
Verifiable Secret Sharing Simplified
Sourav Das

1
Zhuolun Xiang

2
Alin Tomescu

2
Alexander Spiegelman

2
Benny Pinkas

2,3
Ling Ren

1

1
University of Illinois at Urbana-Champaign

2
Aptos Labs

1
Bar-Illan University

{souravd2,renling}@illinois.edu,{xiangzhuolun,tomescu.alin,sasha.spiegelman}@gmail.com,benny@pinkas.net

ABSTRACT
Verifiable Secret Sharing (VSS) is a fundamental building block in

cryptography. Despite its importance and extensive studies, ex-

isting VSS protocols are often complex and inefficient. Many of

them do not support dual threads, are not publicly verifiable, or

do not properly terminate in asynchronous networks. This paper

presents a new and simple approach for designing VSS protocols in

synchronous and asynchronous networks. Our VSS protocols are

optimally fault-tolerant, i.e., they tolerate a 1/2 and a 1/3 fraction

of malicious nodes in synchronous and asynchronous networks,

respectively. They only require a public key infrastructure and the

hardness of discrete logarithms. Our protocols support dual thresh-

olds, and their transcripts are publicly verifiable. We implement

our VSS protocols and evaluate them in a geo-distributed setting

with up to 256 nodes. The evaluation demonstrates that our proto-

cols offer asynchronous termination and public verifiability with

performance that is comparable to that of existing asynchronous

VSS schemes that lack these features. Compared to the existing

asynchronous VSS schemes with similar guarantees, our approach

lowers the bandwidth usage and latency by up to 90%.

1 INTRODUCTION
A Verifiable Secret Sharing (VSS) scheme lets a party holding a

secret, commonly referred to as a dealer, share the secret in a veri-

fiable manner among a set of nodes where a fraction of the nodes,

including the dealer, could be malicious [26, 34, 56]. The secret shar-

ing process is verifiable in the sense that each node can verify the

validity and correctness of its share. VSS is a fundamental building

block for secure-multiparty computation (MPC) [8], threshold cryp-

tography [61], Byzantine fault tolerant algorithms [16], distributed

key generation (DKG) [37], randomness beacon [25], and so on.

Over the years, numerous works have studied VSS with different

properties and in different settings, such as different cryptographic

assumptions, network conditions, fault-tolerance, and so on [5,

11, 26, 32, 34, 37, 49, 50, 56, 62, 65–67]. In this paper, we focus

on VSS protocols that use Shamir secret sharing [61], are secure

against a computationally bounded adversary, and have optimal

fault tolerance in both synchronous and asynchronous networks.

We also seek to achieve several additional desirable properties of

VSS, which we will briefly discuss next.

A desirable property of VSS protocols is completeness which
ensures that every honest node receives its share of the secret. Ap-

plications such as DKG, MPC, and proactive secret sharing crucially

rely on the completeness property.

Another desirable property of VSS, especially asynchronous

VSS (AVSS), is the support for dual thresholds [15]. Briefly, in

an asynchronous network of 𝑛 ≥ 3𝑡 + 1 nodes where at most 𝑡

nodes are malicious, a dual-threshold AVSS scheme with parameter

ℓ ∈ [𝑡, 𝑛 − 𝑡) guarantees secrecy against any coalition of up to ℓ

nodes. Dual-threshold AVSS with ℓ = 𝑛−𝑡 −1 is used to design high-

threshold asynchronous DKG [33], which is in turn used to achieve

better secrecy in threshold cryptosystems [63] and better efficiency

in Byzantine fault tolerant (BFT) algorithms [16, 17, 64]. Dual-

threshold VSS is also useful in designing optimal fault-tolerant BFT

systems that rely on sampling for scalability, an approach that is get-

ting wide adoption in recent proof-of-stake blockchains [6, 24, 38].

Finally, some randomness beacon [11, 30] and DKG protocols [41,

44, 48] also require the VSS transcript to be publicly verifiable by any
external entity. A VSS scheme with a publicly verifiable transcript

is also called a Publicly Verifiable Secret Sharing (PVSS) scheme.

In this paper, unless stated otherwise, we always consider VSS

protocols with the completeness property, and primarily study VSS

protocols that support dual thresholds in asynchrony and provide

publicly verifiable transcripts.

Existing work. Despite years of efforts, there are no VSS schemes

that satisfy all our requirements (see §2 for a detailed discussion).

For example, the historically dominant approach of designing syn-

chronous VSS protocols relies on interactive complaints [9, 11, 34,

36, 37, 47, 56]. This approach incurs high latency, is fairly complex,

and is not publicly verifiable. Moreover, when extended to asyn-

chronous networks, this approach suffers from a subtle termination

issue [32, 43, 62, 65] (more details in §2) and does not support dual

thresholds. Several recent asynchronous VSS designs deviate from

the interactive complaint framework. But these schemes rely on

trusted setups and bilinear pairing for efficiency [4, 5, 50, 67], and

they also do not support dual thresholds or public verifiability. On

the other hand, existing publicly verifiable VSS uses verifiable en-
cryption schemes to let the dealer prove statements over encrypted

data, making them expensive [33, 35, 41, 48] or suitable only for

limited applications [21, 22, 60].

Our contributions. We present a new and simple approach for

designing VSS protocols for synchronous and asynchronous net-

works. Our VSS protocols are optimally fault-tolerant, i.e., they

tolerate 1/2 and 1/3 fractions of malicious nodes in synchronous

and asynchronous networks, respectively. Our VSS protocols guar-

antee completeness and have efficient publicly verifiable transcripts.

Our asynchronous protocol also guarantees asynchronous termina-

tion without relying on additional cryptographic setups or bilinear

pairings and only assumes public key infrastructure.

Our VSS protocols achieve the above-mentioned properties while

maintaining the same asymptotic communication and computation

costs of best-knownVSS protocols. More precisely, in a synchronous

network with 𝑛 nodes, our VSS protocol incurs a communication

cost of𝑂(𝜅𝑛2
+𝐶BB(𝜅𝑛)). Here 𝜅 is a computational security parame-

ter and𝐶BB(𝑥) is the communication cost of broadcasting a message

of size 𝑥 via a Byzantine broadcast channel. Our asynchronous VSS

(AVSS) protocol incurs a communication cost of 𝑂(𝜅𝑛2
).

1

We then augment our AVSS to support dual thresholds for any
secrecy threshold ℓ ∈ [𝑡, 𝑛−𝑡). Our augmented AVSS protocol main-

tains the total communication cost of 𝑂(𝜅𝑛2
) without relying on a

trusted setup. Our dual-threshold AVSS protocol has the following

nice properties: (i) The best-case performance with any ℓ is the

same as our low-threshold AVSS, where the best-case is when the

network is synchronous and the number of malicious nodes is less

than 2𝑡 − ℓ ; and, (ii) the worst-case performance degrades gradually

with ℓ , and is the same as our low-threshold AVSS for ℓ = 𝑡 . In

contrast, existing dual-threshold AVSS protocols [33, 42, 48] incur

a high cost independently of ℓ , and their performance does not

improve even under the best-case scenario.

Another useful property of our VSS scheme is that, if we use

an external broadcast channel (e.g., in a blockchain setting), nodes

only need to communicate with the dealer. This also means that

assuming the presence of an external broadcast channel, the syn-

chronous timing assumption needs to apply only between the dealer

and other nodes. This assumption is less stringent than requiring

bounded communication delays between all pairs of nodes. This

property also makes the implementation simpler, as only the dealer

needs to establish communication with the other nodes.

As an independent contribution, we design an efficient verifiable

encryption scheme for Pedersen commitments. Existing verifiable

encryption schemes are designed for the non-hiding Feldman com-

mitment scheme and cannot be used to encrypt messages with low

entropy [18, 35, 42, 48]. Our verifiable encryption scheme addresses

this limitation and supports arbitrary message distribution and is

thus more suitable for general applications, including VSS.

Evaluation. We implement our VSS protocol in Rust and evaluate

it with up to 256 nodes in geographically distributed Amazon EC2

instances. Our evaluation illustrates that our AVSS protocol has

performance that is comparable to that of the best known AVSS

schemes [32, 65] while additionally achieving asynchronous ter-

mination and public verifiability. Compared to an existing VSS

protocol with these properties [42], our VSS scheme has 5-11×
better latency, and uses about 8× less bandwidth.

Paper organization. The rest of the paper is organized as fol-

lows. First, we review related work in more detail in §2. In §3, we

formally define the problem of verifiable secret sharing (VSS) and

provide an overview of our new approach. We describe the required

preliminaries in §4. We then describe our synchronous VSS in §5,

asynchronous VSS in §6, and dual-threshold asynchronous VSS

protocol in §7. We then present our implementation and evaluation

results in §8. Finally, we conclude with a discussion in §9.

2 RELATEDWORK
VSS protocols consist of two phases: Sharing and Reconstruction.
During the sharing phase, nodes along with the dealer run a proto-

col so that each node receives its share of the secret at the end of

the sharing phase. In the reconstruction phase, nodes interact to

recover the shared secret. We categorize existing VSS schemes into

three approaches based on the design of their sharing phase. We

describe each approach and outline its core idea, advantages, and

disadvantages below.

Complaint-based VSS. Historically, the most common approach

to designing VSS protocols is to rely on interactive complaints [9,

11, 34, 36, 37, 47, 56]. Briefly, in these protocols the dealer embeds

the secret into a univariate low degree polynomial and publishes a

commitment to the polynomial via a broadcast channel. The dealer

additionally sends each node its share using a private channel.

Upon receiving its share and the commitment, each node validates

them for correctness. Nodes that receive no share or invalid shares

from the dealer publish complaints against the dealer. The dealer

responds to the complaints by revealing the share of each complain-

ing node. Intuitively, these protocols rely on complaints to ensure

completeness, i.e., prevent malicious dealers from sending valid

shares to only a subset of the honest nodes.

While this approach provides reasonable efficiency in synchro-

nous networks, they do not extend well to the more realistic par-

tially synchronous and asynchronous networks. Asynchronous

VSS (AVSS) protocols that rely on complaints to provide complete-

ness [32, 43, 62, 65] suffer from a subtle termination issue (even

without batching) that prevents honest nodes from terminating the

protocol, even after outputting their shares. More concretely, these

protocols have a step where, after outputting their share, honest

nodes wait for either acknowledgments or complaints from all other

nodes before terminating. This step is crucial because, in the case

of complaints, nodes must assist the complaining nodes in recov-

ering their shares. This allows malicious nodes to prevent honest

nodes from terminating by simply not sending acknowledgments

or complaints.

In addition, complaint-based VSS protocols have other limita-

tions: they do not support dual thresholds and are not publicly

verifiable.

Verifiable Encryption-based VSS. One approach to VSS design

that addresses the above issues, is to use verifiable encryption (VE)

(see Definition 4). Briefly, in a VE-based VSS scheme, the dealer

locally generates a transcript that includes encryptions of the shares

of all nodes, each under the public key of the corresponding node,

along with a non-interactive zero-knowledge (NIZK) proof of the

correctness of the encrypted shares. The dealer then publishes

the transcript to all the nodes using a broadcast channel. Upon

receiving the transcript over the broadcast channel, each node

validates the correctness of all encrypted shares using the NIZK

proof and recovers its own share by decrypting its encrypted share.

Existing VE-based schemes achieve several nice properties. First,

they are non-interactive, i.e., only the dealer broadcasts a single mes-

sage in the entire protocol. Second, they are also publicly verifiable.

Third, the same protocol approach, with appropriate instantiations

of the broadcast channel, works in both synchronous and asyn-

chronous networks. However, VE-based protocols are generally

inefficient or rely on non-standard assumptions, particularly due to

their reliance on NIZK over encrypted data [23, 33, 35, 41, 42, 48].

Some works [21, 22, 60] bypass this efficiency issue by weakening

the VSS functionality. More precisely, these schemes require the

VSS secret to be an elliptic curve group element rather than an

element in a field. Hence, they are not compatible with off-the-self

threshold cryptosystems whose keys are field elements [14, 37].

Bivariate polynomial-based AVSS. A more recent approach to

designing AVSS is to rely on a bivariate polynomial [4, 5, 50, 67]. In

these schemes, the dealer embeds its secret as the constant term of a

random low-degree bivariate polynomial. The dealer then publishes

2

a commitment to the bivariate polynomial using reliable broadcast.

Additionally, the dealer privately sends partial evaluations of the

polynomials to each node. Each node, upon receiving its partial

evaluation, communicates with others to recover its share of the se-

cret. Intuitively, the sharing phase terminates only when the dealer

sends valid partial evaluations to a majority of the honest nodes.

By sending valid partial evaluations to the majority of the honest

nodes, the dealer provides these nodes with sufficient information

to assist each other in recovering their shares.

Unlike complaint-based AVSS schemes, this approach guarantees

asynchronous termination, i.e., a node can terminate the protocol

after outputting its share. However, these approaches require the

dealer to perform 𝑂(𝑛2
) group exponentiations. Moreover, these

protocols require a trusted setup and strong cryptographic assump-

tions in the Algebraic Group Model for efficient communication.

More precisely, Haven [5] and Bingo [4] assume hardness of 𝑞-SDH

in a pairing-friendly group and require a powers-of-tau setup [49]

to achieve 𝑂(𝜅𝑛2
) total communication. Without the setup, the

state-of-the-art protocol Haven incurs 𝑂(𝜅𝑛2
log𝑛) total communi-

cation cost and has 𝑂(𝑛2
) per-node computation cost. Lastly, these

protocols are not publicly verifiable.

One approach to achieve public verifiability in the complaint-

based and bivariate-based VSS schemes is to use additional rounds

of (multi-)signatures. Concretely, once the VSS finishes, nodes send

signatures to each other. Each node then waits to receive 𝑛− 𝑡 valid
signatures, validate them, and add them as part of its transcript.

Indeed, this will work. However, applying this technique to an

existing scheme will inherit the drawbacks of that scheme, such as

non-termination or worse efficiency. Our scheme is a simpler and

more efficient way to achieve public verifiability.

Other related works. A number of works have studied VSS proto-

cols with information-theoretic security [8, 19, 20, 27, 29, 40, 45, 54,

55], in both synchronous and asynchronous networks. However,

these have high worst-case communication costs, only guarantee

security with abort, or have sub-optimal fault tolerance. A series

of works [7, 15, 32] study VSS protocols without completeness,

and the latest among them achieve [32] a communication cost of

𝑂(𝜅𝑛2
) assuming collision resistance hash functions and hardness

of discrete logarithm.

3 DEFINITIONS AND OVERVIEW
Let G be an elliptic curve group of order 𝑞 with F as its scalar field.
Let 𝑔, ℎ ∈ G be two uniformly random and independent generators.

We use 𝜅 to denote the security parameter. For example, when

we use a signature scheme, 𝜅 denotes the size of the secret key.

Similarly, we also use 𝜅 to denote the size of an element in F or G.
For any integer 𝑎, we use [𝑎] to denote the ordered set {1, 2, . . . , 𝑎}.
Also, for two integers 𝑎 and 𝑏 where 𝑎 < 𝑏, we use [𝑎, 𝑏] to denote

the ordered set {𝑎, 𝑎 + 1, . . . , 𝑏}.

3.1 Threat Model
We consider a network of 𝑛 nodes denoted by {1, 2, . . . , 𝑛}, where
each node is connected with the dealer via a pairwise private and

authenticated channel. We assume nodes have access to a broad-

cast channel that the dealer can use to send a value to all nodes. A

broadcast channel ensures that the dealer cannot send inconsistent

values to different nodes. We can efficiently realize such optimal

fault-tolerant broadcast channels in synchronous and asynchronous

networks by running a Byzantine broadcast [51, 53] and a reliable

broadcast [13, 32], respectively. We will give their interfaces in Ap-

pendix A. When such external broadcast channels are unavailable,

and nodes implement the broadcast channels themselves, as in our

experiments (see §8), we assume that nodes are pairwise connected,

i.e., form a complete graph.

We consider a static adversary A that can corrupt a threshold

fraction of the nodes upfront. For our synchronous VSS protocol,

we assume that A can corrupt less than half of the nodes, i.e., at

most 𝑡 out of 𝑛 ≥ 2𝑡 + 1 nodes. Also, let ∆ be an upper bound on the

delay between the honest dealer and any honest node. For our AVSS

and dual-threshold AVSS protocols, we assume that for 𝑛 ≥ 3𝑡 + 1,

at most 𝑡 nodes are malicious. Each node 𝑖 has its private signing

key sk𝑖 and the corresponding public verification key pk𝑖 . We also

assume a public key infrastructure (PKI), i.e., all nodes have access

to {pk𝑗 } 𝑗∈[𝑛]
.

3.2 Definition of Verifiable Secret Sharing
Definition 1 (Verifiable Secret Sharing). A verifiable secret shar-

ing (VSS) protocol consists of two phases: Sharing and Reconstruc-
tion. During the sharing phase, a dealer 𝐿 shares a secret 𝑠 ∈ F.
During the reconstruction phase, nodes interact to recover the

secret. We say that a VSS protocol is 𝑡-resilient if the following

properties hold with probability 1 − negl(𝜅) against any probabilis-

tic polynomial time (PPT) adversary A that corrupts up to 𝑡 nodes:

• Correctness. If 𝐿 is honest and has a secret 𝑠 , then the sharing

phase will result in all honest nodes eventually outputting a share

of 𝑠 . Once the sharing phase finishes, if all honest nodes start the

reconstruction phase, they will output 𝑠 .

• Completeness: If any honest node outputs in the sharing phase,

then there exists a secret 𝑠 ∈ F such that all honest nodes eventu-

ally output a share of 𝑠 . Also, 𝑠 is guaranteed to be reconstructed

during the reconstruction phase.

• Secrecy. If 𝐿 is honest, there exists a PPT simulator S which

interacts with an ideal functionality FVSS and outputs a view of

A, such that the A’s view in the real-world protocol and the

simulated protocol are indistinguishable.

• Termination. All honest nodes will eventually terminate the

Sharing phase.

We will define the functionality FVSS and its variants when we

analyze its Secrecy property.

VSS protocols in synchronous and asynchronous networks can

tolerate up to 1/2 and 1/3 fractions of failures, respectively [3]. It is

well known that the standard Termination property is impossible

in asynchronous networks since it is impossible to tell apart a

slow dealer from a malicious one. Thus, AVSS protocols instead

guarantee the asynchronous termination property, similar to that

of reliable broadcast [13].

• Asynchronous termination. If any honest node outputs in the

sharing phase, then all honest nodes will eventually terminate

the sharing phase.

Many applications of VSS additionally require the VSS scheme

to be publicly verifiable, as defined below.

3

Definition 2 (Publicly verifiable). A publicly verifiable secret shar-

ing (PVSS) protocol outputs a transcript that enables any third party,

not just the original nodes, to verify that the dealer has ensured

each node receives its share.

Another desirable property of AVSS protocol is dual-threshold,

as defined below.

Definition 3 (Dual-threshold AVSS). A (𝑛, ℓ, 𝑡) dual-threshold

AVSS for 𝑛 ≥ 3𝑡 +1 is a 𝑡-resilient AVSS scheme where for any given

ℓ ∈ [𝑡, 𝑛 − 𝑡), the secrecy of the secret holds against any coalition

of up to ℓ nodes. We refer to ℓ as the secrecy threshold.

Remark. The dual-threshold guarantees achieved by some VSS

and DKG protocols [4, 5, 31, 50] are weaker than Definition 3. Those

schemes achieve a secrecy threshold of ℓ > 𝑡 only after the protocol

terminates. During the protocol execution, their secrecy threshold

is 𝑡 . In contrast, Definition 3 requires a secrecy threshold of ℓ even

during the protocol execution.

3.3 Overview of Our Approach
Our starting point is the classical complaint-based synchronous

VSS schemes described in §2. In those schemes, nodes publish com-

plaints if they receive an invalid share or no share from the dealer.

The dealer responds to complaints by publishing the shares of the

complaining nodes. If the dealer fails to do so, it is considered mali-

cious, and nodes output default values. This approach prevents a

malicious dealer from violating completeness while still ensuring

secrecy. This is because honest nodes will not complain against

an honest dealer, thereby safeguarding the shares of honest nodes.

Moreover, when the dealer is malicious, secrecy is vacuous.

Note from §2 that the conflict is always between achieving com-

pleteness and ensuring secrecy. Without secrecy, achieving com-

pleteness is trivial: the dealer simply broadcasts shares of everyone

(or even the secret) to all. With this in mind, let us take another look

at the complaint-based schemes. Here, the dealer reveals shares of

a subset of parties, and the protocol ensures that an honest dealer

only reveals shares of malicious nodes. Our approach achieves a

similar property but uses a different approach, as we describe next.

The first crucial change we introduce is that, instead of send-

ing explicit complaints, we only send explicit acknowledgments.

The absence of an acknowledgment is in some way a complaint.

Specifically, the dealer computes the shares of its secret using a low-

degree polynomial, along with a commitment to the polynomial.

The dealer, instead of publishing the commitment, first privately

sends each node 𝑖 the commitment along with the share of node

𝑖 . Each node, upon receiving its share of the secret, validates it for

correctness. Upon successful validation, the node responds to the

dealer with a signed acknowledgment. This acknowledgment can

serve as proof that node 𝑖 has received its valid share corresponding

to the commitment.

The dealer waits to receive an appropriate number of signed

acknowledgments. (The dealer cannot wait for acknowledgments

from all nodes because malicious nodes may never send acknowl-

edgments.) Next is where our second crucial change comes in. The

dealer then publishes, using a broadcast channel, the VSS transcript,

which consists of the commitment to the polynomial, the signed

acknowledgments it has received, and the shares of nodes who

did not respond with a signed acknowledgment. Looking ahead,

we will argue that despite the dealer publicly revealing shares of a

subset of nodes, an adversary does not learn enough points on an

honest dealer’s polynomial, so secrecy is maintained.

Upon receiving the transcript over the broadcast channel, nodes

validate it by checking that, for each node 𝑖 ∈ [𝑛], either its signa-

ture or its share of the secret is included in the transcript. Upon

successful validation, each node outputs the commitment and its

share and terminates the sharing phase. If the validation fails, a

node outputs a default value. Intuitively, completeness is satisfied

because a node either explicitly acknowledges receiving its share

or will receive its share from the validated transcript.

It is easy to see that the transcript the dealer broadcasts is publicly

verifiable. The public verification check of the transcript is precisely

the verification check each node performs on the transcript before

terminating the sharing phase.

Based on these insights, designing a synchronous VSS protocol

is straightforward. In a synchronous network of 𝑛 = 2𝑡 + 1 nodes,

with pair-wise latency ∆, the dealer shares its secret using a degree

𝑡 polynomial. The dealer then waits for 2∆ time units to receive

signed acknowledgments from all honest nodes and reveal the

remaining shares using a broadcast channel.

However, this approach fails in asynchronous networks with

𝑛 = 3𝑡 + 1. Under asynchrony, the dealer needs to make progress

upon receiving 𝑛 − 𝑡 = 2𝑡 + 1 signed acknowledgments. Note that 𝑡

of these 2𝑡 + 1 acknowledgments could be from malicious parties.

Now, if the dealer reveals the remaining 𝑡 honest shares, it would

reveal a total of 2𝑡 shares toA, which is sufficient to reconstruct the

degree 𝑡 polynomial the dealer uses to share its secret. We address

this issue by requiring the dealer to share its secret using a degree

2𝑡 polynomial. This prevents A from learning the secret even after

learning 2𝑡 shares.

Finally, to construct a dual-threshold AVSS with secrecy thresh-

old ℓ for ℓ ∈ [𝑡, 𝑛 − 𝑡), we combine ideas from verifiable encryption-

based VSS with our low-threshold AVSS, i.e., AVSS with ℓ = 𝑡 . More

precisely, for any ℓ , the dealer still uses a degree 2𝑡 polynomial to

share its secret, but crucially does not reveal all remaining 𝑡 shares

after receiving 2𝑡 + 1 signed acknowledgments. Instead, the dealer

publicly reveals only 2𝑡 − ℓ of the remaining 𝑡 shares, encrypts,

and broadcasts the remaining 𝑡 − (2𝑡 − ℓ) = ℓ − 𝑡 shares using a

verifiable encryption scheme. Intuitively, this ensures that any coali-

tion of at most ℓ nodes learns at most 2𝑡 points on the polynomial.

The protocol still ensures completeness because the nodes whose

shares are not revealed by the dealer will receive their share from

the verifiable encryptions revealed by the dealer. Since the leader

broadcasts ℓ −𝑡 shares using verifiable encryption, the performance

degrades gradually with ℓ . And if the leader receives more than

2𝑡 + 1 signed acknowledgments (e.g., in the best case with a syn-

chronous network and few malicious parties), the performance will

further improve.

4 PRELIMINARIES
4.1 Threshold Secret Sharing
A (𝑛,𝑑 + 1) threshold secret sharing scheme allows a secret 𝑠 ∈ F to
be shared into 𝑛 shares such that any set of 𝑑 + 1 shares are suffi-

cient to recover the original secret, but any set of 𝑑 shares give no

4

information about the original secret [12, 61]. We use the common

Shamir secret sharing [61] scheme, where the secret is embedded

in a random degree 𝑑 polynomial in the field F. Specifically, to
share a secret 𝑠 ∈ F, a polynomial 𝑝(·) of degree 𝑑 is chosen such

that 𝑠 = 𝑝(0) and other coefficients are chosen uniformly randomly

from F. The 𝑖-th share of the secret is then 𝑝(𝑖), i.e., the polynomial

evaluated at 𝑖 . Given 𝑑 + 1 points on the polynomial 𝑝(·), one can
efficiently reconstruct the polynomial using Lagrange interpolation.

Also note that 𝑠 is information-theoretically hidden from an adver-

sary that knows 𝑑 or fewer evaluation points on the polynomial

other than 𝑝(0) [61].

4.2 Polynomial Commitment Scheme
The dealer in our VSS scheme commits to its secret by committing

to a polynomial 𝑝(·) of degree 𝑑 . A polynomial commitment scheme

PC has the following interface.

• PC.Setup(1
𝜅

)→ 𝑝𝑝 . On input the security parameter 𝜅 , outputs

the public parameters for the polynomial commitment scheme.

• PC.Commit(𝑝𝑝, 𝑝(·), 𝑛)→ (𝒗,𝒘). On input the public parameters

𝑝𝑝 , number of evaluations 𝑛, and the polynomial 𝑝(·), outputs
the commitment 𝒗 of the polynomial 𝑝(·) and witness𝒘 .
• PC.Open(𝑝𝑝,𝒘, 𝑝(·), 𝑖)→ (𝑝(𝑖), 𝜋). On input the index 𝑖 and the

polynomial 𝑝(·), outputs 𝑝(𝑖), and a valid opening proof 𝜋 .

• PC.DegCheck(𝑝𝑝, 𝒗, 𝑑) → 0/1. On input the polynomial com-

mitment 𝒗 and a degree 𝑑 , outputs 1 if 𝒗 is a commitment to a

polynomial of degree at most 𝑑 , and outputs 0 otherwise.

• PC.Verify(𝑝𝑝, 𝒗, 𝑖, 𝑢, 𝜋)→ 0/1. On input the polynomial commit-

ment 𝒗 to a polynomial 𝑝(·), outputs 1 if 𝑢 = 𝑝(𝑖) and 0 otherwise.

Batch interfaces. As we briefly describe in §3.3, the dealer in

our VSS protocols provides opening proofs for a batch of indices

and each node verifies them locally. Thus, we use the batched

interfaces PC.BatchOpen and PC.BatchVerify for better exposition.
Briefly, PC.BatchOpen takes a set 𝐼 of indices along with (𝒗,𝒘)

and outputs (𝒔, 𝝅). Here 𝒔 is the vector of openings for each index

in 𝐼 , and 𝝅 consists of corresponding opening proofs. Similarly,

PC.BatchVerify takes as input a set 𝐼 of indices along with (𝒔, 𝝅),

and outputs 1 if all the opening proofs are valid. We formally define

these interfaces in Appendix A.3 and present mechanisms to verify

a batch of polynomial evaluations more efficiently than verifying

each evaluation independently.

A polynomial commitment scheme PC is secure if it satisfies

the Completeness, Evaluation binding, and Hiding [49]. Intuitively,

the completeness property ensures that verification of honestly

generated commitments and opening proofs are always successful.

The evaluation binding property prevents A from successfully

opening to two different values at the same index. Lastly, the hiding

property guarantees that the commitment 𝒗 reveals no information

about the polynomial.

In Appendix A.2, we describe a concrete polynomial commitment

scheme that combines ideas from the classic Pedersen’s polynomial

commitment and SCRAPE’s low-degree test [21].

5 SYNCHRONOUS VSS
Our synchronous VSS protocol is given in Algorithm 1. We assume

𝑛 = 2𝑡 + 1. The CRS (G, F, 𝑔, ℎ) is the output of the polynomial

commitment’s setup phase PC.Setup(1
𝜅

). Let ∆ be the upper bound

Algorithm 1 Synchronous VSS

PUBLIC PARAMETERS: 𝑛 ≥ 2𝑡 + 1, {pk𝑖 }𝑖∈[𝑛]
, maximum network latency

∆, and public parameters (G, F, 𝑔, ℎ) of the polynomial commitment scheme.

PRIVATE INPUT: Signing key 𝑠𝑘𝑖 .

SHARING PHASE:

// Dealer 𝐿 at time 𝜏 = 0 and with input𝑚:
101: Sample a 𝑡 -degree random polynomial 𝑠(·) with 𝑠(0) = 𝑚

102: 𝒗,𝒘 ← PC.Commit(𝑠(·), 𝑛)

103: for 𝑖 = 1, 2, ..., 𝑛 do
104: Let 𝜋𝑖 = PC.Open(𝑠(·), 𝑖,𝒘)

105: send ⟨SHARE, 𝒗, 𝑠(𝑖), 𝜋𝑖 ⟩ to node 𝑖

// Each node 𝑖
106: upon receiving ⟨SHARE, 𝒗, 𝑠(𝑖), 𝜋𝑖 ⟩ from dealer 𝐿 do
107: Check PC.DegCheck(𝒗, 𝑡) = 1

108: Check PC.Verify(𝒗, 𝑖, 𝑠(𝑖), 𝜋𝑖) = 1

109: if both checks are succesful then
110: Let 𝜎𝑖 = sign(sk𝑖 , 𝒗)

111: send ⟨ACK, 𝜎𝑖 ⟩ to 𝐿

// Dealer L at time 𝜏 = 2∆

112: Let 𝝈 be the set of received valid signatures on 𝒗.
113: Let 𝐼 be the indices of nodes with missing signatures.
114: Let 𝒔,𝝅 = PC.BatchOpen(𝑝(·), 𝐼 ,𝒘).

115: send (𝒗, 𝐼 ,𝝈 , 𝒔,𝝅) using the broadcast channel.

// Each node 𝑖 once the broadcast outputs (𝒗, 𝐼 ,𝝈 , 𝒔,𝝅).
116: Check if each 𝜎 ∈ 𝝈 is valid and |𝝈 | ≥ 𝑡 + 1.

117: Check if PC.BatchVerify(𝒗, 𝐼 , 𝒔,𝝅).

118: Check that 𝐼 includes all nodes with missing signatures.

119: if all the checks pass then
120: Output (𝒗, 𝑠(𝑖), 𝜋𝑖); return
121: else
122: Output 0 as the default share; return

RECONSTRUCTION PHASE:

// every node 𝑖 after finishing the sharing phase
201: send ⟨RECON, 𝑠(𝑖), 𝜋𝑖 ⟩ to all.

202: upon receiving ⟨RECON, 𝑠(𝑗), 𝜋 𝑗 ⟩ from node 𝑗 do
203: if PC.Verify(𝒗, 𝑠(𝑗), 𝜋 𝑗) then
204: 𝑇 = 𝑇 ∪ {𝑠 𝑗 }
205: if |𝑇 | ≥ 𝑡 + 1 then
206: output 𝑠(0) using Lagrange interpolation; return

on the delay between the honest dealer and any honest node. For

any node 𝑖 ∈ [𝑛], let sk𝑖 , pk𝑖 be its private signing key and public

verification key.

5.1 Design
Sharing phase. Let𝑚 ∈ F be the message the dealer 𝐿 wants to

share. 𝐿 samples a degree-𝑡 polynomial

𝑠(𝑥) = 𝑚 + 𝑠1𝑥 + 𝑠2𝑥
2

+ · · · + 𝑠𝑡𝑥
𝑡

(1)

with uniformly random 𝑠𝑖 ∈ F for each 𝑖 ∈ [𝑛]. 𝐿 then computes

the commitment of 𝑠(·) along with the commitment witness as

𝒗,𝒘 ← PC.Commit(𝑠(·), 𝑛).

At time𝜏 = 0,𝐿 computes the opening proof𝜋𝑖 = PC.Open(𝑠(·), 𝑖,𝒘)

for each 𝑖 ∈ [𝑛] and sends the tuple ⟨SHARE, 𝒗, 𝑠(𝑖), 𝜋𝑖 ⟩ to node 𝑖 .

Node 𝑖 , upon receiving the SHARE message from 𝐿, validates that 𝒗
is a polynomial of degree 𝑡 by checking that PC.DegCheck(𝒗, 𝑡) = 1,

and checks that its share is valid using PC.Verify(𝒗, 𝑖, 𝑠(𝑖), 𝜋𝑖). If both

5

Dealer waits for .
1. Let 𝛔
2. Let

𝛔Dealer

Given to share, dealer computes:
1.
2. PC.Commit
3. PC.Open

Each node checks:
 1. Signatures in 𝛔 are valid and 𝛔
 2. includes valid shares of nodes whose
 signatures are not in 𝛔

B
ro

ad
ca

st
C

ha
nn

el

𝛔

𝛔

𝛔

Output

Output

Each node checks:
1. is a commitment to
 polynomial of degree .
2. Check PC.Verify

Figure 1: Our synchronous VSS protocol involves three nodes, one of which is malicious (shaded red in the diagram).

these checks are successful, node 𝑖 sends a message ⟨ACK, 𝜎𝑖 ⟩ where
𝜎𝑖 is its signature on 𝒗.

𝐿 waits for 2∆ units of time to collect ACK messages. Here, for

ease of exposition, we assume ∆ has accounted for the time required

to validate 𝒗 and check the validity of a share. At time 𝜏 = 2∆, let 𝝈
be the set of valid signatures 𝐿 receives and let 𝐼 be the set of nodes

from whom 𝐿 does not receive valid signatures. 𝐿 then computes

(𝒔, 𝝅) = PC.BatchOpen(𝑠(·), 𝐼 ,𝒘) where 𝒔 is of size |𝐼 | and consists

of 𝑠(𝑘) for each 𝑘 ∈ 𝐼 , and 𝝅 is the opening proof. Then, 𝐿 sends

the message ⟨𝒗, 𝐼 ,𝝈 , 𝒔, 𝝅⟩ using the broadcast channel.

When the broadcast channel outputs ⟨𝒗, 𝐼 ,𝝈 , 𝒔, 𝝅⟩, each node lo-

cally checks that: (i) 𝝈 is a valid set of signatures on 𝒗 and |𝝈 |≥ 𝑡 +1;

(ii) 𝐼 includes all nodes whose signatures are not included in 𝝈 ; and
(iii) 𝒔 includes valid shares of nodes in 𝐼 with respect to 𝒗, i.e.,
PC.BatchVerify(𝒗, 𝐼 , 𝒔, 𝝅). If all these checks are successful, node 𝑖

outputs its share 𝑠(𝑖), the commitment 𝒗, and the opening proof 𝜋𝑖 .

A node gets these from either the broadcast message or the SHARE
message it received from the dealer.

Using multisignatures. One simple concrete optimization is to

have each node sign its ACKmessage using a multisignature scheme.

More precisely, the ACK message from node 𝑖 includes its partial

signature on 𝒗. 𝐿 then broadcast the multisignature 𝜎 on 𝒗 instead

of broadcasting a list of signatures.

Reconstruction phase. Let 𝑇 be a set of 𝑡 + 1 nodes (including

itself) from which node 𝑖 receives valid shares 𝑠(𝑗). Upon receiving

𝑡 +1 such valid shares, node 𝑖 computes the secret𝑚 using Lagrange

interpolation as𝑚 =

∑
𝑘∈𝑇 𝜇𝑘𝑠(𝑘), where 𝜇𝑘 =

∏
𝑗 ̸=𝑘

𝑗

𝑗−𝑘 are the

Lagrange coefficients.

Optimized reconstruction. In certain situations, it is possible to

optimize the reconstruction phase. A node may not need to always

wait for 𝑡 + 1 RECON messages. If, during the sharing phase, the

dealer has already revealed 𝑘 shares as part of 𝒔, a node only needs

to wait for 𝑡 + 1 − 𝑘 RECON messages for shares not included in 𝒔.

5.2 Analysis
Correctness. An honest dealer 𝐿 will receive signed ACK messages

from all honest nodes within 2∆ time under synchrony. Since there

are at least 𝑡 + 1 honest nodes, |𝝈 |≥ 𝑡 + 1. Let ⟨𝒗, 𝐼 ,𝝈 , 𝒔, 𝝅⟩ be the
transcript broadcast by 𝐿. By the Validity property of Byzantine

agreement, each honest node will output ⟨𝒗, 𝐼 ,𝝈 , 𝒔, 𝝅⟩. Then, by the
Correctness property of the signature scheme and the Completeness

property of the polynomial commitment scheme, every honest node

will accept the VSS transcript and output its share.

Finally, during the reconstruction protocol, each honest node

will multicast a valid RECON message. Thus, every honest node will

receive at least 𝑡+1 valid shares, which is sufficient to reconstruct the

degree 𝑡 polynomial 𝑠(·), and hence 𝑠(0). Moreover, the Evaluation

binding of the polynomial commitment ensures that honest nodes

only accept valid shares on the committed polynomial. This implies

that all honest nodes output the same unique secret 𝑠(0).

Termination. Follows directly from the Termination property of

the Byzantine broadcast scheme (cf. Definition 5).

Completeness. An honest party outputs its share only upon re-

ceiving a valid transcript (𝒗, 𝐼 ,𝝈 , 𝒔, 𝝅) over the Byzantine broadcast

channel. The Agreement property of the Byzantine broadcast guar-

antees that every honest node outputs the same transcript, and

hence the same polynomial commitment. Successful validation of

the transcript implies that at least 𝑡 + 1 node, hence at least one

honest node, signed the commitment. This implies with 1 − negl(𝜅)

probability, 𝒗 is a commitment to a polynomial of degree at most

𝑡 . Also, for each node 𝑖 ∈ [𝑛], either a signature of 𝑖 or its valid

share is included in 𝝈 . In the former case, assuming the existential

unforgeability of the signature scheme, node 𝑖 already received its

share. In the latter case, node 𝑖 will receive its valid share from 𝒔.
During the reconstruction phase, each honest node will recon-

struct the degree 𝑡 polynomial 𝑝(·) corresponding to the commit-

ment 𝒗. Hence, each node will output the unique secret 𝑠(0).

Secrecy.We prove Secrecy using simulatability: for every proba-

bilistic polynomial-time (PPT) adversary A that corrupts up to 𝑡

nodes, there exists an ideal world PPT simulator SVSS that interacts

with the ideal functionality FVSS (cf. Figure 9) and produces a view

such that A’s view in the simulated world is identical to a run of

the Sharing phase. We formally prove Secrecy in Appendix C.

Performance. We will analyze our performance using Figure 7 as

the polynomial commitment scheme. The dealer performs𝑂(𝑛 log𝑛)

field operations to compute shares of each node (using FFT). The

dealer then performs 𝑂(𝑛) group exponentiations to compute the

commitments and 𝑂(𝑛) signature verifications. Since group expo-

nentiation is more expensive than log𝑛 field operations, we treat

the dealer’s computation cost as 𝑂(𝑛) group exponentiations. The

running time of each node is as follows. Each node performs 𝑂(𝑛)

group exponentiations to verify the polynomial commitment, sig-

natures of 𝑂(𝑛) nodes, and shares of 𝑂(𝑛) nodes. Finally, the dealer

privately sends an 𝑂(𝜅𝑛)-bit commitment to each node and broad-

casts an 𝑂(𝜅𝑛)-bit transcript. Hence, the total communication cost

of our VSS protocol is 𝑂(𝜅𝑛2
+𝐶𝐵𝐵 (𝜅𝑛)) where 𝐶𝐵𝐵 (𝑎) is the com-

munication cost of broadcasting a message of length 𝑎.

Combining all the above, we get the following theorem.

Theorem 1 (Synchronous VSS). In a synchronous network of 𝑛 ≥
2𝑡 + 1 nodes among which at most 𝑡 nodes are malicious, assuming a
polynomial commitment scheme, a signature scheme, and a Byzantine
broadcast channel, Algorithm 1 implements a 𝑡-resilient publicly

6

Algorithm 2 Asynchronous VSS

PUBLIC PARAMETERS: 𝑛 ≥ 3𝑡 + 1 , {pk𝑖 }𝑖∈[𝑛]
, and public parameters of

the polynomial commitment scheme 𝑝𝑝 .

PRIVATE INPUT: Signing key sk𝑖 .

SHARING PHASE:

// Dealer 𝐿 with input𝑚:
101: Sample a 2𝑡 -degree random polynomial 𝑠(·) with 𝑠(0) = 𝑚

102: 𝒗,𝒘 ← PC.Commit(𝑠(·), 𝑛)

103: for 𝑖 = 1, 2, ..., 𝑛 do
104: Let 𝜋𝑖 ← PC.Open(𝑠(·), 𝑖,𝒘)

105: send ⟨SHARE, 𝒗, 𝑠(𝑖), 𝜋𝑖 ⟩ to node 𝑖

// Each node 𝑖
106: upon receiving ⟨SHARE, 𝒗, 𝑠(𝑖), 𝜋𝑖 ⟩ from dealer 𝐿 do
107: Check PC.DegCheck(𝒗, 2𝑡) = 1

108: Check PC.Verify(𝒗, 𝑖, 𝑠(𝑖), 𝜋𝑖) = 1

109: if both the checks pass then
110: Let 𝜎𝑖 = sign(sk𝑖 , 𝒗)

111: send ⟨ACK, 𝜎𝑖 ⟩ to 𝐿

// Dealer 𝐿 waits for 2𝑡 + 1 valid signatures on 𝒗

112: Let 𝝈 be the set of valid signatures on 𝒗.
113: Let 𝐼 be the indices of nodes with missing signatures.

114: Let 𝒔,𝝅 = PC.BatchOpen(𝑝(·), 𝐼 ,𝒘).

115: send (𝒗, 𝐼 ,𝝈 , 𝒔,𝝅) using a reliable broadcast channel.

// Each node 𝑖 once the broadcast outputs (𝒗, 𝐼 ,𝝈 , 𝒔,𝝅).
116: Check if each 𝜎 ∈ 𝝈 is valid and |𝝈 | ≥ 2𝑡 + 1 .

117: Check that 𝐼 includes all nodes with missing signatures.

118: Check if PC.BatchVerify(𝒗, 𝐼 , 𝒔,𝝅).

119: if all the checks pass then
120: Output (𝒗, 𝑠(𝑖), 𝜋𝑖); return

RECONSTRUCTION PHASE:

// every node 𝑖 after finishing the sharing phase
201: send ⟨RECON, 𝑠(𝑖), 𝜋𝑖 ⟩ to all.

202: upon receiving ⟨RECON, 𝑠(𝑗), 𝜋 𝑗 ⟩ from node 𝑗 do
203: if PC.Verify(𝒗, 𝑠(𝑗), 𝜋 𝑗) then
204: 𝑇 = 𝑇 ∪ {𝑠 𝑗 }
205: if |𝑇 | ≥ 2𝑡 + 1 then
206: output 𝑠(0) using Lagrange interpolation; return

verifiable VSS protocol with 𝑂(𝜅𝑛2
+𝐶𝐵𝐵 (𝜅𝑛)) communication cost.

Here 𝜅 is the security parameter, and 𝐶𝐵𝐵 (𝑎) is the communication
cost of broadcasting a message of length 𝑎 using the broadcast channel.

6 ASYNCHRONOUS VSS
In this section, we will describe the modifications to make our

protocol in an asynchronous or partial synchronous network. As

wemention in §3, we seek to design an AVSSwith the Completeness

property. Since AVSS with completeness implies an asynchronous

reliable broadcast (RBC), 𝑛/3 is the maximum number of failures

any AVSS protocol can tolerate [13]. Throughout this section, we

will assume 𝑛 = 3𝑡 + 1.

6.1 Design
The natural attempt to adapt the synchronous VSS in an asynchro-

nous network of 𝑛 = 3𝑡 + 1 is to let the dealer share its secret

using a degree 𝑡 polynomial and keep the rest of the protocol as

is. However, as we briefly mention in §3.3, this approach will not

work. In asynchrony, there is no fixed upper bound on the message

delays, so the dealer cannot wait to receive acknowledgments from

all honest nodes. Instead, the dealer must move on upon receiving

only 𝑛 − 𝑡 = 2𝑡 + 1 signed acknowledgments. But 𝑡 of these 𝑛 − 𝑡
signed acknowledgments could be from malicious nodes, and the

missing 𝑡 acknowledgments correspond to honest but slow nodes.

In this case, an honest dealer would reveal toA a total of 2𝑡 shares

on a degree 𝑡 polynomial, which is sufficient for A to recover the

secret.

We address this issue with the following key observation: We let

the dealer share the secret using a degree 2𝑡 polynomial (instead of

degree 𝑡). The rest of the protocol, given in Algorithm 2, follows a

similar structure, with a few natural changes highlighted in gray

compared to Algorithm 1. The dealer waits for 𝑛 − 𝑡 valid signed

acknowledgments instead of a pre-specified time bound, and pub-

lishes the 𝑡 shares from the 𝑡 slow nodes. Intuitively, by using a

degree 2𝑡 polynomial, we ensure that A does not learn the secret

even after learning 2𝑡 shares. Finally, using a degree 2𝑡 polynomial

does not affect the reconstructability of the secret as 𝑛 − 𝑡 ≥ 2𝑡 , i.e.,

there are enough honest nodes to reconstruct the secret.

We want to note that although the dealer in Algorithm 2 shares

its secret using a degree 2𝑡 polynomial, the protocol is not dual-

threshold. This is because A learns up to 2𝑡 points on the polyno-

mial by corrupting only 𝑡 nodes.

Reducing the storage costs. In the AVSS scheme in Algorithm 2,

each node stores the entire 𝒗, which is 𝑂(𝜅𝑛) for Pedersen polyno-

mial commitment. We can reduce the storage cost to 𝑂(𝜅), using

error-correcting code [58] and online error correction [20], similar

to AVSS protocols such as [32, 65]. More specifically, each node

encodes 𝒗 using a [𝑛, 𝑡, 𝑛 − 𝑡] Reed-Solomon code. Let 𝒗 be the

encoded commitment. Each node 𝑖 then stores 𝒗[𝑖] and deletes

the rest of 𝒗. During the reconstruction phase, each node 𝑖 sends

⟨RECON, 𝒗[𝑖], 𝑠(𝑖), 𝜋𝑖 ⟩ to all. Upon receiving RECON messages, nodes

first recover 𝒗 using online error correction and then reconstruct

the polynomial.

6.2 Analysis
Correctness. Since 𝑛−𝑡 ≥ 2𝑡 +1, an honest dealer 𝐿 will eventually

receive 2𝑡 + 1 signed acknowledgments. Then, using a similar ar-

gument as our synchronous VSS, each honest node will eventually

output and accept the transcript broadcast by the honest dealer.

Similarly, during the reconstruction phase, each node will eventu-

ally receive 2𝑡 + 1 valid shares, which is sufficient to reconstruct

the degree 2𝑡 polynomial 𝑝(·), and hence 𝑠(0). Also, honest nodes

will accept only valid shares and hence will output the same unique

secret shared by the dealer.

Asynchronous Termination. Follows directly from the Totality

property of the Byzantine RBC (cf. Definition 6).

Completeness. Follows using a similar argument as the synchro-

nous VSS protocol.

Secrecy. We will prove the Secrecy in Appendix C.

Performance. The computation cost of the dealer and nodes are

similar to that of the synchronous VSS protocol, except the dealer

uses a degree 2𝑡 degree polynomial to share its secret. Precisely,

7

both the dealer and nodes need to perform 𝑂(𝑛) group exponentia-

tions. In terms of the bandwidth cost, the dealer sends𝑂(𝜅𝑛) length

private message to each node and 𝑂(𝜅𝑛) bit long message using a

broadcast channel. Thus, using the broadcast channel from [32],

the total communication cost is 𝑂(𝜅𝑛2
). Finally, our AVSS requires

two additional rounds of communication compared to the VE-based

approach and the optimistic path of the state-of-the-art complaint-

based AVSS scheme. As we will illustrate in §8.2, these additional

rounds of communication are not a bottleneck.

Combining all the above, we get the following theorem.

Theorem 2 (Asynchronous VSS). In an asynchronous network of
𝑛 ≥ 3𝑡 + 1 nodes among which at most 𝑡 nodes are malicious, as-
suming a polynomial commitment scheme, a signature scheme, and
a Byzantine reliable broadcast channel, Algorithm 2 implements a
𝑡-resilient publicly verifiable asynchronous VSS protocol with 𝑂(𝜅𝑛2

)

communication costs. Here 𝜅 is the security parameter.

7 DUAL-THRESHOLD AVSS
In this section, we use our approach to design an (𝑛, ℓ, 𝑡) dual-

threshold AVSS scheme.

Protocol intuition. For any given ℓ , the dealer in our dual-threshold
AVSS shares its secret using a degree 2𝑡 polynomial and follows

the AVSS protocol until it receives 2𝑡 + 1 signed acknowledgments.

Then, unlike the AVSS scheme, the dealer does not reveal all remain-

ing 𝑡 shares. Instead, the dealer publicly reveals only 2𝑡 − ℓ of the
remaining 𝑡 shares and shares the remaining 𝑡−(2𝑡−ℓ) = ℓ−𝑡 shares
using a verifiable encryption scheme. More precisely, for each of

the remaining 𝑡 − (2𝑡 − ℓ) = ℓ − 𝑡 shares, the dealer encrypts it with
the public key of the corresponding recipient node and computes

a NIZK proof of its correctness. Intuitively, by publicly revealing

only 2𝑡 − ℓ shares, we ensure that any coalition of ℓ nodes learns

at most 2𝑡 points on the polynomial. The protocol still ensures

Completeness, as the nodes whose shares are not revealed by the

dealer will receive their share from the verifiable encryptions.

7.1 Verifiable Encryption of Committed
Messages

Our dual-threshold AVSS scheme relies on verifiable encryptions

for the Pedersen commitment scheme, as defined below.

Definition 4 (Verifiable Encryption of a Committed Message). Ver-

ifiable encryption (VE) of a committed message involves three par-

ties: a prover P, a verifier V , and a receiver R. The receiver R
has a public-private key pair (pk, sk). Let Cm be a commitment

scheme. Given (𝑣, 𝑐, pk), P wants to convinceV that 𝑐 is a public

key encryption of a message 𝑠 under public key pk, and that 𝑣 is an

commitment to 𝑠 and P knows 𝑠 . A verifiable encryption scheme

provides the following interfaces.

• VE.Setup(1
𝜅 ,Cm) → 𝑝𝑝VE. On input the security parameter

𝜅, and the commitment scheme Cm, the algorithm outputs the

public parameters 𝑝𝑝VE.

• VE.KeyGen(𝑝𝑝VE) → (pk, sk). The algorithm outputs a public-

private key pair for the encryption scheme.

• VE.EncProve(𝑝𝑝VE, pk, 𝑠, 𝑣,𝑤) → (𝑐, 𝜋VE): The algorithm takes

as input the message 𝑠 , commitment 𝑣 with witness 𝑤 , where

𝑣,𝑤 ← Cm.Commit(𝑠). It outputs an encryption 𝑐 of the tuple

(𝑠, 𝜋 = Cm.Open(𝑣, 𝑠,𝑤)) along with a NIZK proof 𝜋VE of their

correct encryptions.

• VE.Verify(𝑝𝑝VE, pk, 𝑣, 𝑐, 𝜋VE) → 0/1. The algorithm outputs 1,

if 𝜋VE is a valid proof that there exists 𝛼, 𝜋 such that 𝛼, 𝜋 =

VE.Dec(sk, 𝑐) and Cm.Verify(𝑣, 𝛼, 𝜋) = 1. Note that 𝜋VE needs to

be verifiable without access to the secret key or the underlying

message 𝛼 .

• VE.Dec(sk, 𝑐)→ 𝑠, 𝜋 : Given the ciphertext 𝑐 and a secret key sk,
the algorithm outputs a decryption of 𝑐 using sk.

A verifiable encryption scheme is secure if it satisfies the stan-

dard Completeness, Soundness, and Zero-knowledge properties of
verifiable computation schemes [39]. Intuitively, the Completeness

property ensures that verification of an honestly generated 𝜋VE

is always successful, even if a malicious node generates the pub-

lic key. The soundness property prevents a malicious prover from

convincing an honest node about the correctness of an incorrectly

generated ciphertext. Stating differently, if VE.Verify is successful

for a ciphertext 𝑐 and public key pk, then a node with secret key

sk will always be able to recover its share and the opening proof.

Lastly, the Zero-knowledge property guarantees that the ciphertext

𝑐 and the proof 𝜋VE reveal no information about the share other

than whatever is revealed by the polynomial commitment scheme.

Batch verifiable encryptions. Looking ahead, the dealer in our

dual-threshold VSS computes the verifiable encryptions for a batch

of shares. Thus, we define the VE scheme to additionally support

batched interfaces VE.BatchEncProve and VE.BatchVerify. Triv-
ially, every VE can be modified to support VE.BatchEncProve and
VE.BatchVerify by internally invoking theVE.EncProve andVE.Verify
for each index in the batch, respectively. We define these additional

interfaces is to support the design of batch encryption and verifica-

tion that are more efficient than the trivial approach.

• VE.BatchEncProve(𝑝𝑝VE, 𝐼 , pk𝐼 , 𝒔, 𝒗,𝒘) → (𝒄, 𝜋VE). On input a

vector 𝒔 of messages, their commitments 𝒗, corresponding wit-
ness𝒘 , the algorithm outputs encryptions 𝒄 for each 𝑠 ∈ 𝒔, along
with a NIZK proof 𝜋VE that satisfy VE.BatchVerify.

• VE.BatchVerify(𝑝𝑝VE, 𝐼 , pk𝐼 , 𝒗, 𝒄, 𝜋VE)→ 0/1. The algorithm out-

puts 1 if 𝜋VE is a valid proof that, for each 𝑖 ∈ 𝐼 there exists (𝛼𝑖 , 𝜋𝑖)

such that 𝛼𝑖 , 𝜋𝑖 = VE.Dec(sk𝑖 , 𝒄𝑖) and PC.Verify(𝒗, 𝛼𝑖 , 𝜋𝑖) = 1

Constructions. Only a few VE schemes are known for discrete

logarithm-based commitment schemes [18, 35, 42, 48]. These VE

schemes are designed to work with the Feldman commitment

scheme, where the dealer commits to a secret 𝑠 as 𝑔𝑠 . Note that

the Feldman commitment scheme is not hiding. For instance, if the

secret has low entropy, an adversary can recover the committed

message by running a brute-force search on possible messages.

As a result, these VE schemes cannot be directly used in general

VSS schemes with arbitrary message distributions. Indeed, these

VE schemes were designed for VSS schemes for Distributed Key

Generation (DKG) protocols [33, 42, 48], where the shared secret is

a random element from a large field.

Our dual-threshold AVSS requires a VE scheme for the Peder-

sen commitment scheme, where commitments are 𝑔𝑠ℎ𝑟 . To our

knowledge, no such VE scheme has been described. We present

8

Algorithm 3 Dual-threshold AVSS

PUBLIC PARAMETERS: 𝑛 ≥ 3𝑡 + 1, ℓ ≥ 𝑡 , {𝑝𝑘𝑖 }𝑖∈[𝑛]
, polynomial commit-

ment PC and verifiable encryption VE.
PRIVATE INPUT: Signing key 𝑠𝑘𝑖 .

SHARING PHASE:

// Line 101 to 111 same as Algorithm 2

// Dealer 𝐿 waits for 2𝑡 + 1 valid signatures
112: Let 𝝈 be the set of valid signatures on 𝒗.
113: Let 𝐼 be the indices of nodes with missing valid signatures.

114: Partition 𝐼 into subsets 𝐼𝑅 and 𝐼VE with |𝐼𝑅 |= 2𝑡 − ℓ

115: 𝒔,𝝅 ← PC.BatchOpen(𝒗, 𝐼𝑅, 𝑝(·),𝒘)

116: Let 𝒔𝐼VE ← {𝑝(𝑖)} for all 𝑖 ∈ 𝐼VE.
117: 𝒄, 𝜋VE ← VE.BatchEncProve(𝐼VE, pk𝐼VE , 𝒔𝐼VE , 𝒗𝐼VE ,𝒘𝐼VE)

118: send (𝒗, 𝐼𝑅, 𝐼VE,𝝈 , 𝒔,𝝅 , 𝒄, 𝜋VE) using a reliable broadcast.

// Node 𝑖 upon broadcast outputs (𝒗, 𝐼𝑅, 𝐼VE,𝝈 , 𝒔,𝝅 , 𝒄, 𝜋VE).
119: Check if each 𝜎 ∈ 𝝈 is valid and |𝝈 | ≥ 2𝑡 + 1.

120: Check 𝐼𝑅 ∪ 𝐼VE includes all nodes with missing signatures.

121: Check if PC.BatchVerify(𝒗, 𝐼𝑅, 𝒔,𝝅).

122: Check if VE.BatchVerify(𝐼VE, pk𝐼VE , 𝒗, 𝒄, 𝜋VE).

123: if all the checks pass then
124: if received no valid SHARE message and (𝑝(𝑖), 𝜋𝑖) /∈ 𝒔 then
125: Let 𝑝(𝑖), 𝜋𝑖 ← VE.Dec(𝒄[𝑖], 𝑠𝑘𝑖)

126: output (𝒗, 𝑝(𝑖), 𝜋𝑖); return

RECONSTRUCTION PHASE: // Identical to Algorithm 2

modifications to Groth’s VE [42] to make it compatible with the

Pedersen commitment scheme in Appendix B.

Remark. If our dual-threshold VSS scheme is used to share secrets

with high entropy, we can also employ existing VE schemes, such

as those mentioned in [18, 35, 42, 48].

7.2 Dual-threshold AVSS Design
Let 𝐿 be the dealer of the (𝑛, ℓ, 𝑡) dual-threshold AVSS scheme (cf.

Definition 3). Let PC andVE be the polynomial commitment and ver-

ifiable encryption scheme, respectively. We summarize our scheme

in Algorithm 3 where we highlight the changes with respect to

Algorithm 2 in gray .

Sharing phase. The first part of the Sharing phase is the same

as the AVSS protocol in Algorithm 2. 𝐿 shares its secret using

a degree 2𝑡 polynomial 𝑝(·), computes its commitment 𝒗,𝒘 ←
PC.Commit(𝑝(·), 𝑛), and then sends ⟨SHARE, 𝒗, 𝑝(𝑖)⟩ to each node.

Each node 𝑖 upon receiving the SHARE message, validates it as in

Algorithm 2, computes 𝜎𝑖 = sign(sk𝑖 , 𝒗), and responds to 𝐿 with

⟨ACK, 𝜎𝑖 ⟩.
𝐿 waits for 2𝑡 + 1 valid signed acknowledgements. Let 𝝈 be

the set of valid acknowledgments, and let 𝐼 ⊂ [𝑛] be the set of

nodes from whom 𝐿 does not receive ACKmessages. Note that these

include nodes who sent invalid ACK messages as well as nodes

whose messages have not arrived. Next, 𝐿 arbitrarily partitions

𝐼 into two disjoint subsets 𝐼𝑅 and 𝐼𝑁 , such that |𝐼𝑅 |= 2𝑡 − ℓ and

|𝐼VE |= ℓ − 𝑡 . 𝐿 then computes 𝒔, 𝝅 ← PC.BatchOpen(𝑝(·), 𝐼𝑅,𝒘) and

𝒄, 𝜋VE ← VE.BatchEncProve(𝑝(·), 𝒗, 𝐼VE).

𝐿 then reliably broadcast the dual-threshold AVSS transcript

(𝒗, 𝐼𝑅, 𝐼VE,𝝈 , 𝒔, 𝝅 , 𝒄, 𝜋VE) to all nodes. Upon receiving the transcript,

nodes validate it by checking that: (i) 𝝈 is a valid set of signatures

on 𝒗 and |𝝈 |≥ 2𝑡 +1; (ii) 𝐼𝑅∪𝐼VE includes all nodes whose signatures
are not included 𝝈 ; (iii) 𝒔 includes of valid shares of nodes in 𝐼𝑅 with

respect to 𝒗 i.e., PC.BatchVerify(𝒗, 𝐼𝑅, 𝒔, 𝝅); (iv) 𝒄 includes verifiable
ciphertexts using VE.BatchVerify.

Upon successful verification, each node 𝑖 locally outputs the

commitment 𝒗, its share 𝑝(𝑖), along with the commitment open-

ing proof 𝜋𝑖 to be used during the reconstruction phase. Node 𝑖

either receives 𝑝(𝑖), 𝜋𝑖 from SHARE message, or computes 𝑝(𝑖), 𝜋𝑖 ←
VE.Dec(𝒄[𝑖], sk𝑖).
Reconstruction phase. The reconstruction phase is identical to

the reconstruction phase of our AVSS scheme.

7.3 Optimization for Common Case Execution
In the dual-threshold AVSS we have described so far, the dealer 𝐿 al-

ways verifiably encrypts ℓ −𝑡 of the remaining shares, which can be

expensive for both 𝐿 and other nodes. The following optimizations

can significantly lower the number of shares 𝐿 needs to encrypt in

the common case: when the number of active failures is low and

the network between 𝐿 and most honest nodes is synchronous.

In the optimized design, in addition to waiting for 2𝑡 + 1 signed

acknowledgments, the dealer 𝐿 also waits for the network latency

2∆, whichever occurs later. Let 2𝑡 + 1 + 𝑘 for 𝑘 ≥ 0 be the number

of signed acknowledgments the dealer receives. 𝐿 then verifiably

encrypts shares of max{0, ℓ − (𝑡 + 𝑘)} nodes. This implies that with

more signed acknowledgments, 𝐿 needs to verifiably encrypt fewer

shares. In the best-case scenario, i.e., when 𝐿 receives ℓ−𝑡 additional
signed acknowledgments, it need not compute any verifiable en-

cryptions. Thus, in the best case, we get the dual-threshold property

for free.

Remark. The optimization we describe above is also applicable

to the AVSS scheme in §6. Also, the storage cost optimization we

describe in §6.1 also applies to our dual-threshold AVSS scheme.

7.4 Analysis
Correctness and Asynchronous termination. Follows from

similar arguments as the AVSS protocol.

Completeness. The soundness guarantees of the VE scheme en-

sure that nodes whose signature or share is not included in the

VSS transcript will still receive its valid share upon decryption.

This, combined with an argument similar to the synchronous VSS

protocol, guarantees Completeness.

Secrecy. We prove Secrecy in Appendix C.

Performance. The computation cost of the dealer and nodes is

similar to that of the AVSS protocol, except the transcript includes

verifiable encryptions for a subset of nodes. Since the (amortized)

computation cost of both computing verifiable encryptions and

verifying them is linear in the number of encrypted shares [42, 48],

both the dealer and nodes need to perform 𝑂(𝑛) group exponenti-

ations. Additionally, the dealer sends a private message of length

𝑂(𝜅𝑛) to each node and a broadcast channel message of length

𝑂(𝜅𝑛) bits. Thus, using the broadcast channel from [32], the total

communication cost is 𝑂(𝜅𝑛2
).

Combining all the above, we get the following theorem.

9

Theorem 3 (Dual-threshold AVSS). In an asynchronous network
of 𝑛 ≥ 3𝑡 + 1 nodes among which at most 𝑡 nodes are malicious,
assuming a polynomial commitment scheme, a signature scheme,
a Byzantine reliable broadcast channel, and a Verifiable Encryp-
tion scheme, Algorithm 3 implements a 𝑡-resilient publicly verifiable
(𝑛, ℓ, 𝑡) dual-threshold AVSS protocol for any ℓ ∈ [𝑡, 𝑛− 𝑡) with𝑂(𝜅𝑛2

)

communication costs. Here 𝜅 is the security parameter.

8 IMPLEMENTATION AND EVALUATION
We evaluate our VSS schemes and the baseline VSS schemes by im-

plementing them in Rust. Our implementation is publicly available

at https://github.com/sourav1547/e2e-vss. Our implementation uses

the blstrs library [1], which implements efficient finite field and

elliptic curve arithmetic. We also use (for both our implementation

and the baselines) themulti-exponentiation of group elements using

Pippenger’s method [10, §4] for efficiency. For our dual threshold

AVSS, we implement the verifiable encryption scheme we describe

in Appendix B. For networking, we re-use the network crate from

the open-source implementation of [46]. We will also separately

benchmark the computation costs of the various steps of both our

and baseline VSS schemes.We implement the asynchronous reliable

broadcast (RBC) protocol from [32], with the optimistic path where

nodes first run the Bracha’s RBC [13] on the cryptographic hash

of the dealer’s message, and outputs it if the RBC output matches

with the hash of the dealer’s message. We use the Schnorr signature

using Ed25519 elliptic curve [59] as the signature scheme.

Baselines. The first baseline VSS protocol we compare with is

the complaint-based AVSS protocol of [65] with optimizations

from [32], and here on, we will refer to it as the complaint based
VSS. Recall from §2, this scheme relies on complaints and does not

terminate even with a single faulty node. We chose this as one

of our baselines as it is the most efficient AVSS scheme, and by

comparing it with this scheme, we seek to demonstrate that our

AVSS guarantees asynchronous termination and public verifiability

with comparable performance. We measure the baseline’s best-

case performance, i.e., without any faulty nodes. We implement

the polynomial commitment scheme in Figure 7 instead of stan-

dard Pedersen commitment to coefficients. Although committing

to the evaluation points increases the dealing time, we adopt this

approach as it lowers the computation cost during the complaint

and reconstruction phase.

Our second baseline is the VE-based VSS scheme from [42] with

our modifications in Appendix B. This scheme achieves similar

properties to our scheme: it supports dual-threshold, is publicly

verifiable, and works in synchronous and asynchronous networks.

We want to note that this scheme has a parameter𝑚 that indicates

the number of chunks we divide a secret into. A smaller𝑚 results

in quicker dealing and verification time and a smaller transcript

size but leads to longer worst-case decryption times. For our evalu-

ations, we opt for𝑚 = 16 to favor the baseline, i.e., to give it faster

dealing and verification time, shorter transcript size, and hence

lower latency and bandwidth usage in the absence of failures. How-

ever, with𝑚 = 16, in the worst case, a node would have to perform

more than 2
21

group exponentiations to decrypt its shares.

We do not implement synchronous VSS schemes due to the lack

of agreed-upon choice of synchronous broadcast protocols. Here,

we provide some estimates for the state-of-the-art synchronous

VSS protocol iVSS in [11]. It requires the dealer and non-dealer

nodes to verify𝑂(𝑛) signatures. Additionally, each non-dealer node

verifies 𝑂(𝑛) shares of other parties. Hence, we expect the per-

node computation cost to be similar to ours. iVSS requires six

rounds of communication, including two broadcast rounds. Hence,

we expect its communication costs to be higher than ours. Also,

synchronous VSS schemes using the framework of [57] require 𝑛

parallel broadcasts, and hence 𝑂(𝑛3
) communication costs.

Finally, in §8.3, we will provide estimates of our performance

comparison with various other AVSS schemes and also discuss why

we do not implement them in our framework.

8.1 Computation Costs Measurement
We measure the computation costs of dealing, verification, and
reconstruction of the VSS schemes. We run these benchmarks on an

Amazon Web Services (AWS) c5.4xlarge virtual machine with 16

vCPUs, 32GB RAM, and Amazon Linux 2-Kernel. We describe each

of these metrics and our associated results.

Dealing time. The dealing time measures the computation cost

of the dealer in preparing the transcript, i.e., the time the dealer

takes: (i) to compute the polynomial commitment, (ii) to compute

the opening proofs for each non-dealer node and (iii) to verify ACK
messages (wherever applicable). For dual-threshold AVSS, the deal-

ing time also includes the computation time required to generate

verifiable encryptions of a subset of shares.

We report the dealing time (in milliseconds) in Figure 2. For the

low threshold scheme, we expected a similar dealing time between

our approach and the complaint-based AVSS, as the dealer in the

complaint-based AVSS also needs to compute the public key en-

cryptions of each share, which has costs similar to verifying ACK
messages. The slight discrepancy is due to using different elliptic

curve groups for the public key operations. More precisely, we use

the ElGamal encryption scheme in bls12381 elliptic curve group as
the encryption scheme in the complaint-based scheme, whereas our

scheme uses Schnorr signatures in ed25519 elliptic curve group.

Each group operation in bls12381 is more expensive. Hence, we ob-

serve a slightly higher dealing time in the complaint-based scheme.

For dual threshold with ℓ = 2𝑡 , our AVSS dealing time is about

40% of the VE-based baseline. This is because the dealer in our

dual-threshold AVSS scheme verifiably encrypts ℓ −𝑡 shares instead
of all 𝑛 shares. We reiterate that for ℓ > 𝑡 , in the best-case scenario,

our dual-threshold AVSS has a dealing time comparable to our low-

threshold AVSS. Hence, in the best case, our dual-threshold AVSS

improves the dealing time by 17×.
Verification time. The verification time measures the computation

cost experienced by the non-dealer nodes. It refers to the time a node

takes: (i) to verify the degree of the committed polynomial, (ii) sign

the polynomial commitment and verify signatures of other nodes,

(iii) validate the revealed shares (including its own), and (iv) and

the verifiable encryptions (applicable only to dual-threshold AVSS)

provided by the dealer.

We report the verification time (in milliseconds) in Figure 3. For

ℓ = 𝑡 , our verification time is about 3× worse than the best-case

verification time of the complaint-based scheme. This is because

10

https://github.com/sourav1547/e2e-vss

64 128 256

20

40

60

Number of nodes

D
e
a
l
i
n
g
t
i
m
e
(
i
n
m
s
) Complaint-based

Ours

(a) Low-threshold, ℓ = 𝑡

64 128 256

200

400

600

800

Number of nodes

VE based

Ours, ∆ = 0

(b) Dual-threshold, ℓ = 2𝑡

Figure 2: Dealing time

64 128 256

2

4

6

8

Number of nodes

V
e
r
i
fi
c
a
t
i
o
n
t
i
m
e
(
i
n
m
s
)

Complaint-based

Ours

(a) Low-threshold, ℓ = 𝑡

64 128 256

200

400

Number of nodes

VE based

Ours, ∆ = 0

(b) Dual-threshold, ℓ = 2𝑡

Figure 3: Verification time

Table 1: AVSS reconstruction time (inmilliseconds). For synchronous
VSS, our reconstruction time is the same as the baseline.

Scheme 𝑛 = 64 𝑛 = 128 𝑛 = 256

Baseline 3.62 7.07 14.22

Ours 7.06 14.05 28.44

each node in our schemes needs to additionally validate the signa-

tures and shares of other nodes revealed by the dealer. However, the

absolute verification time is very small, e.g., only 7.35 milliseconds

for 256 nodes. For high threshold ℓ = 2𝑡 , compared to VE-based

VSS schemes, the verification time of our protocol is 3× and 47-60×
better in the worst and best case, respectively.

Reconstruction time. The reconstruction time measures the com-

putation cost of reconstructing a secret from its shares. It includes

the cost of: (i) verifying shares from each node, (ii) computing ap-

propriate Lagrange coefficients, (iii) and the final inner product.

Note that the reconstruction time of a VSS scheme depends on the

degree of the polynomial used to share the secret and the cost of

verifying each share. Since our synchronous VSS protocol uses the

same polynomial degree and the same share verification procedure

as existing synchronous VSS schemes, it does not add any additional

overhead. On the other hand, the dealer in our AVSS scheme uses a

degree 2𝑡 polynomial, compared to the degree 𝑡 polynomial used

by all existing AVSS schemes.We report the reconstruction time

(in milliseconds) in Table 1. As expected, our reconstruction time

is twice as expensive as the baseline. Nevertheless, the absolute

values are small, e.g., 29 milliseconds for 256 nodes.

8.2 Geo-Distributed End-to-End Evaluation
With our end-to-end evaluation, we seek to show that our scheme

maintains the bandwidth usage and latency of the most efficient

AVSS scheme while ensuring asynchronous termination and pub-

lic verifiability. Moreover, we will also illustrate that our scheme

significantly improves the performance over the VE-based scheme,

which also achieves these properties.

Experimental setup. We evaluate the VSS schemes end-to-end

with 64, 128, and 256 nodes. For any given 𝑛 ≥ 3𝑡 + 1, depending

upon the VSS scheme, we evaluate them with varying reconstruc-

tion threshold ℓ ∈ [𝑡, 𝑛− 𝑡 − 1]. We also evaluate our dual-threshold

ACSS with the common case optimization we discuss in §7.3 where

the dealer either waits to receive 𝑛 − 𝑡 valid ACK messages or for 2∆

units of time to as many ACKmessages possible, whichever happens

later. More precisely, we report our evaluation results for ∆ values

of 125, 137 and 150, for 64, 128, and 256 nodes, respectively.

We run all nodes on c5.4xlarge instances with one node per VM.

In our experiments, we let one among the 𝑛 ACSS recipients to be

the ACSS dealer. We place the recipients evenly across eight AWS

regions: Canada, Ireland, North California, North Virginia, Oregon,

Ohio, Singapore, and Tokyo. We create an overlay network among

the parties where all parties are pair-wise connected, i.e., they form

a complete graph.

Metrics.We evaluate VSS schemes using two key metrics: band-
width usage and latency of the sharing phase. We explain each of

these metrics below.

The bandwidth usage is the amount of data a node sends and

receives during the sharing phase. For the dealer, this includes the

data it sends over the private channel to each non-dealer node,

the bandwidth usage for receiving ACK messages, and during the

broadcast. For a non-dealer node, this includes bandwidth usage

for receiving messages from the dealer, sending acknowledgment

signatures (if any), and during the broadcast protocol.

Latency is measured as the time between the dealer starting

the sharing phase of the ACSS protocol and the time the recipient

nodes finish the sharing phase. As a result, the latency subsumes

the computation cost of dealer and non-leader nodes and the com-

munication latency.

We report our results after averaging over ten executions. We

also want to note that during our 256-node experiments, we ob-

served some unresponsive nodes for both the baseline and our

schemes. However, since such nodes are less than 1/3 of the total

nodes, our experiments gracefully finish. The slow nodes, however,

increase the overall latency and bandwidth usage, especially in

our dual-threshold AVSS experiments. Our results also include the

latency and bandwidth usages from runs with slow nodes, where

we discard the measurements from unresponsive nodes.

Results.We report the bandwidth usage of dealer (in Megabytes)

and non-dealer nodes (in Kilobytes) in Figures 4 and 5, respectively.

The bandwidth usage of our low-threshold scheme is comparable to

that of the complaint-based scheme. This is because the dealer in the

complaint-based scheme also broadcasts the public key encryptions

of the shares and incurs a bandwidth usage similar to receiving and

sending ACK messages in our scheme.

For dual threshold with ℓ = 2𝑡 and ∆ = 0, the dealer in our

VSS scheme incurs less than 50% bandwidth usage compared to

the VE-based scheme. Again, this was expected, as our dealer only

broadcasts 1/3 verifiable encryptions. For∆ ̸= 0, i.e., when the dealer

11

64 128 256

0

2

4

6

Number of nodes

B
a
n
d
w
i
d
t
h
u
s
a
g
e
(
M
B
y
t
e
s
)

Complaint-based

Ours

(a) Low-threshold

64 128 256

0

20

40

60

Number of nodes

VE-based

Ours, ∆ = 0

Ours, ∆ ̸= 0

(b) Dual-threshold, ℓ = 2𝑡

Figure 4: Dealer’s Bandwidth usage in Sharing phase

64 128 256

20

40

60

Number of nodes

B
a
n
d
w
i
d
t
h
u
s
a
g
e
(
K
B
y
t
e
s
)

Complaint-based

Ours

(a) Low-threshold, ℓ = 𝑡

64 128 256

100

200

Number of nodes

VE-based

Ours, ∆ = 0

Ours, ∆ ̸= 0

(b) Dual-threshold, ℓ = 2𝑡

Figure 5: Receivers bandwidth usage in Sharing phase

64 128 256

0.2

0.4

0.6

0.8

1

Number of nodes

L
a
t
e
n
c
y
(
s
e
c
o
n
d
s
)

Complaint-based

Ours

(a) Low-threshold

64 128 256

5

10

Number of nodes

VE-based

Ours, ∆ = 0

Ours, ∆ ̸= 0

(b) Dual-threshold
Figure 6: End-to-end Latency of Sharing phase

waits to receive additional ACK messages, our dealer’s bandwidth

usage is much smaller and is only slightly higher than our low-

threshold scheme. For example, with 256 nodes, our low-threshold

AVSS dealer incurs 7.12 Megabytes of bandwidth usage, compared

to 7.75 Megabytes for our dual-threshold AVSS dealer with ∆ = 150

milliseconds. This is because, in the latter case, the dealer receives all

most ACK messages by waiting for 150 milliseconds and broadcasts

very few verifiable encryptions.

We report the latency results in Figure 6. Note that our low-

threshold AVSS scheme has comparable latency to the complaint-

based scheme despite having one additional round trip delay. This is

because, in our implementation, the dealing time of the complaint-

based scheme is slightly higher than our dealing time (see §8.1). This

also implies that our additional round-trip delay is not a bottleneck.

The VE-based scheme has much higher latency, i.e., 5×-11×
higher than our low-threshold VSS scheme. Interestingly, this is

much higher than expected, given the VE-based scheme’s dealing

and verification time. Upon further investigation, we note that the

additional latency is due to the propagation latency of their large

VSS transcripts. This also explains why our dual-threshold VSS

scheme with ∆ = 0 has approximately 2× better latency, and our

scheme with ∆ ̸= 0 improves has 3-7× better end-to-end latency.

This also concludes that both computation time and bandwidth

usage are bottlenecks for AVSS schemes.

8.3 Additional Comparisons
Comparison with Class-group based VSS [48]. Very recently,

Kate et al. [48] improved the efficiency of [42] for high-entropy

secrets using a non-standard class-group assumption. Here, we

will estimate how it compares to our scheme based on their C++

implementation. The VSS transcript size of [48] is 219(𝑛 + 1) +

48𝑛 bytes (assuming we commit to evaluation points instead of

coefficients), which is approximately 3× higher than the transcript

size of our low-threshold AVSS scheme. Regarding dealing and

verification time, [48] reports 2.7× improvement over [42]. Since

our dealing time is 17× better than [42], we anticipate that our

dealing time is 6× better than that of [48]. Similarly, we expect our

verification time to be 2-3× better. We achieve these improvements

while relying on the standard discrete logarithm assumption.

Bivariate polynomial based AVSS. We do not implement the

bivariate polynomial-based VSS schemes [4, 5] as they are very

inefficient, even if we rely on a trusted setup. We will illustrate this

below using a careful performance estimate of Bingo, the state-of-

the-art bivariate-based AVSS scheme [4].

In Bingo, the dealer performs𝑂(𝑛2
log𝑛) field operations to eval-

uate the bivariate polynomials using FFT and 𝑛 2𝑛-wide multi-

exponentiations to compute the polynomial commitments. Based

on [2] for BLS21-381, we estimate that the dealing time for 256

nodes will be more than 1400 milliseconds (21× higher than ours)

in an AWS EC2 m6g.8xlarge instance (more powerful machine than

ours). Also, each non-dealer node must perform 𝑡 + 𝑛 KZG polyno-

mial commitment verifications [49], which would take more than

170 milliseconds (23× higher than ours).

9 DISCUSSION AND CONCLUSION
Interactive vs. non-interactive protocols. In existing VE-based

VSS [33, 42, 48] the dealer sends a single message over the broadcast

channel. On the other hand, our VSS protocols require interaction

between the dealer and the other nodes (but not among the nodes).

As a result, our protocols are slightly more complex to implement.

Yet, we believe that the substantial performance improvements

offered by our protocols outweigh the added complexity. Designing

a more efficient non-interactive public verifiable secret sharing

scheme remains a fascinating open question.

Applications with polynomials of an arbitrary degree. Al-
though our AVSS scheme shares the secret using a degree 2𝑡 poly-

nomial, applications such as asynchronous DKG, asynchronous

proactive secret sharing, etc., need not use a degree 2𝑡 polynomials.

Instead, these applications can share their secret using an arbitrary

degree polynomial, using the degree switching trick of [31].

Conclusion.We have presented a simple approach to design three

efficient verifiable secret sharing protocols for various settings, i.e.,

under synchrony, asynchrony, and asynchrony with dual-threshold.

Unlike existing schemes, our VSS protocols do not rely on com-

plaints and require only a single broadcast. Our protocols output

efficient publicly verifiable transcripts and support dual-threshold

12

in asynchrony. Moreover, our asynchronous VSS protocols ensure

termination, fixing a shortcoming in many existing schemes. Our

protocols have comparable performance to state-of-the-art counter-

parts without those properties and provide significant performance

improvements over schemes with similar properties.

ACKNOWLEDGMENTS
This work is funded in part by a VMware early career faculty

grant, a Chainlink Labs Ph.D. fellowship, and the National Science

Foundation award #2240976.

REFERENCES
[1] 2020. blstrs library. (2020). https://docs.rs/blstrs/latest/blstrs/

[2] 2023. zkalc is a cryptographic calculator! (2023). https://github.com/mmaker/

zkalc

[3] Ittai Abraham, Danny Dolev, and Gilad Stern. 2020. Revisiting asynchronous

fault tolerant computation with optimal resilience. In Proceedings of the 39th
Symposium on Principles of Distributed Computing. 139–148.

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2023. Bingo: Adaptively Secure Packed Asynchronous Verifiable Secret

Sharing and Asynchronous Distributed Key Generation. In Annual International
Cryptology Conference. Springer.

[5] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. 2021. High-threshold avss

with optimal communication complexity. In International Conference on Financial
Cryptography and Data Security. Springer, 479–498.

[6] Orestis Alpos, Christian Cachin, Simon Holmgaard Kamp, and Jesper Buus

Nielsen. 2023. Practical Large-Scale Proof-of-Stake Asynchronous Total-Order

Broadcast. Cryptology ePrint Archive (2023).
[7] Michael Backes, Amit Datta, and Aniket Kate. 2013. Asynchronous computational

VSS with reduced communication complexity. In Cryptographers’ Track at the
RSA Conference. Springer, 259–276.

[8] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In

Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC ’88). New York, NY, USA, 1–10.

[9] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Alex Miao, and Tal Rabin.

2022. Threshold Cryptography as a Service (in the Multiserver and YOSOModels).

In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security. 323–336.

[10] Daniel J Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. 2012.

Faster batch forgery identification. In Progress in Cryptology-INDOCRYPT 2012:
13th International Conference on Cryptology in India, Kolkata, India, December
9-12, 2012. Proceedings 13. Springer, 454–473.

[11] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. Randpiper–reconfiguration-friendly random beacons with quadratic com-

munication. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 3502–3524.

[12] George Robert Blakley. 1979. Safeguarding cryptographic keys. In 1979 Interna-
tional Workshop on Managing Requirements Knowledge (MARK). IEEE, 313–318.

[13] Gabriel Bracha. 1987. Asynchronous Byzantine agreement protocols. Information
and Computation 75, 2 (1987), 130–143.

[14] Luis TAN Brandao, Luis TAN Brandao, Michael Davidson, and Apostol Vassilev.

2020. NIST roadmap toward criteria for threshold schemes for cryptographic

primitives. (2020).

[15] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. 2002.

Asynchronous verifiable secret sharing and proactive cryptosystems. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications Security.
88–97.

[16] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-

cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[17] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random oracles in

constantipole: practical asynchronous byzantine agreement using cryptography.

In Proceedings of the nineteenth annual ACM symposium on Principles of distributed
computing. 123–132.

[18] Jan Camenisch and Victor Shoup. 2003. Practical verifiable encryption and

decryption of discrete logarithms. In Annual International Cryptology Conference.
Springer, 126–144.

[19] Ran Canetti. 1996. Studies in secure multiparty computation and applications.
Ph.D. Dissertation. Citeseer.

[20] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. In Proceedings of the twenty-fifth annual ACM symposium on
Theory of computing. 42–51.

[21] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable randomness

attested by public entities. In International Conference on Applied Cryptography
and Network Security. Springer, 537–556.

[22] Ignacio Cascudo and Bernardo David. 2020. ALBATROSS: publicly attestable

batched randomness based on secret sharing. In Advances in Cryptology–
ASIACRYPT 2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020,
Proceedings, Part III 26. Springer, 311–341.

[23] Ignacio Cascudo and Bernardo David. 2023. Publicly Verifiable Secret Sharing

over Class Groups and Applications to DKG and YOSO. Cryptology ePrint Archive
(2023).

[24] Pyrros Chaidos and Aggelos Kiayias. 2021. Mithril: Stake-based threshold mul-

tisignatures. Cryptology ePrint Archive (2021).
[25] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed Ran-

domness Beacons. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE.
[26] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable secret sharing and achieving simultaneity in the presence of faults. In

26th Annual Symposium on Foundations of Computer Science (sfcs 1985). IEEE,
383–395.

[27] Ashish Choudhury. 2020. Optimally-resilient unconditionally-secure asynchronous
multi-party computation revisited. Technical Report. Cryptology ePrint Archive,

Report 2020/906, 2020. https://eprint. iacr. org

[28] Ivan Damgård. 2002. On Σ-protocols. Lecture Notes, University of Aarhus, Depart-
ment for Computer Science (2002), 84.

[29] Ivan Damgård and Jesper Buus Nielsen. 2007. Scalable and unconditionally secure

multiparty computation. In Annual International Cryptology Conference. Springer,
572–590.

[30] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt:

Scalable distributed randomness beacon with transparent setup. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2502–2517.

[31] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. 2023. Practi-

cal Asynchronous High-threshold Distributed Key Generation and Distributed

Polynomial Sampling. In 32st USENIX Security Symposium (USENIX Security 23).
USENIX Association.

[32] Sourav Das, Zhuolun Xiang, and Ling Ren. 2021. Asynchronous Data Dissemina-

tion and its Applications. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security.

[33] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-

Kogias, and Ling Ren. 2022. Practical asynchronous distributed key generation.

In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2518–2534.
[34] Paul Feldman. 1987. A practical scheme for non-interactive verifiable secret

sharing. In 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).
IEEE, 427–438.

[35] Pierre-Alain Fouque and Jacques Stern. 2001. One round threshold discrete-log

key generation without private channels. In International Workshop on Public
Key Cryptography. Springer, 300–316.

[36] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. 1996. Robust

threshold DSS signatures. In Advances in Cryptology—EUROCRYPT’96: Interna-
tional Conference on the Theory and Application of Cryptographic Techniques
Saragossa, Spain, May 12–16, 1996 Proceedings 15. Springer, 354–371.

[37] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology 20, 1 (2007), 51–83.

[38] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-

dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In

Proceedings of the 26th symposium on operating systems principles. 51–68.
[39] Shafi Goldwasser, Silvio Micali, and Chales Rackoff. The knowledge complexity

of interactive proof-systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing. 291–304.

[40] Vipul Goyal, Yifan Song, and Chenzhi Zhu. 2020. Guaranteed output delivery

comes free in honest majority MPC. In Annual International Cryptology Confer-
ence. Springer, 618–646.

[41] Jens Groth. 2010. Short Pairing-Based Non-interactive Zero-Knowledge Argu-

ments.. In Asiacrypt, Vol. 6477. Springer, 321–340.
[42] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.

IACR Cryptol. ePrint Arch. 2021 (2021), 339.
[43] Jens Groth and Victor Shoup. 2022. Design and analysis of a distributed ecdsa

signing service. Cryptology ePrint Archive (2022).
[44] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and

Alin Tomescu. 2021. Aggregatable distributed key generation. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 147–176.

[45] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. 2008. Asynchronous

multi-party computation with quadratic communication. In International Collo-
quium on Automata, Languages, and Programming. Springer, 473–485.

[46] ISTA-SPiDerS. 2022. APSS. https://github.com/ISTA-SPiDerS/apss. (2022).

[47] Aniket Kate and Ian Goldberg. 2009. Distributed key generation for the internet.

In 2009 29th IEEE International Conference on Distributed Computing Systems.

13

https://docs.rs/blstrs/latest/blstrs/
https://github.com/mmaker/zkalc
https://github.com/mmaker/zkalc
https://github.com/ISTA-SPiDerS/apss

IEEE, 119–128.

[48] Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, Hamza Saleem, and

Sri Aravinda Krishnan Thyagarajan. 2023. Non-interactive VSS using Class

Groups and Application to DKG. Cryptology ePrint Archive (2023).
[49] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. 2010. Constant-size

commitments to polynomials and their applications. In International conference
on the theory and application of cryptology and information security. Springer,
177–194.

[50] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures.. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 1751–1767.

[51] Leslie Lamport, Robert Shostak, andMarshall Pease. 2019. The Byzantine generals

problem. In Concurrency: the works of leslie lamport. 203–226.
[52] Atsuki Momose and Ling Ren. 2021. Optimal Communication Complexity of Au-

thenticated Byzantine Agreement. In 35th International Symposium on Distributed
Computing.

[53] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. 2020.

Improved extension protocols for byzantine broadcast and agreement. In 34th
International Symposium on Distributed Computing, DISC 2020.

[54] Arpita Patra, Ashish Choudhary, and C Pandu Rangan. 2009. Efficient statistical

asynchronous verifiable secret sharing with optimal resilience. In International
Conference on Information Theoretic Security. Springer, 74–92.

[55] Arpita Patra, Ashish Choudhury, and C Pandu Rangan. 2015. Efficient asynchro-

nous verifiable secret sharing and multiparty computation. Journal of Cryptology
28, 1 (2015), 49–109.

[56] Torben Pryds Pedersen. 1991. Non-interactive and information-theoretic secure

verifiable secret sharing. In Annual international cryptology conference. Springer,
129–140.

[57] Torben Pryds Pedersen. 1991. A threshold cryptosystem without a trusted

party. In Workshop on the Theory and Application of of Cryptographic Techniques.
Springer, 522–526.

[58] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[59] Claus-Peter Schnorr. 1990. Efficient identification and signatures for smart cards.

In Advances in Cryptology—CRYPTO’89 Proceedings 9. Springer, 239–252.
[60] Berry Schoenmakers. 1999. A simple publicly verifiable secret sharing scheme and

its application to electronic voting. In Annual International Cryptology Conference.
Springer, 148–164.

[61] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[62] Victor Shoup and Nigel P Smart. 2023. Lightweight Asynchronous Verifiable

Secret Sharing with Optimal Resilience. Cryptology ePrint Archive (2023).
[63] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson Bessani. 2022.

Cobra: Dynamic proactive secret sharing for confidential bft services. In 2022
IEEE symposium on security and privacy (SP). IEEE, 1335–1353.

[64] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-

ham. 2019. Hotstuff: Bft consensus with linearity and responsiveness. In Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing. ACM,

347–356.

[65] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.

2022. hbACSS: How to Robustly Share Many Secrets. In Proceedings of the 29th
Annual Network and Distributed System Security Symposium.

[66] Haibin Zhang, Sisi Duan, Chao Liu, Boxin Zhao, Xuanji Meng, Shengli Liu, Yong

Yu, Fangguo Zhang, and Liehuang Zhu. 2022. Practical Asynchronous Distributed

Key Generation: Improved Efficiency, Weaker Assumption, and Standard Model.

Cryptology ePrint Archive (2022).
[67] Jiaheng Zhang, Tiancheng Xie, Thang Hoang, Elaine Shi, and Yupeng Zhang.

2022. Polynomial Commitment with a {One-to-Many} Prover and Applications.

In 31st USENIX Security Symposium (USENIX Security 22). 2965–2982.

A ADDITIONAL PRELIMINARIES
A.1 Broadcast Channel
Our synchronous VSS and AVSS protocols make black box invo-

cations to a Byzantine broadcast and Byzantine reliable broadcast

protocol, respectively. We use state-of-the-art broadcast extension

protocols, i.e., for long messages [32, 53]. For completeness, we

include the definitions of Byzantine (reliable) broadcast below.

Definition 5 (Byzantine Broadcast). A Byzantine broadcast is a

protocol for a set of nodes {1, . . . , 𝑛} including a designated broad-

caster who holds an initial input, is a Byzantine broadcast protocol

if the following properties hold

• Agreement. If an honest node outputs a message𝑀 and another

honest node outputs𝑀′, then𝑀 = 𝑀′.
• Validity. If the sender is honest and has input 𝑀 , all honest

nodes output𝑀 .

• Termination. Every honest node outputs a message.

Definition 6 (Byzantine Reliable Broadcast). A protocol for a set

of nodes {1, . . . , 𝑛} including a designated broadcaster who holds

an initial input, is a Byzantine reliable broadcast protocol if the

following properties hold

• Agreement and Validity. Same as Byzantine broadcast.

• Totality. If an honest node outputs a message, then every honest

node eventually outputs a message.

The optimal fault-tolerant synchronous Byzantine broadcast [52,

53] achieves 𝑂(𝑛 |𝑀 |+𝜅𝑛2
) communication cost for a message 𝑀

assuming powers-of-tau [49] and 𝑞-SDH, and 𝑂(𝑛 |𝑀 |+𝜅𝑛2
log𝑛)

communication cost assuming collision resistant hash function.

The optimal fault-tolerant asynchronous Byzantine reliable broad-

cast [32] achieves a communication cost of 𝑂(𝑛 |𝑀 |+𝜅𝑛2
) for a mes-

sage𝑀 assuming collision-resistant hash functions.

A.2 Pedersen’s polynomial commitment
Constructions. In Figure 7 we describe a concrete polynomial com-

mitment scheme that combines ideas from the classic Pedersen’s

polynomial commitment and SCRAPE’s low-degree test [21]. The

resulting scheme has a linear-sized commitment and constant-sized

opening proof. The commitment includes 𝑛 values of the polynomi-

als in the exponent, and the low degree is verified by multiplying

these values in the exponent with a random word from the dual

code and checking that the result is 1G, i.e., the identity element of

G. The scheme is information-theoretically hiding and evaluation

binding assuming hardness of discrete logarithm [56].

Remark. An alternative approach would have been to commit to

𝑑 + 1 coefficients of the polynomials in the exponent. This would

have made the commitment shorter and would have eliminated the

need for low-degree verification. On the other hand, the opening

phase would have become more costly: verifying each opened value

would have required 𝑂(𝑑) exponentiations instead of one.

A.3 Batched interface for polynomial
commitment

As we briefly describe in §3.3, in our VSS schemes, the dealer re-

veals shares for a list of nodes for everyone to verify. Thus, we

introduce the following additional interface for batched opening

and verification. Specifically, for any set 𝐼 ⊆ [𝑛], we require the

polynomial commitment to provide the following interfaces.

• PC.BatchOpen(𝑝𝑝,𝒘, 𝑝(·), 𝐼 = {𝑖1, . . . , 𝑖𝑘 }) → (𝒖, 𝝅). On input

the set of indices 𝐼 , the polynomial 𝑝(·) and witness 𝒘 , out-
puts 𝒖 = [𝑝(𝑖1), . . . , 𝑝(𝑖𝑘)] along with batch opening proof 𝝅 =

[𝜋𝑖1 , . . . , 𝜋𝑖𝑛].

• PC.BatchVerify(𝑝𝑝, 𝒗, 𝐼 = {𝑖1, . . . , 𝑖𝑘 }, 𝒖, 𝝅)→ 0/1. On input the

commitment 𝒗 to a polynomial 𝑝(𝑖), outputs 1 if 𝒖[𝑗] = 𝑝(𝑖 𝑗) for

all 𝑖 𝑗 ∈ 𝐼 , and outputs 0 otherwise.

We describe the concrete instantiations of the batched interfaces

in Figure 8. Here we use a random linear combination to verify

14

PC.Setup(1
𝜆

): Output 𝑝𝑝 = (G, F, 𝑔, ℎ), for an elliptic curve group G

with scalar field F, and uniformly random and independent generators

𝑔,ℎ ∈ G.

PC.Commit(𝑝𝑝, 𝑝(·), 𝑑, 𝑛): Let 𝑝(·) be the polynomial of degree 𝑑 .

Sample a random polynomial 𝑟 (·) of degree 𝑑 . Let 𝒗 be the commit-

ment to 𝑝(·) where

𝒗 =

[
𝑔𝑝(1)ℎ𝑟 (1), 𝑔𝑝(2)ℎ𝑟 (2), . . . , 𝑔𝑝(𝑛)ℎ𝑟 (𝑛)

]
Output (𝒗,𝒘) = (𝒗, 𝑟 (·)).

PC.Open(𝑝𝑝, 𝑖, 𝑝(·), 𝑟 (·)): Output (𝑢, 𝜋) = (𝑝(𝑖), 𝑟 (𝑖)).

PC.DegCheck(𝑝𝑝, 𝒗, 𝑑): Sample a random degree 𝑑 = 𝑛 − 𝑡 − 2

polynomial 𝑧(·) in F. Output 1 if∏
𝑖∈[𝑛]

𝒗[𝑖]𝑧(𝑖)·𝜆𝑖
= 1G (2)

for 𝜆𝑖 =

∏
𝑗 ∈[𝑛], 𝑗 ̸=𝑖 1/(𝑖 − 𝑗); otherwise output 0.

PC.Verify(𝑝𝑝, 𝒗, 𝑖,𝑢, 𝜋): Output 1 if 𝒗[𝑖] = 𝑔𝑧ℎ𝜋 ; otherwise output 0.

Figure 7: Pedersen’s polynomial commitment scheme combinedwith
SCRAPE’s low degree test.

PC.BatchOpen(𝑝𝑝,𝒘, 𝑝(·), 𝐼 = {𝑖1, . . . , 𝑖𝑘 }): Output (𝒔,𝝅) where

𝒔 = [𝑝(𝑖1), . . . , 𝑝(𝑖𝑘)]; and 𝝅 = [𝑟 (𝑖1), . . . , 𝑟 (𝑖𝑘)] (3)

PC.BatchVerify(𝑝𝑝, 𝒗, 𝐼 = {𝑖1, . . . , 𝑖𝑘 }, 𝒔,𝝅): Given a subset 𝐼 ⊆ [𝑛],

let 𝑘 = |𝐼 | . Assert 𝑘 = |𝒗 |= |𝝅 | . Sample a uniform random vector

[𝛾1, . . . , 𝛾𝑘] ∈ F𝑘 . Let 𝑠 =

∑
𝑗 ∈[𝑘]

𝛾 𝑗𝑠 𝑗 and 𝜋 =

∑
𝑗 ∈[𝑘]

𝛾 𝑗𝜋 𝑗 . Output

1, if the following holds, otherwise output 0.∏
𝑗 ∈[𝑘]

𝒗[𝑖 𝑗]
𝛾 𝑗

= 𝑔𝑠ℎ𝜋 (4)

Figure 8: Batched interfaces for the Polynomial commitment.

all the openings using a single multi-exponentiations of width 𝑘

instead of 2𝑘 exponentiations.

B VERIFIABLE ENCRYPTIONS OF DISCRETE
LOGARITHM

B.1 Verifiable Encryption Scheme of [42]
The VE scheme of Groth [42] works with Feldman commitment

where a message 𝑠 ∈ F is committed as 𝑔𝑠 for some pre-specified

generator 𝑔 ∈ G. We can not use it to design a VSS protocol as

the Feldman commitment scheme is not hiding for messages with

small entropy; an adversary can exhaustively search the message

space to derive a matching commitment. Nevertheless, we will

use Groth’s VE to design a VE that works with the Pedersen com-

mitment scheme. Next, we will briefly describe the relations P in

Groth’s VE proves and discuss how our modifications require P to

prove a similar relation.

Let 𝑣 = 𝑔𝑠 be the commitment to the secret 𝑠 . P computes, among

other things, the ElGamal encryption of 𝑣 , i.e., 𝑐𝑣 = (𝑐𝑣,0, 𝑐𝑣,1) =

(𝑔𝑎, 𝑣pk𝑎). Here pk = 𝑔sk is the public key of the recipient with

secret key sk. P then computes the NIZK proof in two parts: Proof
of correct sharing and Proof of correct chunking.

Proof of correct sharing. In the first part, for the tuple (𝑣, 𝑐𝑣, pk),

P proves, using a Σ-protocol, that 𝑐𝑣 is an ElGamal encryption of 𝑣

for the public key pk.
Proof of correct chunking. In the second part, P proves that

the ciphertext is decryptable. Let 𝒄𝑣 be a vector of ElGamal cipher-

texts where each ciphertext encrypts a small number of bits (called

chunks) of 𝑠 . Let (pk, 𝑐𝑣, 𝒄𝑣) be the entire ciphertext (of commitment

and each chunk of 𝑠), then P proves that 𝑠 ← Dec(sk, 𝑐𝑣, 𝒄𝑣). We

refer the reader to [42, §6.5]) for more details.

B.2 VE for Pedersen commitments
Our new VE for Pedersen commitment maintains the two-part

structure of Groth’s VE. Looking ahead, we provide support for the

Pedersen commitment scheme only by changing the protocol for

proof of correct sharing. Moreover, our modification adds only two

group elements and a single field element to the Groth’s VE proof.

We discuss our changes next.

Proof of correct sharing. Let 𝑔𝑠ℎ𝑟 be the Pedersen commitment

to 𝑠 . Let 𝑣 = 𝑔𝑠 and𝑢 = ℎ𝑟 , hence the commitment to 𝑠 is 𝑣 ·𝑢. In our

scheme, the ciphertext also contains the ElGamal encryption of𝑢, i.e.

𝑐𝑢 = (𝑐𝑢,0, 𝑐𝑢,1) = (𝑔𝑏 , 𝑢pk𝑏), along with 𝑐𝑣 = (𝑐𝑣,0, 𝑐𝑣,1) = (𝑔𝑎, 𝑣pk𝑎).

Now, P andV locally computes 𝑐𝑣𝑢 , where,

𝑐𝑣𝑢 = (𝑐𝑣,0 · 𝑐𝑢,0, 𝑐𝑣,1 · 𝑐𝑢,1) = (𝑔𝑎+𝑏 , 𝑣𝑢 · pk𝑎+𝑏
)

P in our VE then uses the protocol for proof of correct shar-

ing of Groth’s VE (with standard modifications [28]) for the tuple

(𝑣𝑢, 𝑐𝑣𝑢 , pk) to prove that 𝑐𝑢𝑣 is an ElGamal encryption of 𝑣𝑢 for

public key pk.
Proof of correct chunking. Since the ciphertext of our VE re-

mains unchanged (with the exception of one additional ElGamal

encryption), a tempting approach is to directly use the protocol for

proof of correct chunking of Groth’s VE protocol as the second part

of our VE scheme. Intuitively, proof of correct chunking protocol

of Groth’s VE guarantees that a node with secret sk will be able to

decrypt 𝑠 as Dec(𝑠𝑘, 𝑐𝑣, 𝒄𝑣). Although it is true, there is one subtle

issue.

Eventually, to reconstruct the secret, we require each node to

reveal its share along with a opening proof. For Pedersen com-

mitment 𝑔𝑠ℎ𝑟 , the natural opening proof is 𝑟 . This implies that to

fully support Pedersen commitments, we need to add additional

information 𝒄𝑢 to the ciphertext and the NIZK proof such that

(𝑠, 𝑟)← Dec(sk, 𝑐𝑢 , 𝑐𝑣, 𝒄𝑣, 𝒄𝑢).

The obvious approach is to repeat the protocol to prove the

decryptability of 𝑐𝑣 for 𝑐𝑢 , as well. However, this would increase

the computation cost of dealing and verifying the transcript and

the transcript size by a factor of 2. Next, we describe our approach

that addresses this issue without increasing the ciphertext size, thus

avoiding the 2× overhead.

Our key observation is that the opening proof of a Pedersen

commitment 𝑔𝑠ℎ𝑟 need not be 𝑟 . Instead, it can be (𝑢 = ℎ𝑟 , 𝜋𝑢)

where 𝜋𝑢 proves that 𝑢 is correctly computed. Thus, in our VE, we

let R recover (𝑢, 𝜋𝑢), where R uses 𝜋𝑢 to convince others regarding

the correctness of 𝑢.

Computing 𝑢 is trivial as it is the ElGamal decryption of 𝑐𝑢

using the secret key sk. We define 𝜋𝑢 as the tuple (pk𝑏 , 𝜋pk) where

𝜋pk is a discrete logarithm equality (DLEq) proof for the tuple

15

Functionality FVSS

Parameters: Maximum number of malicious nodes 𝑡 , the total num-

ber of nodes 𝑛 ≥ 2𝑡 + 1. Let G be an elliptic curve group of order 𝑞

with scalar field F.

(1) Wait for secret 𝑠 from the dealer.

(2) Wait for C with | C |≤ 𝑡 , the set of nodes A will corrupt.

(3) Compute (𝑛, 𝑡) Shamir secret shares of 𝑠 over the field F. Let 𝑠(𝑥)

be the degree 𝑡 polynomial with 𝑠 = 𝑠(0).

(4) Send 𝑠(𝑗) to each honest node 𝑗 . Send {𝑠(𝑖)}𝑖∈C to A.

Figure 9: Functionality for the Sharing phase of synchronous VSS.

Inputs. C, F and G. Notation. Let H = [𝑛] \ C
(1) Sample signing and public key (sk𝑗 , pk𝑗) for each 𝑗 ∈ H. Send

the public keys to A.

(2) Send C to FVSS and receive {𝑠(𝑖)}𝑖∈C .
(3) Sample uniformly random generators 𝑔,ℎ ← G.
(4) Sample a polynomial 𝑠(·) of degree 𝑡 such that 𝑠(𝑖) = 𝑠(𝑖) for each

𝑖 ∈ C. Additionally, sample a uniform random polynomial 𝑟 (·) of
degree 𝑡 .

(5) Compute the commitment 𝒗 = [𝑣1, 𝑣2 . . . , 𝑣𝑛] where 𝑣𝑖 =

𝑔𝑠(𝑖)ℎ𝑟 (𝑖)
for each 𝑖 ∈ [𝑛].

(6) Simulate the dealer by sending 𝒗 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] as the poly-

nomial commitment. Participate in the rest of the protocol on

behalf of the honest parties.

Figure 10: Synchronous VSS simulator SVSS

(𝑔, pk, 𝑐𝑢,0, pk𝑏). More precisely, 𝜋pk convinces any verifier that

log𝑔 pk = log𝑐𝑢,0
pk𝑏 .

Each node upon receiving 𝜋𝑢 = (pk𝑏 , 𝜋pk), checks the correctness

of the DLEq relation using 𝜋pk and 𝑐𝑢,0. Upon successful validation,

the node computes ℎ𝑟 = 𝑐𝑢,1/pk𝑏 . Finally, the node checks the

correctness of 𝑠 by checking whether 𝑔𝑠ℎ𝑟 = 𝑣𝑢.

C SECRECY PROOFS
We prove Secrecy of our VSS protocols using simulatability: for ev-
ery probabilistic polynomial-time (PPT) adversaryA that statically

corrupts up to 𝑡 nodes, there exists an ideal world PPT simulator

that interacts with the ideal functionality and produces a view such

that A’s view in the simulated world is indistinguishable to a run

of the Sharing phase.

Secrecy of Synchronous VSS.We prove Secrecy of our synchro-

nous VSS with respect to FVSS ideal functionality (cf. Figure 9). Let

SVSS be corresponding simulator. SVSS simulate A’s view using

the Pedersens’ polynomial commitment scheme. We summarize

SVSS in Figure 10, and prove the following theorem.

Lemma 1 (Synchronous VSS Secrecy). A’s view in its interaction
with SVSS is identically distributed to its view in the real protocol.

Proof. Let ℎ = 𝑔𝛼 for some non-zero 𝛼 ∈ F. For any fixed

commitment 𝒗, consider the probability of outputting 𝒗 and 𝑠(𝑖)

for each 𝑖 ∈ C in a real protocol. For a fixed polynomial 𝑠(·), there
exists a unique polynomial 𝑟 (·) that outputs 𝒗 as the commitment.

Since the dealer in the honest protocol samples 𝑟 (·) uniformly at

random, in the real protocol Pr[𝒗, {𝑠(𝑖)}𝑖∈C]
real

= 1/|F|𝑡+1
.

Now consider the probability of the same event in the simulated

view. For a fixed 𝑠(·), a unique degree 𝑡 polynomial 𝑟 (·) exists that

Functionality FAVSS

Parameters: Maximum number of malicious nodes 𝑡 , the total num-

ber of nodes 𝑛 ≥ 3𝑡 + 1. Let G be an elliptic curve group of order 𝑞

with scalar field F.

(1) Wait for secret 𝑠 from the dealer.

(2) Wait for C and H𝑅 from A. Here C is the set of nodes A will

corrupt and H𝑅 is the set of honest nodes whose shares the the

functionality will reveal. Check that | C |≤ 𝑡 , | C ∪ H𝑅 | ≤ 2𝑡 . Let

C0 = C ∪ H𝑅 .

(3) Compute (𝑛, 2𝑡) Shamir secret shares of 𝑠 over the field F. Let

𝑠(𝑥) be the degree 2𝑡 polynomial with 𝑠 = 𝑠(0).

(4) Send 𝑠(𝑗) to each honest node 𝑗 . Send {𝑠(𝑖)}𝑖∈C0
to A.

Figure 11: Functionality for the Sharing phase of our AVSS.

Inputs. C,H𝑅 , F and G. Notation. Let H = [𝑛] \ C and let C0 =

C ∪ H𝑅 .

(1) Sample signing and public key (sk𝑗 , pk𝑗) for each 𝑗 ∈ H. Send

the public keys to A.

(2) Send (C,H𝑅) to FAVSS and receive {𝑠(𝑖)}𝑖∈C0
.

(3) Sample uniformly random generators 𝑔,ℎ ← G.
(4) Sample a polynomial 𝑠(·) of degree 2𝑡 such that 𝑠(𝑖) = 𝑠(𝑖) for

each 𝑖 ∈ C0. Additionally, sample a uniform random polynomial

𝑟 (·) of degree 2𝑡 .

(5) Compute the commitment 𝒗 = [𝑣1, 𝑣2 . . . , 𝑣𝑛] where 𝑣𝑖 =

𝑔𝑠(𝑖)ℎ𝑟 (𝑖)
for each 𝑖 ∈ [𝑛].

(6) Simulate the dealer by sending 𝒗 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] as the poly-

nomial commitment. Participate in the rest of the protocol on

behalf of the honest parties.

Figure 12: Asynchronous VSS simulator SAVSS

results in 𝒗 as the commitment. In particular, the unique 𝑟 (·) is:

𝑟 (𝑥) = 𝑟 (𝑥) +

𝑠(𝑥) − 𝑠(𝑥)

𝛼
(5)

Since SVSS samples 𝑟 (·) uniformly at random,

Pr[𝒗, {𝑠(𝑖)}𝑖∈C]
id

= Pr

[
𝑟 (𝑥) = 𝑟 (𝑥) +

𝑠(𝑥) − 𝑠(𝑥)

𝛼

]
id

= 1/|F|𝑡+1
(6)

Equation (6) implies that the polynomial commitment and shares

seen by A are identically distributed in real and simulated view.

Since SVSS simulates the rest of the protocol as per protocol speci-

fication, the distribution of the remaining messages seen by A is

also identical in both the real and simulated world. □

Secrecy of Asynchronous VSS.We prove Secrecy of our AVSS

scheme with respect to FAVSS ideal functionality (cf. Figure 11).

Let SAVSS be corresponding simulator. SAVSS also uses the polyno-

mial commitment scheme from Figure 7 to simulate A’s view. We

summarize SAVSS in Figure 12, and prove the following.

Lemma 2 (Asynchronous VSS Secrecy). A’s view in its interaction
with SAVSS is identically distributed to its view in the real protocol.

Proof. Follows using a similar argument as the proof of Lemma 1.

□

Secrecy of the dual-thresold AVSS.We prove Secrecy of our dual-

threshold AVSS scheme with respect to FDtAVSS ideal functionality

16

Functionality FDtAVSS

Parameters: The maximum number of malicious nodes 𝑡 , the total

number of nodes𝑛 ≥ 3𝑡 +1, and maximum coalition size ℓ ∈ [𝑡, 𝑛−𝑡).

Let G be an elliptic curve group of order 𝑞 with scalar field F.

(1) Wait for secret 𝑠 from the dealer.

(2) Wait for C, H𝑅 , and H𝐶 from A. Here C is the set of nodes A
will corrupt and H𝑅 is the set of honest nodes whose shares the

the functionality will reveal. Also, let H𝐶 is the set of honest

nodes who will collude with A to learn the secret. Let C0 =

C ∪ H𝐶 ∪ H𝑅

(3) Assert that | C |≤ 𝑡 , | C ∪ H𝐶 | ≤ ℓ , and | C ∪ H𝐶 ∪ H𝑅 | ≤ 2𝑡 .

(4) Compute (𝑛, 2𝑡) Shamir secret shares of 𝑠 over the field F. Let

𝑠(𝑥) be the degree 2𝑡 polynomial with 𝑠 = 𝑠(0).

(5) Send 𝑠(𝑗) to each honest node 𝑗 . Send {𝑠(𝑖)}𝑖∈C0
to A.

Figure 13: Dual-threshold AVSS functionality.

Inputs. C,H𝐶 ,H𝑅 , F and G.

Notation. Let H = [𝑛] \ C and let C0 = C ∪ H𝑅 ∪ H𝐶 .

(1) Sample signing and public key (sk𝑗 , pk𝑗) for each 𝑗 ∈ H. Send

the public keys of all nodes to A. Additionally, send sk𝑗 for each
𝑗 ∈ H𝐶 to A.

(2) Send (C,H𝑅,H𝐶) to FDtAVSS and receive {𝑠(𝑖)}𝑖∈C0
.

(3) Sample uniformly random generators 𝑔,ℎ ← G.
(4) Sample a polynomial 𝑠(·) of degree 2𝑡 such that 𝑠(𝑖) = 𝑠(𝑖) for

each 𝑖 ∈ C0. Additionally, sample a uniform random polynomial

𝑟 (·) of degree 2𝑡 .

(5) Compute the commitment 𝒗 = [𝑣1, 𝑣2 . . . , 𝑣𝑛] where 𝑣𝑖 =

𝑔𝑠(𝑖)ℎ𝑟 (𝑖)
for each 𝑖 ∈ [𝑛].

(6) Simulate the dealer by sending 𝒗 = [𝑣1, 𝑣2, . . . , 𝑣𝑛] as the polyno-

mial commitment. Simulate the dual-threshold VSS protocol on

behalf of honest nodes up until receiving 2𝑡 + 1 signed acknowl-

edgments.

(7) Let H𝐸 be the set of nodes whose shares SDtVSS will verifiably

encrypt. For each node 𝑗 ∈ H𝐸 , use 𝑠(𝑗) and 𝑟 (𝑗) as inputs to the

VE scheme.

Figure 14: Dual-threshold AVSS simulator SDtVSS

(cf. Figure 13). Let SDtVSS be corresponding simulator. SDtVSS also

uses Pedersens’ polynomial commitment from Figure 7 and the

VE scheme from Appendix B to simulate A’s view. We summarize

SDtVSS in Figure 14, and prove the following.

Lemma 3 (Dual-threshold AVSS). A’s view in its interaction with
SDtVSS is computationally indistinguishable from its view in the real
protocol.

Proof. We will prove this using a sequence of hybrids using the

verifiable encryption scheme from Appendix B.

Hybrid 0. This corresponds to the real-world execution.

Hybrid 1. Same as Hybrid 0, except we will change the NIZK proof

of correct sharing of the VE scheme with a simulated proof. Hybrid

1 is indistinguishable from Hybrid 0 due to the zero-knowledge

property of the NIZK scheme.

Hybrid 2 to Hybrid 𝑘 + 1. Without loss of generality let H𝐸 =

1, 2, . . . , 𝑘 . Hybrid 𝑖 + 1 for any 𝑖 ∈ [1, 𝑘] is the same as Hybrid 𝑖 ,

except it swaps out VE of 𝑠(𝑖) and with VE of 𝑠(𝑖). For each 𝑖 ∈ [1, 𝑘],

Hybrid 𝑖 + 1 is indistinguishable from Hybrid 𝑖 due to the CPA

security of the VE scheme.

Hybrid 𝑘 + 2 to Hybrid 2𝑘 + 1. Hybrid 𝑘 + 𝑖 + 1 for any 𝑖 ∈ [1, 𝑘] is

the same as Hybrid 𝑘 + 𝑖 , except it swaps out the encryption of 𝑟 (𝑖)

and with encryption of 𝑟 (𝑖). For each 𝑖 ∈ [1, 𝑘], Hybrid 𝑘 + 𝑖 + 1 is

indistinguishable from Hybrid 𝑘 + 𝑖 due to the CPA security of the

ElGamal encryption scheme

Hybrid 2𝑘 + 2. Same as Hybrid 2𝑘 + 1, except change the Pedersen

commitment {𝑔𝑠(𝑖)ℎ𝑟 (𝑖)}𝑖∈[𝑛]
to {𝑔𝑠(𝑖)ℎ𝑟 (𝑖)}𝑖∈[𝑛]

. Using a similar ar-

gument as Proof of Lemma 1, Hybrid 2𝑘 +2 is identically distributed

to Hybrid 2𝑘 + 1.

Hybrid 2𝑘 + 3. Same as Hybrid 2𝑘 + 2, except we will change the

simulated NIZK proof of correct sharing of the VE scheme with a

real NIZK proof. Hybrid 2𝑘 + 3 is indistinguishable from Hybrid

2𝑘 + 2 due to the zero-knowledge property of the NIZK scheme.

Moreover, Hybrid 2𝑘 + 3 is the simulated transcript. □

17

	Abstract
	1 Introduction
	2 Related Work
	3 Definitions and Overview
	3.1 Threat Model
	3.2 Definition of Verifiable Secret Sharing
	3.3 Overview of Our Approach

	4 Preliminaries
	4.1 Threshold Secret Sharing
	4.2 Polynomial Commitment Scheme

	5 Synchronous VSS
	5.1 Design
	5.2 Analysis

	6 Asynchronous VSS
	6.1 Design
	6.2 Analysis

	7 Dual-threshold AVSS
	7.1 Verifiable Encryption of Committed Messages
	7.2 Dual-threshold AVSS Design
	7.3 Optimization for Common Case Execution
	7.4 Analysis

	8 Implementation and Evaluation
	8.1 Computation Costs Measurement
	8.2 Geo-Distributed End-to-End Evaluation
	8.3 Additional Comparisons

	9 Discussion and Conclusion
	References
	A Additional Preliminaries
	A.1 Broadcast Channel
	A.2 Pedersen's polynomial commitment
	A.3 Batched interface for polynomial commitment

	B Verifiable Encryptions of Discrete Logarithm
	B.1 Verifiable Encryption Scheme of groth2021non
	B.2 VE for Pedersen commitments

	C Secrecy Proofs

