝑥 − HF (𝑐)). Let 𝜋0, . . . , 𝜋ℓ−1 denote the corresponding

subset proofs, such that 𝑒 (𝑎 𝑗 , 𝑔) = 𝑒 (𝑎 𝑗−1, 𝜋 𝑗−1),∀𝑗 ∈ [ℓ].
Second, let us consider the other (contradictory) non-membership

proof 𝜋 ′, which consists of a path to a BFT leaf storing a prefix
𝜌 of 𝑘 . Let 𝑜0, 𝑜1, . . . , 𝑜ℓ′ be the frontier accumulators along this
path, where 𝑜0 is the leaf accumulator for 𝜌 with characteristic
polynomial 𝑂0 (𝑥) = 𝑥 − HF (𝜌). Note that this BFT is of size 2ℓ

′

and might differ from 2ℓ , the size of 𝜋 ’s BPT. Let 𝑎∗
ℓ
be the root

accumulator for this BFT’s corresponding BPT, as contained in 𝜋 ′
(see Algorithm 3).

When verifying 𝜋 and 𝜋 ′, both 𝑎ℓ and 𝑎∗ℓ are hashed (together
with the two claimed hash values of their children) and the result
is checked against the hash from digest 𝑑 . Since verification of 𝜋
and 𝜋 ′ succeeds, if 𝑎ℓ ≠ 𝑎∗ℓ this would produce a collision inH .

Else, we argue as follows. Each accumulator 𝑎1, . . . , 𝑎ℓ is accom-
panied by an extractability term 𝑎1, . . . , 𝑎ℓ , which the client checks
as 𝑒 (𝑎 𝑗 , 𝑔𝜏) = 𝑒 (𝑎 𝑗 , 𝑔) for 𝑗 ∈ [ℓ] (see Line 19 in Algorithm 5).
Hence, from the 𝑞-PKE assumption, it follows that there exists a
polynomial time algorithm that, upon receiving the same input as
A, outputs polynomials (𝐴 𝑗 (𝑥)) 𝑗 ∈[ℓ] (in coefficient form) such that
𝑔𝐴 𝑗 (𝑠) = 𝑎 𝑗 with all but negligible probability. The same holds for
all frontier accumulators 𝑜1, . . . , 𝑜ℓ′ and terms 𝑜1, . . . , 𝑜ℓ′ included
in 𝜋 ′, and let (𝑂 𝑗 (𝑥)) 𝑗 ∈[ℓ′] denote their polynomials.

We distinguish two cases and analyze them separately:
(a) (𝑥 −HF (𝜌)) ∤ 𝐴ℓ (𝑥) or (𝑥 −HF (𝜌)) ∤ 𝑂ℓ′ (𝑥)
(b) (𝑥 −HF (𝜌)) | 𝐴ℓ (𝑥) and (𝑥 −HF (𝜌)) | 𝑂ℓ′ (𝑥)
For case (a), without loss of generality we will focus on the

(𝑥 −HF (𝜌)) ∤ 𝐴ℓ (𝑥) sub-case. (The proof for the second sub-case
proceeds identically.) Observe that, by construction, (𝑥 −HF (𝜌)) |
𝐴0 (𝑥) and, by assumption, (𝑥 −HF (𝜌)) ∤ 𝐴ℓ (𝑥). Thus, there must
exist some index 0 < 𝑖 ≤ ℓ such that (𝑥 − HF (𝜌)) | 𝐴𝑖−1 (𝑥) and
(𝑥 − HF (𝜌)) ∤ 𝐴𝑖 (𝑥). Note that 𝑖 can be easily deduced given all
(𝐴 𝑗 (𝑥)) 𝑗 ∈[ℓ] . Therefore, by polynomial division there exist effi-
ciently computable polynomials 𝑞𝑖 (𝑥), 𝑞𝑖−1 (𝑥) and 𝜅 ∈ F𝑝 such
that: 𝐴𝑖−1 (𝑥) = (𝑥 − HF (𝜌)) · 𝑞𝑖−1 (𝑥) and 𝐴𝑖 (𝑥) = (𝑥 − HF (𝜌)) ·
𝑞𝑖 (𝑥) + 𝜅.

Now, during the verification of the 𝑖th subset proof, it holds that:

𝑒 (𝑎𝑖 , 𝑔) = 𝑒 (𝑎𝑖−1, 𝜋𝑖−1) ⇔

𝑒 (𝑔𝐴𝑖 (𝑠) , 𝑔) = 𝑒 (𝑔𝐴𝑖−1 (𝑠) , 𝜋𝑖−1) ⇔

𝑒 (𝑔 (𝑠−HF (𝜌)) ·𝑞𝑖 (𝑠)+𝜅 , 𝑔) = 𝑒 (𝑔 (𝑠−HF (𝜌)) ·𝑞𝑖−1 (𝑠) , 𝜋𝑖−1) ⇔

𝑒 (𝑔𝑞𝑖 (𝑠)+
𝜅

(𝑠−HF (𝜌)) , 𝑔) = 𝑒 (𝑔𝑞𝑖−1 (𝑠) , 𝜋𝑖−1) ⇔

𝑒 (𝑔
𝜅

(𝑠−HF (𝜌)) , 𝑔) = 𝑒 (𝑔𝑞𝑖−1 (𝑠) , 𝜋𝑖−1) · 𝑒 (𝑔−𝑞𝑖 (𝑠) , 𝑔) ⇔

𝑒 (𝑔
1

(𝑠−HF (𝜌)) , 𝑔) =
[
𝑒 (𝑔𝑞𝑖−1 (𝑠) , 𝜋𝑖−1) · 𝑒 (𝑔−𝑞𝑖 (𝑠) , 𝑔)

]𝜅−1
.

Hence, the pair (HF (𝜌),
[
𝑒 (𝑔𝑞𝑖−1 (𝑠) , 𝜋𝑖−1) · 𝑒 (𝑔−𝑞𝑖 (𝑠) , 𝑔)

]𝜅−1
) can

be used to break the 𝑞-SBDH assumption.
In case (b), by assumption, (𝑥−HF (𝜌)) | 𝐴ℓ (𝑥) and (𝑥−HF (𝜌)) |

𝑂ℓ′ (𝑥). Therefore, by polynomial division there exist efficiently
computable polynomials 𝑞𝐴 (𝑥), 𝑞𝑜 (𝑥) such that: 𝐴ℓ (𝑥) = (𝑥 −
HF (𝜌)) ·𝑞𝐴 (𝑥) and𝑂ℓ′ (𝑥) = (𝑥 −HF (𝜌)) ·𝑞𝑜 (𝑥). Let𝜓 = (𝑦, 𝑧) be
the proof of disjointness from 𝜋 ′. Since𝜓 verifies against accumu-
lators 𝑎ℓ and 𝑜ℓ′ , it holds that:

𝑒 (𝑎ℓ , 𝑦) · 𝑒 (𝑜ℓ′, 𝑧) = 𝑒 (𝑔,𝑔) ⇔

𝑒 (𝑔𝐴ℓ (𝑠) , 𝑦) · 𝑒 (𝑔𝑂ℓ′ (𝑠) , 𝑧) = 𝑒 (𝑔,𝑔) ⇔

𝑒 (𝑔 (𝑠−HF (𝜌)) ·𝑞𝐴 (𝑠) , 𝑦) · 𝑒 (𝑔 (𝑠−HF (𝜌)) ·𝑞𝑜 (𝑠) , 𝑧) = 𝑒 (𝑔,𝑔) ⇔

𝑒 (𝑔𝑞𝐴 (𝑠) , 𝑦) · 𝑒 (𝑔𝑞𝑜 (𝑠) , 𝑧) = 𝑒 (𝑔,𝑔)
1

(𝑠−HF (𝜌)) .

Thus, the pair (HF (𝜌), 𝑒 (𝑔𝑞𝐴 (𝑠) , 𝑦) · 𝑒 (𝑔𝑞𝑜 (𝑠) , 𝑧)) can again be used
to break the 𝑞-SBDH assumption.
Append-only security. We can prove append-only security with
the same techniques used above. Let 𝜌 be the prefix of 𝑘 used to
prove non-membership w.r.t. the new digest 𝑑 𝑗 . The membership
proof for 𝑘 w.r.t. the old digest 𝑑𝑖 again involves a series of BPT
accumulators whose corresponding polynomials can be extracted.
By our previous analysis, (𝑥 −HF (𝜌)) must divide the polynomial
extracted for the BPT root accumulator in 𝑑𝑖 , otherwise the 𝑞-SBDH
assumption can be broken. Continuing on this sequence of subset
proofs, the append-only proof “connects” this BPT root accumulator
to a BPT root accumulator in 𝑑 𝑗 . By the same argument, (𝑥 −
HF (𝜌)) must also divide the polynomial extracted for this BPT
root. Since non-membership also verifies, (𝑥 −HF (𝜌)) must divide
the extracted polynomial for the root BFT accumulator in 𝑑 𝑗 , or else
𝑞-SBDH can be broken. Finally, we apply the same argument as case
(b) above, since (𝑥 − HF (𝜌)) divides both these polynomials and
we have a disjointness proof for their accumulators, again breaking
𝑞-SBDH.
Fork consistency. Assume there exists a polynomial-time adver-
sary A that breaks fork consistency, producing digests 𝑑𝑖 ≠ 𝑑 ′𝑖 with
append-only proofs 𝜋𝑖 , 𝜋 ′𝑖 to a new digest 𝑑 𝑗 . Since 𝑑𝑖 ≠ 𝑑 ′𝑖 , there
exists a root 𝑟 such that its hash ℎ𝑟 in 𝑑𝑖 differs from its hash ℎ′𝑟 in
𝑑 ′
𝑖
. Since 𝑑𝑖 and 𝑑 ′𝑖 get “joined” into 𝑑 𝑗 , let 𝑟

∗ ≠ 𝑟 denote the ances-
tor root of 𝑟 in 𝑑 𝑗 . (Note that 𝑟∗ ≠ 𝑟 , since VerAppendOnly always
makes sure that common roots between an old digest and a new
digest have the same hash.) Now, note that both proofs 𝜋𝑖 , 𝜋 ′𝑖 are
Merkle proofs from node 𝑟 to 𝑟∗. Importantly, because every node𝑤
is hashed together with its label𝑤 (as ℎ𝑤 = H(𝑤,ℎ𝑤 |0, 𝑎𝑤 , ℎ𝑤 |1)),
the two Merkle proofs take the same path (i.e., path[𝑟, 𝑟∗])! In other

words, the adversary produced two Merkle proofs that (1) verify
against the same digest 𝑑 𝑗 , (2) take the same path to the same leaf 𝑟 ,
but (3) attest for different leaf hashes ℎ𝑟 and ℎ′𝑟 . This breaks Merkle
hash tree security and can be used to produce a collision inH .

D AAS ASYMPTOTIC ANALYSIS
Suppose we have a worst-case AAS with 𝑛 = 2𝑖 − 1 elements.
Space.The space is dominated by the BFTs, which take up𝑂 (𝜆𝑛/2)+
𝑂 (𝜆𝑛/4)+· · ·+𝑂 (1) = 𝑂 (𝜆𝑛) space. (BPTs only take up𝑂 (𝑛) space.)
Membership proof size. Suppose an element 𝑒 is in some BPT of
the AAS . To prove membership of 𝑒 , we show a path from 𝑒’s leaf in
the BPT to the BPT’s root accumulator consisting of constant-sized
subset proofs at every node. Since the largest BPT in the forest has
height log (𝑛/2), the membership proof is 𝑂 (log𝑛)-sized.
Non-membership proof size. To prove non-membership of an
element 𝑒 , we show a frontier proof for a prefix of 𝑒 in every BFT in
the forest. The largest BFT has 𝑂 (𝜆𝑛) nodes so frontier proofs are
𝑂 (log (𝜆𝑛))-sized. Because there are 𝑂 (log𝑛) BFTs, all the frontier
proofs are 𝑂 (log𝑛 log (𝜆𝑛)) = 𝑂 (log2 𝑛)-sized.
Append-only proof size.Our append-only proof is𝑂 (log𝑛)-sized.
This is because, once we exclude common roots between the old
and new digest, our proof consists of paths from each old root in
the old forest up to a single new root in the new forest. Because
the old roots are roots of adjacent trees in the old forest, there will
be a single 𝑂 (log𝑛)-sized Merkle path connecting the old roots to
the new root. In other words, our append-only proofs are similar
to the append-only proofs from history trees [29].

E AAD DEFINITIONS
Notation. Let |𝑆 | denote the number of elements in a multiset 𝑆
(e.g., 𝑆 = {1, 2, 2} and |𝑆 | = 3). Let K be the set of all possible keys
andV be the set of all possible values. (K andV are application-
specific; e.g., in software transparency, a key is the software package
name and a value is the hash of a specific version of this software
package.) Formally, a dictionary is a function 𝐷 : 𝐾 → P(V) that
maps a key 𝑘 ∈ 𝐾 to a multiset of values 𝑉 ∈ P(V) (including the
empty set), where 𝐾 ⊂ K and P(V) denotes all possible multisets
with elements fromV . Thus, 𝐷 (𝑘) denotes the multiset of values
associated with key 𝑘 in dictionary 𝐷 . Let |𝐷 | denote the number
of key-value pairs in the dictionary or its version. Appending (𝑘, 𝑣)
to a version 𝑖 dictionary updates the multiset 𝑉 = 𝐷 (𝑘) of key 𝑘 to
𝑉 ′ = 𝑉 ∪ {𝑣} and increments the dictionary version to 𝑖 + 1.
Server-side API. The untrusted server implements:

Setup(1𝜆, 𝛽) → 𝑝𝑝,𝑉𝐾 . Randomized algorithm that returns public
parameters 𝑝𝑝 used by the server and a verification key 𝑉𝐾
used by clients. Here, 𝜆 is a security parameter and 𝛽 is an upper-
bound on the number of elements 𝑛 in the dictionary (i.e., 𝑛 ≤ 𝛽).

Append(𝑝𝑝,D𝑖 , 𝑑𝑖 , 𝑘, 𝑣) → D𝑖+1, 𝑑𝑖+1. Deterministic algorithm that
appends a new key-value pair (𝑘, 𝑣) to the version 𝑖 dictionary,
creating a new version 𝑖 + 1 dictionary. Succeeds only if the dic-
tionary is not full (i.e., 𝑖 + 1 ≤ 𝛽). Returns the new authenticated
dictionary D𝑖+1 and its digest 𝑑𝑖+1.

ProveLookup(𝑝𝑝,D𝑖 , 𝑘) → 𝑉 , 𝜋𝑘,𝑉 . Deterministic algorithm that
generates a proof 𝜋𝑘,𝑉 that 𝑉 is the complete multiset of values
for key 𝑘 . In particular, when D𝑖 (𝑘) = ∅, this is a proof that key

𝑘 has no values. Finally, the server cannot construct a fake proof
𝜋𝑘,𝑉 ′ for the wrong 𝑉 ′, including for 𝑉 ′ = ∅.

ProveAppendOnly(𝑝𝑝,D𝑖 ,D𝑗) → 𝜋𝑖, 𝑗 . Deterministic algorithm
that provesD𝑖 is a subset ofD𝑗 . Generates an append-only proof
𝜋𝑖, 𝑗 that all key-value pairs inD𝑖 are also present and unchanged
in D𝑗 . Importantly, a malicious server who removed or changed
keys from D𝑗 that were present in D𝑖 cannot construct a valid
append-only proof.

Client-side API. Clients implement:

VerLookup(𝑉𝐾,𝑑𝑖 , 𝑘,𝑉 , 𝜋) → {𝑇, 𝐹 }. Deterministic algorithm that
verifies proofs returned by ProveLookup(·) against the digest 𝑑𝑖
at version 𝑖 of the dictionary. When 𝑉 ≠ ∅, verifies that 𝑉 is
the complete multiset of values for key 𝑘 , ensuring no values
have been left out and no extra values were added. When𝑉 = ∅,
verifies that key 𝑘 is not mapped to any value.

VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑖, 𝑗) → {𝑇, 𝐹 }. Deterministic algo-
rithm that ensures a dictionary remains append-only. Verifies
that 𝜋𝑖, 𝑗 correctly proves that the dictionary with digest 𝑑𝑖 is a
subset of the dictionary with digest 𝑑 𝑗 . Also, verifies that 𝑑𝑖 and
𝑑 𝑗 are digests of dictionaries at version 𝑖 and 𝑗 , respectively.

AAD Correctness and Security Definitions. Consider an or-
dered sequence of 𝑛 key-value pairs (𝑘𝑖 ∈ K, 𝑣𝑖 ∈ V)𝑖∈[𝑛] . Note
that the same key (or key-value pair) can occur multiple times
in the sequence. Let D ′, 𝑑 ′ ← Append+ (𝑝𝑝,D, 𝑑, (𝑘𝑖 , 𝑣𝑖)𝑖∈[𝑛]) de-
note a sequence ofAppend(·) calls arbitrarily interleavedwith other
ProveLookup(·) and ProveAppendOnly(·) calls such thatD ′, 𝑑 ′←
Append(𝑝𝑝,D𝑛−1, 𝑑𝑛−1, 𝑘𝑛, 𝑣𝑛), D𝑛−1, 𝑑𝑛−1 ← Append(𝑝𝑝,D𝑛−2,
𝑑𝑛−2, 𝑘𝑛−1, 𝑣𝑛−1), . . . , D1, 𝑑1 ← Append(𝑝𝑝,D, 𝑑, 𝑘1, 𝑣1). Let 𝐷𝑛
denote the corresponding dictionary obtained after appending each
(𝑘𝑖 , 𝑣𝑖)𝑖∈[𝑛] in order. Finally, letD0 denote an empty authenticated
dictionary with (empty) digest 𝑑0.

Definition E.1 (Append-only Authenticated Dictionary). (Setup,
Append,ProveLookup,ProveAppendOnly,VerLookup,VerAppendOnly)
is a secure append-only authenticated dictionary (AAD) if ∃ negligi-
ble function 𝜀,∀ security parameters 𝜆,∀ upper-bounds 𝛽 = poly(𝜆)
and ∀𝑛 ≤ 𝛽 it satisfies the following properties:

Lookup correctness. ∀ sequences (𝑘𝑖 ∈ K, 𝑣𝑖 ∈ V)𝑖∈[𝑛] with
corresponding dictionary 𝐷𝑛 , ∀ keys 𝑘 ∈ K ,

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽),

(D, 𝑑) ← Append+ (𝑝𝑝,D0, 𝑑0, (𝑘𝑖 , 𝑣𝑖)𝑖∈[𝑛]),
(𝑉 , 𝜋) ← ProveLookup(𝑝𝑝,D, 𝑘) :

𝑉 = 𝐷𝑛 (𝑘) ∧ VerLookup(𝑉𝐾,𝑑, 𝑘,𝑉 , 𝜋) = 𝑇

 ≥ 1 − 𝜀 (𝜆)

Observation: Note that this definition compares the returned mul-
tiset 𝑉 with the “ground truth” in 𝐷𝑛 and thus provides lookup
correctness. Also, it handles non-membership correctness since 𝑉
can be the empty set. Finally, the definition handles all possible
orders of inserting key-value pairs.
Lookup security. ∀ adversaries A running in time poly(𝜆),

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽),

(𝑑, 𝑘,𝑉 ≠ 𝑉 ′, 𝜋, 𝜋 ′) ← A(𝑝𝑝,𝑉𝐾) :
VerLookup(𝑉𝐾,𝑑, 𝑘,𝑉 , 𝜋) = 𝑇 ∧
VerLookup(𝑉𝐾,𝑑, 𝑘,𝑉 ′, 𝜋 ′) = 𝑇

 ≤ 𝜀 (𝜆)
Observation: This definition captures the lack of any “ground truth”
about what was inserted in the dictionary, since there is no trusted
source in our model. Nonetheless, given a fixed digest 𝑑 , our defini-
tion prevents all equivocation attacks about the complete multiset
of values of a key, including the special case where the server
equivocates about the key being present (i.e., 𝑉 ≠ ∅ and 𝑉 ′ = ∅).
Append-only correctness. ∀ sequences (𝑘𝑖 ∈ K, 𝑣𝑖 ∈ V)𝑖∈[𝑛]
where 𝑛 ≥ 2

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽)

(D𝑚, 𝑑𝑚) ← Append+ (𝑝𝑝,D0, 𝑑0, (𝑘𝑖 , 𝑣𝑖)𝑖∈[𝑚]),
(D𝑛, 𝑑𝑛) ← Append+ (𝑝𝑝,D𝑚, 𝑑𝑚, (𝑘 𝑗 , 𝑣𝑗) 𝑗∈[𝑚+1,𝑛]),

𝜋 ← ProveAppendOnly(𝑝𝑝,D𝑚,D𝑛) :
VerAppendOnly(𝑉𝐾,𝑑𝑚,𝑚,𝑑𝑛, 𝑛, 𝜋) = 𝑇

≥ 1 − 𝜀 (𝜆)

Append-only security. ∀ adversaries A running in time poly(𝜆),

Pr

(𝑝𝑝,𝑉𝐾) ← Setup(1𝜆, 𝛽)
(𝑑𝑖 , 𝑑 𝑗 , 𝑖 < 𝑗, 𝜋𝑎, 𝑘,𝑉 ,𝑉

′, 𝜋, 𝜋 ′) ← A(𝑝𝑝,𝑉𝐾) :
VerAppendOnly(𝑉𝐾,𝑑𝑖 , 𝑖, 𝑑 𝑗 , 𝑗, 𝜋𝑎) = 𝑇 ∧

VerLookup(𝑉𝐾,𝑑𝑖 , 𝑘,𝑉 , 𝜋) = 𝑇 ∧
VerLookup(𝑉𝐾,𝑑 𝑗 , 𝑘,𝑉 ′, 𝜋 ′) = 𝑇 ∧

𝑉 ⊄ 𝑉 ′ ∧𝑉 ≠ 𝑉 ′

≤ 𝜀 (𝜆)

Observation: This definition ensures that values can only be added
to a key and can never be removed nor changed.
Fork consistency. This definition stays the same as in Section 3.1.

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Bilinear Accumulators

	3 Append-only Authenticated Sets
	3.1 AAS Correctness and Security Definitions

	4 AAS from Accumulators
	5 From Sets to Dictionaries
	6 Evaluation
	6.1 Microbenchmarks
	6.2 Comparison to Merkle tree approaches

	7 Discussion
	7.1 Constructions from argument systems

	8 Conclusion
	References
	A Cryptographic Assumptions
	B AAS Algorithms
	C AAS Security Proofs
	D AAS Asymptotic Analysis
	E AAD Definitions

