
28th International Conference, TACAS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2–7, 2022
Proceedings, Part I

Tools and Algorithms
for the Construction
and Analysis of SystemsLN

CS
 1

32
43

AR
Co

SS
Dana Fisman
Grigore Rosu (Eds.)

Lecture Notes in Computer Science 13243

Founding Editors

Gerhard Goos, Germany
Juris Hartmanis, USA

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China
Bernhard Steffen , Germany

Gerhard Woeginger , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://link.springer.com/bookseries/558

Dana Fisman • Grigore Rosu (Eds.)

Tools and Algorithms
for the Construction
and Analysis of Systems
28th International Conference, TACAS 2022
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022
Munich, Germany, April 2–7, 2022
Proceedings, Part I

123

Editors
Dana Fisman
Ben-Gurion University of the Negev
Be’er Sheva, Israel

Grigore Rosu
University of Illinois Urbana-Champaign
Urbana, IL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-99523-2 ISBN 978-3-030-99524-9 (eBook)
https://doi.org/10.1007/978-3-030-99524-9

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6015-4170
https://orcid.org/0000-0002-3102-0421
https://doi.org/10.1007/978-3-030-99524-9
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 25th ETAPS! ETAPS 2022 took place in Munich, the beautiful capital
of Bavaria, in Germany.

ETAPS 2022 is the 25th instance of the European Joint Conferences on Theory and
Practice of Software. ETAPS is an annual federated conference established in 1998,
and consists of four conferences: ESOP, FASE, FoSSaCS, and TACAS. Each
conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations of programming languages, analysis tools, and
formal approaches to software engineering. Organizing these conferences in a coherent,
highly synchronized conference program enables researchers to participate in an
exciting event, having the possibility to meet many colleagues working in different
directions in the field, and to easily attend talks of different conferences. On the
weekend before the main conference, numerous satellite workshops took place that
attract many researchers from all over the globe.

ETAPS 2022 received 362 submissions in total, 111 of which were accepted,
yielding an overall acceptance rate of 30.7%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2022 featured the unifying invited speakers Alexandra Silva (University
College London, UK, and Cornell University, USA) and Tomáš Vojnar (Brno
University of Technology, Czech Republic) and the conference-specific invited
speakers Nathalie Bertrand (Inria Rennes, France) for FoSSaCS and Lenore Zuck
(University of Illinois at Chicago, USA) for TACAS. Invited tutorials were provided by
Stacey Jeffery (CWI and QuSoft, The Netherlands) on quantum computing and
Nicholas Lane (University of Cambridge and Samsung AI Lab, UK) on federated
learning.

As this event was the 25th edition of ETAPS, part of the program was a special
celebration where we looked back on the achievements of ETAPS and its constituting
conferences in the past, but we also looked into the future, and discussed the challenges
ahead for research in software science. This edition also reinstated the ETAPS men-
toring workshop for PhD students.

ETAPS 2022 took place in Munich, Germany, and was organized jointly by the
Technical University of Munich (TUM) and the LMU Munich. The former was
founded in 1868, and the latter in 1472 as the 6th oldest German university still running
today. Together, they have 100,000 enrolled students, regularly rank among the top
100 universities worldwide (with TUM’s computer-science department ranked #1 in
the European Union), and their researchers and alumni include 60 Nobel laureates.

The local organization team consisted of Jan Křetínský (general chair), Dirk Beyer
(general, financial, and workshop chair), Julia Eisentraut (organization chair), and
Alexandros Evangelidis (local proceedings chair).

ETAPS 2022 was further supported by the following associations and societies:
ETAPS e.V., EATCS (European Association for Theoretical Computer Science),
EAPLS (European Association for Programming Languages and Systems), and EASST
(European Association of Software Science and Technology).

The ETAPS Steering Committee consists of an Executive Board, and representa-
tives of the individual ETAPS conferences, as well as representatives of EATCS,
EAPLS, and EASST. The Executive Board consists of Holger Hermanns
(Saarbrücken), Marieke Huisman (Twente, chair), Jan Kofroň (Prague), Barbara König
(Duisburg), Thomas Noll (Aachen), Caterina Urban (Paris), Tarmo Uustalu (Reykjavik
and Tallinn), and Lenore Zuck (Chicago).

Other members of the Steering Committee are Patricia Bouyer (Paris), Einar Broch
Johnsen (Oslo), Dana Fisman (Be’er Sheva), Reiko Heckel (Leicester), Joost-Pieter
Katoen (Aachen and Twente), Fabrice Kordon (Paris), Jan Křetínský (Munich), Orna
Kupferman (Jerusalem), Leen Lambers (Cottbus), Tiziana Margaria (Limerick),
Andrew M. Pitts (Cambridge), Elizabeth Polgreen (Edinburgh), Grigore Roşu (Illinois),
Peter Ryan (Luxembourg), Sriram Sankaranarayanan (Boulder), Don Sannella
(Edinburgh), Lutz Schröder (Erlangen), Ilya Sergey (Singapore), Natasha Sharygina
(Lugano), Pawel Sobocinski (Tallinn), Peter Thiemann (Freiburg), Sebastián Uchitel
(London and Buenos Aires), Jan Vitek (Prague), Andrzej Wasowski (Copenhagen),
Thomas Wies (New York), Anton Wijs (Eindhoven), and Manuel Wimmer (Linz).

I’d like to take this opportunity to thank all authors, attendees, organizers of the
satellite workshops, and Springer-Verlag GmbH for their support. I hope you all
enjoyed ETAPS 2022.

Finally, a big thanks to Jan, Julia, Dirk, and their local organization team for all their
enormous efforts to make ETAPS a fantastic event.

February 2022 Marieke Huisman
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

TACAS 2022 was the 28th edition of the International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. TACAS 2022 was part of the
25th European Joint Conferences on Theory and Practice of Software (ETAPS 2022),
which was held from April 2 to April 7 in Munich, Germany, as well as online due to the
COVID-19 pandemic. TACAS is a forum for researchers, developers, and users inter-
ested in rigorous tools and algorithms for the construction and analysis of systems. The
conference aims to bridge the gaps between different communities with this common
interest and to support them in their quest to improve the utility, reliability, flexibility,
and efficiency of tools and algorithms for building computer-controlled systems.

There were four submission categories for TACAS 2022:

1. Research papers advancing the theoretical foundations for the construction and
analysis of systems.

2. Case study papers with an emphasis on a real-world setting.
3. Regular tool papers presenting a new tool, a new tool component, or novel

extensions to an existing tool.
4. Tool demonstration papers focusing on the usage aspects of tools.

Papers of categories 1–3 were restricted to 16 pages, and papers of category 4 to six
pages.

This year 159 papers were submitted to TACAS, consisting of 112 research papers,
five case study papers, 33 regular tool papers, and nine tool demo papers. Authors were
allowed to submit up to four papers. Each paper was reviewed by three Program
Committee (PC) members, who made use of subreviewers. Similarly to previous years,
it was possible to submit an artifact alongside a paper, which was mandatory for regular
tool and tool demo papers.

An artifact might consist of a tool, models, proofs, or other data required for vali-
dation of the results of the paper. The Artifact Evaluation Committee (AEC) was tasked
with reviewing the artifacts based on their documentation, ease of use, and, most
importantly, whether the results presented in the corresponding paper could be accu-
rately reproduced. Most of the evaluation was carried out using a standardized virtual
machine to ensure consistency of the results, except for those artifacts that had special
hardware or software requirements. The evaluation consisted of two rounds. The first
round was carried out in parallel with the work of the PC. The judgment of the AEC
was communicated to the PC and weighed in their discussion. The second round took
place after paper acceptance notifications were sent out; authors of accepted research
papers who did not submit an artifact in the first round could submit their artifact at this
time. In total, 86 artifacts were submitted (79 in the first round and seven in the second)
and evaluated by the AEC regarding their availability, functionality, and/or reusability.
Papers with an artifact that was successfully evaluated include one or more badges on
the first page, certifying the respective properties.

Selected authors were requested to provide a rebuttal for both papers and artifacts in
case a review gave rise to questions. Using the review reports and rebuttals, the
Program and the Artifact Evaluation Committees extensively discussed the papers and
artifacts and ultimately decided to accept 33 research papers, one case study, 12 tool
papers, and four tool demos.

This corresponds to an acceptance rate of 29.46% for research papers and an overall
acceptance rate of 31.44%.

Besides the regular conference papers, this two-volume proceedings also contains
16 short papers that describe the participating verification systems and a competition
report presenting the results of the 11th SV-COMP, the competition on automatic
software verifiers for C and Java programs. These papers were reviewed by a separate
Program Committee (PC); each of the papers was assessed by at least three reviewers.
A total of 47 verification systems with developers from 11 countries entered the sys-
tematic comparative evaluation, including four submissions from industry. Two ses-
sions in the TACAS program were reserved for the presentation of the results: (1) a
summary by the competition chair and of the participating tools by the developer teams
in the first session, and (2) an open community meeting in the second session.

We would like to thank all the people who helped to make TACAS 2022 successful.
First, we would like to thank the authors for submitting their papers to TACAS 2022.
The PC members and additional reviewers did a great job in reviewing papers: they
contributed informed and detailed reports and engaged in the PC discussions. We also
thank the steering committee, and especially its chair, Joost-Pieter Katoen, for his
valuable advice. Lastly, we would like to thank the overall organization team of
ETAPS 2022.

April 2022 Dana Fisman
Grigore Rosu

PC Chairs

Swen Jacobs
Andrew Reynolds

AEC Chairs, Tools, and Case-study Chairs

Dirk Beyer
Competition Chair

viii Preface

Organization

Program Committee

Parosh Aziz Abdulla Uppsala University, Sweden
Luca Aceto Reykjavik University, Iceland
Timos Antonopoulos Yale University, USA
Saddek Bensalem Verimag, France
Dirk Beyer LMU Munich, Germany
Nikolaj Bjorner Microsoft, USA
Jasmin Blanchette Vrije Universiteit Amsterdam, The Netherlands
Udi Boker Interdisciplinary Center Herzliya, Israel
Hana Chockler King’s College London, UK
Rance Cleaveland University of Maryland, USA
Alessandro Coglio Kestrel Institute, USA
Pedro R. D’Argenio Universidad Nacional de Córdoba, Argentina
Javier Esparza Technical University of Munich, Germany
Bernd Finkbeiner CISPA Helmholtz Center for Information Security,

Germany
Dana Fisman (Chair) Ben-Gurion University, Israel
Martin Fränzle University of Oldenburg, Germany
Felipe Gorostiaga IMDEA Software Institute, Spain
Susanne Graf Université Joseph Fourier, France
Radu Grosu Stony Brook University, USA
Arie Gurfinkel University of Waterloo, Canada
Klaus Havelund Jet Propulsion Laboratory, USA
Holger Hermanns Saarland University, Germany
Falk Howar TU Clausthal / IPSSE, Germany
Swen Jacobs CISPA Helmholtz Center for Information Security,

Germany
Ranjit Jhala University of California, San Diego, USA
Jan Kretinsky Technical University of Munich, Germany
Viktor Kuncak Ecole Polytechnique Fédérale de Lausanne,

Switzerland
Kim Larsen Aalborg University, Denmark
Konstantinos Mamouras Rice University, USA
Daniel Neider Max Planck Institute for Software Systems, Germany
Dejan Nickovic AIT Austrian Institute of Technology, Austria
Corina Pasareanu Carnegie Mellon University, NASA, and KBR, USA
Doron Peled Bar Ilan University, Israel
Anna Philippou University of Cyprus, Cyprus
Andrew Reynolds University of Iowa, USA

Grigore Rosu (Chair) University of Illinois at Urbana-Champaign, USA
Kristin Yvonne Rozier Iowa State University, USA
Cesar Sanchez IMDEA Software Institute, Spain
Sven Schewe University of Liverpool, UK
Natasha Sharygina Università della Svizzera italiana, Italy
Jan Strejček Masaryk University, Czech Republic
Cesare Tinelli University of Iowa, USA
Stavros Tripakis Northeastern University, USA
Frits Vaandrager Radboud University, The Netherlands
Tomas Vojnar Brno University of Technology, Czech Republic
Christoph M. Wintersteiger Microsoft, USA
Lijun Zhang Institute of Software, Chinese Academy of Sciences,

China
Lingming Zhang University of Illinois at Urbana-Champaign, USA
Lenore Zuck University of Illinois at Chicago, USA

Artifact Evaluation Committee

Pavel Andrianov Ivannikov Institute for System Programming
of the RAS, Russia

Michael Backenköhler Saarland University, Germany
Sebastian Biewer Saarland University, Germany
Benjamin Bisping TU Berlin, Germany
Olav Bunte Eindhoven University of Technology, The Netherlands
Damien Busatto-Gaston Université Libre de Bruxelles, Belgium
Marek Chalupa IST Austria, Austria, and Masaryk University,

Czech Republic
Priyanka Darke Tata Consultancy Services, India
Alexandre Duret-Lutz LRDE, France
Shenghua Feng Institute of Software, Chinese Academy of Sciences,

Beijing, China
Mathias Fleury University of Freiburg, Germany
Kush Grover Technical University of Munich, Germany
Dominik Harmim Brno University of Technology, Czech Republic
Swen Jacobs (Chair) CISPA Helmholtz Center for Information Security,

Germany
Xiangyu Jin Institute of Software, Chinese Academy of Sciences
Juraj Sič Masaryk University, Czech Republic
Daniela Kaufmann Johannes Kepler University Linz, Austria
Maximilian Alexander Köhl Saarland University, Germany
Mitja Kulczynski Kiel University, Germany
Maurice Laveaux Eindhoven University of Technology, The Netherlands
Yong Li Institute of Software, Chinese Academy of Sciences,

China
Debasmita Lohar Max Planck Institute for Software Systems, Germany
Makai Mann Stanford University, USA

x Organization

Fabian Meyer RWTH Aachen University, Germany
Stefanie Mohr Technical University of Munich, Germany
Malte Mues TU Dortmund, Germany
Yuki Nishida Kyoto University, Japan
Philip Offtermatt Université de Sherbrooke, Canada
Muhammad Osama Eindhoven University of Technology, The Netherlands
Jiří Pavela Brno University of Technology, Czech Republic
Adrien Pommellet LRDE, France
Mathias Preiner Stanford University, USA
José Proença CISTER-ISEP and HASLab-INESC TEC, Portugal
Tim Quatmann RWTH Aachen University, Germany
Etienne Renault LRDE, France
Andrew Reynolds (Chair) University of Iowa, USA
Mouhammad Sakr University of Luxembourg, Luxembourg
Morten Konggaard Schou Aalborg University, Denmark
Philipp Schlehuber-Caissier LRDE, France
Hans-Jörg Schurr Inria Nancy - Grand Est, France
Michael Schwarz Technische Universität München, Germany
Joseph Scott University of Waterloo, Canada
Ali Shamakhi Tehran Institute for Advanced Studies, Iran
Lei Shi University of Pennsylvania, USA
Matthew Sotoudeh University of California, Davis, USA
Jip Spel RWTH Aachen University, Germany
Veronika Šoková Brno University of Technology, Czech Republic

Program Committee and Jury — SV-COMP

Fatimah Aljaafari University of Manchester, UK
Lei Bu Nanjing University, China
Thomas Bunk LMU Munich, Germany
Marek Chalupa Masaryk University, Czech Republic
Priyanka Darke Tata Consultancy Services, India
Daniel Dietsch University of Freiburg, Germany
Gidon Ernst LMU Munich, Germany
Fei He Tsinghua University, China
Matthias Heizmann University of Freiburg, Germany
Jera Hensel RWTH Aachen University, Germany
Falk Howar TU Dortmund, Germany
Soha Hussein University of Minnesota, USA
Dominik Klumpp University of Freiburg, Germany
Henrich Lauko Masaryk University, Czech Republic
Will Leeson University of Virginia, USA
Xie Li Chinese Academy of Sciences, China
Viktor Malík Brno University of Technology, Czech Republic
Raveendra Kumar

Medicherla
Tata Consultancy Services, India

Organization xi

Rafael Sá Menezes University of Manchester, UK
Vince Molnár Budapest University of Technology and Economics,

Hungary
Hernán Ponce de León Bundeswehr University Munich, Germany
Cedric Richter University of Oldenburg, Germany
Simmo Saan University of Tartu, Estonia
Emerson Sales Gran Sasso Science Institute, Italy
Peter Schrammel University of Sussex and Diffblue, UK
Frank Schüssele University of Freiburg, Germany
Ryan Scott Galois, USA
Ali Shamakhi Tehran Institute for Advanced Studies, Iran
Martin Spiessl LMU Munich, Germany
Michael Tautschnig Queen Mary University of London, UK
Anton Vasilyev ISP RAS, Russia
Vesal Vojdani University of Tartu, Estonia

Steering Committee

Dirk Beyer Ludwig-Maximilians-Universität München, Germany
Rance Cleaveland University of Maryland, USA
Holger Hermanns Universität des Saarlandes, Germany
Joost-Pieter Katoen (Chair) RWTH Aachen University, Germany, and Universiteit

Twente, The Netherlands
Kim G. Larsen Aalborg University, Denmark
Bernhard Steffen Technische Universität Dortmund, Germany

Additional Reviewers

Abraham, Erika
Aguilar, Edgar
Akshay, S.
Asadi, Sepideh
Attard, Duncan
Avni, Guy
Azeem, Muqsit
Bacci, Giorgio
Balasubramanian, A. R.
Barbanera, Franco
Bard, Joachim
Basset, Nicolas
Bendík, Jaroslav
Berani Abdelwahab, Erzana
Beutner, Raven
Bhandary, Shrajan
Biewer, Sebastian

Blicha, Martin
Brandstätter, Andreas
Bright, Curtis
Britikov, Konstantin
Brunnbauer, Axel
Capretto, Margarita
Castiglioni, Valentina
Castro, Pablo
Ceska, Milan
Chadha, Rohit
Chalupa, Marek
Changshun, Wu
Chen, Xiaohong
Cruciani, Emilio
Dahmen, Sander
Dang, Thao
Danielsson, Luis Miguel

xii Organization

Degiovanni, Renzo
Dell’Erba, Daniele
Demasi, Ramiro
Desharnais, Martin
Dierl, Simon
Dubslaff, Clemens
Egolf, Derek
Evangelidis, Alexandros
Fedyukovich, Grigory
Fiedor, Jan
Fitzpatrick, Stephen
Fleury, Mathias
Frenkel, Hadar
Gamboa Guzman, Laura P.
Garcia-Contreras, Isabel
Gianola, Alessandro
Goorden, Martijn
Gorostiaga, Felipe
Gorrieri, Roberto
Grahn, Samuel
Grastien, Alban
Grover, Kush
Grünbacher, Sophie
Guha, Shibashis
Gutiérrez Brida, Simón Emmanuel
Havlena, Vojtěch
He, Jie
Helfrich, Martin
Henkel, Elisabeth
Hicks, Michael
Hirschkoff, Daniel
Hofmann, Jana
Hojjat, Hossein
Holík, Lukáš
Hospodár, Michal
Huang, Chao
Hyvärinen, Antti
Inverso, Omar
Itzhaky, Shachar
Jaksic, Stefan
Jansen, David N.
Jin, Xiangyu
Jonas, Martin
Kanav, Sudeep
Karra, Shyam Lal
Katsaros, Panagiotis

Kempa, Brian
Klauck, Michaela
Kreitz, Christoph
Kröger, Paul
Köhl, Maximilian Alexander
König, Barbara
Lahijanian, Morteza
Larraz, Daniel
Le, Nham
Lemberger, Thomas
Lengal, Ondrej
Li, Chunxiao
Li, Jianlin
Lorber, Florian
Lung, David
Luppen, Zachary
Lybech, Stian
Major, Juraj
Manganini, Giorgio
McCarthy, Eric
Mediouni, Braham Lotfi
Meggendorfer, Tobias
Meira-Goes, Romulo
Melcer, Daniel
Metzger, Niklas
Milovancevic, Dragana
Mohr, Stefanie
Najib, Muhammad
Noetzli, Andres
Nouri, Ayoub
Offtermatt, Philip
Otoni, Rodrigo
Paoletti, Nicola
Parizek, Pavel
Parker, Dave
Parys, Paweł
Passing, Noemi
Perez Dominguez, Ivan
Perez, Guillermo
Pinna, G. Michele
Pous, Damien
Priya, Siddharth
Putruele, Luciano
Pérez, Jorge A.
Qu, Meixun
Raskin, Mikhail

Organization xiii

Rauh, Andreas
Reger, Giles
Reynouard, Raphaël
Riener, Heinz
Rogalewicz, Adam
Roy, Rajarshi
Ruemmer, Philipp
Ruijters, Enno
Schilling, Christian
Schmitt, Frederik
Schneider, Tibor
Scholl, Christoph
Schultz, William
Schupp, Stefan
Schurr, Hans-Jörg
Schwammberger, Maike
Shafiei, Nastaran
Siber, Julian
Sickert, Salomon
Singh, Gagandeep
Smith, Douglas
Somenzi, Fabio

Stewing, Richard
Stock, Gregory
Su, Yusen
Tang, Qiyi
Tibo, Alessandro
Trefler, Richard
Trtík, Marek
Turrini, Andrea
Vaezipoor, Pashootan
van Dijk, Tom
Vašíček, Ondřej
Vediramana Krishnan, Hari Govind
Wang, Wenxi
Wendler, Philipp
Westfold, Stephen
Winter, Stefan
Wolovick, Nicolás
Yakusheva, Sophia
Yang, Pengfei
Zeljić, Aleksandar
Zhou, Yuhao
Zimmermann, Martin

xiv Organization

Contents – Part I

Synthesis

HOLL: Program Synthesis for Higher Order Logic Locking 3
Gourav Takhar, Ramesh Karri, Christian Pilato, and Subhajit Roy

The Complexity of LTL Rational Synthesis . 25
Orna Kupferman and Noam Shenwald

Synthesis of Compact Strategies for Coordination Programs 46
Kedar S. Namjoshi and Nisarg Patel

ZDD Boolean Synthesis. 64
Yi Lin, Lucas M. Tabajara, and Moshe Y. Vardi

Verification

Comparative Verification of the Digital Library of Mathematical Functions
and Computer Algebra Systems . 87

André Greiner-Petter, Howard S. Cohl, Abdou Youssef,
Moritz Schubotz, Avi Trost, Rajen Dey, Akiko Aizawa, and Bela Gipp

Verifying Fortran Programs with CIVL . 106
Wenhao Wu, Jan Hückelheim, Paul D. Hovland, and Stephen F. Siegel

NORMA: a tool for the analysis of Relay-based Railway
Interlocking Systems . 125

Arturo Amendola, Anna Becchi, Roberto Cavada, Alessandro Cimatti,
Andrea Ferrando, Lorenzo Pilati, Giuseppe Scaglione,
Alberto Tacchella, and Marco Zamboni

Efficient Neural Network Analysis with Sum-of-Infeasibilities 143
Haoze Wu, Aleksandar Zeljić, Guy Katz, and Clark Barrett

Blockchain

Formal Verification of the Ethereum 2.0 Beacon Chain 167
Franck Cassez, Joanne Fuller, and Aditya Asgaonkar

Fast and Reliable Formal Verification of Smart Contracts
with the Move Prover . 183

David Dill, Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Meng Xu,
and Emma Zhong

A Max-SMT Superoptimizer for EVM handling Memory and Storage 201
Elvira Albert, Pablo Gordillo, Alejandro Hernández-Cerezo,
and Albert Rubio

Grammatical Inference

A New Approach for Active Automata Learning Based on Apartness 223
Frits Vaandrager, Bharat Garhewal, Jurriaan Rot,
and Thorsten Wißmann

Learning Realtime One-Counter Automata . 244
Véronique Bruyère, Guillermo A. Pérez, and Gaëtan Staquet

Scalable Anytime Algorithms for Learning Fragments of Linear
Temporal Logic . 263

Ritam Raha, Rajarshi Roy, Nathanaël Fijalkow, and Daniel Neider

Learning Model Checking and the Kernel Trick for Signal Temporal Logic
on Stochastic Processes . 281

Luca Bortolussi, Giuseppe Maria Gallo, Jan Křetínský, and Laura Nenzi

Verification Inference

Inferring Interval-Valued Floating-Point Preconditions 303
Jonas Krämer, Lionel Blatter, Eva Darulova, and Mattias Ulbrich

NeuReach: Learning Reachability Functions from Simulations 322
Dawei Sun and Sayan Mitra

Inferring Invariants with Quantifier Alternations: Taming the Search
Space Explosion . 338

Jason R. Koenig, Oded Padon, Sharon Shoham, and Alex Aiken

LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network
Activation Functions . 357

Brandon Paulsen and Chao Wang

Short papers

Kmclib: Automated Inference and Verification of Session Types from
OCaml Programs. 379

Keigo Imai, Julien Lange, and Rumyana Neykova

Automated Translation of Natural Language Requirements
to Runtime Monitors . 387

Ivan Perez, Anastasia Mavridou, Tom Pressburger, Alwyn Goodloe,
and Dimitra Giannakopoulou

xvi Contents – Part I

MaskD: A Tool for Measuring Masking Fault-Tolerance 396
Luciano Putruele, Ramiro Demasi, Pablo F. Castro,
and Pedro R. D’Argenio

Better Counterexamples for Dafny. 404
Aleksandar Chakarov, Aleksandr Fedchin, Zvonimir Rakamarić,
and Neha Rungta

Constraint Solving

cvc5: A Versatile and Industrial-Strength SMT Solver 415
Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer,
Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,
Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir,
Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli,
and Yoni Zohar

Clausal Proofs for Pseudo-Boolean Reasoning . 443
Randal E. Bryant, Armin Biere, and Marijn J. H. Heule

Moving Definition Variables in Quantified Boolean Formulas. 462
Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

A Sorted Datalog Hammer for Supervisor Verification Conditions Modulo
Simple Linear Arithmetic . 480

Martin Bromberger, Irina Dragoste, Rasha Faqeh, Christof Fetzer,
Larry González, Markus Krötzsch, Maximilian Marx, Harish K Murali,
and Christoph Weidenbach

Model Checking and Verification

Property Directed Reachability for Generalized Petri Nets 505
Nicolas Amat, Silvano Dal Zilio, and Thomas Hujsa

Transition Power Abstractions for Deep Counterexample Detection 524
Martin Blicha, Grigory Fedyukovich, Antti E. J. Hyvärinen,
and Natasha Sharygina

Searching for Ribbon-Shaped Paths in Fair Transition Systems 543
Marco Bozzano, Alessandro Cimatti, Stefano Tonetta,
and Viktoria Vozarova

CoVeriTeam: On-Demand Composition of Cooperative
Verification Systems . 561

Dirk Beyer and Sudeep Kanav

Author Index . 581

Contents – Part I xvii

Contents – Part II

Probabilistic Systems

A Probabilistic Logic for Verifying Continuous-time Markov Chains. 3
Ji Guan and Nengkun Yu

Under-Approximating Expected Total Rewards in POMDPs 22
Alexander Bork, Joost-Pieter Katoen, and Tim Quatmann

Correct Probabilistic Model Checking with Floating-Point Arithmetic 41
Arnd Hartmanns

Correlated Equilibria and Fairness in Concurrent Stochastic Games 60
Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos

Omega Automata

A Direct Symbolic Algorithm for Solving Stochastic Rabin Games 81
Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik,
Anne-Kathrin Schmuck, and Sadegh Soudjani

Practical Applications of the Alternating Cycle Decomposition 99
Antonio Casares, Alexandre Duret-Lutz, Klara J. Meyer,
Florian Renkin, and Salomon Sickert

Sky Is Not the Limit: Tighter Rank Bounds for Elevator Automata in Büchi
Automata Complementation . 118

Vojtěch Havlena, Ondřej Lengál, and Barbora Šmahlíková

On-The-Fly Solving for Symbolic Parity Games . 137
Maurice Laveaux, Wieger Wesselink, and Tim A. C. Willemse

Equivalence Checking

Distributed Coalgebraic Partition Refinement . 159
Fabian Birkmann, Hans-Peter Deifel, and Stefan Milius

From Bounded Checking to Verification of Equivalence via Symbolic
Up-to Techniques . 178

Vasileios Koutavas, Yu-Yang Lin, and Nikos Tzevelekos

Equivalence Checking for Orthocomplemented Bisemilattices
in Log-Linear Time . 196

Simon Guilloud and Viktor Kunčak

Monitoring and Analysis

A Theoretical Analysis of Random Regression Test Prioritization 217
Pu Yi, Hao Wang, Tao Xie, Darko Marinov, and Wing Lam

Verified First-Order Monitoring with Recursive Rules 236
Sheila Zingg, Srđan Krstić, Martin Raszyk, Joshua Schneider,
and Dmitriy Traytel

Maximizing Branch Coverage with Constrained Horn Clauses 254
Ilia Zlatkin and Grigory Fedyukovich

Efficient Analysis of Cyclic Redundancy Architectures via Boolean
Fault Propagation . 273

Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Martin Jonáš

Tools | Optimizations, Repair and Explainability

Adiar Binary Decision Diagrams in External Memory 295
Steffan Christ Sølvsten, Jaco van de Pol, Anna Blume Jakobsen,
and Mathias Weller Berg Thomasen

Forest GUMP: A Tool for Explanation . 314
Alnis Murtovi, Alexander Bainczyk, and Bernhard Steffen

ALPINIST: An Annotation-Aware GPU Program Optimizer. 332
Ömer Şakar, Mohsen Safari, Marieke Huisman, and Anton Wijs

Automatic Repair for Network Programs . 353
Lei Shi, Yuepeng Wang, Rajeev Alur, and Boon Thau Loo

11th Competition on Software Verification: SV-COMP 2022

Progress on Software Verification: SV-COMP 2022 375
Dirk Beyer

AProVE: Non-Termination Witnesses for C Programs:
(Competition Contribution). 403

Jera Hensel, Constantin Mensendiek, and Jürgen Giesl

xx Contents – Part II

BRICK: Path Enumeration Based Bounded Reachability Checking
of C Program (Competition Contribution) . 408

Lei Bu, Zhunyi Xie, Lecheng Lyu, Yichao Li, Xiao Guo, Jianhua Zhao,
and Xuandong Li

A Prototype for Data Race Detection in CSeq 3: (Competition
Contribution) . 413

Alex Coto, Omar Inverso, Emerson Sales, and Emilio Tuosto

DARTAGNAN: SMT-based Violation Witness Validation (Competition
Contribution) . 418

Hernán Ponce-de-León, Thomas Haas, and Roland Meyer

Deagle: An SMT-based Verifier for Multi-threaded Programs
(Competition Contribution). 424

Fei He, Zhihang Sun, and Hongyu Fan

The Static Analyzer Frama-C in SV-COMP (Competition Contribution). 429
Dirk Beyer and Martin Spiessl

GDART: An Ensemble of Tools for Dynamic Symbolic Execution
on the Java Virtual Machine (Competition Contribution) 435

Malte Mues and Falk Howar

Graves-CPA: A Graph-Attention Verifier Selector (Competition
Contribution) . 440

Will Leeson and Matthew B. Dwyer

GWIT: A Witness Validator for Java based on GraalVM (Competition
Contribution) . 446

Falk Howar and Malte Mues

The Static Analyzer Infer in SV-COMP (Competition Contribution) 451
Matthias Kettl and Thomas Lemberger

LART: Compiled Abstract Execution: (Competition Contribution). 457
Henrich Lauko and Petr Ročkai

SYMBIOTIC 9: String Analysis and Backward Symbolic Execution with Loop
Folding: (Competition Contribution) . 462

Marek Chalupa, Vincent Mihalkovič, Anna Řechtáčková, Lukáš Zaoral,
and Jan Strejček

SYMBIOTIC-WITCH: A KLEE-Based Violation Witness Checker:
(Competition Contribution). 468

Paulína Ayaziová, Marek Chalupa, and Jan Strejček

Contents – Part II xxi

THETA: portfolio of CEGAR-based analyses with dynamic algorithm
selection (Competition Contribution) . 474

Zsófia Ádám, Levente Bajczi, Mihály Dobos-Kovács, Ákos Hajdu,
and Vince Molnár

ULTIMATE GEMCUTTER and the Axes of Generalization: (Competition
Contribution) . 479

Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schüssele,
Marcel Ebbinghaus, Azadeh Farzan, and Andreas Podelski

Wit4Java: A Violation-Witness Validator for Java Verifiers
(Competition Contribution). 484

Tong Wu, Peter Schrammel, and Lucas C. Cordeiro

Author Index . 491

xxii Contents – Part II

Synthesis

HOLL: Program Synthesis for Higher Order Logic
Locking

Gourav Takhar1(�), Ramesh Karri2 , Christian Pilato3 , and Subhajit Roy1

1 Indian Institute of Technology Kanpur, Kanpur, India.
{tgourav,subhajit}@cse.iitk.ac.in

2 New York University, New York, NY, USA. rkarri@nyu.edu
3 Politecnico di Milano, Milan, Italy. christian.pilato@polimi.it

Abstract. Logic locking “hides" the functionality of a digital circuit to
protect it from counterfeiting, piracy, and malicious design modifications.
The original design is transformed into a “locked" design such that the
circuit reveals its correct functionality only when it is “unlocked" with
a secret sequence of bits—the key bit-string. However, strong attacks,
especially the SAT attack that uses a SAT solver to recover the key bit-
string, have been profoundly effective at breaking the locked circuit and
recovering the circuit functionality.
We lift logic locking to Higher Order Logic Locking (HOLL) by hiding a
higher-order relation, instead of a key of independent values, challenging
the attacker to discover this key relation to recreate the circuit func-
tionality. Our technique uses program synthesis to construct the locked
design and synthesize a corresponding key relation. HOLL has low over-
head and existing attacks for logic locking do not apply as the entity to be
recovered is no more a value. To evaluate our proposal, we propose a new
attack (SynthAttack) that uses an inductive synthesis algorithm guided
by an operational circuit as an input-output oracle to recover the hidden
functionality. SynthAttack is inspired by the SAT attack, and similar to
the SAT attack, it is verifiably correct, i.e., if the correct functionality is
revealed, a verification check guarantees the same. Our empirical analy-
sis shows that SynthAttack can break HOLL for small circuits and small
key relations, but it is ineffective for real-life designs.

Keywords: Logic Locking · Program Synthesis · Hardware Security.

1 Introduction

High manufacturing costs in advanced technology nodes are pushing many semi-
conductor design houses to outsource the fabrication of integrated circuits (IC)
to third-party foundries [26, 42]. A fab-less design house can increase the invest-
ments in the chip’s intellectual property, while a single foundry can serve multiple
companies. However, this globalization process introduces security threats in the
supply chain [25]. A malicious employee of the foundry can access and reverse
engineer the circuit design to make illegal copies. Logic locking [44] alters the

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 3–24, 2022.
https://doi.org/10.1007/978-3-030-99524-9_1

https://orcid.org/0000-0001-7989-5617
https://orcid.org/0000-0001-9315-1788
https://orcid.org/0000-0002-3394-023X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_1

G. Takhar et al.

chip’s functionality to make it unusable by the foundry. This alteration depends
on a locking key that is re-inserted into the chip in a trusted facility, after fab-
rication. The locking key is, thus, the “secret”, known only to the design house.
Logic locking assumes that the attackers have no access to the key but they may
have access to a functioning chip (obtained, for example, from the legal/illegal
market). However, logic locking has witnessed several attacks that analyze the
circuit and attempt key recovery [31, 43, 48, 59].

In this paper4, we combine the intuitions from logic locking, program syn-
thesis, and programmable devices to design a new locking mechanism. Our tech-
nique, called higher order logic locking (HOLL), locks a design with a key rela-
tion instead of a sequence of independent key bits. HOLL uses program synthe-
sis [3, 50] to translate the original design into a locked one. Our experiments
demonstrate that HOLL is fast, scalable, and robust against attacks. Prior at-
tacks on logic locking, like the SAT attack [51], are not practical for HOLL. Since
the functionality of the key-relation is completely missing, attackers cannot sim-
ply make propositional logic queries to recover the key (like [43, 51, 18]). There
are variants of logic locking, like TTLock [61] and SFLL [60], that attempt to
combat SAT attacks [51]. However, these techniques use additional logic blocks
(comparison and restoration circuits) which makes them prone to attacks via
structural and functional analysis on this additional circuitry [47]. HOLL is re-
silient to such techniques as it exposes only a programmable logic that does not
leak any information related to the actual functionality to be implemented.

In contrast to logic locking, attacking HOLL requires solving a second-order
problem (see §8 for a detailed discussion on this). To assess the security of our
method, we design a new attack, SynthAttack, by combining ideas from SAT at-
tack [51] and inductive program synthesis [50]. SynthAttack employs a counter-
example guided inductive synthesis (CEGIS) procedure guided via a functioning
instance of the circuit as an input-output oracle. This attack constructs a syn-
thesis query to discover key relations that invoke semantically distinct functional
behaviors of the locked design—witnesses to such relations, referred to as distin-
guishing inputs, act as counterexamples to drive inductive learning. When the
locked design is verified to have unique functionality, the attack is declared suc-
cessful, with the corresponding provably-correct key relation.

Our experimental results (§6) show that the time required by an attacker
to recover the key relation for a given set of distinguishing inputs (attack time)
increases exponentially with the size of key relation. While the attacker may
be able to recover key relations for small HOLL-locked circuits with small key
relations, larger circuits are robust to SynthAttack. For example, for the des
benchmark, the asymmetry between HOLL defense and SynthAttack is large;
while HOLL can lock this design in less than 100 seconds, the attack cannot re-
cover the design even within four days for a key relation that increases the area
overhead of the IC by only 1.2%. Further, the attack time required to unlock
the designs increase exponentially with the complexity of the key relation.

The key relation can be implemented with reconfigurable or programmable

4 An extended version [53] of this paper is also available.

4

Program Synthesis for Higher Order Logic Locking

t0 = x0 ∧ x2;
t1 = x3 ∧ t0
t2 = (x1 ∧ t0)
y0 = x0 ⊕ x2
y2 = (x1 ∧ x3) ∨ t2 ∨ t1
y1 = t0 ⊕ x1 ⊕ x3

(a) Original circuit

t0 = x0 ∧ x2
t1 = (x0 ∧ (r4 ⊕ r2) ∧ x3)

t2 = (x0 ∧ r3)
y0 = x0 ⊕ x2
y2 = (x1 ∧ x3) ∨ t2 ∨ t1
y1 = t0 ⊕ x1 ⊕ x3

(b) Locked circuit

{(r0 ↔ x1),
(r1 ↔ x2),
(r2 ↔ rand),
(r3 ↔ r0 ∧ r1),
(r4 ↔ r1 ⊕ r2)}

(c) Key relation

Fig. 1: HOLL on a 2-bit Adder.

devices, like programmable array logic (PAL) or embedded finite-programmable
gate array (eFPGA). For example, eFPGA, essentially an IP core embedded into
an ASIC or SoC, is becoming common in modern SoCs [2] and has been shown
to have high resilience against bit-stream recovery [7].
Our contributions are:
– We propose a novel IP protection strategy, called higher order logic locking

(HOLL), that uses program synthesis;
– To evaluate the security offered by HOLL, we propose a strong adversarial

attack algorithm, SynthAttack;
– We build tools to apply HOLL and SynthAttack to combinational logic;
– We evaluate HOLL on cost, scalability, and robustness;

2 HOLL Overview

2.1 Threat Model: the Untrusted Foundry

We focus on the threat model where the attacker is in the foundry [44, 45] to
which a fab-less design house has outsourced its IC fabrication. Such an attacker
has access to the IC design and the (locked) GDSII netlist which can be reverse-
engineered. Also, if the attacker can access a working IC (e.g., by procuring an IC
from the open market or a discarded IC from the gray market), they can leverage
the functional IC’s I/O behavior as a black-box oracle. However, we assume the
attacker cannot extract the bitstream, i.e. the correct sequence of configuration
bits, from the device. This can be achieved with encryption techniques when the
bitstream is not loaded into the device. Also, anti-readback solutions can prevent
the attacker from reading the bitstream from the device. The parameters used
to synthesize the key relation and the locked circuit (like the domain-specific
language (DSL), budget etc.) are not known to the attacker (see §8).

2.2 Defending with HOLL

Consider a hardware circuit Y ↔ φ(X), where X and Y are the inputs and out-
puts, respectively. HOLL uses a higher-order lock—a secret relation (ψ) among a
certain number of additional relation bits R. We refer to ψ as the key relation.

Fig. 1a shows an example of a 2-bit adder with input X ({x1x0, x3x2}) and
output Y (y2y1y0). The circuit is locked by transforming the original expressions

5

(marked in blue) in Fig. 1a to the locked expressions (marked in red) in Fig. 1b.
The locked expressions use the additional relation bits r2, r3, and r4, enabling
that this locked design φ̂(X,R) functions correctly when the secret relation ψ
(Fig. 1c) is installed. The relation ψ establishes the correct relation between the
relation bits R. The key relation can be excited by circuit inputs (like in r0
and r1,), constants, or random bits (e.g., from system noise, etc.); for example,
the value rand in Fig. 1c represents the random generation of a bit (0 or 1)
assigned to r2. The “output" from the key relation are bits r3 and r4 that must
satisfy the relational constraints enforced by the key relation.

For the sake of simplicity, in the rest of the paper, we assume the relation
bits are drawn only from the inputs X of the design. We will attempt to infer
key relations of the form ψ(X,R). The reader may assume the value rand of in
Fig. 1c to be a constant value (say 0) to ease the exposition.

As φ̂ also consumes the relation bits R, HOLL transforms the original circuit
Y ↔ φ(X) into a locked circuit Y ↔ φ̂(X,R) such that the locked circuit
functions correctly if the key relation ψ(X,R) is satisfied. In other words, HOLL
is required to preserve the semantic equivalence between the original and locked
designs (φ = φ̂ ∧ ψ). Note that it only imposes constraints on the input-output
functionality of the circuits, not on the generated values of internal gates. For
example, in Fig. 1b, the value of t1 may be different from the one in the original
design (Fig. 1a), but the final output y2 is equivalent to the original adder.

This approach has analogies with the well-known logic locking solution [10,
37, 54]. Traditional logic locking produces a locked circuit by mutating certain
expressions based on input key bits. HOLL differs from logic locking on the type
of entities employed as hidden keys. While logic locking uses a key value (i.e., a
sequence of key-bits), our technique uses a key relation (i.e., a functional relation
among the key bits). As we attempt to hide a higher-order entity (relation),
we refer to our scheme as higher-order logic locking (HOLL). As synthesizing
a relation (a second-order problem) is more challenging to recover than a bit-
sequence (a first-order problem), HOLL is, at least in theory, is more secure
than logic locking. Our experimental results (§6) show that this security also
translates to practice.

Hardware constraints. Since the key relation must be implemented in the
circuit, we need to consider practical constraints. For example, the size of the
key relation affects the size of the programmable logic to be used for its imple-
mentation. This, in turn, introduces area and delay overheads in the final circuit.
The practical realizability of this technique adds certain hardware constraints:
– The key relation must be small for it to have a small area overhead;
– The key relation must only be executed once to avoid a significant perfor-

mance overhead;
– The key relation must encode non-trivial relations between the challenge and

response bits to strong security;
– The locked expressions are evenly distributed across the design to protect

all parts of the circuit, disallowing focused attacks by an attacker on a small
part of the circuit that contains all locks.

G. Takhar et al.6

Inferring the key relation. HOLL operates by

1. carefully selecting a set of expressions, E ⊆ φ, in the original design φ;
2. mutating each expression ei ∈ E using the relation bits R to create the

corresponding locked expression, êi.

For example, in Fig. 1a, we select two expressions, E = {e1, e2} where e1 = x1∧t0
and e2 = x3 ∧ t0. e1 computes t2 and is a function of t0 and x1, while ê1 uses x0
and r3, which is in turn a relation of r0 and r1. We formalize our lock program
synthesis problem as follows.

Lock Inference. Given a circuit Y ↔ φ(X), construct a locked circuit Y ↔
φ̂(X,R) and a key relation ψ(X,R) such that φ̂ is semantically equivalent to
φ with the correct relation ψ. Specifically, it requires us to construct: (1) a key
relation ψ and (2) a set of locked expressions Ê relating to the set of selected
expressions E extracted from φ such that the following conditions are met:

– Correctness: The circuit is guaranteed to work correctly for all inputs when
the key relation is installed:

∀X. (∀R. ψ(X,R) =⇒ (φ̂(X,R) = φ(X))) (1)

where φ̂ ≡ φ[ê1/e1, . . . , ên/en], for ei ∈ E ⊆ φ. The notation φ[ea/eb] implies
that eb is replaced by ea in the formula φ.

– Security: There must exist some relation ψ′ (where ψ′ ̸= ψ) where the
circuit exhibits incorrect behavior; in other words, it enforces the key relation
to be non-trivial:

∃ψ ∃X ∃R. (ψ′(X,R) =⇒ φ̂(X,R) ̸= φ(X)) (2)

We pose the above as a program synthesis [40, 49] problem. In particular, we
search for “mutations” ê1, . . . , ê2 and a suitable key relation ψ such that the
above constraints are satisfied.

2.3 Attacking with SynthAttack

As we attempt to hide a relation instead of a key-value, prior attacks on logic
locking (like SAT attacks), which attempt to infer key bit-strings, do not apply.
However, the attackers can also use program synthesis techniques to recover the
key relation using an activated instance of the circuit as an input-output oracle.

We design an attack algorithm, called SynthAttack, combining ideas from
SAT attack (for logic locking) and counterexample guided inductive program
synthesis. Our attack algorithm generates inputs X1, X2, . . . , Xn and computes
the corresponding outputs Y1, Y2, . . . , Yn using the oracle, to construct a set of
examples Λ = {(X1, Y1), . . . , (Xn, Yn)}. Then, the attacker can generate a key
relation ψ that satisfies the above examples, λ, using a program synthesis query:∏

Xi,Yi∈Λ

∃Ri. φ̂(Xi, Ri) ∧ ψ(Xi, Ri) = Yi (3)

Program Synthesis for Higher Order Logic Locking 7

The above query requires copies of φ̂(X,R) for every example—hence, the for-
mula will quickly explode with an increasing number of samples. Our scheme is
robust since the sample complexity of the key relationships increases exponen-
tially with the number of relation bits employed. Additionally, the attacker does
not know which input bits excite the key relation and how the relation bits are
related to each other.

Table 1: In-out
samples.

X Y Ŷ

1111 110 110
1001 011 011
0000 000 000
1100 011 011
0101 010 110

{(r0 ↔ x2),
(r1 ↔ x0),
(r2 ↔ 0),
(r3 ↔ r0∧ r1),
(r4 ↔ 0)}

Fig. 2: Gener-
ated key rela-
tion

For the locked adder (Fig. 1b) with the in-
put samples shown in Table 1 (first four rows),
the above attack can synthesize the key rela-
tion shown in Fig. 2. Columns Y and Ŷ in Ta-
ble 1 represent the outputs of the original cir-
cuit and the circuit obtained by the attacker,
respectively. Even on a 4-bit input space, when
25% of all possible samples are provided, the
attack fails to recover the key relation as shown
by the last input row of Table 1. The red box highlights the output in the attacker
circuit does not match the original design.

Definition (Distinguishing Input). Given a locked circuit φ̂, we refer to input X
as a distinguishing input if there exist candidate relations ψ1 and ψ2 that evoke
semantically distinct behaviors on the input X. Formally, X is a distinguishing
input provided the following formula is satisfiable5 on some relations ψ1 and ψ2:

φ̂(X,R1) ̸= φ̂(X,R2) ∧ ψ1(X,R1) ∧ ψ2(X,R2) (4)

It searches for a distinguishing input, Xd, that produces conflicting outputs on
the locked design. Any such distinguishing input is added to the set of examples,
Λ, and the query repeated. If the query is unsatisfiable, it implies that no other
relation can produce a different behavior on the locked design and so the relation
that satisfies the current set of examples must be a correct key relation.

Though SynthAttack significantly reduces the sample complexity of the at-
tack, our experiments demonstrate that SynthAttack is still unsuccessful at
breaking HOLL for larger designs.

3 Program Synthesis to Infer Key Relations

We represent the key relation ψ as a propositional formula, represented as a set
(conjunction) of propositional terms. The terms in ψ belong are categorised as:

– Stimulus terms: As mentioned in §2, a subset of the relation bits are
related to input bits or constants; the stimulus terms appear as (ri ← xj)
where ri ∈ R, xj ∈ X ∪ {0, 1}.

– Latent terms: These clauses establish a relation among the relation bits;
the variables v in these terms are drawn from the relation bits R, i.e. v ∈ R.

5 All free variables are existentially quantified.

G. Takhar et al.8

For example, in Fig. 1c the terms (r0 ← x1), (r1 ← x2), and (r2 ← rand) are
stimulus terms, while (r3 ← (r0 ∧ r1)) and (r4 ← (r1 ⊕ r2)) are latent terms.

Budget. As the key relation may need to be implemented within a limited hard-
ware budget, our synthesis imposes a hard threshold on its size. The threshold
could directly capture the hardware constraints for implementing the key re-
lation (e.g., the estimated number of gates or ports) or indirectly indicate the
complexity of the key relation (e.g., number of relation bits, propositional terms,
or latent terms).

3.1 Lock and Key Inference Algorithm 1: HOLL(φ, T,Q)
1 ψ ← ∅
2 φ̂← φ
3 done← False
4 while not done do
5 E ← SelectExpr(φ̂)

6 H, Ê ← Synthesize(ψ, φ̂, E)
7 ψ′ ← ψ ∪H
8 if Budget(ψ′) ≤ T then
9 ψ ← ψ′

10 φ̂← φ̂[{êi/ei |
11 ei ∈ Ei, êi ∈ Ê}]
12 else
13 q ← CheckSec(ψ, φ̂)
14 if q then
15 done← True
16 else
17 ψ ← ∅
18 φ̂← φ

19 end
20 end
21 end
22 return φ̂, ψ

Algorithm 1 outlines our algorithm for
inferring the key relation and the locked
circuit. The algorithm accepts an un-
locked design Y ↔ φ(X) and a budget
T for the key relation.

Main Algorithm. The algorithm it-
erates, increasing the complexity of the
key relation, till the budget T is reached
(Lines 4-21). In every iteration, the al-
gorithm selects a set of suitable expres-
sions E for locking, uses our synthe-
sis procedure to extract a set of addi-
tional latent terms H for the key rela-
tion, and produces the mutated expres-
sions êi for each expression ei ∈ E (Line
6). If the additional synthesized rela-
tions keep the key relation within the
budget T (Line 8), the mutated expres-
sions are replaced for ei ∈ E (Line 11).
HOLL verifies that the solution meets
the two objectives of correctness and security (§2). We handle correctness in
the Synthesize procedure of Algorithm 1 and security in Lines 13-14 of the
same algorithm. The CheckSec() procedure verifies if the synthesized (locked)
circuit and key relations satisfy the security condition (Eqn 2). If CheckSec()
returns True, the key relation ψ and the locked circuit φ̂ are returned; otherwise,
synthesis is reattempted.

Correctness. HOLL attempts to synthesize (via the Synthesize procedure) a
key relation ψ and a set of locked expressions êi such that the circuit is guaran-
teed to work correctly for all inputs given to ψ; this requires us to satisfy:

∃ψ, ê1, . . . , ên. ∀X. ∀R. (ψ(X,R) =⇒ φ̂(X,R) = φ(X)) (5)

Program Synthesis for Higher Order Logic Locking 9

(r0 ← x1),
(r1 ← x2), (r2 ← x0),
(r5 ← (r0 ∧ r1)),
(r4 ← ((r0 ∧ r1) ∧r2)),

(r3 ← ((r0 ∧ r1) ∨r2))

(a) Without optimization

(r0 ← x1),
(r1 ← x2),
(r2 ← x0),
(r5 ← (r0 ∧ r1)),
(r3 ← (r5 ∨r2)),
(r4 ← (r5 ∧r2))

(b) With opt.

Fig. 4: Key relations generated without and
with optimization.

t0

x2 x0

x1x3y0

y1

y2

t1 t2

Fig. 5: Dependency graph for
the expressions in Fig. 1a.

where φ̂ ≡ φ[ê1/e1, . . . , ên/en], for ei ∈ (E ⊆ φ). In other words, we attempt
to synthesize a set of modified expressions Ê that, once replaced the selected
expressions in E, produces a semantically equivalent circuit as the original circuit
if the relation ψ holds.

We solve this synthesis problem via counterexample-guided inductive synthe-
sis (CEGIS) [3]. We provide a domain-specific language (DSL) in which ψ and êi
are synthesized. CEGIS generates candidate solutions for the synthesis problem
and uses violations to the specification (i.e. the above constraint) to guide the
search for suitable programs ψ and êi.

A problem with the above formulation is illustrated in Fig. 4: the key re-
lation in Fig. 3a uses 5 gates without reusing expressions, “wasting" hardware
resources. Fig. 3b shows an optimized key relation that reuses the response bit r5,
allowing an implementation with only 3 gates. To encourage subexpression reuse,
we solve the following optimization problem where φ̂ ≡ φ[ê1/e1, . . . , ên/en], for
ei ∈ E ⊆ φ.:

argmin
budget(ψ)

∃ψ, ê1, . . . , ên. ∀X. (∀R. ψ(X,R) =⇒ φ̂(X,R) = φ(X)) (6)

Security. The security objective requires that the locking (i.e., the key relation
ψ and the locked expressions) is non-trivial; that is. there exists some relation
ψ′:ψ′ ̸= ψ for which the circuit is not semantically equivalent to the original
design:

∃ψ′, ψ′ ̸= ψ, s.t. ∃X. (∃R. ψ′(X,R) ∧ φ̂(X,R) ̸= φ(X)) (7)

The above constraint is difficult to establish while synthesizing ψ; it requires
a search for a different relation ψ′ that makes φ̂ semantically distinct from φ
while ψ maintains semantic equivalence. Instead, we use a two-pronged strategy:

– We carefully design the DSL used to synthesize ψ and êi to reduce the
possibility they generate trivial relations;

– After obtaining ψ and φ̂, we attempt to synthesize an alternative relation
ψ′ (using 8) such that φ̂ is not semantically equivalent to φ, ensuring that
ψ and φ̂ do not constitute a trivial locked circuit.

G. Takhar et al.10

∃ψ′. ∃X,R′. φ(X) ̸= φ̂(X,R′) ∧ ψ′(X,R′) (8)

The procedure CheckSec(ψ, φ̂) (Algorithm 1, Line 13) implements the above
check (Eqn. 8).

Theorem 1. If Algorithm 1 terminates, it returns a correct (Eqn. 1) and secure
(Eqn. 2) locked design.

Proof. The proof follows trivially from the design of the Synthesize (in particular,
Eqn. 5) and CheckSec (in particular, Eqn. 8) procedures.

3.2 Expression Selection

HOLL constructs the dependency graph [19] (V,D) for expression selection,
where nodes V are circuit variables. A node v ∈ V represents an expression e
such that v is assigned the result of expression e, i.e. (v ← e). The edges D are
dependencies: the edge v1 → v2 connects the two nodes v1 to v2 if variable v1
depends on variable v2. The tree is rooted at the output variables and the input
variables appear as leaves.

For example, Fig. 5 shows the dependency graph for the circuit in Fig. 1a.
Triangles represent input ports (x0, x1, x2, x3) while inverted triangles represent
output ports (y0, y1, y2).

Our variable selection algorithm has the following goals:

1. Ensure expression complexity: The algorithm selects an expression ez
as a candidate for locking only if the depth of the corresponding variable
z in the dependency graph lies in a user-defined range [L, U] to create a
candidate set Z. The lower threshold L assures the expression captures a
reasonably complex relation over the inputs, while the upper threshold U
ensures the relation is not too complex to exceed the hardware budget. The
algorithm starts by randomly selecting a variable z0 ∈ Z from this set.

2. Encourage sub-expression reuse in key relation: We attempt to select
multiple “close" expressions; for the purpose, the algorithm randomly selects
variables wi ⊆ Z on which z0 (transitively) depend on.

3. Encourage coverage: We select expressions for locking in a manner so as
to cover the circuit. To this end, interpreting (V,D) as an undirected graph,
we randomly select expressions ui ∈ Z that are farthest from z0, i.e. the
shortest distance between ui and z0 is maximized.

Our algorithm first executes step (1), and then, indeterminately alternates be-
tween (2) and (3), till the required number of variables are selected. Let us use
the dependency graph in Fig. 5 to show how the above algorithm operates:

– Given the user-defined range [1,3], we compose the initial candidate set
Z = {y0, t0, t1, t2, y1, y2}.

– Let us assume we randomly pick the expression for y2. Now, y2 depends on
expressions t0, t1 and t2 ({t0, t1, y2} ⊆ Z) [Rule 1].

Program Synthesis for Higher Order Logic Locking 11

– We randomly choose new expressions to lock/transform from {t0, t1, y2}. For
example, we select t2 and t0—[Rule 2].

– We find y0, which is the furthest expression from t0, t2, y2 in Z. We select to
lock the set of expressions {y1, y2, t0, t2}—[Rule 3].

4 HOLL: Implementation and Optimization

Implementation. We implemented HOLL in Python, using Sketch [49] syn-
thesis engine to solve the program synthesis queries. We used Berkeley-ABC [8]
to convert the benchmarks into Verilog and PyVerilog [52], a Python-based
library, to parse the Verilog code and generate input for Sketch. We use the
support for optimizing over a synthesis queries provided by Sketch to solve
Eqn. 6. Algorithm 1 may not terminate; our implementation uses a timeout to
ensure termination.

Domain Specific Language. We specify our domain-specific language for
synthesizing our key relations and locked expressions. The grammar is specified
as generators in the Sketch [49] language. The grammar for the key relations
and locked expressions is as follows:

⟨G⟩ ::= r ← x | r ← r⟨Bop⟩r | r ← ⟨Uop⟩r | r ← r

⟨Bop⟩ ::= or | and | xor
⟨Uop⟩ ::= not

The rule ⟨G⟩ ::= r ← x is only present in the key relation grammar since the
locked expressions have no input bits.

Backslicing. To improve scalability, we use backslicing [55] to extract the por-
tion of the design related to the expressions selected for locking. For a variable
vi, the set of all transitive dependencies that can affect the value of vi is referred
to as its backslice. For example, in Fig. 5, backslice(t2) = {t0, x0, x1, x2}.

Given the set of expressions E, we compute the union of the backslices of the
variables in E, i.e. all expressions B in the subgraph induced by e ∈ E in the
dependency graph; we use B ⊆ E for lock synthesis.

Backslicing tilts the asymmetrical advantage further towards the HOLL de-
fense. The attacker cannot apply backslicing on the locked design since the de-
pendencies are obscured, preventing the extraction of the dependency graph.

Incremental Synthesis. Given a set of expressions E, the procedure Synthesis
in Algorithm 1 creates a list of relations H and a new set of locked expressions Ê.
If the list of expressions is large, we select the expressions in the increasing order
of their depth in the dependency graph. The lower the depth of the expression
is, the closer it is to the inputs, and the simpler is the expression. Selecting an
expression with the lowest depth first (say e1) ensures that other expressions (ej)

G. Takhar et al.12

depending on this expression can use the relations H generated during synthesis
of ê1. This also makes synthesizing the other expressions easier as the current
relation has some sub-expressions on which the new relations can be built.

5 SynthAttack: Attacking HOLL with Program Synthesis

As HOLL requires inference of relations and not values, existing attacks designed
for logic locking do not apply. We design a new attack, SynthAttack, that is
inspired by the SAT attack [51] for logic locking and counterexample-guided
inductive program synthesis (CEGIS) [50].

5.1 The SynthAttack Algorithm

Algorithm 2: SynthAttack(φ̂, Jφ̂(ψ)K)
1 i← 0
2 Q0 ← ⊤
3 while True do
4 X ′ ← SolveX(Qi
5 ∧ (φ̂(X,R1) ̸= φ̂(X,R2))
6 ∧ ψ1(X,R1) ∧ ψ2(X,R2))
7 if X ′ = ⊥ then
8 break
9 end

10 Y ′ ← Jφ̂(ψ)K(X ′)

11 Qi+1 ← Qi ∧ (φ̂(X ′, Ri1)↔ Y ′)

12 ∧ (φ̂(X ′, Ri2)↔ Y ′)

13 ∧ ψ1(X
′, Ri1) ∧ ψ2(X

′, Ri2)
14 i← i+ 1

15 end
16 ψ1, ψ2 ← Solveψ1,ψ2(Qi)
17 return ψ1

SynthAttack runs a CEGIS
loop: it accumulates a set of
examples, Λ. These examples,
Λ, are used to constrain the
space of the candidate key-
relations. SynthAttack, then,
uses a verification check to
confirm if the collected ex-
amples are sufficient to syn-
thesize a valid key-relation.
Otherwise, the counterexam-
ple from the failed verifica-
tion check is identified as an
distinguishing input (§2)
to be added to Λ, and the al-
gorithm repeats.

If there does not exist any
distinguishing input for the
locked circuit φ̂, then φ̂ has
a unique semantic behavior—and that must be the correct functionality. Any
key-relation that satisfies the counterexamples (distinguishing inputs) generated
so far will be a valid candidate for the key relation. An inductive synthesis
strategy based on distinguishing inputs allows us to quickly converge on a valid
realization of the key-relation as each distinguishing input disqualifies many po-
tential candidates for the key relation. Note that (as we illustrate the following
example) there may be multiple, possibly semantically dissimilar, realizations of
a key-relation that enables the same (correct) functionality on the locked circuit.

SynthAttack is outlined in Algorithm 2: the algorithm accepts the design of
the locked circuit (φ̂) and an activated circuit φ̂(ψ) (the locked circuit φ̂ activated
with a valid key-relation ψ). The notation Jφ̂(ψ)K indicates that this activated
circuit can only be used as an input-output oracle, but cannot be inspected.

Program Synthesis for Higher Order Logic Locking 13

SynthAttack runs a counterexample-guided synthesis loop (Line 3). It checks
for the existence of a distinguishing input in Line 4: if no such distinguishing
input exists, it implies that the current set of examples is sufficient to synthesize
a valid key-relation. So, in this case, the algorithm breaks out of the loop (Line 7-
8) and synthesizes a key-relation (Line 16), that is returned as the synthesized,
provably-correct instance for the key relation.

If there exists a distinguishing input X ′ (in Line 4), the algorithm uses the ac-
tivated circuit to compute the expected output Y ′ corresponding to X (Line 10).
This new counterexample (X ′, Y ′) is used to block all candidate key-relations
that lead to an incorrect behavior, thereby reducing the potential choices for ψ1

and ψ2. The loop continues, again checking for the existence of distinguishing
inputs on the updated constraint for Qi.

The theoretical analysis of SynthAttack is available in the extended ver-
sion [53]. The algorithm only terminates when it is able to synthesize a provably
valid key-relation, that allows us to state the following result.

Theorem 2. Algorithm 2 will always terminate, returning a key-relation ψ1

such that φ̂(ψ1) is semantically equivalent to φ̂(ψ), where ψ is the “correct"
relation hidden by HOLL. (The proof is available in the extended version [53].)

{(r0 ↔ x1),
(r1 ↔ x2),
(r2 ↔ r0),
(r3 ↔ r2 ∧ r1),
(r4 ↔ ¬r2 ∧ r1)}

Fig. 6: Key rela-
tion generated by
SynthAttack.

Table 2: Dis-
tinguishing
inputs.

X Y

1101 100
0001 001
0101 010
0111 100
1001 011
0011 011

Example. SynthAttack on Fig. 1b iteratively
generates six distinguishing inputs (Table 2).
The key relation synthesized by SynthAttack
(Fig. 6) is not semantically equivalent to the
hidden key-relation that was computed and
hidden by HOLL (Fig. 1c). This shows that
there may exist multiple valid candidates for
the key-relation that all evoke the same func-
tionality on the locked design. For example,
X = 0100 generates r4 = 1 for the key rela-
tion in Fig. 1c but r4 = 0 for Fig. 6; however,
the output of the locked circuit remains the same in both cases (Y = 001).

6 Experimental Evaluation

We selected 100 combinational benchmarks from ISCAS’85 [1] and MCNC [58]
and report the time for program synthesis and the overhead after applying our
locking method. For long running experiments, we select a subset of 10 randomly
selected benchmarks where, number of input ports range between 16 and 256,
output ports range range between 7 and 245, AND gates in range [135, 4174].

For our experiments, we use number of relation terms as budget in the range
[12-14] for the key relation and depth of expression selection in range [2-4].
We conduct our experiments on a machine with 32-Core Intel(R) Xeon(R) Silver
4108 CPU @ 1.80GHz with 32GB RAM.

For both HOLL and SynthAttack, we use the Sketch synthesis tool. Since
synthesis solvers are difficult to compare across different problem instances, we

G. Takhar et al.14

were wary of the case where the defender gets an edge over the attacker due
to use of different tools. We create the attack-team-defence-team asymmetry by
controlling the computation time: while the defender gets 20 minutes (1200s) to
generate locked circuit, the attacker runs the attack for up to 4 days.
Our experiments aim to answer five research questions:

RQ1. What is the attack resilience of HOLL? (§6.1)
RQ2. How do impact expression selection heuristics affect attack resilience? (§6.2)
RQ3. What is the hardware cost for HOLL? (§6.3)
RQ4. What is the time taken to synthesize the locked design and key-relation

for HOLL? (refer to the extended version [53])
RQ5. What are the impact of the optimizations for scalability (backslicing and

incremental synthesis)? (refer to the extended version [53])

Here is a summary of our findings:
Security. The key relations can be recovered completely by the attacker
via SynthAttack but only for small circuits with a small hardware budget.
For medium and large designs, key relations are fast to obtain (<1200s)
but cannot be recovered by our attack even within 4 days. This shows our
defense is efficient while our attack is strong but not scalable.

Hardware Cost. Our key relations with a budget of 12-14 latent terms
have a minimal impact on the designs and the overhead reduces as the size
of the circuit grows. On the largest benchmark, the area overhead is 1.2%.
The corresponding configurations for programmable devices are small and
provide high security.

HOLL Performance. The HOLL execution time ranges between 8s and
1001s, with an average of 33s for small, 17s for medium, and 60s for large
designs for the budget of 8-10 latent terms. Our optimizations are crucial
for the scalability of our HOLL defense (locking) algorithm: we fail to lock
enough expressions in large circuits without these optimizations.

6.1 Attack Resilience

We define attack resilience of locked circuit, φ̂, in terms of time taken to obtain
a key relation, ψ′, such that φ̂ ∧ ψ′ is equivalent to original circuits, φ.

Attack time. Fig. 8 shows the cumulative time spent till the ith iteration
(y-axis) of the loop versus the loop counter i, that is also the number of distin-
guishing inputs (samples) generated so far (x-axis). We show exponential trend
curves (as a solid pink line) to capture the trend in the plotted points while
the data-points are plotted as blue dots. The plots show that the plotted points
follow the exponential trend lines, illustrating that SynthAttack does not scale
well, thereby asserting the resilience of HOLL.

SynthAttack failed to construct a valid key-relation for any of these ten de-
signs within a timeout of 4 days. However, for small designs with lesser number
of latent terms, SynthAttack was able to construct a valid key-relation (Fig. 10).

Program Synthesis for Higher Order Logic Locking 15

Fig. 8: Cumulative time for successive iterations
of SynthAttack (best viewed in color)

Fig. 10: Attack time vs #la-
tent terms for i9 and al2

Attack resilience vs. number of latent terms. The complexity of the key
relation increases with the number of relation bits. As shown in Fig. 10 (for
benchmarks al2 and i9), the time required to break the locked circuit increases
exponentially as the number of relation bits increases. We gave a timeout of 10
hours for this experiment and al2 timed out at 9 latent terms, and i9 timed
out at 8 latent terms. Both results are for locked circuits with variables selected
with the depth of locked expression, êi, equal to 1.

6.2 Impact of Expression Selection on Attack Resilience

Attack resilience vs. Depth of locked expression. The attack resiliency
of φ̂ increases significantly as we increase the depth of the locked expression
selected for HOLL for φ. We observe that for a number of latent terms in key
relation equal to 2, for benchmark al2, increases from 213s to 3788s for depth 1
and 2, respectively. For benchmark i9, attack time increases from 351s to 1141s
for depth 1 and 2, respectively.

Attack time vs. Coverage. To show the effect of coverage we select expres-
sions (in ei ∈ E) such that the distance (§3.2) among the expressions is largest
(termed as diverse) and smallest (termed as converged). The attack time to
break the locked circuit is more for diverse than converged expression selection
heuristic. For example, for benchmarks C432 and i9, attack time increases from
115s to 142s and 229s to 316s, respectively, when expression selection heuristic
is changed from converged to diverse. The results are with three latent terms.

6.3 Hardware cost

The key relations can be implemented either as embedded Field Programmable
Gate Array (eFPGA) or Programmable Array Logic. We synthesize the original
and locked designs with Synopsys Design Compiler R-2020.09-SP1 targeting
the Nangate 15nm ASIC technology at standard operating conditions (25◦C).

G. Takhar et al.16

Table 3: Hardware Impact of HOLL.

Orig. Key Relation Over-
head

Bench Area
(µm2)

Area
(µm2)

#Eq.
LUT

#Eq.
conf.
bits

Area
(%)

al2 17.89 4.473 138 8,832 25.0
cht 20.74 4.178 132 8,448 20.1
C432 20.05 4.866 150 9,600 24.3
C880 50.04 4.325 132 8,448 8.6
i9 77.07 4.129 126 8,064 5.4
i7 80.41 4.129 126 8,064 4.3
x3 95.21 5.014 156 9,984 5.3

frg2 100.81 4.669 144 9,216 4.6
i8 120.37 4.325 132 8,448 3.6
des 445.37 5.554 174 11,136 1.2

Table 3 provides the esti-
mated cost for implementing
the key relations with pro-
grammable devices. To do so,
we compute the number of
equivalent NAND2 gates used
to estimate the number of 6-
input LUTs. Given the num-
ber of LUTs, we give an
estimation of the equivalent
number of configuration bits
(see [53] for details)–including
those for switch elements. Re-
sults show that the size of the
key relations is independent
of original design size. Table
3 reports the fraction of the
area locked with HOLL (key relation) to the area of the original circuit. The
results show that the impact of HOLL is low, mainly for large designs.

7 Related Work

Logic Locking: Attacks and Defenses. Existing logic locking methods aptly
operate on the gate-level netlists [54]. Gate-level locking cannot obfuscate all the
semantic information because logic synthesis and optimizations absorb many of
them into the netlist before the locking step. For example, constant propagation
absorbs the constants into the netlist. Recently, alternative high-level locking
methods obfuscate the semantic information before logic optimizations embed
them into the netlist [37, 17]. For example, TAO applies obfuscations during
HLS [37] but requires access to the HLS source code to integrate the obfuscations
and cannot obfuscate existing IPs. Protecting a design at the register-transfer
level (RTL) is an interesting compromise [29, 10]. Most of the semantic informa-
tion (e.g., constants, operations, and control flows) is still present in the RTL
and obfuscations can be applied to existing RTL IPs. In [29], the authors pro-
pose structural and functional obfuscation for DSP circuits. In [10], the authors
propose a method to insert a special finite state machine to control the tran-
sition between obfuscated mode (incorrect function) and normal mode (correct
function). Such transitions can only happen with a specific input sequence. Dif-
ferently from [13], we extract the relation directly from the analysis of a single
RTL design, making the approach independent of the design flow. None of these
methods consider the possibility of hiding a relation among the key bits.

Program Synthesis. Program synthesis has been successful in many domains:
synthesis of heap manipulations [39, 20, 57], bit-manipulating programs [27],

Program Synthesis for Higher Order Logic Locking 17

bug synthesis [40], parser synthesis [30, 46], regression-free repairs [6, 5], syn-
chronization in concurrent programs [56], boolean functions [22, 24, 23] and even
differentially private mechanisms [38]. There has also been an interest in using
program synthesis in hardware designs [16]. VeriSketch [4] exploits the power
of program synthesis in hardware design. Our work is orthogonal to the objec-
tives and techniques of VeriSketch: while VeriSketch secures hardware against
timing attacks, we propose a hardware locking mechanism. Zhang et al. [62] use
SyGUS based program synthesis to infer environmental invariants for verifying
hardware circuits. We believe that this work shows the potential of applying pro-
gramming languages techniques in hardware design. We believe that there is also
a potential of applying program analysis techniques, symbolic [9, 21, 12, 36, 34],
dynamic [41, 14] and statistical [28, 32, 11, 33], for hardware analysis; this is a
direction we intend to pursue in the future.

8 Discussion

We end the paper with an important clarification: the eFPGA configuration in
HOLL can also be represented as a bit sequence (i.e., a sequence of configuration
bits). So, why can an attacker not launch attacks similar to SAT attacks on logic
locking to recover the HOLL configuration bitstream?

The foremost reason is that while the key-bits in traditional logic locking
simply represent a value that the attacker attempts to recover, the bit-sequence
in HOLL is an encoding of a program [15, 35]. This raw bit-sequence used to
program an eFPGA is too “low-level" to be synthesized directly—the size of such
bit-streams is about 60-85 times of the keys used in traditional logic locking (128
key bit-sequence). So, the HOLL algorithm designer uses a higher-level domain-
specific language (DSL) to synthesize the key relation (see §4), that is later
“compiled" to the configuration sequence. The attacker will also have to use a
similar strategy of using a high-level DSL to break HOLL.

However, while the designer of the key relation can use a well-designed small
domain-specific language (DSL) that includes the exact set of components re-
quired (and a controlled budget) to synthesize the key relation, the attacker,
not aware of the key relation or the DSL, will have to launch the attack with
a “guess" of a large overapproximation. In other words, the domain-specific
language used for synthesis is also a secret , thereby making HOLL much
harder to crack than traditional logic locking.

We evaluate HOLL (§6.1) under the assumption that the DSL (and budget)
are known to the attacker. In real deployments (when the DSL is not known to
the attacker), HOLL will be still more difficult to crack.

Acknowledgements. We thank the anonymous reviewers for their valuable inputs.
The second author is supported in part by ONR grant number N000141812058. The
last author wishes to thank Dr. Ramanuj Chouksey for his discussions on logic locking.
We also wish to thank our colleagues who provided useful comments on this paper.

G. Takhar et al.18

References

[1] ISCAS’85 benchmarks. https://filebox.ece.vt.edu/~mhsiao/
iscas85.html, accessed: 2021-01-10

[2] Where is the eFPGA market and ecosys-
tem headed? https://semiengineering.com/
where-is-the-efpga-market-and-ecosystem-headed/, accessed:
2021-05-28

[3] Alur, R., Bodík, R., Dallal, E., Fisman, D., Garg, P., Juniwal, G., Kress-
Gazit, H., Madhusudan, P., Martin, M.M.K., Raghothaman, M., Saha, S.,
Seshia, S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-
guided synthesis. In: Irlbeck, M., Peled, D.A., Pretschner, A. (eds.) Depend-
able Software Systems Engineering, NATO Science for Peace and Security
Series, D: Information and Communication Security, vol. 40, pp. 1–25. IOS
Press (2015). https://doi.org/10.3233/978-1-61499-495-4-1

[4] Ardeshiricham, A., Takashima, Y., Gao, S., Kastner, R.: Verisketch:
Synthesizing secure hardware designs with timing-sensitive information
flow properties. In: Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security. p. 1623–1638. CCS
’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3319535.3354246

[5] Bavishi, R., Pandey, A., Roy, S.: Regression aware debugging for mo-
bile applications. In: Mobile! 2016: Proceedings of the 1st International
Workshop on Mobile Development (Invited Paper). p. 21–22. Mobile!
2016, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/3001854.3001860

[6] Bavishi, R., Pandey, A., Roy, S.: To be precise: Regression aware de-
bugging. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA 2016, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2983990.2984014

[7] Bhandari, J., Moosa, A.K.T., Tan, B., Pilato, C., Gore, G., Tang, X., Tem-
ple, S., Gaillardon, P.E., Karri, R.: Exploring eFPGA-based Redaction for
IP Protection. In: International Conference on Computer-Aided Design (IC-
CAD) (Nov 2021)

[8] Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verifi-
cation tool. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Ver-
ification. pp. 24–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[9] Cadar, C., Dunbar, D., Engler, D.: Klee: Unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: Proceedings
of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation. p. 209–224. OSDI’08, USENIX Association, USA (2008)

[10] Chakraborty, R.S., Bhunia, S.: RTL hardware IP protection using key-based
control and data flow obfuscation. In: Proceedings of the International Con-
ference on VLSI Design. pp. 405–410 (2010)

Program Synthesis for Higher Order Logic Locking 19

https://filebox.ece.vt.edu/~mhsiao/iscas85.html
https://filebox.ece.vt.edu/~mhsiao/iscas85.html
https://semiengineering.com/where-is-the-efpga-market-and-ecosystem-headed/
https://semiengineering.com/where-is-the-efpga-market-and-ecosystem-headed/
https://doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1145/3319535.3354246
https://doi.org/10.1145/3001854.3001860
https://doi.org/10.1145/2983990.2984014

[11] Chatterjee, P., Chatterjee, A., Campos, J., Abreu, R., Roy, S.: Di-
agnosing software faults using multiverse analysis. In: Bessiere, C.
(ed.) Proceedings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI-20. pp. 1629–1635. International
Joint Conferences on Artificial Intelligence Organization (7 2020).
https://doi.org/10.24963/ijcai.2020/226, main track

[12] Chatterjee, P., Roy, S., Diep, B.P., Lal, A.: Distributed bounded model
checking. In: FMCAD (July 2020)

[13] Chen, J., Zaman, M., Makris, Y., Blanton, R.D.S., Mitra, S., Schafer, B.C.:
DECOY: DEflection-Driven HLS-Based Computation Partitioning for Ob-
fuscating Intellectual Property. In: Design Automation Conference (DAC).
pp. 1–6 (2020)

[14] Chouhan, R., Roy, S., Baswana, S.: Pertinent path profiling: Tracking inter-
actions among relevant statements. In: Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
pp. 1–12 (2013). https://doi.org/10.1109/CGO.2013.6494983

[15] Clift, J., Murfet, D.: Encodings of turing machines in linear logic. Mathe-
matical Structures in Computer Science 30(4), 379–415 (2020)

[16] Cook, B., Gupta, A., Magill, S., Rybalchenko, A., Simsa, J., Singh,
S., Vafeiadis, V.: Finding heap-bounds for hardware synthesis. In:
2009 Formal Methods in Computer-Aided Design. pp. 205–212 (2009).
https://doi.org/10.1109/FMCAD.2009.5351120

[17] Di Crescenzo, G., Sengupta, A., Sinanoglu, O., Yasin, M.: Logic locking
of boolean circuits: Provable hardware-based obfuscation from a tamper-
proof memory. In: Simion, E., Géraud-Stewart, R. (eds.) Innovative Security
Solutions for Information Technology and Communications. pp. 172–192.
Springer International Publishing, Cham (2020)

[18] El Massad, M., Garg, S., Tripunitara, M.: Integrated circuit (ic) decam-
ouflaging: Reverse engineering camouflaged ics within minutes. In: Net-
work and Distributed System Security Symposium (NDSS) (01 2015).
https://doi.org/10.14722/ndss.2015.23218

[19] Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349
(Jul 1987). https://doi.org/10.1145/24039.24041

[20] Garg, A., Roy, S.: Synthesizing heap manipulations via integer lin-
ear programming. In: Blazy, S., Jensen, T. (eds.) Static Analysis, SAS
2015. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48288-9_7

[21] Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random
testing. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’05, ACM, New
York, NY, USA (2005). https://doi.org/10.1145/1065010.1065036

[22] Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for boolean
function synthesis. In: Lahiri, S.K., Wang, C. (eds.) Computer Aided Verifi-
cation (CAV). pp. 611–633. Springer International Publishing, Cham (2020)

G. Takhar et al.20

https://doi.org/10.24963/ijcai.2020/226
https://doi.org/10.1109/CGO.2013.6494983
https://doi.org/10.1109/FMCAD.2009.5351120
https://doi.org/10.14722/ndss.2015.23218
https://doi.org/10.1145/24039.24041
https://doi.org/10.1007/978-3-662-48288-9_7
https://doi.org/10.1145/1065010.1065036

[23] Golia, P., Roy, S., Meel, K.S.: Program synthesis as dependency quantified
formula modulo theory. In: Zhou, Z.H. (ed.) Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence, IJCAI-21. pp. 1894–
1900. International Joint Conferences on Artificial Intelligence Organization
(8 2021). https://doi.org/10.24963/ijcai.2021/261, main Track

[24] Golia, P., Roy, S., Slivovsky, F., Meel, K.S.: Engineering an efficient boolean
functional synthesis engine. In: ICCAD (2021)

[25] Guin, U., Huang, K., DiMase, D., Carulli, J.M., Tehranipoor, M., Makris,
Y.: Counterfeit Integrated Circuits: A rising threat in the global semicon-
ductor supply chain. Proceedings of the IEEE 102(8), 1207–1228 (Aug
2014)

[26] Hurtarte, J., Wolsheimer, E., Tafoya, L.: Understanding Fabless IC Tech-
nology. Elsevier (Aug 2007)

[27] Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-
based program synthesis. In: Proceedings of the 32Nd ACM/IEEE Inter-
national Conference on Software Engineering - Volume 1. ICSE ’10, ACM,
New York, NY, USA (2010). https://doi.org/10.1145/1806799.1806833

[28] Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of Test Information to
Assist Fault Localization. In: Proceedings of the 24th International Confer-
ence on Software Engineering. ICSE ’02, ACM, New York, NY, USA (2002).
https://doi.org/10.1145/581339.581397

[29] Lao, Y., Parhi, K.K.: Obfuscating DSP circuits via high-level transforma-
tions. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
23(5), 819–830 (2015)

[30] Leung, A., Sarracino, J., Lerner, S.: Interactive parser synthe-
sis by example. SIGPLAN Not. 50(6), 565–574 (Jun 2015).
https://doi.org/10.1145/2813885.2738002

[31] Li, L., Orailoglu, A.: Piercing logic locking keys through redundancy iden-
tification. In: Design, Automation and Test in Europe Conference (DATE).
pp. 540–545 (2019)

[32] Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable Statisti-
cal Bug Isolation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’05, ACM,
New York, NY, USA (2005). https://doi.org/10.1145/1065010.1065014

[33] Modi, V., Roy, S., Aggarwal, S.K.: Exploring Program Phases for
Statistical Bug Localization. In: Proceedings of the 11th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering. PASTE ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2462029.2462034

[34] Pandey, A., Kotcharlakota, P.R.G., Roy, S.: Deferred concretization in sym-
bolic execution via fuzzing. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. p. 228–238.
ISSTA 2019, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3293882.3330554

[35] Petersen, H.: Some remarks on real-time turing machines (2019), http:
//arxiv.org/abs/1902.00975

Program Synthesis for Higher Order Logic Locking 21

https://doi.org/10.24963/ijcai.2021/261
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/2813885.2738002
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/2462029.2462034
https://doi.org/10.1145/3293882.3330554
http://arxiv.org/abs/1902.00975
http://arxiv.org/abs/1902.00975

[36] Pham, V.T., Khurana, S., Roy, S., Roychoudhury, A.: Bucketing failing
tests via symbolic analysis. In: Huisman, M., Rubin, J. (eds.) Fundamental
Approaches to Software Engineering. pp. 43–59. Springer Berlin Heidelberg,
Berlin, Heidelberg (2017)

[37] Pilato, C., Regazzoni, F., Karri, R., Garg, S.: TAO: Techniques for
algorithm-level obfuscation during high-level synthesis. In: Design Automa-
tion Conference (DAC). pp. 1–6 (Jun 2018)

[38] Roy, S., Hsu, J., Albarghouthi, A.: Learning differentially private mecha-
nisms. In: 2021 2021 IEEE Symposium on Security and Privacy (SP). pp.
852–865. IEEE Computer Society, Los Alamitos, CA, USA (May 2021).
https://doi.org/10.1109/SP40001.2021.00060

[39] Roy, S.: From concrete examples to heap manipulating programs. In: Lo-
gozzo, F., Fähndrich, M. (eds.) Static Analysis: 20th International Sympo-
sium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38856-9_9

[40] Roy, S., Pandey, A., Dolan-Gavitt, B., Hu, Y.: Bug synthesis: Challenging
bug-finding tools with deep faults. In: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. p. 224–234. ESEC/FSE
2018, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3236024.3236084

[41] Roy, S., Srikant, Y.N.: Profiling k-iteration paths: A generalization of the
ball-larus profiling algorithm. p. 70–80. CGO ’09, IEEE Computer Society,
USA (2009). https://doi.org/10.1109/CGO.2009.11

[42] S. W. Jones: Technology and Cost Trends at Advanced Nodes. IC Knowl-
edge LLC (2019)

[43] Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D.Z., Jin, Y.: Circuit obfus-
cation and oracle-guided attacks: Who can prevail? In: Great Lakes Sym-
posium on VLSI. pp. 357–362. ACM, New York, NY, USA (2017)

[44] Shamsi, K., Li, M., Plaks, K., Fazzari, S., Pan, D.Z., Jin, Y.: IP protection
and supply chain security through logic obfuscation: A systematic overview.
ACM Transactions on Design Automation of Electronic Systems 24(6) (Sep
2019)

[45] Shamsi, K., Pan, D.Z., Jin, Y.: On the impossibility of approximation-
resilient circuit locking. In: IEEE International Symposium on Hardware
Oriented Security and Trust. pp. 161–170 (2019)

[46] Singal, D., Agarwal, P., Jhunjhunwala, S., Roy, S.: Parse condition: Sym-
bolic encoding of ll(1) parsing. In: Barthe, G., Sutcliffe, G., Veanes, M.
(eds.) LPAR-22. 22nd International Conference on Logic for Programming,
Artificial Intelligence and Reasoning. EPiC Series in Computing, vol. 57,
pp. 637–655. EasyChair (2018). https://doi.org/10.29007/2ndp

[47] Sirone, D., Subramanyan, P.: Functional analysis attacks on logic locking.
In: Design, Automation & Test Conference in Europe (DATE). pp. 1–6 (Mar
2019)

G. Takhar et al.22

https://doi.org/10.1109/SP40001.2021.00060
https://doi.org/10.1007/978-3-642-38856-9_9
https://doi.org/10.1007/978-3-642-38856-9_9
https://doi.org/10.1145/3236024.3236084
https://doi.org/10.1109/CGO.2009.11
https://doi.org/10.29007/2ndp

[48] Sisejkovic, D., Merchant, F., Reimann, L.M., Srivastava, H., Hallawa, A.,
Leupers, R.: Challenging the security of logic locking schemes in the era of
deep learning: A neuroevolutionary approach (2020)

[49] Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z.
(ed.) Proceedings of Asian Symposium Programming Languages and Sys-
tems, 7th, (APLAS). vol. 5904, pp. 4–13. Springer (2009)

[50] Solar-Lezama, A.: Program sketching. vol. 15, p. 475–495. Springer-Verlag,
Berlin, Heidelberg (Oct 2013). https://doi.org/10.1007/s10009-012-0249-7

[51] Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryp-
tion algorithms. In: IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). pp. 137–143 (2015)

[52] Takamaeda-Yamazaki, S.: Pyverilog: A Python-based hardware design pro-
cessing toolkit for Verilog HDL. In: arc. pp. 451–460 (Apr 2015)

[53] Takhar, G., Karri, R., Pilato, C., Roy, S.: HOLL: Program synthesis for
higher order logic locking (2022), https://arxiv.org/abs/2201.10531

[54] Tan, B., Karri, R., Limaye, N., Sengupta, A., Sinanoglu, O., Rahman, M.M.,
Bhunia, S., Duvalsaint, D., Blanton, R., Rezaei, A., Shen, Y., Zhou, H., Li,
L., Orailoglu, A., Han, Z., Benedetti, A., Brignone, L., Yasin, M., Rajen-
dran, J., Zuzak, M., Srivastava, A., Guin, U., Karfa, C., Basu, K., Menon,
V.V., French, M., Song, P., Stellari, F., Nam, G.J., Gadfort, P., Althoff,
A., Tostenrude, J., Fazzari, S., Breckenfeld, E., Plaks, K.: Benchmarking
at the frontier of hardware security: Lessons from logic locking (2020),
https://arxiv.org/abs/2006.06806

[55] Venkatesh, G.A.: The semantic approach to program slicing. In: Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation. p. 107–119. PLDI ’91, As-
sociation for Computing Machinery, New York, NY, USA (1991).
https://doi.org/10.1145/113445.113455

[56] Verma, A., Kalita, P.K., Pandey, A., Roy, S.: Interactive debugging of con-
current programs under relaxed memory models. In: Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Opti-
mization. p. 68–80. CGO 2020, Association for Computing Machinery, New
York, NY, USA (2020). https://doi.org/10.1145/3368826.3377910

[57] Verma, S., Roy, S.: Synergistic debug-repair of heap manipulations. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering. ESEC/FSE 2017, ACM, New York, NY, USA (2017).
https://doi.org/10.1145/3106237.3106263

[58] Yang, S.: Logic synthesis and optimization benchmarks user guide: Version
3.0. Tech. rep., MCNC Technical Report (Jan 1991)

[59] Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Removal attacks on
logic locking and camouflaging techniques. IEEE Transactions on Emerging
Topics in Computing 8(2), 517–532 (2020)

[60] Yasin, M., Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran, J.J.,
Sinanoglu, O.: Provably-secure logic locking: From theory to practice. In:
Conference on Computer and Communications Security. pp. 1601–1618
(2017)

Program Synthesis for Higher Order Logic Locking 23

https://doi.org/10.1007/s10009-012-0249-7
https://arxiv.org/abs/2201.10531
https://arxiv.org/abs/2006.06806
https://doi.org/10.1145/113445.113455
https://doi.org/10.1145/3368826.3377910
https://doi.org/10.1145/3106237.3106263

[61] Yasin, M., Sengupta, A., Schafer, B.C., Makris, Y., Sinanoglu, O., Rajen-
dran, J.: What to lock? functional and parametric locking. In: Proceedings
of the on Great Lakes Symposium on VLSI 2017. pp. 351–356 (2017)

[62] Zhang, H., Yang, W., Fedyukovich, G., Gupta, A., Malik, S.: Synthesizing
environment invariants for modular hardware verification. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 11990 LNCS, 202–225 (2020).
https://doi.org/10.1007/978-3-030-39322-9_10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

G. Takhar et al.24

https://doi.org/10.1007/978-3-030-39322-9_10
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

The Complexity of LTL Rational Synthesis

Orna Kupferman and Noam Shenwald(�)

School of Computer Science and Engineering, The Hebrew University, Jerusalem,
Israel

orna@cs.huji.ac.il

noam.shenwald@mail.huji.ac.il

Abstract. In rational synthesis, we automatically construct a reactive
system that satisfies its specification in all rational environments, namely
environments that have objectives and act to fulfill them. We complete
the study of the complexity of LTL rational synthesis. Our contribution
is threefold. First, we tighten the known upper bounds for settings that
were left open in earlier work. Second, our complexity analysis is para-
metric, and we describe tight upper and lower bounds in each of the
problem parameters: the game graph, the objectives of the system com-
ponents, and the objectives of the environment components. Third, we
generalize the definition of rational synthesis, combining the cooperative
and non-cooperative approaches studied in earlier work, and extend our
complexity analysis to the general definition.

1 Introduction

Synthesis is the automated construction of a system from its specification. The
basic idea is simple and appealing: instead of developing a system and verifying
that it adheres to its specification, we use an automated procedure that, given a
specification, constructs a system that is correct by construction, thus enabling
the designers to focus on what the system should do rather than how to do it. A
reactive system interacts with its environment and should satisfy its specifica-
tion in all environments [8,25]. Accordingly, synthesis corresponds to a zero-sum
game between the system and the environment, where they together generate a
computation, the system wins if the computation satisfies the specification, and
otherwise, the environment wins.

In practice, the requirement to satisfy the specification in all environments
is often too strong. Therefore, it is common to add assumptions on the envi-
ronment. An assumption may be direct, say a specification that restricts the
possible behaviors of the environment [5], or less direct, say a bound on the size
of the environment or other resources it uses [14]. In [11], the authors suggest
a conceptual assumption on the environment, namely its rationality: Rational
synthesis is based on the idea that the components composing the environment
typically have objectives of their own, and they act to achieve their objectives.
For example, clients interacting with a server typically have objectives other

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 25–45, 2022.
https://doi.org/10.1007/978-3-030-99524-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_2

26 O. Kupferman and N. Shenwald

than to fail the server. As shown in [11], the system can capitalize on the ra-
tionality and objectives of components that compose its environment. Adding
rationality into the picture makes the corresponding game non-zero-sum [22],
thus objectives of different players may overlap.

The interesting questions about non-zero-sum games concern stable out-
comes, in particular Nash equilibria (NE) [21]. More formally, each of the players
in the game has a strategy that directs her which actions to take; a profile is a
vector of strategies, one for each player; each profile has an outcome (in our case,
the computation generated when the system and the environment follow their
strategies); and a profile is an NE if no player has an incentive to deviate from
it (in our case, to change her strategy in a way that would cause the outcome of
the new profile to satisfy her objective).

Two approaches to rational synthesis have been studied. In cooperative ra-
tional synthesis (CRS) [11], the desired output is an NE profile whose outcome
satisfies the objective of the system. Thus, in CRS, we assume that we can sug-
gest strategies to the environment players, and once they have no incentive to
deviate from these strategies, they follow them. Then, in non-cooperative ratio-
nal synthesis (NRS) [15], the desired output is a strategy for the system player
such that the objective of the system is satisfied in the outcome of all NE profiles
that include this strategy. Thus, in NRS, the environment players are rational,
but we cannot suggest them a strategy.

The cooperative and non-cooperative approaches correspond to different set-
tings in reality, having to do both with the technical ability to communicate a
strategy to the environment players, say due to different architectures, as well
as the willingness of the environment players to follow a suggested strategy. As
shown in [1], the two approaches are related to the two stability-inefficiency mea-
sures of price of stability [3] and price of anarchy [16,23]. Additional related work
includes rational verification [27,12], where we check that a given system satisfies
its specification when interacting with a rational environment, and extensions of
rational synthesis to richer settings (multi-valued, partial visibility, and more)
[4,13,18].

The complexity of rational synthesis was first studied for the case the in-
put to the problem is the objectives of the players, given by LTL formulas. In
this setting, CRS is in 2EXPTIME [11], whereas the best known upper bound
for NRS until recently was 3EXPTIME [15] (the paper specifies a 2EXPTIME
upper bound, but a careful analysis of the algorithm reveals that it is actu-
ally in 3EXPTIME), improved to 2EXPTIME for turn-based games with two
players [18]. The complexity analysis above suggests that rational synthesis is
not harder than traditional synthesis. One may wonder whether this has to do
with the doubly-exponential translation of LTL to deterministic automata, which
dominates the complexity. To answer this question, [9] studies the complexity
of rational synthesis where the objectives of the players are given by ω-regular
winning conditions in a game graph (e.g., reachability, Büchi, and parity). The
analysis in [9] also distinguishes between the case the number of players is fixed
and the case it is not. As shown there, in most cases the complexity of the ratio-

The Complexity of LTL Rational Synthesis

nal variant coincides with the complexity of the zero-sum game. In some cases,
however, it does not. For example, while the problem of deciding Rabin games
is NP-complete [10], the best algorithm for solving CRS with Rabin objectives

is in PNP, going up to PSPACE-complete in NRS, and going higher when the
number of players is not fixed [9].

In this work, we complete the study of the complexity of LTL rational syn-
thesis. Our contribution is threefold. First, we tighten the known upper bound
for NRS for settings with three or more players and for concurrent games, which
were left open in [9,18]. Second, our complexity analysis is parametric, and we de-
scribe tight upper and lower bounds in each of the problem parameters: the game
graph, the objectives of the system players, and the objectives of the environment
players. Third, we generalize the definition of rational synthesis, combining the
cooperative and non-cooperative approaches, and extend our complexity analysis
to the general definition. Below we elaborate on each of the contributions.

Let us start with the generalization of the problem. In our general definition,
we may suggest a strategy only to a subset of the environment players. Thus,
we distinguish between three types of players: controllable, cooperative uncon-
trollable, and non-cooperative uncontrollable. Then, in the (general) rational-
synthesis (RS) problem, we are given a labeled graph and LTL formulas that
specify the objectives of the players, and we seek strategies for the controllable
and the cooperative-uncontrollable players such that the objectives of the con-
trollable players are satisfied in the outcome of every NE profile that extends
these strategies. Note that CRS and NRS can be viewed as special cases of RS
where the uncontrollable players are all cooperative or all non-cooperative.

In the tight-complexity front, our algorithms reduce rational synthesis to the
nonemptiness problem of tree automata. The automata accept certified strategy
trees : trees that are labeled by both a strategy for the controllable player1 and
information about uncontrollable players that deviate and the strategies to which
they deviate. The most technically-challenging algorithm we describe is for NRS
in the concurrent setting. While in the turn-based setting, we need a single player
that deviates in order to justify a path in which the objective of the controllable
player is not satisfied, in the concurrent setting, where the players choose actions
simultaneously and independently, we need to consider sets of uncontrollable
players. This makes the certificate much more complex. In particular, it involves
labels from an exponential alphabet, which introduces an additional challenge,
namely a need to decompose labels along branches in the tree. Also, while in the
turn-based setting, an NE always exists, concurrent games with three or more
players need not have an NE [7], and so a certified strategy tree should also
certify the existence of an NE.

Finally, in the parameterized-complexity front, the fact our algorithms use
tree automata (rather than a translation to Strategy Logic [6], which has been the
case in [11,15]), enables us to analyze the complexity in each of the parameters of
the problem: the game graph G, the objective ψ1 of the controllable player, and
the objectives ψ2, . . . , ψk of the uncontrollable players. For CRS, [18] studies the

1 It is easy to see that several controllable components can be merged to a single one.

27

parameterized complexity in turn-based games with two players.2 The algorithm
there is based on a distinction between the case the uncontrollable player satisfies
her objective and the case she does not. Generalizing this to an arbitrary number
of players, we parameterize solutions with the set of the uncontrollable players
whose objectives are satisfied, and give a uniform solution to all cases. This also
enables us to seek solutions that favor some or all uncontrollable players.

We show that the complexity of CRS is polynomial in |G|, doubly-exponential
in |ψ2|, . . . , |ψk|, and only exponential in |ψ1|. Thus, in terms of the system
specification, CRS is in fact easier than traditional synthesis! Once we move to
NRS or RS, the complexity becomes doubly exponential in all objectives. We
describe tight lower bounds for the different parameters, and we show that they
are valid already for the case k = 2 and the game is turn based. Specifically,
we prove that CRS is EXPTIME-hard even when G and ψ2 are fixed, and is
2EXPTIME-hard even when G and ψ1 are fixed. Similarly, NRS is 2EXPTIME-
hard even when only one of ψ1 and ψ2 is not fixed. In order to see the technical
challenge in our lower-bound proofs, consider the current 2EXPTIME lower-
bound proof for CRS, where synthesis of an objective ψ for the system is reduced
to CRS with objectives ψ for the system and ¬ψ for the environment. The
reduction crucially depends on both objectives not being fixed, and just changing
either of them to True or False does not do the trick. In order to get 2EXPTIME-
hardness in |ψ2|, we need to cleverly manipulate both G and ψ1.

Together, our results complete the complexity picture for a generalized def-
inition of rational synthesis, for both turn-based and concurrent systems, with
any number of components, and with the exact dependencies in each of the
parameters of the problem.

Due to the lack of space, some proofs are omitted and can be found in the
full version, in the authors’ URLs.

2 Preliminaries

2.1 LTL, trees, and automata

The logic LTL is used for specifying on-going behaviors of reactive systems [24].
Formulas of LTL are constructed from a set AP of atomic propositions using
the usual Boolean operators and the temporal operators G (“always”) and F
(“eventually”), X (“next time”) and U (“until”). The semantics of LTL is de-
fined with respect to infinite computations in (2AP)ω. We are going to use LTL
for specifying the objectives of the system and the components composing the
environment.

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · d ∈ T ,
where x ∈ D∗ and d ∈ D, then also x ∈ T . The elements of T are called nodes,
and the empty word ε is the root of T . For every x ∈ T , the nodes x · d, for
2 The study in [18] considers perspective games [19], which adds the challenge of partial
visibility on top of rational synthesis, but the results there imply the desired bounds
for the case of full visibility.

28 O. Kupferman and N. Shenwald

d ∈ D, are the successors of x, and the direction of node x · d is d. A path h in
a tree T is a set h ⊆ T such that ε ∈ h and for every x ∈ h, either x is a leaf or
there exists a unique d ∈ D such that x · d ∈ h. We sometimes refer to paths in
T as words in D∗ or Dω. For a finite path h ⊆ D∗ and a finite or infinite path
h′ ⊆ D∗, we use h ⪯ h′ to indicate that h is a prefix of h′, thus h ⊆ h′. Given an
alphabet Σ, a Σ-labeled D-tree is a pair ⟨T, τ⟩ where T is a tree and τ : T → Σ
maps each node of T to a letter in Σ.

Our algorithms use automata on infinite words and trees. We are going to use
nondeterministic and universal automata, yet define below alternating automata,
which subsume both classes. For a setX, let B+(X) be the set of positive Boolean
formulas over X (i.e., Boolean formulas built from elements in X using ∧ and
∨), where we also allow the formulas true and false. For a set Y ⊆ X and a
formula θ ∈ B+(X), we say that Y satisfies θ iff assigning true to elements in
Y and assigning false to elements in X \ Y makes θ true. An alternating tree
automaton is A = ⟨Σ,D,Q, qin, δ, α⟩, where Σ is the input alphabet, D is a set
of directions, Q is a finite set of states, δ : Q×Σ → B+(D ×Q) is a transition
function, qin ∈ Q is an initial state, and α ⊆ Q specifies a Büchi or a co-Büchi
acceptance condition. For a state q ∈ Q, we use Aq to denote the automaton
obtained from A by setting the initial state to be q. The size of A, denoted |A|,
is the sum of lengths of formulas that appear in δ.

The alternating automaton A runs on Σ-labeled D-trees. A run of A over
a Σ-labeled D-tree ⟨T, τ⟩ is a (T × Q)-labeled IN-tree ⟨Tr, r⟩. Each node of Tr
corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy of
the automaton that reads the node x of T and visits the state q. Note that many
nodes of Tr can correspond to the same node of T . The labels of a node and its
successors have to satisfy the transition function. Formally, ⟨Tr, r⟩ satisfies the
following:

1. (1) ε ∈ Tr and r(ε) = ⟨ε, qin⟩.
2. (2) Let y ∈ Tr with r(y) = ⟨x, q⟩ and δ(q, τ(x)) = θ. Then there is a (possibly

empty) set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such that S
satisfies θ, and for all 0 ≤ i ≤ n−1, we have y · i ∈ Tr and r(y · i) = ⟨x ·ci, qi⟩.

For example, if ⟨T, τ⟩ is a {0, 1}-tree with τ(ε) = a and δ(qin, a) = ((0, q1) ∨
(0, q2))∧((0, q3)∨(1, q2)), then, at level 1, the run ⟨Tr, r⟩ includes a node labeled
(0, q1) or a node labeled (0, q2), and includes a node labeled (0, q3) or a node
labeled (1, q2). Note that if, for some y, the transition function δ has the value
true, then y need not have successors. Also, δ can never have the value false in
a run.

A run ⟨Tr, r⟩ is accepting if all its infinite paths satisfy the acceptance condi-
tion. Given a run ⟨Tr, r⟩ and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that
q ∈ inf(π) if and only if there are infinitely many y ∈ π for which r(y) ∈ T×{q}.
That is, inf(π) contains exactly all the states that appear infinitely often in π. A
path π satisfies a Büchi acceptance condition α iff inf(π)∩α ̸= ∅, and satisfies a
co-Büchi acceptance condition α iff inf(π) ∩ α = ∅. We also consider the parity
acceptance condition, where α : Q→ {0, 1, . . . , k} maps each state to a color in
{0, 1, . . . , k}, and a path π satisfies α if the minimal color visited infinitely often

The Complexity of LTL Rational Synthesis 29

is even, thus min{i : inf(π)∩ α−1(i) ̸= ∅} is even. An automaton accepts a tree
iff there exists a run that accepts it. We denote by L(A) the set of all Σ-labeled
trees that A accepts. The size of A, denoted |A|, is the sum of lengths of the
description of its transition function.

The alternating automaton A is nondeterministic if for all the formulas that
appear in δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 ̸= c2. (i.e.,
if the transition is rewritten in disjunctive normal form, there is at most one
element of {c} × Q, for each c ∈ D, in each disjunct). Note that then, the run
tree Tr is equal to T , and the Σ-labels in τ are replaced by Q-labels in r. The
automaton A is universal if all the formulas that appear in δ are conjunctions
of atoms in D×Q. Note that then, there is only one run tree of A on ⟨T, τ⟩, yet
each note x ∈ T may have several nodes y ∈ Tr such that r(y) = ⟨x, q⟩ for some
q ∈ Q. Finally, A is deterministic if it is both nondeterministic and universal.
The automaton A is a word automaton if |D| = 1. Then, we can omit D from
the specification of the automaton and denote the transition function of A as
δ : Q × Σ → B+(Q). If the word automaton is nondeterministic or universal,
then δ : Q×Σ → 2Q.

We denote different types of automata by three-letter acronyms in {D,N,U}×
{F,B,C, P} ×{W,T}, where the first letter describes the branching mode of the
automaton (deterministic, nondeterministic, or universal), the second letter de-
scribes the acceptance condition (finite, Büchi, co-Büchi, or parity), and the third
letter describes the object over which the automaton runs (words or trees). For
example, UCT stands for a universal co-Büchi tree automaton.

2.2 Concurrent multiplayer games

For k ≥ 1, let [k] = {1, . . . , k}. A k-player game graph is a tuple G = ⟨AP, V, v0,
{Ai}i∈[k], {κi}i∈[k], δ, τ⟩, where AP is a set of atomic propositions, V is a set of
vertices, v0 ∈ V is an initial vertex, and for i ∈ [k], the set Ai is a set of actions
of Player i, and κi : V → 2Ai specifies the set of actions that Player i can take
at each vertex.

A move in G is a tuple ⟨a1, . . . , ak⟩ ∈ A1×· · ·×Ak, describing possible choices
of actions for all k players. A move ⟨a1, . . . , ak⟩ is possible for vertex v ∈ V if
ai ∈ κi(v) for all i ∈ [k]. Then, the transition function δ : V ×A1×· · ·×Ak → V
is a deterministic function that maps each vertex and possible move for it to a
successor vertex. Finally, the function τ : V → 2AP maps each vertex to the set
of atomic propositions that hold in it.

A game is a tuple G = ⟨G, {ψi}i∈[k]⟩, where G is a k-player game graph, and
ψi, for i ∈ [k], is an LTL formula over AP , describing the objective of Player i.
In a beginning of a play in the game, a token is placed on v0. Then, at each
round, the players choose actions simultaneously and independently of the other
players, and the induced move determines the successor vertex. Repeating this,
the players generate a play ρ = v0, v1, . . . in G, which induces the computation
τ(ρ) = τ(v0), τ(v1), . . . ∈ (2AP)

ω
. For every i ∈ [k], Player i aims for a play

whose computation satisfies ψi. For an LTL formula ψ, let L(ψ) ⊆ (2AP)ω be
the set of computations that satisfy ψ.

O. Kupferman and N. Shenwald30

A strategy for Player i is a function fi : V + → Ai that maps histories of
the game to an action suggested to Player i. The suggestion has to be consistent
with κi. Thus, for every v0v1 · · · vj ∈ V +, we have that fi(v0v1 · · · vj) ∈ κi(vj). A
profile is a tuple π = ⟨f1, . . . , fk⟩ of strategies, one for each player. The outcome
of a profile π = ⟨f1, . . . , fk⟩ is the play obtained when the players follow their
strategies. Formally, Outcome(π) = v0, v1, . . . is such that for all j ≥ 0, we
have that vj+1 = δ(vj , ⟨f1(v0 · · · vj), · · · , fk(v0 · · · vj)⟩). For a subset S ⊆ [k] of
players, an S-profile is a set of strategies, one for each player in S. We say that
a profile π extends an S-profile π′ if the players in S use in π their strategies in
π′.

Consider a profile π. The set of winners in π, denoted Win(π), is the set
of players whose objectives are satisfied in Outcome(π). Formally, i ∈ Win(π)
iff τ(Outcome(π)) ∈ L(ψi). The set of losers in π, denoted Lose(π), is then
[k] \ Win(π), namely the set of players whose objectives are not satisfied in
Outcome(π).

A game G is zero-sum if the objectives of the players form a partition of all
possible behaviors. That is, for every i ̸= j ∈ [k], we have that L(ψi)∩L(ψj) = ∅,
and

⋃
i∈[k] L(ψi) = (2AP)

ω
. Accordingly, for every profile π in a zero-sum game,

we have that |Win(π)| = 1 and |Lose(π)| = k−1. We then say that Player i wins
G if she has a winning strategy – a strategy that guarantees the satisfaction of
ψi no matter how the other players proceed. Formally, fi is a winning strategy
if for every profile π with fi, we have that Win(π) = {i}.

Games may be non zero-sum, thus the objectives of the players may over-
lap. In such games, we are interested in stable profiles. In particular, a profile
π = ⟨f1, . . . , fk⟩ is a Nash Equilibrium (NE, for short) [21] if, intuitively, no
(single) player can benefit from unilaterally changing her strategy. In our set-
ting, benefiting amounts to moving from the set of losers to the set of win-
ners. Formally, for i ∈ [k] and a strategy f ′i for Player i, let π[i ← f ′i] =
⟨f1, . . . , fi−1, f

′
i , fi+1, . . . , fk⟩ be the profile obtained from π by changing the

strategy of Player i to f ′i . We say that π is an NE if for every i ∈ [k], if i ∈ Lose(π),
then for every strategy f ′i , we have that i ∈ Lose(π[i ← f ′i]). Thus, π is an NE
if no player has an incentive to deviate from π. For a subset W ⊆ [k] of players,
we say that π is a W-NE if π is an NE with W = Win(π).

The game G is turn-based if the transition function of its graph G is such that
for every vertex v ∈ V , there is a single player that “owns” v and determines
the successor vertex whenever the play is in v. Formally, for every v ∈ V , there
is i ∈ [k] such that for all moves ⟨a1, . . . , ak⟩ and ⟨a′1, . . . , a′k⟩ that are possible
for v, if ai = a′i, then δ(v, ⟨a1, . . . , ak⟩) = δ(v, ⟨a′1, . . . , a′k⟩). Accordingly, we
describe the game graph of a turn-based game as G = ⟨AP, {Vi}i∈[k], v0, E, τ⟩,
where V1, . . . , Vk is a partition of V to the sets of vertices owned by the different
players, and E ⊆ V ×V is the transition relation, modeling the fact that the set
of actions of Player i in a vertex v she owned is the set of v’s successors.

The Complexity of LTL Rational Synthesis 31

3 Rational Synthesis

Consider a k-player game G = ⟨G, {ψi}i∈[k]⟩. We distinguish between three types
of players: A player is controllable if she is guaranteed to follow a strategy as-
signed to her. Otherwise, she is uncontrollable. The uncontrollable players are
rational – they would not deviate from a profile unless they have a beneficial
deviation from it. We distinguish between cooperative uncontrollable players, to
which we can suggest a strategy (which they would follow unless they have a
beneficial deviation), and non-cooperative uncontrollable players, to which we
cannot suggest a strategy. The distinction between the cooperative and non-
cooperative uncontrollable players may be induced by the architecture or the
nature of the players. We denote by C,CU, and NU the disjoint partition of [k]
into the classes of controllable, uncontrollable cooperative, and uncontrollable
non-cooperative players, respectively.

In rational synthesis, we seek a strategy for each of the players in C with
which their objectives are guaranteed to be satisfied, assuming rationality of the
other players. As we have the best interest of the players in C in mind, we assume
that C ̸= ∅. We say that a profile π = ⟨f1, . . . , fk⟩ is a C-fixed NE, if no player
in CU ∪ NU has a beneficial deviation. Formally, we have the following.

Definition 1. [Rational Synthesis] Consider a k-player game G = ⟨G, {ψi}i∈[k]⟩.
The problem of rational synthesis (RS) is to return a (C∪CU)-profile π′ such that
there is a C-fixed NE that extends π′, and for every C-fixed NE π that extends
π′, we have that C ⊆Win(π).

Two special cases of rational synthesis have been studied in the literature.
The first is cooperative rational synthesis, where all uncontrollable players are
cooperative [11]. The second is non-cooperative rational synthesis, where all un-
controllable players are non-cooperative [15].

Definition 2. [Cooperative Rational Synthesis] Consider a k-player game
G = ⟨G, {ψi}i∈[k]⟩ with NU = ∅. The problem of cooperative rational synthesis
(CRS) is to return a C-fixed NE π such that C ⊆Win(π).

Definition 3. [Non-Cooperative Rational Synthesis] Consider a k-player
game G = ⟨G, {ψi}i∈[k]⟩ with CU = ∅. The problem of non-cooperative rational
synthesis (NRS) is to return a C-profile π′ such that there is a C-fixed NE that
extends π′, and for every C-fixed NE π that extends π′, we have that C ⊆Win(π).

Remark 1. The original rational synthesis problem does not include a game
graph [11]. Instead, the set AP over which the objectives are defined is par-
titioned among the players, and at each round of the game, each player chooses
an assignment to the subset of AP she controls. It is easy to see that this setting
is a special case of our setting, taking the graph to have vertices in 2AP . ⊓⊔

Remark 2. In previous work, the definition of NRS does not require the existence
of a C-fixed NE that extends π′ [15,18]. In some settings (in particular, turn-
based games), the existence of such an NE is guaranteed. In others (in particular,

O. Kupferman and N. Shenwald32

concurrent games) there need not be an NE in games with three or more players
[7]. Note, however, that even with the requirement that a C-fixed NE that extends
π′ exists, there is no guarantee that best response dynamics from π′ would lead
to such a C-fixed NE. ⊓⊔

As in traditional synthesis, one can also define the corresponding decision
problems, of rational realizability, where we only need to decide whether the
desired strategies exist. In order to avoid additional notations, we sometimes
refer to RS, CRS, and NRS also as decision problems.

For a set W ⊆ [k], we say that a solution to the rational synthesis problem is
a W-solution iff it is a solution that guarantees the winning of exactly the players
in W. In particular, a (C∪CU)-profile π′ is a W-RS solution if it is an RS solution
such that for every C-fixed NE π that extends π′, we have that W = Win(π); a
profile π is a W-CRS solution if π is a CRS solution such that W = Win(π); and
a C-profile π′ is a W-NRS solution if π′ is an NRS solution such that for every
C-fixed NE π that extends π′, we have that W = Win(π).

It is easy to see that since the players in C are controllable, we can treat them
as a single player with an objective that is the conjunction of the objectives of
the players in C. Accordingly, in the sequel we assume that C = {1}.

Remark 3. It is easy to add to the setting uncontrollable hostile players, namely
players that, as in traditional synthesis, do not have an objective. Indeed, an
uncontrollable hostile player is equivalent to an uncontrollable (cooperative or
non-cooperative) player with objective ¬ψ1. ⊓⊔

4 The Complexity of Cooperative Rational Synthesis

In this section we study the complexity of CRS. Consider a k-player concurrent
game G = ⟨G, {ψi}i∈[k]⟩. A strategy for Player i can be viewed as an Ai-labeled
V -tree, and a profile can be viewed as an (A1×· · ·×Ak)-labeled V -tree. Formally,
if π = ⟨f1, . . . , fk⟩ then for every node h ∈ V ∗ in the profile tree ⟨V ∗, π⟩, we have
π(h) = ⟨f1(h), . . . , fk(h)⟩, where ⟨V ∗, fi⟩ is the strategy tree that corresponds to
fi. Note that Outcome(π) then corresponds to a path in ⟨V ∗, π⟩.

Viewing profiles as labeled trees enables us to reduce CRS to the nonempti-
ness of a tree automaton. Essentially, the automaton accepts all profile trees that
are solutions to the CRS problem. We define the automaton by decomposing the
solutions according to the set of players that win. Given a set W of players with
1 ∈W, a profile π is a W-CRS solution iff π is a 1-fixed W-NE. Thus, iff exactly
the players in W win in Outcome(π), and for every i /∈ W, Player i loses in
Outcome(π[i ← f ′i]), for every strategy f ′i . In Theorem 1 below, we construct
automata that check these conditions.

Theorem 1. Consider a set of players W with 1 ∈ W. We can construct the
following tree automata over (A1 × · · · × Ak)-labeled V -trees:

– An NBT NW that accepts a profile tree ⟨V ∗, π⟩ iff Win(π) = W. The size of
NW is polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|.

The Complexity of LTL Rational Synthesis 33

– For every i /∈ W, a UCT U i
W that accepts a profile tree ⟨V ∗, π⟩ iff i ∈

Lose(π[i ← f ′i]), for every strategy f ′i . The size of U i
W is polynomial in |G|

and exponential in |ψi|.

Proof. We start with the NBT NW. Recall that we want NW to accept a profile
tree ⟨V ∗, π⟩ iff exactly the players in W win in Outcome(π). Let ψ =

∧
i∈W ψi ∧∧

i/∈W(¬ψi), and let A = ⟨2AP , Q, q0, µ, α⟩ be an NBW of size exponential in |ψ|
that corresponds to ψ. The NBT NW follows the outcome in the profile tree,
and checks if the players in W are exactly the winners of the profile. Formally,
NW = ⟨A1 × · · · × Ak, V, V × Q, ⟨v0, q0⟩, η, V × α⟩, where for every ⟨v, q⟩ ∈
V × Q and ⟨a1, . . . , ak⟩ ∈ A1 × · · · × Ak, we have that η(⟨v, q⟩, ⟨a1, . . . , ak⟩) =∨

q′∈µ(q,τ(v))(δ(v, ⟨a1, . . . , ak⟩), ⟨δ(v, ⟨a1, . . . , ak⟩), q′⟩).
We continue to the UCT U i

W. Recall that we want U i
W to accept a pro-

file tree ⟨V ∗, π⟩ iff Player i loses in Outcome(π[i ← f ′i]), for every strategy
f ′i . Let Ui = ⟨2AP , Qi, q

0
i , δi, αi⟩ and ¬Ui = ⟨2AP , Si, s

0
i , µi, βi⟩ be the UCWs

corresponding to ψi and ¬ψi, respectively. The UCT U i
W follows every possi-

ble deviation for Player i, and checks that indeed she always loses. Formally,
U i
W = ⟨A1 × · · · × Ak, V, V × Si, ⟨v0, s0i ⟩, η, V × βi⟩, where for every ⟨v, s⟩ ∈
V × Si and ⟨a1, . . . , ak⟩ ∈ A1 × · · · × Ak, we have that η(⟨v, s⟩, ⟨a1, . . . , ak⟩) =∧

a′
i∈κi(v)

∧
s′∈µi(s,τ(v))

(δ(v, ⟨a1, . . . , a′i, . . . , ak⟩), ⟨δ(v, ⟨a1, . . . , a′i, . . . , ak⟩), s′⟩).
⊓⊔

Theorem 2. Solving CRS can be done in time polynomial in |G|, exponential
in |ψ1|, and doubly-exponential in |ψ2|, . . . , |ψk|. The problem is EXPTIME-hard
in |ψ1| and 2EXPTIME-hard in each of |ψ2|, . . . , |ψk|.

Proof. We start with the upper bound. It is easy to see that for every set W ⊆ [k]
of players with 1 ∈ W, there is a W-CRS solution iff the intersection of the au-
tomata constructed in Theorem 1 is nonempty. We construct an NBT A such
that L(A) ̸= ∅ iff L(NW)∩

⋂
i ̸∈W L(U i

W) ̸= ∅, and |A| is polynomial in |G|, expo-
nential in |ψ1|, and doubly-exponential in |ψ2|, . . . , |ψk|. Since nonemptiness of
NBTs can be checked in quadratic time [26], the upper bound follows. Moreover,
when L(A) ̸= ∅, the algorithm returns a witness to A’s nonemptiness, namely a
profile tree that is a solution to the CRS problem.

The construction of A involves two challenges. First, a naive analysis of the
blow-up involved in translating UCTs to NBTs is exponential in the state space
of the UCT. In our case, the state space of a UCT U i

W is of the form V × S,
for some set S that is independent of G. Also, the V -component is updated
deterministically: all states sent to the same direction v of the tree agree on their
V -element. Consequently, the exponential blow up is only in the S-component,
which depends only on |ψi|. Second, the transformation of UCTs to NBTs that
is described in [20] preserves nonemptiness, whereas here we need to preserve
nonemptiness of an intersection of automata. As detailed in [17], where we coped
with a similar challenge, this can be handled by parameterizing the construction
in [20] by a rank (essentially, a bound on the size of transducers that generate
trees in the language of the automaton) that corresponds to the size of the
intersection.

O. Kupferman and N. Shenwald34

We continue to the lower bounds, and we show they are valid already in the
case k = 2. Proving an EXPTIME lower bound in |ψ1|, we describe a reduc-
tion from the membership problem for linear-space alternating Turing machines
(ATM), defined in the full version. That is, given an ATM M with space com-
plexity s : N → N and a word w, we construct a 2-player turn-based game
G = ⟨G, {ψ1, ψ2}⟩, such that G and ψ2 are of a fixed size, ψ1 is of size linear in
s(|w|), and there is a CRS solution in G iff M accepts w.

Essentially, Player 1 and Player 2 generate a branch in the computation tree
of M on w. Player 1 chooses the letters of the current configuration one by
one, and chooses, at the end of each existential configuration, the successor
configuration to which the branch continues. Player 2, on the other hand, only
chooses successor configurations at the end of each universal configuration (see
Fig. 1). The objective of Player 1 is to reach an accepting configuration, and the
objective of Player 2 is to reach a rejecting configuration.

v0 ve

vu

Σe × {e}

Σu × {u}

#

〈#, e〉

#

〈#, u〉

lle rre

llu rru

1

Fig. 1. The game graph G. The circles are vertices controlled by Player 1, and the
square is a vertex controlled by Player 2.

We prove that G has a {1}-NE that satisfies ψ1 iff M accepts w. First, if M
accepts w, then the profile in which Player 1 follows a strategy that generates
the configurations in the accepting computation and chooses the appropriate
successors to existential configurations, is a {1}-NE that satisfies ψ1. Also, if M
rejects w, then Player 2 can choose successors of universal configurations in a
way that leads to a rejecting configuration. Thus, there is no {1}-NE in G that
satisfies ψ1, as either Player 1 loses by not forming a valid branch, or Player 2
can deviate to a strategy where she wins and Player 1 loses. In the full version,
we give the details of the reduction.

Proving a 2EXPTIME lower bound in |ψ2|, we use a reduction from decid-
ability of 2-player zero-sum games, which is 2EXPTIME-hard already for a game

The Complexity of LTL Rational Synthesis 35

with a game graph of a fixed size [2]. Given a 2-player zero-sum game G = ⟨G,ψ⟩,
we construct a 2-player game H = ⟨H, {ψ1, ψ2}⟩ such that the size of H is linear
in |G|, ψ1 is of a fixed size, ψ2 is of size linear in |ψ|, and there is a CRS solution
in H iff Player 1 wins G. Essentially, the game graph H contains two copies of
G, and a new initial vertex in which Player 2 chooses between proceeding to the
first or the second copy.

Note that Player 1 has no influence in that decision. Then, the objective of
Player 1 is for the play to be generated in the first copy, and the objective of
Player 2 is for the play to be generated in the second copy and for the compu-
tation to not satisfy ψ. ⊓⊔

Remark 4. Note that our algorithm finds W-CRS solutions for all W ⊆ [k], and
so it is exponential in k. As shown in [9], rational synthesis is PSPACE in k
already for rational synthesis with reachability objectives.

5 The Complexity of Non-Cooperative Rational Synthesis

In this section we study the complexity of NRS. We start with the turn-based
setting, and then proceed the concurrent setting.

5.1 Turn-based games

As in the CRS case, we construct a tree automaton that accepts strategy trees
that are NRS solutions. Here, however, the trees are labeled not only by a strat-
egy for Player 1, but also by information that certifies that the suggested strategy
is indeed a solution. Our construction follows the ideas developed for turn-based
games in [9], adding to them a treatment of the LTL objectives (the latter is
not too complicated, and our main goal in this section is to set the stage to the
concurrent setting, which was left open in [9]). In order to present our solution,
we first need some definitions and notations.

Consider a k-player turn-based game G = ⟨G, {ψi}i∈[k]⟩. Let G = ⟨AP ,
{Vi}i∈[k], v0 ,E, τ⟩. Recall that for a subset S ⊆ [k] of players, an S-profile is
a set of strategies, one for each player in S, and that a profile π extends an
S-profile π′ if the players in S use in π their strategies in π′. The outcome of
an S-profile π′, denoted Outcome(π′), is the union of plays that are outcomes
of profiles that extend π′. Thus, Outcome(π′) ⊆ V ω is the set of plays that are
possible outcome of the game when the players in S follow their strategies in π′.

Consider a profile π = ⟨f1, . . . , fk⟩ and a prefix h ∈ V ∗ of Outcome(π). For a
profile π′ = ⟨f ′1, . . . , f ′

k⟩, we define the profile switch(π, π′, h) = ⟨fh1 , . . . , fh
k ⟩ as

the profile in which the players first follow π and generate h, and then switch
to following π′. Formally, for every x ∈ V ∗ and Player i ∈ [k], if x ⪯ h, then
fhi (x) = fi(x), and if x = h · y, then fhi (x) = f ′i(y). Note that since the last
vertices in x and y coincide, then switch(π, π′, h) is well defined, in the sense that
it returns only allowed actions. Also note that fhi (h) = f ′i(ε), thus, switching to
following π′, we reset the history of the game so far. The strategies in nodes that
are neither a prefix of h nor an extension of h are arbitrary and can follow π.

O. Kupferman and N. Shenwald36

For i ∈ [k] \ {1} and a prefix h ∈ V ∗ · Vi of some play in Outcome({f1}),
we say that Player i wins from h if there exists a strategy f ′i for Player i such
that for every profile π = ⟨f1, . . . , fk⟩ with h ⪯ Outcome(π), we have that
i ∈ Win(switch(π, π[i ← f ′i], h)). That is, Player i wins in every profile in which
the players first generate h, and then Player i switches to following f ′i , while the
other players adhere to their strategies in the original profile. The strategy f ′i is
then called an h-winning strategy for Player i.

Since turn-based games always have an NE, an NRS solution in G is a strategy
f1 for Player 1 such that for every 1-fixed NE π = ⟨f1, . . . , fk⟩, we have that
1 ∈ Win(π). Equivalently, for every profile π = ⟨f1, . . . , fk⟩, we have that either
1 ∈ Win(π), or there exists i ∈ Lose(π) such that i ∈ Win(π[i ← f ′i]) for some
strategy f ′i for Player i. As detailed in [9], this implies that a strategy f1 for
Player 1 is an NRS solution iff for every path ρ in Outcome({f1}), either τ(ρ) ∈
L(ψ1), or there is i ∈ [k] \ {1} such that τ(ρ) ̸∈ L(ψi), and there are a prefix
h ⪯ ρ and an h-winning strategy f ′i for Player i. We then say that h is a good
deviation point for Player i, and f ′i is a good deviation for Player i.

Our goal is to define a tree automaton that accepts a strategy tree for Player 1
iff it is an NRS solution. The tree automaton should check that every path in
Outcome({f1}) that does not satisfy ψ1 has a good deviation point for one of the
players that lose in it. For that purpose, a strategy f1 of Player 1 is going to be
certified by information about deviations: each path in Outcome({f1}) that does
not satisfy ψ1 is labeled by a player i that loses in the path, a good deviation
point for Player i, and a good deviation for Player i. Note that each deviation
may handle only a subset of the paths below the good deviation point, and thus
a subtree in the certified strategy tree may be labeled by strategies of different
players, each deviating at different points.

Formally, a certified strategy tree is a ((V ∪{⊘})×[k])-labeled V -tree ⟨V ∗, g⟩,
where each node is labeled by a pair ⟨v, i⟩, where v ∈ V ∪{⊘} is a strategy-label,
and i ∈ [k] is a player-label. We use gs and gp to refer to the projection of g on
the strategy and player components. Each path in the tree that corresponds to a
play in Outcome({f1}) has a suffix all whose nodes are labeled by the same player
label. If this label is 1, then the strategy labels describe a strategy of Player 1
and the path should satisfy ψ1. If this label is i ∈ [k]\{i}, then a deviation point
of Player i has been encountered, the strategy labels describe a good deviation
for Player i, and the path should not satisfy ψi. As long as a deviation point has
not been encountered, the strategy labels describe a strategy for Player 1 (and
so, they are in V in nodes with a direction in V1, and are ⊘ in nodes with a
direction not in V1). Once a deviation point for Player i is encountered (which
is indicated by the strategy label being changed from ⊘ to a vertex in V in a
node with direction Vi), the strategy labels describe a strategy for Player i.

By adjusting Lemma 7 in [9] to the setting with LTL objectives, we get the
following.

Theorem 3. A strategy f1 for Player 1 is an NRS solution iff there is a certified
strategy tree ⟨V ∗, g⟩ that agrees with f1. Thus, for every h ∈ V ∗ and v ∈ V1 such
that h · v ∈ Outcome({f1}), we have that gs(h · v) = f1(h · v)

The Complexity of LTL Rational Synthesis 37

We now define a tree automaton that accepts certified strategy trees, which we
then use for solving NRS.

Theorem 4. We can construct a UCT U over ((V ∪{⊘})× [k])-labeled V -trees
such that U accepts a ((V ∪ {⊘}) × [k])-labeled V -tree ⟨V ∗, g⟩ iff ⟨V ∗, g⟩ is a
certified strategy tree. The size of U is polynomial in |G| and exponential in
|ψ1|, |ψ2|, . . . , |ψk|.

Proof. The requirements on a certified strategy tree ⟨V ∗, g⟩ for Player 1 can be
decomposed to the following conditions.

– (Ci
1) For every i ∈ [k] \ {1}, the subtree of every node h ∈ V ∗ ·Vi in the tree

that is labeled by V × [k] is labeled by an h-winning strategy for Player i.
– (C2) The (infinite) suffix of every path in the tree is p-labeled by a single
i ∈ [k].

– (Ci
3) For every i ∈ [k] \ {1}, every path in the tree with a suffix p-labeled by

i has a good deviation point for Player i.
– (C1

4) Player 1 wins in every path in the tree with suffix p-labeled by 1.
– (Ci

4) for every i ∈ [k] \ {1}, Player i loses in every path in the tree with
suffix p-labeled by i.

In the full version, we describe UCTs that check these conditions and whose
intersection is of the desired size. ⊓⊔

Theorem 5. Solving NRS can be done in time polynomial in |G| and doubly-
exponential in |ψ1|, . . . , |ψk|. The problem is 2EXPTIME-hard in each of |ψ1|,
. . . , |ψk|.

Proof. We start with the upper bound. By Theorems 3 and 4, we can reduce
NRS to nonemptiness of a UCT U over ((V ∪ {⊘})× [k])-labeled V -trees of size
polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|. Using considerations
similar to these used in the proof of Theorem 2 (in particular, the fact U is
deterministic in its V -element), we can construct from it an NBT N of size
polynomial in |G| and doubly-exponential in |ψ1|, |ψ2|, . . . , |ψk| that preserves
the nonemptiness of U . Since the nonemptiness problem for NBT can be solved
in quadratic time [26], the desired complexity follows.

We continue to the lower bounds, and we show they are valid already in the
case k = 2. We again use reductions from deciding 2-player zero-sum games.
In order to prove 2EXPTIME-hardness in |ψ1|, consider a 2-player zero-sum
game G = ⟨G,ψ⟩, for a fixed-size G. We claim that the 2-player game G′ =
⟨G, {ψ, true}⟩ is such that G is of a fixed size and that there is an NRS solution
in G′ iff Player 1 wins G. Indeed, since the objective of Player 2 is true, every
profile π in G′ is a 1-fixed NE. So, in order for a strategy f1 to be an NRS
solution, it must satisfy that 1 ∈Win(⟨f1, f2⟩), for every strategy f2 for Player 2.
Equivalently, it is a winning strategy for Player 1 in G.

In order to prove 2EXPTIME-hardness in |ψ2|, consider again a 2-player
zero-sum game G = ⟨G,ψ⟩, for a fixed-size G. We construct a 2-player game
G′ = ⟨H, {ψ1, ψ2}⟩ such that H and ψ1 are of a fixed size, the size of ψ2 is linear

O. Kupferman and N. Shenwald38

in |ψ|, and there is an NRS solution in G′ iff Player 1 wins G. The game graph H
is as in the proof of Theorem 2. Thus, it has an initial vertex from which Player 2
chooses between two copies of G. The states of the first copy are labeled by a
fresh atomic proposition p. Then, ψ1 = XGp, and ψ2 = X((ψ ∧ Gp) ∨ ((¬ψ) ∧
G¬p)). Thus, the objective of Player 1 is for the play to be generated in the first
copy, and the objective of Player 2 is either to generate a play in the first copy
whose computation satisfies ψ, or to generate a play in the second copy whose
computation does not satisfy ψ.

If Player 1 has a winning strategy f1 in G, then there is an NRS solution f ′1 in
G′, where f ′1 follows f1 in the copy Player 2 chooses. Indeed, as f ′1 guarantees the
satisfaction of ψ for all possible behaviors of Player 2, a profile π is a 1-fixed NE
only if Player 2 chooses the first copy. If Player 1 loses G, then for every strategy
f1 for Player 1, there is a strategy f2 for Player 2 such that Outcome(⟨f1, f2⟩)
does not satisfy ψ. So, for every strategy f1 for Player 1 in G′, we have that there
is a 1-fixed NE π = ⟨f1, f2⟩ such that 1 ∈ Lose(π), where f2 is the strategy that
chooses the second copy, and ensures that ψ is not satisfied. Hence, there is no
NRS solution in G′. ⊓⊔

5.2 Concurrent games

Consider a k-player concurrent game G = ⟨G, {ψi}i∈[k]⟩. Let G = ⟨AP, V, v0,
{Ai}i∈[k], {κi}i∈[k], δ, τ⟩. As our constructions in this section are loaded with
notations, we simplify the setting and assume that there is one set A of actions,
available to all players in all vertices. That is, A1 = A2 = · · · = Ak = A, and
for every v ∈ V and i ∈ [k], we have that κi(v) = A. All our constructions and
results can be easily extended to the general case.

As in the turn-based setting, we define a UCT that accepts certified strat-
egy trees for Player 1. In the concurrent setting, however, certification is much
more complicated. Below we explain the challenges in the concurrent setting
and how we overcome them. For i ∈ [k] \ {1} and a prefix h ∈ V ∗ of some
path in Outcome({f1}), we say that Player i wins from h if for every profile
π = ⟨f1, . . . , fk⟩ with h ⪯ Outcome(π), we have that there exists a strategy f ′i
for Player i such that i ∈Win(switch(π, π[i← f ′i], h)). Thus, Player i wins from
h if she has a beneficial deviation to switch to from h, for every profile π with
h ⪯ Outcome(π). Note that for different profiles, Player i might have different
such beneficial deviations. Here, however, the prefix h need not end in Vi (in
fact, there is no Vi in the concurrent setting). We say that h is a winning point
for Player i. Also, we say that (h, ⟨f1(h), . . . , fk(h))⟩ is a good deviation pair for
Player i iff there exists a′i ∈ A such that h · δ(h, ⟨f1(h), . . . , a′i, . . . , fk(h)⟩) is a
winning point for Player i.

In order to understand better the difference between NRS solutions in the
turn-based and concurrent settings, recall that a strategy f1 for Player 1 is not an
NRS solution iff there is a 1-fixed NE π = ⟨f1, . . . , fk⟩ whose outcome ρ does not
satisfy ψ1. Note that π being a 1-fixed NE means that for every prefix h·v ·u of ρ,
there exist actions ⟨a2, . . . , ak⟩ ∈ Ak−1 such that δ(v, ⟨f1(h · v), a2, . . . , ak⟩) = u
and for every i ∈ Lose(ρ), we have that (h ·v, ⟨f1(h ·v), a2, . . . , ak⟩) is not a good

The Complexity of LTL Rational Synthesis 39

deviation pair for Player i. In particular, we can choose ai = fi(h · v). Hence,
if f1 is an NRS solution, and there exists a path ρ ∈ Outcome({f1}) that does
not satisfy ψ1, then there must be a prefix h · v · u ⪯ ρ such that for every
⟨a2, . . . , ak⟩ ∈ Ak−1 with δ(v, ⟨f1(h · v), a2, . . . , ak⟩) = u, there exists i ∈ Lose(ρ)
such that (h · v, ⟨f1(h · v), a2, . . . , ak⟩) is a good deviation point for Player i. We
then say that h ·v ·u is a good deviation transition for Lose(ρ). Thus, while in the
turn-based settings it is sufficient to find in every path in which Player 1 loses
a good deviation point for one of the players that lose in it, in the concurrent
setting the definition of good deviation depends on the transition induced by the
specific profile being used, and so we have to consider deviating transitions, and
there may be several players in Lose(ρ) that deviate. Accordingly, in order to
certify a strategy for Player 1, we should describe a mapping from every vector
of actions to a set of players, along with their deviations.

Another difference between the turn-based setting and the concurrent setting
is that only in the first, the existence of some 1-fixed NE is guaranteed [7]. Hence,
we have to add to the algorithm such a check (which is in fact easy).

We can now define certified strategy trees for the concurrent setting. Every
node in a certified strategy tree is labeled by the following components:

1. An action a1 ∈ A, which is the strategy for Player 1.
2. A deviation function d : Ak−1 → (A ∪ {⊥})k−1, which maps a vector of

actions of players 2, . . . , k to the set of players that deviate from it, along
with their deviations. Specifically, ⟨a2, . . . , ak⟩ ∈ Ak−1 being mapped to
⟨a′2, . . . , a′k⟩ ∈ (A ∪ {⊥})k−1 indicates that for every i ∈ [k] \ {1}, if a′i ∈ A,
then a′i is the deviation for Player i from ⟨a2, . . . , ak⟩, and if a′i = ⊥ then no
deviation from ⟨a2, . . . , ak⟩ is specified for Player i. Let D denote the set of
all possible deviation functions.

3. A set L⊆ {2, . . . , k} of players, which describes the set of players that lose
in a given path and which are therefore expected to have a good deviation
transition. That is, if a suffix of a path is labeled by ∅, then Player 1 should
win in this path, and if a suffix of a path is labeled by L ̸= ∅, then all the
players in L lose in this path.

4. A vector of actions ⟨a2, . . . , ak⟩ ∈ Ak−1, which describes the strategies for
the other players in the required 1-fixed NE.

Formally, a certified strategy tree is a (A×D×2{2,...,k}×Ak−1)-labeled V -tree
⟨V ∗, g⟩, where each node is labeled by both a strategy-label a1 ∈ A, a deviation-
label d ∈ D, a player-label L ∈ 2{2,...,k}, and an NE-label ⟨a2, . . . , ak⟩ ∈ Ak−1. We
use gs, gd, gp, and gNE to refer to the projection of g on its different components.

For a node h·v that is s-labeled by a1 and d-labeled by d, a possible successor
u of v, and a set of losers L, we say that h · v · u is marked as a good deviation
transition for L iff the following hold:

1. For every ⟨a2, . . . , ak⟩ ∈ Ak−1 such that δ(v, ⟨a1, a2, . . . , ak⟩) = u, there
exists i ∈ L such that (d(⟨a2, . . . , ak⟩))i ∈ A. That is, for every vector of
actions ⟨a2, . . . , ak⟩ that leads to u, there is i ∈ L such that d assigns a
deviation for Player i from ⟨a2, . . . , ak⟩.

O. Kupferman and N. Shenwald40

2. For every i ∈ L, there is a vector of actions ⟨a2, . . . , ak⟩ ∈ Ak−1 such that
δ(v, ⟨a1, a2, . . . , ak⟩) = u, and (d(⟨a2, . . . , ak⟩))i ∈ A. That is, for every i ∈ L
there exists a vector of actions that leads to u, from which d assigns a
deviation for Player i.

Now, an (A×D×2{2,...,k}×Ak−1)-labeled V -tree ⟨V ∗, g⟩ is a certified strategy
tree iff it satisfies the following conditions:

– (C1) If h · v · u ∈ V ∗ is marked as a good deviation transition for a set of
players L ⊆ {2, . . . , k}, L ̸= ∅, then it is indeed a good deviation transition
for L.

– (C2) Every path ρ has a set L such that ρ is eventually always p-labeled by
L.

– (CL
3) For every L ⊆ {2, . . . , k}, L ̸= ∅, every path in the tree with a suffix

p-labeled by L has a good deviation transition for L.
– (C1

4) Player 1 wins in every path in the tree with suffix p-labeled by ∅.
– (Ci

4) For every i ∈ [k] \ {1}, Player i loses in every path in the tree with
suffix p-labeled by L such that i ∈ L.

– (C5) The s and NE-labeling of the tree specifies a 1-fixed NE.

Theorem 6. A strategy f1 for Player 1 is an NRS solution iff there is a certified
strategy tree ⟨V ∗, g⟩ that agrees with f1. That is, for every h ∈ V ∗, we have that
gs(h) = f1(h).

Theorem 7. We can construct a UCT over (A×D×2{2,...,k}×Ak−1)-labeled V -
trees that accepts a (A×D×2{2,...,k}×Ak−1)-labeled V -tree ⟨V ∗, g⟩ iff ⟨V ∗, g⟩ is
a certified strategy tree. The size of the UCT is polynomial in |G| and exponential
in |ψ1|, |ψ2|, . . . , |ψk|.

Proof. We can construct UCTs for C2, C
L
3, and Ci

4 that are very similar to
the UCTs for C2, C

i
3 and Ci

4 from the turn-based setting. The UCT for C5 is
similar to the UCT for CRS solutions. In the full version, we describe in detail
a UCT that checks the satisfaction of C1. Then, the conjunction of the above
UCTs results in a UCT that accepts certified strategy trees. ⊓⊔

The number of deviation functions d : Ak−1 → (A ∪ {⊥})k−1 is exponential
in |A|. Consequently, the UCT described in Theorem 7 has an exponential al-
phabet, which causes the NBT generated in [20] to have exponentially many
transitions, making its nonemptiness problem exponential. In order to overcome
this problem, we introduce vertical annotation of certified strategy trees , which
essentially replace a node labeled by d ∈ D by a sequence of nodes, labeled by a
smaller alphabet.

Explaining our vertical annotation, we find it clearer to go back to a detailed
description of the actions of the different players, thus refer to Ai and κi rather
than assuming they are all equal to A. For every vertex v ∈ V and an action
a1 ∈ κ1(v) for Player 1, we denote by Tv,a1

the set of possible vectors of actions
from v, given Player 1 chose a1. That is, Tv,a1

= {a1} × κ2(v)× · · · × κk(v). We

The Complexity of LTL Rational Synthesis 41

Fig. 2. A vertically certified strat-
egy tree. Information about devia-
tions from a given vector of actions
is stored in an intermediate node
that corresponds to that vector.
There is no good deviation tran-
sition starting from v.

Fig. 3. h · v · v′ is a good deviation
transition for L, where the root v
is reachable via history h.

order the vectors in Tv,a1 arbitrarily, and, for 1 ≤ i ≤ |Tv,a1 |, denote by tiv,a1
the

i-th item in Tv,a1 . We also denote by tiv,a1
[j ← a′j] the vector of actions obtained

from tiv,a1
by replacing the action for Player j by a′j .

For a given transition from v to v′, let Tv,v′,a1 be the restriction of Tv,a1

to vectors ⟨a1, a2, . . . , ak⟩ such that δ(v, ⟨a1, a2, . . . , ak⟩) = v′, and let tiv,v′,a1

denote the i-th item in Tv,v′,a1
. Also, let T =

⋃
v∈V

⋃
a1∈κ1(v)

Tv,a1
, and Σ =

A1 ∪ ((A2 × · · · ×Ak)∪
⋃

j∈L({j}×Aj))× (∅ ∪ (V × 2{2,...,k})). We also need an

additional 2{2,...,k} component, for annotating the set of losers in each path in
the tree, but we omit it for now, as it is not relevant for the vertical annotations.

A certified strategy tree is now a Σ-labeled (V ∪ T)-tree, where nodes with
direction in V are labeled by the strategy for Player 1, and nodes with direction
in T are labeled with deviation information. Consider a node that corresponds
to a vertex v with history h and is labeled by a1. Following vertically there are
nodes corresponding to Tv,a1

, each labeled by a vector of actions (see Fig. 2).
This information is for verifying good deviation transitions. That is, after a
good deviation transition is announced, we need to verify that the involved
players indeed have appropriate beneficial deviations. The last node in the chain,

which corresponds to t
|Tv,a1 |
v,a1 , is either not labeled, or labeled by a vertex v′ and

O. Kupferman and N. Shenwald42

a set L of losers. If it is not labeled, it means there are no good deviation
transitions from v, in which case we continue to the nodes corresponding to
the possible successors of v. If it is labeled by ⟨v′, L⟩, it means that h · v · v′
is a good deviation transition for L (see Fig. 3). Hence, the following nodes
correspond to Tv,v′,a1 , each labeled by a single deviation, followed by a chain
of good deviation transitions, using the appropriate V × 2{2,...,k} annotations,
or by nodes corresponding to successor vertices. In the full version, we describe
formally a UCT for verifying good deviation transitions in vertically annotated
certified strategy trees.

Theorem 8. Solving NRS in the concurrent setting can be done in time poly-
nomial in |G| and doubly-exponential in |ψ1|, |ψ2|, . . . , |ψk|. The problem is 2EX-
PTIME -hard in each of |ψ1|, |ψ2|, . . . , |ψk|.

Proof. We start with the upper bound. We can easily modify the UCTs for C2,
CL

3, C
i
4, and C5 from the proof of Theorem 7 to accommodate the vertical anno-

tation. With conjunction with the UCT for verifying good deviation transitions,
described in the full version, we have a UCT U over Σ-labeled (V ∪T)-trees such
that U accepts aΣ-labeled (V ∪T)-tree ⟨V ∗, g⟩ iff ⟨V ∗, g⟩ is a vertically annotated
certified strategy tree. By Theorem 6, there is an NRS solution in G iff U is not
empty. The size of U is polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|,
and its alphabet is polynomial in G. Also, U is deterministic in its V -element.
Hence, as detailed in the proof of Theorem 2, we can construct from U an NBT
N of size polynomial in |G| and doubly-exponential in |ψ1|, |ψ2|, . . . , |ψk| such
that L(U) ̸= ∅ iff L(N) ̸= ∅. Since the nonemptiness problem for NBT can be
solved in quadratic time [26], the desired complexity follows.

Finally, as turn-based games are a special case of concurrent ones, the lower
bound from Theorem 5 applies here. ⊓⊔

5.3 General rational synthesis

Consider a k-player game G = ⟨G, {ψi}i∈[k]⟩. Recall that the problem of rational
synthesis is to return a ({1}∪CU)-profile π′ such that there is a 1-fixed NE that
extends π′, and for every 1-fixed NE π that extends π′, we have that 1 ∈Win(π).

A ({1}∪CU)-profile π′ is an RS-solution iff for every path ρ such that ρ ̸|= ψ1,
there is no 1-fixed NE π that extends π′ and Outcome(π) = ρ. It is easy to
see that we can define certified ({1} ∪ CU)-profile trees in a similar way we
defined certified strategy trees for Player 1, inducing an algorithm of the same
complexity for checking the existence of a certified ({1} ∪CU)-profile tree. Also,
as NRS is a special case of RS, the NRS lower bound provide a lower bound for
RS. Hence, we can conclude with the following.

Theorem 9. Solving RS can be done in time polynomial in |G| and doubly-
exponential in |ψ1|, |ψ2|, . . . , |ψk|. The problem is 2EXPTIME-hard in each of
|ψ1|, |ψ2|, . . . , |ψk|.

The Complexity of LTL Rational Synthesis 43

References

1. Almagor, S., Kupferman, O., Perelli, G.: Synthesis of controllable Nash equilib-
ria in quantitative objective game. In: Proc. 27th Int. Joint Conf. on Artificial
Intelligence. pp. 35–41 (2018)

2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. Journal
of the ACM 49(5), 672–713 (2002)

3. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden,
T.: The price of stability for network design with fair cost allocation. In: Proc. 45th
IEEE Symp. on Foundations of Computer Science. pp. 295–304. IEEE Computer
Society (2004)

4. Bouyer-Decitre, P., Kupferman, O., Markey, N., Maubert, B., Murano, A., Perelli,
G.: Reasoning about quality and fuzziness of strategic behaviours. In: Proc. 28th
Int. Joint Conf. on Artificial Intelligence. pp. 1588–1594 (2019)

5. Chatterjee, K., Henzinger, T., Jobstmann, B.: Environment assumptions for syn-
thesis. In: Proc. 19th Int. Conf. on Concurrency Theory. Lecture Notes in Computer
Science, vol. 5201, pp. 147–161. Springer (2008)

6. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. In: Proc. 18th Int.
Conf. on Concurrency Theory. pp. 59–73 (2007)

7. Chatterjee, K., Majumdar, R., Jurdzinski, M.: On Nash equilibria in stochastic
games. In: Proc. 13th Annual Conf. of the European Association for Computer
Science Logic. Lecture Notes in Computer Science, vol. 3210, pp. 26–40. Springer
(2004)

8. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congress of Mathe-
maticians, 1962. pp. 23–35. Institut Mittag-Leffler (1963)

9. Condurache, R., Filiot, E., Gentilini, R., Raskin, J.F.: The complexity of rational
synthesis. In: Proc. 43th Int. Colloq. on Automata, Languages, and Programming.
LIPIcs, vol. 55, pp. 121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2016)

10. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs.
In: Proc. 29th IEEE Symp. on Foundations of Computer Science. pp. 328–337
(1988)

11. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Proc. 16th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science, vol. 6015, pp. 190–204. Springer (2010)

12. Gutierrez, J., Najib, M., Perelli, G., Wooldridge, M.: On computational tractability
for rational verification. In: Proc. 28th Int. Joint Conf. on Artificial Intelligence.
pp. 329–335. International Joint Conferences on Artificial Intelligence Organization
(2019)

13. Gutierrez, J., Perelli, G., Wooldridge, M.J.: Imperfect information in reactive mod-
ules games. Inf. Comput. 261, 650–675 (2018)

14. Kupferman, O., Lustig, Y., Vardi, M., Yannakakis, M.: Temporal synthesis for
bounded systems and environments. In: Proc. 28th Symp. on Theoretical Aspects
of Computer Science. pp. 615–626 (2011)

15. Kupferman, O., Perelli, G., Vardi, M.: Synthesis with rational environments. An-
nals of Mathematics and Artificial Intelligence 78(1), 3–20 (2016)

16. Kupferman, O., Piterman, N.: Lower bounds on witnesses for nonemptiness of
universal co-Büchi automata. In: Proc. 12th Int. Conf. on Foundations of Soft-
ware Science and Computation Structures. Lecture Notes in Computer Science,
vol. 5504, pp. 182–196. Springer (2009)

O. Kupferman and N. Shenwald44

17. Kupferman, O., Shenwald, N.: Perspective games with notifications. In: Proc. 40th
Conf. on Foundations of Software Technology and Theoretical Computer Science.
LIPIcs, vol. 182, pp. 51:1–51:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020)

18. Kupferman, O., Shenwald, N.: Perspective multi-player games. In: Proc. 36th IEEE
Symp. on Logic in Computer Science (2021)

19. Kupferman, O., Vardi, G.: Perspective games. In: Proc. 34th IEEE Symp. on Logic
in Computer Science. pp. 1 – 13 (2019)

20. Kupferman, O., Vardi, M.: Safraless decision procedures. In: Proc. 46th IEEE
Symp. on Foundations of Computer Science. pp. 531–540 (2005)

21. Nash, J.: Equilibrium points in n-person games. In: Proceedings of the National
Academy of Sciences of the United States of America (1950)

22. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory.
Cambridge University Press (2007)

23. Papadimitriou, C.H.: Algorithms, games, and the internet. In: Proc. 33rd ACM
Symp. on Theory of Computing. pp. 749–753 (2001)

24. Pnueli, A.: The temporal semantics of concurrent programs. Theoretical Computer
Science 13, 45–60 (1981)

25. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th ACM
Symp. on Principles of Programming Languages. pp. 179–190 (1989)

26. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs.
Journal of Computer and Systems Science 32(2), 182–221 (1986)

27. Wooldridge, M., Gutierrez, J., Harrenstein, P., Marchioni, E., Perelli, G., Toumi,
A.: Rational verification: From model checking to equilibrium checking. In: Proc.
of 30th National Conf. on Artificial Intelligence. pp. 4184–4190 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

The Complexity of LTL Rational Synthesis 45

http://creativecommons.org/licenses/by/4.0/

Synthesis of Compact Strategies for
Coordination Programs

Kedar S. Namjoshi1(�) and Nisarg Patel2

1 Nokia Bell Labs, Murray Hill, NJ 07974, USA
kedar.namjoshi@nokia-bell-labs.com

2 New York University, New York, NY 10001, USA nisarg@nyu.edu

Abstract. In multi-agent settings, such as IoT and robotics, it is nec-
essary to coordinate the actions of independent agents to achieve a joint
behavior. While it is often easy to specify the desired behavior, pro-
gramming the necessary coordination can be difficult. This makes coor-
dination an attractive target for automated program synthesis; however,
current methods may produce strategies that issue useless actions. This
paper develops theory and methods to synthesize coordination strate-
gies that are guaranteed not to initiate unnecessary actions. We refer to
such strategies as being “compact.” We formalize the intuitive notion
of compactness, show that existing methods do not guarantee compact-
ness, and propose a solution. The solution transforms a given temporal
logic specification using automata-theoretic constructions to incorporate
a notion of minimality. The central result is that the winning strategies
for the transformed specification are precisely the compact strategies for
the original. One can therefore apply known synthesis methods to pro-
duce compact strategies. We report on prototype implementations that
synthesize compact strategies for temporal logic specifications and for
specifications of multi-robot coordination.

1 Introduction

Imagine a future home where devices are network-controllable and the control
program is synthesized from requirements. Suppose that the homeowner asks
for the living-room lights to be turned on when it gets dark. To meet this re-
quirement, a control program must necessarily coordinate the on/off state of the
lights with readings from an illumination sensor.

This specification may be expressed more precisely in linear-time tempo-
ral logic (LTL) as G(dark ⇒ X light-on).3 Here “dark” is a proposition that
represents a reading from the sensor, and is therefore an input to the control
program, while “light-on” is a proposition that represents an action, and is there-
fore an output of the control program. Abstracting this formula to the shape
G(a ⇒ X b), the left half of Figure 1 shows the smallest state machine that

3 G and X are, respectively, the temporal always and next-time operators. Actions are
assumed instantaneous for simplicity.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 46–63, 2022.
https://doi.org/10.1007/978-3-030-99524-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_3

meets this specification. It represents a control program that entirely ignores the
sensor input and leaves the lights on all day! This strategy is clearly undesir-
able, although technically it does meet the specification. The machine on the
right represents the “commonsense” controller that keeps the lights on only as
long as the sensor indicates that it is dark. The two machines are equally valid
from the viewpoint of correctness. How then should we distinguish them? And
how can a synthesis method avoid generating undesirable solutions? Those are
the questions addressed in this paper.

Fig. 1. Non-compact (left) and compact (right) machines for G(a ⇒ X b). The initial
state is indicated by a thick border. Output actions are listed at each state; input
conditions are placed on the edges.

We suggest that the crucial distinguishing factor is that the left-hand machine
invokes actions that are not essential to satisfying the property. For instance, if
the input a is false now, there is no need to invoke action b in the next step. If
input a remains false, there is no need to invoke action b at all. It is vital to avoid
useless actions in the domains of IoT and robotics, where agents interact with
the physical world: there is no need to switch on a toaster when only watering
the lawn is asked for. Indeed, switching on the toaster unexpectedly may have
dangerous side effects. A reader may easily imagine other similar situations.

We refer to the policy of avoiding unnecessary actions as compactness. Strate-
gies that satisfy this property while meeting the specification are called compact.
An immediate question is whether compactness is ensured by standard synthe-
sis methods. Unfortunately, the answer is ‘no.’ Bounded synthesis [35,20], for
instance, will produce the smallest satisfying Mealy or Moore machine; in this
setting, the solution of Figure 1(i). We have validated this experimentally with
the tool BoSy [19]. Quantitative synthesis (cf. [6]) finds solutions that are worst-
case optimal, i.e., programs where the maximum cost, over all input sequences,
is the lowest possible. (Dually, programs where the worst-case reward is the
highest possible.) Letting each action invocation have unit cost, a quantitative
method cannot distinguish between the solutions shown, as both have the same
maximum cost for the input where a is always true. We make this analysis pre-
cise subsequently, and show that average-case optimality also does not always
distinguish compact from non-compact solutions. We have validated this exper-
imentally with the tool QUASY [13]. Hence, compactness cannot be defined in
quantitative terms: the synthesis of compact strategies requires new methods.

Synthesis of Compact Strategies for Coordination Programs 47

At its core, the issue of compactness is a variation of the well-known frame
problem in logic-based AI [29]. The natural way to express the example require-
ment is as G(a ⇒ X b). However, the semantics of temporal logic allows many
satisfying interpretations; among those is the undesirable one of Figure 1(i). This
tension between the freedom of interpretation allowed in logic and the natural-
ness of a specification is at the heart of the frame problem. One approach to
achieving compactness is therefore to write a tighter specification, which per-
mits fewer interpretations; e.g., to write the stronger assertion G(a ≡ X b).
But this is not a natural choice. Moreover, reworking a specification by hand
to rule out interpretations with unnecessary actions is difficult as the process
is not compositional: i.e., one cannot rework portions of a specification sepa-
rately. The specification transformation defined here performs such a tightening
automatically, using automata-theoretic constructions.

The motivating application of compactness is to the synthesis of centralized
coordination programs. As formalized in [3], in a coordination problem, a group
of independent agents, denoted A1, . . . , An, are guided by an additional synthe-
sized agent, C, so that their joint behavior meets a temporal specification ϕ.
That work describes a specification transformation from ϕ to ϕ′ that incorpo-
rates asynchronous agent behavior and other constraints. This transformation,
however, does not guarantee compactness. We take the transformed problem as
the starting point for our investigations, and consider the more general question
of how to generate a compact solution for a given temporal specification.

We begin by proposing a mathematical definition of the compactness prop-
erty. Generalizing from the example, one can consider a strategy to be compact if
for each input sequence, the sequence of actions produced as output (1) meets the
specification and (2) cannot be further improved. We formalize the second no-
tion as minimality with respect to a supplied “better than” preference relation
between two output sequences. This formulation is closely related to formal-
izations of commonsense reasoning, in particular the notion of circumscription
introduced by McCarthy in [28].

For coordination problems, a natural preference relation is based on the sub-
set ordering on sets of actions. We say that sequence y is better than sequence
x if (1) in each step, the actions issued in y are a subset of the actions issued by
x and (2) for at least one step, the actions in y are a strict subset of the actions
in x. The smallest compact strategy for G(a ⇒ X b) under this preference rela-
tion issues action b precisely when input a is true at the prior step. Otherwise,
there is a point where a is false but b is issued at the next step. Removing this
occurrence of b produces a better sequence that also satisfies the property. This
is precisely the strategy defined by the machine in Fig. 1(ii). Alternative prefer-
ence relations may order sets of actions by size, or order sequences of actions by
the substring relation. One may also compare infinite action sequences by cost
(limit average or discounted sum) using comparator automata [2]. The choice of
preference relation is driven by the application domain. To accommodate various
options, compactness is parameterized by the preference relation.

48 K. S. Namjoshi and N. Patel

Technically, a temporal specification ϕ can be viewed as a language L, a set
of infinite words over a joint input-output alphabet. For a preference relation
≺ over infinite words, it is natural to formulate the language min(L,≺) that
contains only the minimal words in L with respect to the preference relation.
The central theoretical result in this paper is that there is a compact strategy
satisfying L if, and only if, there is a strategy satisfying min(L,≺). This theorem
reduces the question of synthesizing compact strategies to a standard synthe-
sis question, making it possible to use existing synthesis algorithms to produce
compact strategies. We give sufficient conditions under which min(L,≺) is reg-
ular when L is a regular language, and show how to effectively construct a finite
automaton for the minimal language and for its complement, from either an au-
tomaton or an LTL formula for L. The constructed automata can also be used to
model-check whether a given control program defines a compact strategy. More-
over, the transformation makes it possible to modularly apply quantitative or
other criteria for synthesis from min(L,≺); for instance, to synthesize compact
strategies that minimize program size or worst-case execution time.

We have implemented these constructions and used them to synthesize com-
pact strategies for LTL specifications and for a class of specifications that arise
in multi-robot coordination. Experiments show that compact strategies exist for
many specifications and can be effectively computed, albeit with some added
overhead. We also experiment with approximation methods which are simpler
and avoid potential worst-case exponential blowups in the general construction.

In our view, the main contributions of this work are in bringing attention
to the need for compactness in program synthesis; showing its independence
from existing criteria; giving a precise formulation in terms of minimality; and
in designing and implementing algorithms to synthesize compact strategies.

2 Background

Automata A finite automaton is a tuple (Q,Σ, Q̂, δ, F) where Q is a set of
states ; Σ is a set of letters, an alphabet ; Q̂ is a non-empty set of initial states;
δ ⊆ Q×Σ ×Q is a transition relation ; and F is a non-empty set of final states.

A word over Σ is a (possibly empty) sequence of letters from Σ. For a word
w, its length |w| is the number of letters in w if w is finite and ω if w is infinite.
We assume the standard definition of a run of the automaton on a word. If w is
finite, a run on w is accepting if the last state of the run is in F ; if w is infinite, a
run is accepting by the Büchi condition if a state in F occurs on the run infinitely
often. The language of an automaton is the set of words for which there exists
an accepting run. One typically distinguishes between the finite-word language
and the infinite-word language of an automaton. An automaton is deterministic
if there is exactly one initial state and for every q and a, there is at most one q′

such that (q, a, q′) is in δ.
We use the standard abbreviations DFA, NFA and NBA for a deterministic

automaton, a nondeterministic automaton over finite words, and a nondetermin-
istic Büchi automaton over infinite words respectively.

Synthesis of Compact Strategies for Coordination Programs 49

LTL Linear Temporal Logic (LTL) is a logic defined over a set of atomic propo-
sitions, AP . The logic has the following minimal grammar, where p ∈ AP :

f := p | f1 ∧ f2 | ¬f1 | X f1 | f1 U f2

The satisfaction relation is defined over infinite words where each letter is a
subset of AP . It has the form w, i |= f for a word w and a natural number i, and is
given by structural induction on formulas. We omit the standard definition. The
language of a formula is the set of words that satisfy it. Standard constructions
compile an LTL formula to an NBA that accepts the same language (cf. [18,39]),
possibly incurring an exponential blowup.

Programs as Transition Systems A program is represented by its state transition
system. This is a Moore machine, defined as a tuple (S, Ŝ, I, O,R, o) where S is
a set of states, Ŝ is a non-empty set of initial states; I is a set of input values;
O is a set of output values; R ⊆ S × I × S is the transition relation, which must
be total on I; and o : S → O is the output mapping. An execution of this system
is an unbounded alternating sequence of states and inputs, and takes the form
s0, a0, s1, a1, . . ., such that for each i, the triple (si, ai, si+1) is in the transition
relation. A computation is an execution of this form where s0 is an initial state.

Input-Output Words An input-output word (i/o word for short) is a pair of se-
quences (a, b) where a is a sequence of inputs, b is a sequence of outputs, and |b| =
1 + |a|. The input-output word induced by a program execution s0, a0, s1, a1, . . .
is the pair (a, b) with b = o(s0), o(s1), We sometimes write an i/o word in
the linear format b0, a0, b1, a1, . . . for clarity. It is also common (cf. [32]) to view
an infinite i/o word (a, b) in the “zipped” form a ./ b = (a0, b0), (a1, b1), For
a temporal property ϕ defined over input and output predicates and program
M , the program M satisfies ϕ, written M |= ϕ, if the zipped input-output word
of every computation of M satisfies ϕ. Each atomic proposition is a function in
I ×O → Bool; an i/o pair (a, b) induces the set of propositions {p | p(a, b)}.

Games and Strategies A strategy is a function from finite sequences of inputs
to outputs, represented as σ : I∗ → O. For an infinite input sequence a =
a0, a1, . . ., the strategy σ induces the infinite output sequence denoted σ(a), given
by σ(ε), σ(a0), σ(a0, a1), A play for input a is the i/o word (a, b = σ(a)). We
sometimes abuse this notation and use σ(a) to refer to the play induced by a.
A play is winning for a temporal property ϕ if it satisfies this property when
viewed as a zipped i/o word. A strategy σ is winning for ϕ if for every input a,
the play on a is winning for ϕ.

The realizability question is: given a property ϕ, determine whether there
exists a program satisfying ϕ. The synthesis question is: given a property ϕ that
is realizable, construct a program that satisfies ϕ. A strategy σ induces a deter-
ministic program with an infinite state space, denoted P (σ) = (S, Ŝ, I, O,R, o).
The state space S is the set of finite input sequences I∗, the initial state is ε,
the output label for state x is σ(x) and the transition relation R is given by

K. S. Namjoshi and N. Patel50

{(x, a, xa) | x ∈ I∗, a ∈ I}. This is in fact an infinite complete tree over I
(sometimes called a “fulltree”) where each node is labeled by an output value. A
labeled fulltree, in turn, corresponds to a strategy and a deterministic program.

Synthesis Methods for Temporal Properties There is an extensive literature on
methods to synthesize programs from LTL specifications (cf. [34,32,31,26] and
tools that implement various algorithms (cf. [33,8,17,27,35,20]), all based on the
conversion from LTL formulas to equivalent automata.

The classical approach to realizability of temporal properties (which we only
sketch here, cf. [34,32]) is via the connection between programs, strategies, and
labeled fulltrees. If a property ϕ is realizable, there is a deterministic program M
satisfying ϕ. This program may also be seen as a strategy and a fulltree. From
a deterministic word automaton with the same language as ϕ, one constructs
a tree automaton that accepts precisely the fulltrees that satisfy ϕ. Now ϕ is
realizable if and only if the language of this tree automaton is non-empty. For
properties in LTL, this procedure can be carried out in 2EXPTIME in the length
of the formula ϕ; the problem is 2EXPTIME-complete [32]. A winning strategy
can be extracted as a finite state, deterministic reactive program from the tree
automaton, thanks to the finite-model property of temporal logic. This approach
is implemented in the tool Strix [30].

Two other approaches have been developed. One is to limit the logic: the
GR(1) fragment expresses many useful properties, has a lower complexity (DEX-
PTIME), and can be implemented easily using symbolic (BDD-based) meth-
ods [31]. This is implemented in several tools [33,8,17,27]. The bounded synthesis
method applies to full LTL and is iterative in nature. By placing bounds on
the size of the intended program and the ranking argument for formula satis-
faction, one obtains a simpler safety game, which can be solved using symbolic
methods [26,35,20]. The approach is implemented in [11,19].

We use two of the approaches described above in this work. The classical
approach is used to determine compact realizability of an arbitrary LTL formula,
while GR(1) approach is used in the multi-robot setting.

3 Compactness

We formulate compactness for temporal specifications, investigate its properties,
and show how to synthesize a compact strategy through a specification transfor-
mation. We consider specifications on infinite words for simplicity and to match
the semantics of temporal logic.

A relation ≺O over the set of infinite output words is a preference relation if
its transitive closure ≺+

O is irreflexive. We informally say that word b is better
than b′ if b ≺+

O b′ holds. As the transitive closure is irreflexive, it is not possible
for a word to be better than itself, matching intuition. This relation is extended
to input-output words as follows. An i/o word (a, b) is better than an i/o word
(a′, b′) if (1) the input sequences a and a′ are identical, and (2) b ≺+

O b′. The first
condition ensures that comparable words have the same input sequence, which

Synthesis of Compact Strategies for Coordination Programs 51

is important as we are ultimately interested in the i/o words that are generated
as plays of strategies.

Definition 1 (Compact Strategy). A strategy σ is compact for an i/o lan-
guage L if (1) σ is a winning strategy for L and (2) for every input sequence a,
there is no i/o word (a, b′) such that (a, b′) satisfies L and (a, b′) is better than
the i/o word (a, b = σ(a)) that is produced as the play of σ on input a.

The first condition ensures that σ is a valid strategy for L; the second that
a compact strategy produces the “best possible” output for each input. We say
that a language L is compactly realizable if it has a compact strategy.

Theorem 1. A language L is realizable if it is compactly realizable. The con-
verse does not hold.

Proof. From right-to-left, consider a compact strategy σ for L. From the defini-
tion, σ is a winning strategy for L, hence L is realizable.

The converse does not hold. Let the input set I = {0, 1} and the output set
O = {c, d} with the output preference ordering c < d extended point-wise to
output words. Let the specification L consist of sequences of the form c(0c)ω

and d({0, 1}d)ω. This is realizable. No winning strategy can produce c on ε as
there can be no win on input 1ω. The single winning strategy produces d on
every input sequence, including ε. But this strategy is not compact: for input 0ω

it generates d(0d)ω, but there is the better word c(0c)ω in L. ut

Standard realizability is monotone: if L′ ⊆ L and program M satisfies L′,
then M also satisfies L. However, compact realizability is neither monotone nor
anti-monotone (proof in the full version). As is the case with deduction systems
for commonsense reasoning (cf. [37]), non-monotonicity is a consequence of the
formulation in terms of minimality.

The simple example from the Introduction is easily extended to a collection
of N “if-condition-then-action” requirements. The IFTTT service (https://ifttt.
com) or Apple Shortcuts implement these operationally, using an event-driven
rule engine. However, from the viewpoint of temporal logic and synthesis, the
results can be unexpected, as we have seen. The N requirements in LTL have
the shape (

∧
i : G(a(i) ⇒ X b(i))). The smallest model is one with a single

state, issuing all the b actions unconditionally. This is clearly unintended. The
intended model, which is compact, has 2N states, one for each subset of the b
actions. Thus, the gap between the smallest non-compact and compact models
can be exponential in the length of the specification.

We now show the main theorem that links compact and standard realizability
through a specification transformation.

Definition 2 (minimal language). For a language L over alphabet Σ and a
preference relation ≺ on Σ-words, the minimal elements of L form the language

min(L,≺) = {x | x ∈ L ∧ ¬(∃y : y ∈ L ∧ y ≺+ x)}

I.e., a word x is in min(L,≺) if it belongs to L and there is no word y in L that
is transitively better than x.

K. S. Namjoshi and N. Patel52

https://ifttt.com
https://ifttt.com

Theorem 2. Language L is compactly realizable if and only if min(L,≺) is
realizable.

Proof. (Left-to-right) Let σ be a strategy that compactly realizes L. Consider
any input sequence a. The output b = σ(a) produced by the strategy is such that
there is no word in L that is better than (a, b), by the definition of compactness.
Hence, (a, b) is in min(L,≺). As this holds for each input sequence, σ is a winning
strategy for min(L,≺).

(Right-to-left) Let σ be a winning strategy for min(L,≺). For any input
sequence a and its corresponding output b = σ(a), the word x = (a, b) must
satisfy min(L,≺). By the definition of min, we have that (1) x also satisfies L.
Moreover, (2) there is no i/o word y that is better than x and also satisfies L.
From (1) and (2), σ is a compact strategy for L. ut

3.1 Effective Minimality Constructions for LTL

Theorem 2 implies that one can reduce compact realizability to standard realiz-
ability. Given a temporal specification ϕ, we transform its language L(ϕ) to the
language C(ϕ) = min(L(ϕ),≺). Starting from an LTL formula f , we give two
constructions: one for the minimal language C(f), the other for its complement.
The constructions assume that the relation ≺+ can be expressed as an NBA,
which is the case for the preference order defined in the Introduction.

The first construction directly follows Definition 2. The left-hand term (x ∈
L(f)) is fulfilled by the standard conversion from LTL formula f to an NBA
Af . For the right-hand term, we use the same NBA Af , now re-defined over
y, for the y ∈ L(f) term; intersect this with the NBA for ≺+; then project
onto x and complement to obtain an NBA for the right-hand conjunct. The
intersection of these two NBAs provides an NBA for C(f). These steps may result
a worst-case double exponential blowup in the size of f : the first exponential is
in the construction of Af ; the second is in the complementation step. A similar
construction applies if the specification is given directly as an NBA.

The second construction produces an NBA for the complement of the minimal
language, with “only” a worst-case single exponential blowup. The complement
of C(f) is (from the definition) {x | x 6∈ L(f) ∨ (∃y : y ∈ L(f) ∧ y ≺+ x)}.
For an LTL formula f , one constructs NBAs Af and A¬f for the LTL formulas
f and ¬f , respectively. An NBA for (∃y : y ∈ L(f) ∧ y ≺+ x) is obtained as in
the first construction by omitting the final complementation step. The union of
this NBA with the NBA for A¬f gives an NBA for the complement of C(f).

The NBA for the complement of C(f) can be used to model-check whether
a given strategy is compact. It can also be used to synthesize machines using
bounded synthesis, which requires an NBA for the complement of the specifi-
cation property. The worst-case blowups are unavoidable: that follows from a
lower-bound result by Birget [5] and a simpler but less general result of ours,
discussed in the full version of this paper.

Synthesis of Compact Strategies for Coordination Programs 53

3.2 Relationship to Quantitative Synthesis

The formulation of compactness is in terms of a qualitative notion of minimality.
A natural question is the relationship to methods for synthesis with quanti-
tative objectives; in particular, methods for producing programs with optimal
worst-case or average-case behavior [6,13]. Expanding on the argument in the
Introduction, we establish that worst-case optimality cannot always distinguish
between compact and non-compact solutions to a given specification.

In quantitative formulations, the synthesis game is formulated so that each
transition has an associated reward. The reward of an infinite computation is
defined using standard cumulative metrics such as mean-payoff (the limit of
average rewards over successively longer prefixes) or discounted sum (the sum
of rewards over the computation discounted geometrically, i.e., the k’th reward
contributes a factor dk, where d ∈ (0, 1) is the discount factor). The objective is
to find a winning strategy with maximum worst-case reward, where the worst-
case reward is the minimum reward over all inputs. In the stochastic form of
the game, an additional probabilistic player “Nature” is introduced, and the
objective is to find a winning strategy with the maximum average-case reward,
where the average is the expectation taken over the induced probability space.
Precise definitions of these concepts can be found in [6].

Worst-case optimality We return to the example discussed in the Introduction.
There, we had assumed for simplicity that each action set is assigned a cost that
is its cardinality. However, the reasoning carries over to any cost function that is
monotonic with respect to set inclusion: i.e., if A ⊂ B then cost(A) < cost(B).
Intuitively, monotonicity captures the preference for choosing a smaller set of
output actions. Consider the mean-payoff cost of an infinite execution where
the input a is always true. For the non-compact program in Figure 1(i), it is
obvious that the limit of the average cost is cost({b}). That is also the case for
the compact program in Figure 1(ii): the fact that the initial cost is cost(∅) is
swamped in the limit. This is the worst case input for both programs by the
monotonicity of the cost function. The best case for the program on the right is
when the input a is almost everywhere false. Thus, worst-case optimality cannot
distinguish between the two programs for any monotonic cost function.

Average-case optimality We now show that average-case optimality also cannot
always distinguish between compact and non-compact strategies. The general
principle is that if a strategy is non-compact only for a finite prefix of a compu-
tation, its average-case cost in the limit will be the same as the cost of a strategy
which performs in a compact manner throughout.

Consider the input set I = {0, 1}. Suppose that inputs are chosen uniformly
at random. The output set O is the set of subsets of the action set A = {a, b}.
Let the specification be the following: the initial choice of output set is either {a}
or A; all subsequent outputs must be A. There are only two winning strategies,
which differ only in their choice of initial output (either {a} or A); both produce
output A subsequently regardless of the input. Assuming unit cost per output

K. S. Namjoshi and N. Patel54

action, the average cost of a run of length n is thus (1 + 2(n− 1))/n for the first
strategy and 2 for the second. In the limit, both strategies have average cost 2,
although the first is compact, while the second is not. This argument also applies
for an arbitrary but monotone cost function.

In our view, quantitative measures are best suited to modeling the real cost
of actions rather than to modeling a preference ordering. The two may, however,
be combined to good effect. As compactness is ensured with a specification trans-
formation, one can modularly apply quantitative synthesis to the transformed
specification min(L,≺) to obtain strategies that are compact and also optimal
with respect to a cost metric.

3.3 Approximating Compactness

The worst-case exponential blowups can make it difficult to produce compact
strategies. Moreover, Theorem 1 asserts that there are specifications that are
realizable but have no compact strategies. For both reasons, we describe methods
by which one can approximate the compactness criterion.

Approximately Minimal Languages The first method is to tighten the lan-
guage L to L′ that lies between L and min(L,≺); we call L′ approximately
minimal for L. We synthesize a program satisfying L′. Given an NBA A for L
over alphabet I ×O, we construct an NBA Â whose language is approximately
minimal for L. This construction applies only to a class of preference relations
that are induced pointwise by a partial order ≤ on individual letters of the
output set O.

For infinite i/o words w = (a, b) and w′ = (a′, b′), define w ≺p w′ iff (1)
for all i, ai = a′i (inputs are identical) and bi ≤ b′i, and (2) there is some i for
which bi < b′i. We say that w �p w

′ if w ≺p w
′ or w = w′. The ordering ≺p is

transitive and regular. It is easy to construct an automaton accepting ≺p, which
checks condition (1) at each position of the zipped word w ./ w′, and accepts
only if condition (2) holds at some position on the zipped word. The subset and
cardinality preference relations introduced earlier are of this type.

Given an NBA A recognizing L, the NBA Â is constructed by excluding
certain transitions of A. Specifically, a transition (q, (a1, b1), q′) of A is omitted
in Â if there is a “better” transition (q, (a2, b2), q′) in A with a1 = a2 and b2 < b1.
Automaton Â can be efficiently constructed from A by performing a single pass
over δ. The set of states, initial states and final states are identical in A and Â.

Theorem 3. For a pointwise preference order ≤ over O, L(Â) is an approxi-
mately minimal language for L.

Proof. It is easy to see that L(Â) ⊆ L(A), as an accepting run in Â is also an
accepting run in A.

For the other inclusion, let w be in min(L,≺p). Then, w is also in L. Thus,

there is an accepting run ρ for w in A. If all transitions in ρ are present in Â,
then w is also in L(Â). If not, there is a transition (q, (a1, b1), q′) at the k-th

Synthesis of Compact Strategies for Coordination Programs 55

step of ρ (for some k) that is not present in Â. By construction, there must
be a transition (q, (a1, b2), q′) in A such that b2 < b1. Now consider the run ρ′

that is generated by swapping transition (q, (a1, b1), q′) with (q, (a1, b2), q′) at
the k-th step. This is also an accepting run, on a word w′ that is identical to w
except that it has (a1, b2) rather than (a1, b1) as its k-th entry. As w′ is in L and
w′ ≺p w, it cannot be the case that w is in min(L,≺p), a contradiction. ut

Minimal Strategies for L The second method searches greedily for compact
strategies in a game graph for L. For strategies σ and σ′, say that σ v σ′ (read as
“σ is better than σ′”) if for all input sequences a, σ(a) = σ′(a) or σ(a) ≺+ σ′(a).
I.e., the output on input a is using σ is at least as good as that using σ′. The
minimal elements according to this ordering are called minimal strategies for L.
It is easy to show that every compact strategy for L is a minimal strategy for
L. The converse does not hold.

The greedy construction applies to a game graph for L where strategies are
memoryless (e.g., if synthesis for L is a safety game or a parity game), and if the
preference order is pointwise, as defined above. The core idea is simple: compute
the set of winning positions; then nondeterministically and greedily extract a
strategy by choosing only those transitions between successive winning positions
that are output-minimal with respect to <. In the full version, it is shown that
any strategy extracted in this manner is minimal for L.

4 Evaluation

4.1 Multi-Robot Coordination

Our original motivation to investigate compactness comes from an application to
multi-robot orchestration. Due to space limitations, we describe this setting in
brief. One has available multiple, heterogeneous robots, each capable of carrying
out certain actions, some of which cannot be allowed to overlap. The goal is
to perform specified tasks by (a) assigning robots to carry out actions and (b)
sequence the actions appropriately. Tasks are described in a simple declarative
language, called Resh [12], that has been implemented and used to control groups
of mobile robots. A useful subset of Resh is given by the following grammar,
where A is the set of action names and R is a set of robot names.

S := a → R | S ⇒ S | S&S | S |S | S + S

The interpretation of these operators is in terms of a finite-word input-output
sequence. A term a → R is interpreted as “perform action a using one of the
robots in R.” For this, a control strategy chooses a robot r in R, and produces a
“(begin a on r)” output event. Action duration is not fixed: E.g., the time taken
to perform a “move to position p” action may vary as the robot maneuvers
around humans. The completion signal is a “(end a on r)” event that is an input

K. S. Namjoshi and N. Patel56

to the control strategy. The other operators are interpreted as ⇒ (sequenc-
ing), & (concurrent), | (choice), and + (concurrent with both tasks starting
together). The interpretation of each operator produces a regular language.

The finite-word semantics is appropriate for robotics tasks that must be
performed to completion. The same observation motivates the use of LTLf (a
finite-word variant of LTL) in [38] to specify robotics tasks. A winning control
strategy is one that satisfies the semantics of the operators.

As action completions are uncontrolled, even a simple specification such as
a → R is unrealizable if the completion signal is never issued by an adver-
sarial environment. It is thus necessary to restrict the environment so that ev-
ery initiated action is eventually completed. This assumption must be inter-
preted over infinite words. It has the shape of a conjunction of LTL formulas
G(begin(a, r) ⇒ XF end(a, r)) over all actions a and robots r. This can be rep-
resented by a DBA which tracks the set of pending (i.e., begun but not ended)
actions. This DBA is worst-case exponential in the number of action-robot pairs,
but in practice is limited by the concurrency in the specification.

In order to match the infinite-word environment constraint, the Resh system
specification must be extended to infinite words. This is done by saying that an
infinite word w satisfies the specification if there is a prefix x of w such that
x satisfies the specification. Being a regular language, a Resh specification is
representable as a DFA; this is extended to infinite words as a DBA by replacing
the outgoing transitions of each final state with a self-loop on all inputs.

We have arrived at the final form of the synthesis question, which has the
shape E ⇒ S, where E (the environment assumptions) and S (the system
specification) are both representable as deterministic Büchi automata. That is
precisely the general form of a GR(1) specification [31]; therefore, algorithms for
GR(1) synthesis can be applied to synthesize finite-state controllers.

Implementation and Experiments. Our initial experiments in synthesis with
(E ⇒ S) occasionally produced non-compact strategies, which motivated this
exploration of compactness. We now use the modified specification E ⇒ Ŝ,
where the system portion is made approximately compact through the con-
struction in Section 3.3, which preserves the GR(1) format. This specification
produces compact strategies for all cases we have examined.

Our implementation of GR(1) synthesis uses a SAT solver, similar to the
method of [10]; we found this to be significantly faster than BDD-based meth-
ods. As there is not a well-defined set of benchmarks for robotics or Resh specifi-
cations, we generate 500 specifications at random, producing specifications with
parse-tree depth 4, biased slightly to prefer the sequencing operation (i.e., ⇒)
over the others, as is likely to be the case in practice.

The system specification is set up to have two robots. Actions are allowed
to overlap, which implies that all specifications are realizable. Of the 500 speci-
fications, the GR(1) game graph was generated for 428 (85%) within a timeout
limit of 5 minutes for each specification. (The Resh-to-automaton construction
uses BDDs to symbolically represent output event sets, which sometimes blows
up.) All 428 game graphs are solved by the SAT-based GR(1) procedure within

Synthesis of Compact Strategies for Coordination Programs 57

a timeout of 5 minutes per game. The median solution time is 3 seconds; 90%
are solved within 30 seconds; and all are solved within 225 seconds. We also
experimented with a small hand-designed group of specifications where certain
action overlaps are forbidden, which are also resolved efficiently.

4.2 Compactness for LTL

We now describe an implementation of a compact synthesis pipeline for general
LTL specifications. Our experiments use the benchmarks from the SYNTCOMP
(2020) competition.4 In these experiments, the preference order is fixed as the
pointwise subset order. We were forced to make this arbitrary choice as there
is limited information about the origin of the benchmark problems, so we could
not tailor the ordering to the problem domain.

The goal is (1) to determine the difficulty of constructing a compact synthesis
pipeline for LTL, and (2) to gauge the practical feasibility of the compact synthe-
sis procedures. The experiments are designed to answer the following questions
that arise from (2): (Q1) What is the overhead on generating compact strategies
compared to standard synthesis? (Q2) Is the approximation procedure more ef-
ficient than exact compactness? and (Q3) How effective are the approximate
constructions at producing compact strategies?

Fig. 2. An overview of the workflow for our experiments and tool. In the figure, m̂in
refers to the approximate minimal language, while RefModel(f) refers to the reference
model for formula f .

A high-level overview of the internal structure of our tool is in Fig. 2. Our
implementation chains together several known tools: the automaton libraries
SPOT (v. 2.9.5) and Owl (v.20.06)[25], the synthesis tool Strix (v. 20.10)[30]
and the model checker NuSMV (v. 2.6.0) [14]. We also use the AIGER toolkit [4]
as well as the Syfco synthesis format converter5. We are grateful to the authors
for making these tools freely available.

4 At https://github.com/SYNTCOMP/benchmarks.
5 At https://github.com/reactive-systems/syfco

K. S. Namjoshi and N. Patel58

https://github.com/SYNTCOMP/benchmarks
https://github.com/reactive-systems/syfco

Our tool offers three main features: (1) Compact Realizability: given an
LTL formula f , determine if f is compactly realizable. This feature uses the
compactness transformation from Section 3.1 to produce an automaton for the
complement of the minimal language, which is then complemented, determinized
and synthesized using Strix; (2) Compactness Test: given an LTL formula f
and a candidate program P , determine if P is a compact program for f ; and
(3) Approximate Compact Realizability: given an LTL formula f , generate
an approximately compact strategy. Here we implement the construction of the
approximate minimal automaton from Section 3.3.

Our experiments were carried out on a Linux VM running Ubuntu 20.04 with
12 GB of memory. Naturally, we only consider synthesizing compact strategies
for specifications that are realizable 6. The results can be summarized as follows:
(A1) We compare the efficiency of compact synthesis to the standard synthe-
sis by evaluating the number of specifications that can be synthesized within a
certain time limit. We fix this time limit to be 10 minutes, and use Strix for stan-
dard synthesis. (With this limit, the entire run over the benchmarks takes several
hours.) Strix determines realizability for 396 specifications out of 421 (∼ 94%),
while our tool determines compact realizability for 213 (∼ 50%). (A2) Within
the same time limit, the approximation technique determines realizability for
398 specifications, significantly more than for exact compactness and about the
same as for standard realizability. (A3) We model-check the strategies generated
through approximate compact realizability. Model-checking for compactness re-
quires the complement minimal automaton of a specification, so we set the time
limit of 10 minutes per specification to generate this automaton. Within this
limit, our tool manages to construct the required automaton for 246 specifica-
tions. Generating approximate compact strategies for these 246 specifications,
and applying the Compactness Test on these strategies, we find that ∼ 42% of
the synthesized strategies are compact.

In addition, we tried our tool on the generalized version of the example
specification from the introduction (

∧
i : G(a(i) ⇒ X b(i))). Our tool can

synthesize a compact strategy till N = 8 fairly quickly, after which our setup
struggles to compile the original LTL formula to an NBA. On the same set of
specifications, the approximate techniques also produce a compact strategy.

The implementation process was fairly straightforward, a pleasant surprise
given the number of tools and format conversions involved. We had to patch
some tools to extend their capabilities (e.g., to allow automata as specifications)
and to implement format conversions.

In summary, compact synthesis is feasible for a substantial number of spec-
ifications. Where it is not – due either to blowups in automaton construction
or due to the gap between normal and compact realizability – one can use the
approximation procedure defined in Section 3.3 to generate strategies that are
minimal with respect to the strategy ordering.

6 We refer to the helpful classification of these benchmarks into realizable and unre-
alizable ones from https://github.com/meyerphi/syntcomp-reference/.

Synthesis of Compact Strategies for Coordination Programs 59

https://github.com/meyerphi/syntcomp-reference/

5 Related Work

We discuss closely related work in synthesis and commonsense reasoning.

Qualitative Temporal Synthesis There is a considerable literature on the synthe-
sis of open reactive programs from LTL specifications, starting with the seminal
work by Pnueli and Rosner [32]. The beautiful theoretical results are made prac-
tical by the discovery of efficient algorithms for the GR(1) subclass [9,31], and
procedures for bounded synthesis [21,36], based on so-called “Safraless” proce-
dures [26]. These algorithms have been implemented in several tools,
e.g., [11,15,16,19,23,33,27]. Our work builds on this basis by transforming the
search for compact strategies to a standard synthesis question that can be han-
dled by these tools.

In the robotics domain, prior work investigates synthesis for an interpreta-
tion of LTL over finite words called LTLf [22,38,40]. Although Resh is similarly
restricted to finite-word properties, a central difference is that specifications in
LTLf (like LTL) are defined over propositions on robot and world state, and not
in terms of actions of an unknown duration.

There are many ways to choose between satisfying models: e.g., [7] designs
synthesis procedures that produce minimally vacuous models. While the formu-
lations differ, there is a common thread in the notion of minimality with respect
to an ordering over models.

Quantitative Temporal Synthesis A substantial body of work in temporal syn-
thesis is focused on quantitative objectives. These problems are represented by
games where each action has an associated cost (or, dually, reward) and the
objective is to find strategies that minimize cost (or, maximize reward) (cf. [6]).
There are several ways to formulate appropriate cost/reward functions and cor-
respondingly many ways to solve such games. One could attempt to model com-
pactness by assigning costs to actions such that if word x is better than word y
then x has the lower cost. We chose not to develop solutions along such quan-
titative lines for two main reasons: first, as the connection between cost and
preference is indirect, setting up the right cost assignments to model a desired
preference ordering is difficult; secondly, the theoretical complexity and practi-
cal difficulty of quantitative synthesis is high. Instead, we chose to tackle the
question in a qualitative manner.

As shown in Section 3, quantitative measures cannot always differentiate
between compact and non-compact solutions. Using the specification transfor-
mation developed here, the two methods can, however, be used in cooperation:
one can model the real costs of actions in a manner that is orthogonal to the
preference ordering and compute minimal-cost, compact strategies.

A recent work [1] focuses on the “quality” of satisfaction of an LTL formula
(e.g., preferring to satisfy one part of a specification over another). Synthesis is
through a reduction to a standard LTL specification; unfortunately this has a
worst-case exponential blowup.

K. S. Namjoshi and N. Patel60

Non-Monotonic Reasoning. As mentioned briefly in the introduction, the com-
pactness criterion is a form of commonsense reasoning: one does not expect
synthesized solutions to include unnecessary actions. Commonsense reasoning
is exemplified by the classical frame problem, introduced in [29], which shows
that the freedom of interpretation given by logic must be restricted in order to
achieve commonsense conclusions.

It was soon recognized that such restrictions imply a non-standard notion of
deduction, which is not monotonic: adding new hypotheses can invalidate current
conclusions [37]. In [28], McCarthy suggests a formulation in terms of a circum-
scription operation: each inference is guarded with a “not(abnormal)” predicate,
and a successor state is one where the extent of this predicate is minimized—i.e.,
abnormal effects are maximally limited while avoiding inconsistencies. Logically,
this is specified in second-order logic as ϕ(A) ∧ ¬(∃B : B ⊂ A ∧ ϕ(B)), where ϕ
is the specification and A is the abnormality predicate. Readers will immediately
notice the similarity to the definition of min(L,≺).

The importance of a general preference order in place of the fixed subset re-
lation is laid out in [24]; the authors propose reasonable properties that any non-
monotonic inference relation should meet, and show that a definition in terms of
a preference ordering satisfies those properties. Our formulation of compactness
is based on similar notions of minimality over a preference ordering on words.
This is at the root of the non-monotonicity of compactness. These similarities
hint at deeper connections between compactness and non-monotonic common-
sense reasoning; we aim to investigate those in future work.

Acknowledgments. We would like to thank colleagues at Bell Labs and at NYU
for interesting discussions and helpful comments regarding this work. This work
was supported in part by the National Science Foundation grant CCF-1563393
and by DARPA under contract HR001120C0159. The views, opinions, and/or
findings expressed are those of the author(s) and should not be interpreted as
representing the official views or policies of the Department of Defense, the U.S.
Government, or the National Science Foundation.

References

1. Almagor, S., Boker, U., Kupferman, O.: Formally reasoning about quality. J. ACM
63(3), 24:1–24:56 (2016), https://doi.org/10.1145/2875421

2. Bansal, S., Chaudhuri, S., Vardi, M.Y.: Comparator automata in quantitative ver-
ification. In: FOSSACS. Lecture Notes in Computer Science, vol. 10803, pp. 420–
437. Springer (2018)

3. Bansal, S., Namjoshi, K.S., Sa’ar, Y.: Synthesis of coordination programs from
linear temporal specifications. Proc. ACM Program. Lang. 4(POPL), 54:1–54:27
(2020)

4. Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Tech. Rep. 11/2, In-
stitute for Formal Models and Verification, Johannes Kepler University, Altenberg-
erstr. 69, 4040 Linz, Austria (2011)

5. Birget, J.: Partial orders on words, minimal elements of regular languages and state
complexity. Theor. Comput. Sci. 119(2), 267–291 (1993)

Synthesis of Compact Strategies for Coordination Programs 61

https://doi.org/10.1145/2875421

6. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV.
LNCS, vol. 5643, pp. 140–156. Springer (2009)

7. Bloem, R., Chockler, H., Ebrahimi, M., Strichman, O.: Synthesizing non-vacuous
systems. In: VMCAI. Lecture Notes in Computer Science, vol. 10145, pp. 55–72.
Springer (2017)

8. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,
Schuppan, V., Seeber, R.: RATSY - A new requirements analysis tool with synthe-
sis. In: CAV. Lecture Notes in Computer Science, vol. 6174, pp. 425–429. Springer
(2010)

9. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012)

10. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI. LNCS, vol. 8318, pp. 1–20. Springer
(2014)

11. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.: Acacia+, a tool for LTL
synthesis. In: Proc. of CAV. pp. 652–657 (2012)

12. Carroll, M., Namjoshi, K.S., Segall, I.: The Resh programming language for mul-
tirobot orchestration. In: 2021 IEEE International Conference on Robotics and
Automation, ICRA. IEEE (2021), at https://arxiv.org/abs/2103.13921

13. Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: QUASY: quantitative
synthesis tool. In: TACAS. LNCS, vol. 6605, pp. 267–271. Springer (2011)

14. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model verifier. In: CAV. LNCS, vol. 1633, pp. 495–499. Springer (1999), https:
//nusmv.fbk.eu/

15. Ehlers, R.: Symbolic bounded synthesis. In: Proc. of CAV. pp. 365–379 (2010)
16. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Proc. of TACAS. pp. 272–275

(2011)
17. Ehlers, R., Raman, V.: Slugs: Extensible GR(1) synthesis. In: CAV. Lecture Notes

in Computer Science, vol. 9780, pp. 333–339. Springer (2016), https://github.com/
VerifiableRobotics/slugs

18. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 995–
1072. Elsevier and MIT Press (1990). https://doi.org/10.1016/b978-0-444-88074-
1.50021-4

19. Faymonville, P., Finkbeiner, B., Tentrup, L.: BoSy: An experimentation framework
for bounded synthesis. In: Proc. of CAV. pp. 325–332 (2017)

20. Filiot, E., Jin, N., Raskin, J.: An antichain algorithm for LTL realizability. In:
Proc. of CAV. pp. 263–277 (2009)

21. Filiot, E., Jin, N., Raskin, J.: Compositional algorithms for LTL synthesis. In:
Proc. of ATVA. pp. 112–127 (2010)

22. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI. pp. 854–860. IJCAI/AAAI (2013)

23. Jobstmann, B., Roderick: Optimizations for LTL synthesis. In: Proc. of FMCAD.
pp. 117–124 (2006)

24. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1-2), 167–207 (1990)

25. Kret́ınský, J., Meggendorfer, T., Sickert, S.: Owl: A library for ω-words, automata,
and LTL. In: ATVA. LNCS, vol. 11138, pp. 543–550. Springer (2018), https://owl.
model.in.tum.de/

K. S. Namjoshi and N. Patel62

https://arxiv.org/abs/2103.13921
https://nusmv.fbk.eu/
https://nusmv.fbk.eu/
https://github.com/VerifiableRobotics/slugs
https://github.com/VerifiableRobotics/slugs
https://doi.org/10.1016/b978-0-444-88074-1.50021-4
https://doi.org/10.1016/b978-0-444-88074-1.50021-4
https://owl.model.in.tum.de/
https://owl.model.in.tum.de/

26. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proc. of FOCS. pp.
531–540. IEEE, IEEE (2005)

27. Maoz, S., Ringert, J.O.: Spectra: a specification language for reactive systems.
Softw. Syst. Model. 20(5), 1553–1586 (2021). https://doi.org/10.1007/s10270-021-
00868-z

28. McCarthy, J.: Circumscription - A form of non-monotonic reasoning. Artif. Intell.
13(1-2), 27–39 (1980)

29. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of
artificial intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp.
463–502. Edinburgh University Press (1969)

30. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV. Lecture Notes in Computer
Science, vol. 10981, pp. 578–586. Springer (2018), https://strix.model.in.tum.de

31. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive (1) designs. In: Interna-
tional Conference on VMCAI. vol. 3855, pp. 364–380. Springer, Springer (2006)

32. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Prof. of POPL.
pp. 179–190 (1989)

33. Pnueli, A., Sa’ar, Y., Zuck, L.D.: JTLV: A framework for developing verification
algorithms. In: Proc. of CAV. pp. 171–174 (2010)

34. Rabin, M.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. (141), 1–35 (1969)

35. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: ATVA. Lecture Notes in Com-
puter Science, vol. 4762, pp. 474–488. Springer (2007)

36. Schewe, S., Finkbeiner, B.: Bounded synthesis. Proc. of ATVA pp. 474–488 (2007)
37. Strasser, C., Antonelli, G.A.: Non-monotonic Logic. In: Zalta, E.N. (ed.) The Stan-

ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
summer 2019 edn. (2019)

38. Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTLf synthesis. In: IJCAI.
pp. 5599–5606. ijcai.org (2019)

39. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 133–
191. Elsevier and MIT Press (1990), https://doi.org/10.1016/b978-0-444-88074-1.
50009-3

40. Zhu, S., Giacomo, G.D., Pu, G., Vardi, M.Y.: LTLf synthesis with fairness and
stability assumptions. In: AAAI. pp. 3088–3095. AAAI Press (2020)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Synthesis of Compact Strategies for Coordination Programs 63

https://doi.org/10.1007/s10270-021-00868-z
https://doi.org/10.1007/s10270-021-00868-z
https://strix.model.in.tum.de
https://doi.org/10.1016/b978-0-444-88074-1.50009-3
https://doi.org/10.1016/b978-0-444-88074-1.50009-3
http://creativecommons.org/licenses/by/4.0/

ZDD Boolean Synthesis⋆

Yi Lin �1 , Lucas M. Tabajara1 ⋆⋆, and Moshe Y. Vardi1

Rice University, Houston TX 77005, USA
vardi@cs.rice.edu, l.martinelli.tabajara@gmail.com, yl182@rice.edu

Abstract. Motivated by applications in boolean-circuit design, boolean
synthesis is the process of synthesizing a boolean function with multi-
ple outputs, given a relation between its inputs and outputs. Previous
work has attempted to solve boolean functional synthesis by converting a
specification formula into a Binary Decision Diagram (BDD) and quan-
tifying existentially the output variables. We make use of the fact that
the specification is usually given in the form of a Conjunctive Normal
Form (CNF) formula, and we can perform resolution on a symbolic rep-
resentation of a CNF formula in the form of a Zero-suppressed Binary
Decision Diagram (ZDD). We adapt the realizability test to the context
of CNF and ZDD, and show that the Cross operation defined in earlier
work can be used for witness construction. Experiments show that our
approach is complementary to BDD-based Boolean synthesis.

Keywords: Boolean synthesis · Binary decision diagram · Zero-suppressed
binary decision diagram · Quantifier elimination · Resolution.

1 Introduction

Boolean functions are widely used in electronic circuits, and thus in many as-
pects of computing, to describe operations over binary values. Often the most
natural way to express such an operation is as a declarative relation between in-
puts and outputs. Implementing these operations in practice, however, requires
a functional, rather than declarative, representation. The process of constructing
a function that generates outputs directly from inputs, based on a given declar-
ative relation between them, is called boolean synthesis. For example, boolean
synthesis can be applied in constructing a full logical circuit from a relational
specification [9,15] or an unknown intermediate component in an existing log-
ical circuit [12]. Boolean synthesis is also useful for computing certificates for
quantified boolean formulas (QBF), and advances in QBF solving and boolean
synthesis are motivated by each other [3,20].

Formally, we are given a specification f(x⃗, y⃗), from Bm × Bn to B, relating
two sets of boolean variables. The specification holds true if and only if y⃗ is a
⋆ Work supported in part by NSF grants CCF-1704883, IIS-1830549, CNS-2016656,
DoD MURI grant N00014-20-1-2787, and an award from the Maryland Procurement
Office.

⋆⋆ Currently at Runtime Verification, Inc.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 64–83, 2022.
https://doi.org/10.1007/978-3-030-99524-9_4

http://orcid.org/0000-0001-8443-2246
http://orcid.org/0000-0001-9608-1404
http://orcid.org/0000-0002-0661-5773
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_4

correct output for the inputs x⃗. We solve the synthesis problem following the
convention of splitting it into two sub-problems [9]:

1. Realizability : constructing the realizable set R ⊆ Bm of input assignments x⃗
for which there exists an output assignment y⃗ such that f(x⃗, y⃗) = 1.

2. Witness construction : constructing a witness function g ∶ Bm → Bn that
computes an output y⃗ = g(x⃗) from an input x⃗ ∈ R such that f(x⃗, y⃗) = 1.

Given a propositional formula f as the relational specification, we aim to syn-
thesize a boolean function g that is correct by construction, meaning that as
long as the input is realizable the output will satisfy the specification.

Prior work solved the boolean functional synthesis by converting the specifi-
cation formula into a Binary Decision Diagram (BDD), defined in Section 2, and
quantifying the output variables existentially [9]. BDDs constitute a formalism
for representing Boolean functions, supported by mature tools such as CUDD
[22]. The size of a BDD representing a formula can, however, be exponential
in the number of variables. Oftentimes, it is even not possible to construct the
BDD before starting to solve the problem [9]. Noticing how this blow-up in BDD
size has restricted the potential of existing BDD-based synthesis algorithms, we
seek to develop an algorithm that reduces the impact of this exponential blowup.
Hence we look for an alternative data structure that might be more promising
in representing boolean formulas compactly.

We identify here Zero-Suppressed Binary Decision Diagram (ZDD) [16], de-
fined in Section 2, as such an alternative approach. ZDDs have been shown to
sometimes outperform BDDs in the context of QBF solving [19]. Unlike BDDs,
which represent a boolean formula semantically via the set of satisfying assign-
ments, ZDDs are designed to encode sets of sets [14], allowing them to rep-
resent syntactically a formula in Conjunctive Normal Form (CNF) as a set of
clauses, which are themselves sets of literals. This means that it may require an
exponential-size BDD to represent a CNF formula, which can be alternatively
compactly encoded as a polynomial-size ZDD representation.

It can be expected, however, that this more compact representation comes at
a cost. Since ZDDs do not represent the solution sets directly like BDDs do, solv-
ing realizability and synthesis over this representation might require additional
effort. With this in mind. we perform here a full investigation comparing ZDDs
and BDDs for boolean synthesis. We focus on the following research questions:

1. How do the sizes of the ZDD and BDD representations compare, and how
does this affect the time of compiling the formulas into the diagram repre-
sentation? Are ZDDs always more compact?

2. In realizability, how do ZDDs vs. BDDs perform, in time and space?
3. How do ZDDs perform, compared to BDDs, in witness construction?
4. How does the end-to-end synthesis performance of ZDDs compare to BDDs?
5. For scalable families of formulas, how does the time and space performance

scale as the formula grows, comparing ZDDs to BDDs?

Our synthesis problem can often be expressed as boolean synthesis for CNF
specifications, as the boolean specification in synthesis problems is often given

ZDD Boolean Synthesis 65

in CNF form, and even non-CNF specifications can be easily converted to CNF.
Once specification formulas are given in CNF, it is possible to perform real-
izability by using the resolution operation, which is equivalent to existentially
quantifying the output variables directly from the CNF formula. Each resolu-
tion step increases the number of clauses quadratically. But when a ZDD is
used to represent the CNF formula, even when the number of clauses increases
quadratically, the size of the ZDD tends to increase to a lesser extent.

The crux of our contribution is a boolean-synthesis algorithm that performs
resolution on a symbolic, ZDD-based representation of CNF formulas. To solve
the first sub-problem of realizability, we compute the set R ⊆ Bm of all realizable
inputs, and then check the full and partial realizability of the input domain. The
realizable set is generated by applying resolution to the ZDD representation of
the CNF formula, based on operations defined in previous work [4,5,19].

The second sub-problem requires construction of a witness function g ∶ Bm →
Bn for the output variables y⃗ ∈ Bn. We adapt the formulas defined in previous
work [9] to the context of CNF, eliminating one output variable yi ∈ B at a time,
and make use of the fact that resolution is equivalent to existential quantifica-
tion. In this way we can extract a witness gi ∶ Bm → B for variable yi without
abandoning the ZDD representation.

After substituting the witness of an output variable back in the formula, we
need to compute the next witness. This leads to our next challenge, which is how
to guarantee that the formula remains in CNF after performing this substitution.
The overall form of the entire formula after substitution is dependent on the
form of the substituted witness function gi: clauses where yi is positive can be
converted back to CNF if gi is also in CNF, but clauses where yi is negative
require gi to be in Disjunctive Normal Form (DNF). Thus, what we need are
two equivalent witness functions, one in CNF and the other in DNF.

Our solution is to use the Cross ZDD operation, first defined by Knuth [14].
We show that if the Cross operation, defined on “families of sets” [14], is applied
to a ZDD representation of a CNF formula, then the result can be interpreted
as the ZDD for an equivalent DNF. In this way, with the Cross operation, we
can use the CNF version of a witness for positive occurrences of a variable, and
use the equivalent DNF version for negative occurrences, while both preserving
the equivalence and ensuring that the resulting formula remains in CNF.

Our experimental evaluation confirms the advantages of ZDDs in compila-
tion, thanks to their linear size and direct correspondence to the CNF formula
structure. As expected, this more compact representation can come with a trade-
off of increasing the difficulty of constructing witnesses. Therefore, in synthesis
performance, neither ZDDs nor BDDs dominate across the board, each per-
forming better in different families of formulas. We therefore advocate for the
ZDD-based approach as an addition to the portfolio of boolean synthesis tools,
serving as a complement to BDD-based approaches [11].

As shown in related works on boolean synthesis, there exist alternative tools
including CegarSkolem [13], BFSS [1] and Manthan [10]. Our focus of com-
parison here is, however, on improvements to decision-diagrams based tools

66 Y. Lin et al.

for boolean synthesis, rather than tools based, for example, on QBF solvers.
Decision-diagram based approaches enjoy some unique advantage. For example,
decision diagrams facilitate partitioned-form representation [23]. Also, decision
diagrams can be used as intermediate-step representation in temporal synthesis
[24]. These unique advantages justify, we believe, our focus here on decision-
diagram based approaches. We return to this point in our discussion of future
work.

2 Preliminaries

Boolean Formulas and Functions. Boolean formulas and boolean functions are
built upon the boolean set B = {0,1}. We identify a boolean formula f(x⃗) over
m propositional variables x⃗ = (x1, . . . , xm) with the boolean function f ∶ Bm → B
such that f(a⃗) = 1 for an assignment a⃗ = (a1, . . . , am) ∈ Bm if and only if a⃗ is a
satisfying assignment to x⃗ in the formula. Two boolean formulas f and f ′ are
logically equivalent if they represent the same boolean function (and therefore
have the same set of satisfying assignments). Substitution of a boolean expression
d(x⃗) in place of a variable xi in a boolean formula f(x⃗) is denoted by f[xi ↦ d]
and defined by f[xi ↦ d](x⃗) = f(x1, . . . , xi−1, d(x⃗), xi+1, . . . , xm).

Conjunctive and Disjunctive Normal Forms. A literal is either a variable or
the negation of a variable. A clause is a disjunction of literals, and a cube is a
conjunction of literals. A boolean formula in the form of a conjunction of clauses
is said to be in Conjunctive Normal Form (CNF), and a boolean formula in the
form of a disjunction of cubes is said to be in Disjunctive Normal Form (DNF).

Definition 1 (Boolean Synthesis Problem). Given a boolean formula f(x⃗, y⃗)
in CNF with m + n boolean variables, partitioned into m input variables x⃗ =
(x1, . . . , xm) and n output variables y⃗ = (y1, . . . , yn), construct:

1. The set R ⊆ Bm, called the realizability set, of all assignments a⃗ ∈ Bm to x⃗
for which there exists an assignment b⃗ ∈ Bn to y⃗ such that f(a⃗, b⃗) = 1.

2. A function g ∶ Bm → Bn such that f(a⃗, g(a⃗)) = 1 for all a⃗ ∈ R. This is
called a witness function. In practice, arbitrary formulas can be converted to
equi-realizable CNF formulas with a linear blowup using Tseytin encoding,
quantifying existentially over Tseytin variables. The witnesses for the equi-
realizable formula can then be used for the original formula.

Binary Decision Diagrams. A (Reduced Ordered) Binary Decision Diagram
(BDD) [2] is a directed acyclic graph that represents a boolean function. In-
ternal nodes of the BDD represent boolean variables, and paths on the BDD
correspond to assignments, leading either to a terminal node 1 if satisfying or
0 if unsatisfying. We assume that all BDDs are ordered, meaning that variables
are ordered in the same way along every path, and reduced, meaning that su-
perfluous nodes are removed and identical subgraphs are merged. Given these
two conditions, BDDs are a canonical representation, meaning that two BDDs

ZDD Boolean Synthesis 67

with the same variable order that represent the same function will be identi-
cal [2]. The variable order used can have a major impact on the BDD’s size, and
two BDDs representing the same function but with different orders can have an
exponential difference in size.

Zero-Suppressed Decision Diagrams. A Zero-Suppressed Binary Decision Dia-
gram (ZDD), is a data structure first defined in [16]. ZDDs are similar to BDDs
but use a different reduction rule: while BDDs remove nodes where both edges
point to the same child, ZDDs remove nodes where the 1-edge (edge assigning the
variable to 1) points directly to the 0-terminal. Specifically, the 0-ZDD encodes
formulas that are always valid, and the 1-ZDD encodes contradiction.

Semantics on Families of Sets. ZDDs can be used to implicitly represent families
of subsets of a set S, where the variables in the ZDD correspond to elements
of S that can be either present or absent in a subset [14]. For a ZDD Z, we
denote by JZK the family of subsets represented by Z. We define J0K = ∅ and
J1K = {∅} for the terminals 0 and 1, respectively. Using Z(x,Z0, Z1) to denote
a ZDD with variable x as the root, ZDD Z0 as the 0-child and ZDD Z1 as the
1-child, we define JZ(x,Z0, Z1)K = JZ0K∪{{x}∪α ∣ α ∈ JZ1K}. Note that using this
interpretation every subset in the family corresponds to a path to the terminal
1 on the ZDD. Since CNF formulas can be viewed as sets of clauses, where a
clause can be viewed as a set of literals, we can use ZDDs to represent CNF
formulas syntactically. When representing a formula in CNF by a ZDD, for each
atomic proposition p we treat its positive and negative literals p and (¬p) as
two distinct variables xp and x¬p. Then every path leading to the 1-terminal
corresponds to a clause in the CNF formula, where xl connects to its 1-edge in
the path if and only if the literal l is in the corresponding clause.

ZDD Operations. We use standard ZDD operations such as Subset0, Subset1,
Change, Union, Intersect, and Difference, defined previously in [17] and imple-
mented in the CUDD package [22]. In terms of families of sets, Subset0 (Z , x)
returns the family of all sets α such that α ∈ JZK and x /∈ α, and Subset1 (Z , x)
returns the family of all sets α ∖ {x} such that α ∈ JZK and x ∈ α. Change(Z , x)
returns the family {α ∪ {x} ∣ α ∈ JZK and x /∈ α} ∪ {α ∖ {x} ∣ α ∈ JZK and x ∈ α}.
The operation Resolution(x, Z) returns the ZDD representing the result of ap-
plying resolution to variable x in the CNF represented by Z. It is implemented
following [4], using the operations SubsumptionFreeUnion, which takes the union
of two families of sets while removing subsumed sets, and ClauseDistribution,
which returns the family of sets resulting from applying distribution over two
given sets of clauses. The witness-construction phase also requires the Cross op-
eration defined in [14] to convert between CNF and DNF representations. See
Section 4 for details.

68 Y. Lin et al.

3 Realizability Using ZDDs

We describe in this work a ZDD-based algorithm to solve the Boolean-Synthesis
Problem described in Definition 1. This means that the specification f(x⃗, y⃗),
the realizability set R and the witness function g are all represented by CNF
formulas encoded as ZDDs, as defined in Section 2. In this section we describe
how to compute the realizability set R and analyze it to answer whether the
specification is partially or fully realizable. In Section 4 we describe how to
compute the witness function g.

3.1 Realizable Set R

In order to construct the set R of realizable assignments to the input variables
x⃗, as described in Definition 1, we need to quantify existentially the output
variables y⃗, analogously to the BDD-based approach of [9].

Let f0, . . . , fn be CNF formulas such that

fn ≡ f
fn−1 ≡ (∃yn)f
. . .

fi ≡ (∃yi+1) . . . (∃yn−1)(∃yn)f
. . .

f1 ≡ (∃y2) . . . (∃yn−1)(∃yn)f
f0 ≡ (∃y1) . . . (∃yn−1)(∃yn)f

As in [9], the last formula f0 = (∃y1) . . . (∃yn−1)(∃yn)f implicitly represents the
realizable set R, describing the set of satisfying assignments of f0.

To compute f0, . . . , fn as CNF formulas, we apply the resolution operation,
which is equivalent to existential quantification [7]. We first state a normal-form
lemma.

Lemma 1. [4] Let f be a CNF formula. Let f+p denote the conjunction of all
clauses α such that (p∨α) is a clause in f . Let f−p denote the conjunction of all
clauses β such that ((¬p) ∨ β) is a clause in f . Let f ′p denote the conjunction
of clauses γ in f where neither p nor (¬p) is a literal in γ. Then f is logically
equivalent to (p ∨ f+p) ∧ (¬p ∨ f−p) ∧ f ′p for a boolean variable p.

Proof. The claim follows from [4].

Next we show how to use resolution to existentially quantify a variable from
a formula in the normal form of Lemma 1.

Lemma 2. Let y be a boolean variable, then the boolean formula (∃y)((y∨f+y)∧
(¬y ∨ f−y) ∧ f ′y) is logically equivalent to ((f+y ∨ f−y) ∧ f ′y).

ZDD Boolean Synthesis 69

Proof.

(∃y)((y ∨ f+y) ∧ (¬y ∨ f−y) ∧ f ′y)
≡ (∃y)(((y ∧ ¬y) ∨ (y ∧ f−y) ∨ (f+y ∧ ¬y) ∨ (f+y ∧ f−y)) ∧ f ′y)
≡ ((∃y)(y ∧ f−y) ∨ (∃y)(f+y ∧ ¬y) ∨ (∃y)(f+y ∧ f−y)) ∧ f ′y (f ′y excludes y)

≡ (((∃y)(y ∧ f−y) ∨ (∃y)(f+y ∧ ¬y) ∨ (f+y ∧ f−y)) ∧ f ′y) (f+y , f
−
y excludes y)

≡ ((f−y ∨ f+y ∨ (f+y ∧ f−y)) ∧ f ′y) (f+y , f
−
y excludes y)

≡ ((f−y ∨ f+y) ∧ f ′y)

We call the formula ((f+y ∨ f−y) ∧ f ′y) the resolution of the variable y in f .
Note that this formula (specifically the subformula (f+y ∨f−y)) is not in CNF, but
can be easily rewritten in CNF by distributing the clauses in f+y over the clauses
in f−y . The equivalence of resolution and existential quantification then follows
from Lemmas 1 and 2 above:

Corollary 1. For a formula f and a boolean variable y, the formula (∃y)f is
logically equivalent to ((f+y ∨ f−y) ∧ f ′y).

Proof. The claim follows from Lemmas 1 and 2.

We represent f+y , f
−
y , f

′
y by ZDDs by applying the Subset0 and Subset1 op-

erations described in Section 2: Z+
y = Subset1(Z, y), Z−

y = Subset1(Z,¬y), and
Z ′
y = Subset0(Subset0(Z, y),¬y). We then use the ClauseDistribution opera-

tion to distribute the clauses of Z+
y over Z−

y , and the SubsumptionFreeUnion
operation to combine all clauses into a single ZDD. This implements the op-
eration Resolution(yi, Z) mentioned in Section 2. In practice, we follow the
Cut-Elimination Algorithm of [4], which also eliminates tautologies by removing
clauses where the same variable appears both positively and negatively. There-
fore we can assume that the ZDD representations of f0, . . . , fn do not include
subsumed and tautological clauses, which may also lead to smaller ZDDs.

The advantage of applying resolution symbolically over a ZDD representa-
tion, rather than directly over the CNF formula is that every resolution step
increases the number of clauses in the formula quadratically. Thus, the number
of clauses after multiple resolution steps can easily grow exponentially. ZDDs,
compared to representing clauses explicitly, are well-equipped for representing
compactly large sets of clauses, often being able to represent an exponential set
of clauses in polynomial space [16]. The ZDD representation also makes it easy
to remove subsumed and tautological clauses, further reducing size.

3.2 Full and Partial Realizability

When the realizable set R is represented by a BDD, as in [9], it is easy to check
whether R = ∅ or R = Bm, as this corresponds to the BDD being equal to 0
or 1, respectively. This is less straightforward for a ZDD representation, which

70 Y. Lin et al.

expresses R indirectly by the set of clauses in its CNF representation f0, rather
than the set of assignments itself. We say that a CNF specification f(x⃗, y⃗) is
fully realizable if and only if all a⃗ ∈ Bm have some b⃗ ∈ Bn so that f(a⃗, b⃗) holds.
This corresponds to R = Bm. Similarly, we say that f is partially realizable if and
only if there is some a⃗ for which there exists some b⃗ so that f(a⃗, b⃗) holds. This
corresponds to R ≠ ∅. After computing a ZDD representation of R, we wish to
check full and partial realizability over this representation.

Theorem 1. The CNF specification f(x⃗, y⃗) is fully realizable if and only if the
ZDD for f0 is equivalent to the 0-ZDD.

Proof. The specification f(x⃗, y⃗) is fully realizable if and only if the CNF for-
mula f0 representing R is a tautology, which means that every clause of R has
both p and ¬p for some variable p, i.e., every clause is a tautology. Tautologies,
however, are automatically removed by the Resolution operation, as explained
in Section 3.1. Thus, full realizability occurs if and only if the set of clauses is
empty, represented by the ZDD 0.

Note that the realizability R is represented by the CNF formula f0 ≡ (∃y1) . . .
(∃yn)f , which does not contain any free occurrences of y⃗ variables. We then per-
form resolution on the x⃗ variables in the same way as we did for the y⃗ variables.
Then the original formula is partially realizable if and only if (∃x1)(∃x2) . . .
(∃xm)f0 is true, meaning that resolution does not derive a contradiction. If a
contradiction is derived, the resulting ZDD is the terminal 1, representing the
empty clause. Otherwise it is the terminal 0.

Theorem 2. The CNF specification f(x⃗, y⃗) is partially realizable if and only if
the ZDD representing (∃x1)(∃x2) . . . (∃xm)f0 is equivalent to the 0-ZDD.

Proof. Since all variables are existentially quantified, the ZDD must be either
the terminal 0 (representing the empty CNF, equivalent to true) or the terminal
1 (representing a CNF with an empty clause, equivalent to false). In the first
case, the formula (∃x1) . . . (∃xm)(∃y1) . . . (∃yn)f is true, meaning that there
is an assignment that satisfies f(x⃗, y⃗), which by definition makes f partially
realizable. In the second case, the formula is false, meaning that there is no such
assignment, and therefore f is not partially realizable.

4 Synthesis Using ZDDs

As described in [9], once we have computed the formulas f1, . . . , fn with the out-
put variables existentially quantified, we can construct the witness gi for variable
yi from the formula fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1], after having computed the wit-
nesses g1, . . . , gi−1 for the preceding variables. In [9], two witness functions were
presented for variable yi: the default-1 witness fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1][yi ↦
1] and the default-0 witness (¬fi)[y1 ↦ g1] . . . [yi−1 ↦ gi−1][yi ↦ 0]. In this work,
however, we additionally want to ensure that we maintain the CNF form of the
specification after substituting g1, . . . , gi−1 into fi, to enable ZDD representation.

ZDD Boolean Synthesis 71

In this section we show how to construct and substitute witnesses so that the
result remains in CNF.

For ZDD-based algorithms, the iterated substitution approach requires more
sophistication for the construction of the witnesses, compared to the iterated-
substitution approach for BDDs. We solve this problem in Section 4.2. As in [9],
the resulting witnesses guarantee that f(a⃗, g1(a⃗), . . . , gn(a⃗)) = 1 for all realizable
input assignments a⃗ ∈ R.

4.1 Witnesses for Single-Dimension Output Variable

As in [9], we start by defining witnesses for the case when there is a single output
variable:

Lemma 3. Let f be a CNF formula over boolean variables x1, . . . , xm, y. Then
the formulas f−y and ¬f+y are witnesses for the variable y.

Proof. The realizability set, as defined in Section 3.1, is R = {a⃗ ∈ Bm ∣ (∃y)f[x⃗↦
a⃗] ≡ 1}. Thus, by Corollary 1, for all a⃗ ∈ R

((f+y ∨ f−y) ∧ f ′y)[x⃗↦ a⃗] ≡ 1. (1)

Hence f ′y[x⃗↦ a⃗] ≡ 1 and either f+y [x⃗↦ a⃗] ≡ 1 or f−y [x⃗↦ a⃗] ≡ 1.
Now we want to show f(a⃗, g(a⃗)) = 1, i.e., f[y ↦ g(x⃗)][x⃗ ↦ a⃗] = 1, for both

g(x⃗) = f−y and g(x⃗) = ¬f+y .
For g(x⃗) = f−y , since f ≡ f ′y ∧ (y ∨ f+y) ∧ ((¬y) ∨ f−y), we are left to show

f[y ↦ f−y][x⃗ ↦ a⃗] ≡ (f ′y ∧ (f−y ∨ f+y) ∧ ((¬f−y) ∨ f−y))[x⃗ ↦ a⃗] ≡ 1. By (1) we are
only left to show ((¬f−y) ∨ f−y)[x⃗↦ a⃗] ≡ 1, which follows from the left-hand side
being a tautology.

Similarly, for g(x⃗) = ¬f+y , we need to show f(a⃗, g(a⃗)) = f[y ↦ (¬f+y)][x⃗ ↦
a⃗] ≡ 1. This is equivalent to showing that (f ′y∧((¬f+y)∨f+y)∧(f+y ∨f−y))[x⃗↦ a⃗] ≡ 1.
By (1) we are only left to show ((¬f+y) ∨ f+y)[x⃗↦ a⃗] ≡ 1, a tautology.

Note that the witness f−y is in CNF, while the witness ¬f+y , being the negation
of a CNF formula, can be more easily represented in DNF. Note also that these
witnesses do not correspond exactly to the default-1 and default-0 witnesses
of [9], which would more specifically be equivalent to f−y ∧ f ′y and ¬(f+y ∧ f ′y),
respectively. We choose the alternative witnesses because they contain fewer
clauses, and thus are more likely to produce a more efficient ZDD representation.

4.2 Preserve CNF by Equivalent Witnesses

We now explain how to construct witnesses of multiple output variables. Let
fn, . . . , f0 be as defined in Section 3.1. We can then compute a witness for each
yi iteratively, as in [9]. Using the f−y witness from Lemma 3, for example, this
means gi(x⃗) = (fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1])−yi

, where gi is the witness for variable
yi.

72 Y. Lin et al.

The substitution fi[y ↦ g], however, is not necessarily in CNF. But Lemma 3
requires that the formula is in CNF in order to extract the next witness. This
means that we need to find a way to perform the substitution in a way that the
result remains in CNF.

Recall that, since our Resolution operation removes tautological clauses, each
variable can only occur in positive or negative form in a clause, but not both. If
the witness g is in CNF, e.g., g = f−y , we can substitute this witness in a clause
(y∨ l1∨ l2∨ . . .) where y occurs in positive form. The result is a disjunction of the
literals l1, l2, . . . and the CNF g = (cl1 ∧ cl2 ∧ . . .). By distribution, we can write
this as an equivalent CNF ((cl1∨ l1∨ l2∨ . . .)∧(cl2∨ l1∨ l2∨ . . .)∧ . . .). Likewise, if
the witness g for y is in DNF, e.g., g = (¬f+y), then, after the substitution, every
clause (¬y ∨ l1 ∨ l2 ∨ . . .) where y appears in negative form can be converted to
the CNF (¬(¬(cl1 ∧ cl2 ∧ . . .)) ∨ l1 ∨ l2 ∨ . . .) ≡ ((cl1 ∧ cl2 ∧ . . .) ∨ l1 ∨ l2 ∨ . . .) ≡
((cl1 ∨ l1 ∨ l2 ∨ . . .) ∧ (cl2 ∨ l1 ∨ l2 ∨ . . .) ∧ . . .).

The problem, therefore, is that if we want the result to be in CNF, CNF
witnesses work well for positive occurrences, while DNF witnesses work well
for negative occurrences. Thus, as long as we can find an efficient conversion
between CNF formulas and their equivalent DNF formulas, we can ensure that
the substitution formula fi[y ↦ g] can be written as a CNF. For this purpose,
we introduce the Cross operator from [14].

Definition 2 (Cross operation).
Let S be a family of sets of literals. Then

Cross(S) =Minimal{t ∣ ∀si ∈ S ∶ t ∩ si ≠ ∅},

where
Minimal(S) = {t ∈ S ∣ ∀s ∈ S ∶ s ⊆ t→ s = t}.

Hence, Cross(S) is a family of sets of literals, such that every set t of literals in
Cross(S) has at least a common literal with every set of literals in S. Moreover,
every set t in Cross(S) is irredundant [14], meaning they are the smallest possible
sets satisfying this property.

Specifically, if S represents a given CNF f , where every set si ∈ S represents
a clause and the elements of si are the literals in that clause, then Cross(S)
represents the set of smallest possible sets t such that t has at least one com-
mon literal with every disjunctive clause of f . Equivalently speaking, Cross(S)
collects all t such that every disjunctive clause is satisfied, i.e., it is a collec-
tion of all irredundant sets of literals corresponding to irredundant assignments
to variables. This further means Cross(S) is a collection of prime implicants
of f [6,14], whose disjunction has been proved to be a DNF equivalent to the
CNF f . Therefore, whenever a CNF is given, we can construct a set S of sets,
where every set in S collects literals in a disjunctive clause of the CNF. Then
Cross(S) returns a set of sets representing an equivalent DNF. Conversely, when
interpreted as a DNF, Cross(S) is equivalent to S interpreted as a CNF.

By the analysis above, we can extend Definition 2 of the Cross operation to
CNF formulas:

ZDD Boolean Synthesis 73

Definition 3 (CNF Cross operation). Let f be a CNF formula cl1∧ . . .∧clk,
where every cli = ⋁`∈Li

` is a clause formed by the disjunction of a set of literals
Li. Let S = {L1, . . . , Lk} be the representation of f as a family of sets. Then,

Cross(f) = ⋁
L′i∈Cross(S)

⋀
`∈L′i

`

Note that Cross(f) is a DNF formula. We can similarly define in an analogous
way the Cross of a DNF formula as a CNF formula. We can verify that Cross(f)
and f are equivalent:

Lemma 4. For a CNF formula f , Cross(f) ≡ f .

Proof. By analysis above, the set Cross(S) includes elements L′is which are
irredundant smallest sets that each has common literal with every set of literals
in S. Therefore, every conjunction ⋀`∈L′i `, or cube, has common literal with every
disjunctive clauses in CNF f , and thus every cube has the same boolean values
under the same set of truth assignments as a prime implicant [6,21] of CNF f .
Then it follows that the DNF Cross(f), as a disjunction of these conjunctions,
is logically equivalent to the disjunction of all prime implicants of the CNF f ,
as proved by previous works [21].

Note that the same result also holds for DNF formulas, following from the
fact that Cross(f) ≡ f if and only if ¬Cross(f) ≡ ¬f .

Now we aim to show how to construct witnesses one by one, why this con-
struction is correct, and why this construction is viable. First, if we fix the
witness gj = (fi)−yj

, and substitute positive and negative occurrences with gj
and Cross(gj) in the CNF formula fi, then the equivalence and CNF form of
fi[yj ↦ gj] can both be preserved. We use the following lemma:

Lemma 5. Let f and g be given as CNF formulas. Then f[y ↦ g] is equivalent
to (g ∨ f+y) ∧ (¬Cross(g) ∨ f−y) ∧ f ′y.

Proof. By Lemmas 1 and 4, f[y ↦ g] ≡ ((y ∨ f+y) ∧ (¬y ∨ f−y) ∧ f ′y)[y ↦ g] =
(g ∨ f+y) ∧ (¬g ∨ f−y) ∧ f ′y ≡ (g ∨ f+y) ∧ (¬Cross(g) ∨ f−y) ∧ f ′y.

Since g = f−y is a CNF formula, Cross(g) is a DNF formula, and ¬Cross(g)
is a CNF. By distribution of f+y over clauses in g, and distribution of f−y over
clauses in ¬Cross(g), the resulting expression (g ∨ f+y) ∧ (¬Cross(g) ∨ f−y) ∧ f ′y
can be converted to CNF form.

Alternatively, we can pick the witness g = ¬f+y , and instead substitute Cross(g)
on positive occurrences and g on negative occurrences of y. Similarly, the formula
(Cross(g) ∨ f+y) ∧ (¬g ∨ f−y) ∧ f ′y can also be converted to an equivalent CNF.
Therefore, the equivalence and CNF form is preserved for fi[yj ↦ gj], leading
to the following corollary.

Corollary 2. Every step in gi(x⃗) = (fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1])−yi
can be per-

formed so it returns a CNF formula.

74 Y. Lin et al.

Proof. Corollary 2 follows from Lemma 3, Definition 3, and Lemma 5

Finally, we have the witnesses constructed in this process:

Theorem 3. Let gi(x⃗) = (fi[y1 ↦ g1] . . . [yi−1 ↦ gi−1])−yi
for 0 ≤ i ≤ n. Then,

gi is a witness for yi in f , for every yi. The same applies if gi(x⃗) = ¬(fi[y1 ↦
g1] . . . [yi−1 ↦ gi−1])+yi

Proof. Theorem 3 follows from Lemma 5 and Corollary 2.

4.3 Algorithm for Constructing Witnesses

In the last subsection we described how to uses Knuth’s Cross operation to
facilitate CBF/DNF conversion, enabling the use of iterated substitution. We
describe our novel algorithm for synthesis using ZDDs.

We start by presenting the ZDD implementation of Cross function from
Definition 2, following [14]:

if ZDD Z is the 1-terminal then
return 0-terminal ;

else if ZDD Z is the 0-terminal then
return 1-terminal ;

else
// Zl denotes the ZDD rooted at 0-child of root of Z
// Zh denotes the ZDD rooted at 1-child of root of Z
Zr = Union(Zl, Zh);
Zll = Cross(Zr);
Zr = Cross(Zl);
Zhh = Difference(Zr, Zll);
// Var(Z) denotes the variable at the root node of Z
Z ′ = NewZDD(Var(Z), Zll, Zhh);
return Z’ ;

end
We now explain how to perform the substitution following Lemma 5, where

we want to construct a ZDD of f[y ↦ g], where f and g are CNF formulas and
y is a variable. Denote the ZDD representation of f as Zf and that of g as Zg.
Then we compute the ZDD Cross(Zg) using the algorithm above. Recall that
this ZDD represents a DNF formula that is equivalent to g.

To construct a ZDD for the formula in Lemma 5, we need a ZDD for ¬Cross(g).
But note that the ZDD for the CNF ¬Cross(g) is equal to the ZDD for the DNF
Cross(g) except replacing every positive literal p with the its negative literal ¬p
and vice-versa. Therefore, we want to swap p and ¬p in Cross(Zg).

We retrieve the clauses with neither p nor ¬p by

Z1 = Subset0 (Subset0 (Cross(Zg), p),¬p).

Then we swap p with ¬p in every clause where p appears positively:

Z2 = Change(Subset1 (Cross(Zg), p),¬p).

ZDD Boolean Synthesis 75

And we swap ¬p with p in every clause where p appears negatively:

Z3 = Change(Subset1 (Cross(Zg),¬p), p).

Finally, taking the union of Z1, Z2 and Z3 gives us the ZDD ¬Cross(Zg)
encoding the CNF for the negation of Cross(Zg).

Let Z+
y , Z

−
y and Z ′

y be the ZDDs for f+y , f
−
y and f ′y, respectively, constructed

as described in Section 3.1. We compute the ZDDs for (g∨f+y) and (¬Cross(g)∨
f−y) by ClauseDistribution(Zg, Z

+
y) and ClauseDistribution(¬Cross(Zg), Z−

y), re-
spectively. We then take the Union of these two ZDDs and Z ′

y to get the ZDD
for (g ∨ f+y) ∧ (¬Cross(g) ∨ f−y) ∧ f ′y, which is exactly the ZDD for f[y ↦ g] by
Lemma 5.

5 Experimental Evaluations

5.1 Experimental Methodology and and Setting

We perform a comparison between our ZDD-based synthesizer, ZSynth, and
the tool RSynth described by [9], using challenging ΠP

2 benchmarks from the
QBFEVAL 2016 data set [18], the latest QBFEVAL set that includes a 2QBF
(forall-exists) track, which is the format our benchmarks require. Each bench-
mark ran for 24 hours on Rice University’s NOTS cluster with 64G RAM size. We
focus our comparison on the Fixpoint Detection, MutexP, and QShifter bench-
mark families, omitting those families that are either too easy or too hard to
solve for both tools, namely, the Tree, Ranking Functions, Reduction Finding,
and Sorting Networks families [18]. For those families, either both tools solved
all instances or none. Of these omitted benchmark families, Tree is very simple
and is solved very quickly by both tools, while the others could be synthesized
by neither tool. therefore we choose to focus on the three families that pro-
vide an interesting comparison. Fixpoint Detection, MutexP and QShifter have,
respectively, 146, 7, and 6 instances.

For each tool we evaluate both total time and peak memory consumption
for compilation, realizability, and synthesis, as well as the DD size for the orig-
inal formula in each symbolic representation. We use the maximum cardinal-
ity search (MCS) heuristic [23] to determine the ordering of variables in both
ZDDs and BDDs.Due to restrictions on available time and space resources, some
benchmarks show out-of-time and out-of-memory failures. We measure the per-
formance of both tools on the benchmarks that are solved. The experimental
evaluations conclude that the ZDD-based approach is complementary to the
BDD-based approach.

5.2 Compilation Time and Size of Diagram Representing Original
Formula

We first compare the performance of CNF compilation into ZDDs and BDDs, fol-
lowing the first research question proposed in Section 1. The log-scale bar plot in

76 Y. Lin et al.

Fig. 1 presents compilation time for the benchmarks from the selection families,
per Section 5.1. The size of the bars representing each formula is proportional
to the compilation time.

The compilation into a ZDD takes polynomial (at most quadratic) time,
because paths in the ZDD correspond to clauses, and therefore the size of the
ZDD is always linear in the size of the formula. In contrast, the compilation into
a BDD can be exponential, because paths in a BDD correspond to assignments,
and therefore the number of paths can be exponential. The advantage of ZDDs as
a compact representation is consistent with our conjecture. Across all benchmark
families in QBFEVAL’16, compilation into ZDDs takes less time and space than
BDDs in most cases.

It is worth noting that we construct here the ZDD representation of the CNF
formulas by adding one clause at a time using the Union operator. Compilation
could be further optimized by using a divide-and-conquer approach, where we
split the set of clauses in half, construct ZDDs for each half recursively, and then
take their union.

Fig. 1: Compilation time of the CNF: red = BDD, blue = ZDD

5.3 Realizability Time

The plot in Fig. 2 summarizes for each family the time spent on constructing
the realizability set and checking partial and full realizability. The dashed lines
in red illustrate RSynth results, while the solid lines in dark blue with the same
shapes show ZSynth results. As each solvers have the families where it has an
advantage in, we note how many instances of each family each solver is able to
solve within a given time. We include data for all benchmarks that completed the

ZDD Boolean Synthesis 77

Fig. 2: Percentage solved for realizability within a given timeout. Dashed red =
BDD, solid blue = ZDD.

realizability phase. The graph plots the percentage of benchmarks in each family
that RSynth and ZSynth complete for a given timeout, with 100% meaning that
all instances of that family were solved.

We see from Fig. 2 that RSynth solves more cases of the Fixpoint Detection
family, and does so faster than ZSynth. Most of the cases it solves are completed
in under 10ms. On the other hand, ZSynth has the advantage in the QShifter
and MutexP families, for which it is able to solve more cases in a shorter time.
Therefore, ZSynth and RSynth each performs better on different families of
benchmarks. This allows us to answer the second research question proposed
in Section 1 with the observation that neither approach dominates across the
board, rather realizability performance is dependent on the benchmark family.
As we see below in Section 5.4, these general results also extend to end-to-end
synthesis.

5.4 End-to-End Time and Peak Memory

Our observations for end-to-end synthesis time–including compilation, realiz-
ability, and witness construction–are plotted in Fig. 3. Similarly to realizability
time, the total end-to-end synthesis time shows strongly family-dependent re-
sults. Both ZSynth and RSynth display better relative performance on the same
families as they did for realizability. In families where ZSynth solves more in-
stances, including QShifter and MutexP, ZSynth also takes less time in most

78 Y. Lin et al.

Fig. 3: Percentage solved end-to-end within a given timeout. Dashed red = BDD,
solid blue = ZDD.

cases, and vice-versa for those families where RSynth solves more benchmarks
end-to-end.

We observed in our experiments that memory and time were generally cor-
related, meaning that benchmarks that took more time also consumed more
memory. This is expected when dealing with algorithms based on decision dia-
grams, since the biggest factor that impacts the performance of such algorithms
is diagram size. In practice, memory comparison between RSynth and ZSynth
in compilation, realizability and witness construction have similar patterns as
the time comparison. Even if ZDDs have an advantage in representing the initial
specification, the overall memory consumption for realizability and synthesis is,
similarly to running time, largely dependent on the benchmark family.

5.5 Scalable Benchmarks Show ZDD has Slower Growing Demands
of Time and Space

To analyze the scalability of ZDDs in relation to BDDs, as per the fifth research
question in Section 1, we take a closer look at the running time and node counts of
ZSynth and RSynth in the benchmarks of the QShifter family. All benchmarks in
this family follow the same structure, just scaled based on a numerical parameter.
For a parameter n, qshifter_n has 22n+1 clauses, 2n +n input variables and 2n

output variables, so we expect to see exponential trends in the measured values.
The results can be found in Fig. 4, which considers only QShifter because it

can be scaled based on a parameter, and RSynth did not solve enough instances
of MutexP to have an interesting scalability comparison. Since RSynth solves

ZDD Boolean Synthesis 79

only up to the smallest instances in the QShifter family, we use the maximal
time limit, illustrated by the “X” in the plot not connected to any line, as a con-
servative underestimation for the running time of further instances. (Therefore,
the compilation, realizability and end-to-end times for RSynth in qshifter_5
must be higher than the “X” mark.) As QShifter benchmarks are regular in their
constructions, we can observe the trend of the exponent.

The results for RSynth, both for time and number of nodes, always has a
steeper slope in the parameter n. Since the graph is in log scale, straight lines
represent an exponential increase, and the slope represents the coefficient of the
exponent. Therefore, although both ZSynth and RSynth grow exponentially, in
both time and space, ZSynth is more efficient by an exponential factor.

These results suggest that there are families for which we can expect ZDD
synthesizers to require significantly fewer resources in time and space as the size
of the formulas grows. The QShifter family is one example of a family where the
ZDD algorithm performs better by an exponential factor.

Fig. 4: Scalable family evaluations: dashed red = BDD, solid blue = ZDD.

5.6 Overall Comparison

As explained in Section 5.1, we focus on evaluating the synthesizers on the
Fixpoint Detection, QShifter, and MutexP families of benchmarks [18]. ZSynth

80 Y. Lin et al.

Table 1: Percentage of end-to-end completed instances in each family.
Benchmark Family Name RSynth (BDD) ZSynth (ZDD)

Fixpoint Detection 30.82% 20.55%
MutexP 14.29% 42.86%

QShifter (scalable) 28.57% 100%

shows clear time and space advantages on the MutexP and QShifter families,
while RSynth performs better in the Fixpoint Detection family. In Table 1, we
show how much of each family either tool was able to solve.

Next, we summarize the overall results of our experimental performance com-
parison. In families where ZDD completed more instances end-to-end, we can see
that ZDD has better performance in all bases of comparison, including compi-
lation, realizability, and end-to-end time, as well as diagram node count for the
original formula and peak node count. Additionally, Section 5.5 shows that there
exist families of scalable benchmarks for which the time and space demands of
ZDDs grow more slowly than BDDs by an exponential factor, as illustrated by
the smaller slope in Fig. 4.

Even in the Fixpoint Detection family, where BDDs solve more instances,
ZDDs show advantages in compilation time, initial diagram size, and smaller
scaling slopes in time and space. In realizability and overall synthesis perfor-
mance, neither our ZDD-based algorithm nor the BDD-based algorithm dom-
inates across the board, each performing better in those families where it can
solve more instances.

6 Conclusion

We conclude that ZDD-based algorithms are competitive with those based on
BDDs, and both have their place in a portfolio of solvers for boolean synthe-
sis. Since both BDDs and ZDDs can be converted to circuits, we advocate
that an industrial solver would benefit from both approaches. In CNF-specified
boolean-synthesis problems, BDD and ZDD are orthogonal approaches, and cir-
cumstances exist where each one of the solvers shows leading performance. For
this type of problems, our portfolio advocates a multi-engine approach that is
inclusive of both approaches.

As most tools for QBF solving and synthesis solving handle the input formula
monolithically, future research based on this work includes an exploration of
partitioning of variables [8] and factored synthesis [23] in the context of ZDDs.
Another direction is to explore the usage of ZDD-based techniques in the context
of temporal synthesis, cf. [24].

References

1. Akshay, S., Chakraborty, S., Goel, S., Kulal, S., Shah, S.: What’s hard about
Boolean functional synthesis? In: Proc. 30th Int’l Conf. on Computer Aided Ver-

ZDD Boolean Synthesis 81

ification, Part I. Lecture Notes in Computer Science, vol. 10981, pp. 251–269.
Springer (2018). https://doi.org/10.1007/978-3-319-96145-3_14, https://doi.org/
10.1007/978-3-319-96145-3_14

2. Bryant, R.: Graph-based algorithms for Boolean-function manipulation. IEEE
Transactions on Computing C-35(8), 677–691 (1986)

3. Chakraborty, S., Fried, D., Tabajara, L.M., Vardi, M.Y.: Functional
synthesis via input-output separation. In: Proc. 2018 IEEE Conf. on
Formal Methods in Computer Aided Design. pp. 1–9. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8603000

4. Chatalic, P., Simon, L.: Multi-resolution on compressed sets of clauses. In:
Proc 12th IEEE Int’l Conf. on Tools with Artificial Intelligence. pp. 2–10. IEEE
Computer Society (2000). https://doi.org/10.1109/TAI.2000.889839

5. Chatalic, P., Simon, L.: ZRES: The old Davis-Putman procedure meets ZBDD.
In: Proc. 17th Int’l Conf. on Automated Deduction. Lecture Notes in Computer
Science, vol. 1831, pp. 449–454. Springer (2000)

6. Crama, Y., Hammer, P.L.: Boolean functions: Theory, algorithms, and applica-
tions. Cambridge University Press (2011)

7. Dechter, R., van Beek, P.: Local and global relational consistency. Theor. Comput.
Sci. 173(1), 283–308 (1997)

8. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: Procount: Weighted projected model
counting with graded project-join trees. In: Proc. 24th Int’l Conf. on Theory
and Applications of Satisfiability Testing. Lecture Notes in Computer Science,
vol. 12831, pp. 152–170. Springer (2021). https://doi.org/10.1007/978-3-030-80223-
3_11

9. Fried, D., Tabajara, L.M., Vardi, M.Y.: BDD-based Boolean functional syn-
thesis. In: Proc. 28th Int’l Conf. on Computer Aided Verification. Part II.
Lecture Notes in Computer Science, vol. 9780, pp. 402–421. Springer (2016).
https://doi.org/10.1007/978-3-319-41540-6_22

10. Golia, P., Roy, S., Meel, K.S.: Manthan: A data-driven approach for Boolean func-
tion synthesis. In: Proc. 32nd Int’l Conf. on on Computer Aided Verification,
Part II. Lecture Notes in Computer Science, vol. 12225, pp. 611–633. Springer
(2020). https://doi.org/10.1007/978-3-030-53291-8_31, https://doi.org/10.1007/
978-3-030-53291-8_31

11. Gomes, C.P., Selman, B.: Algorithm portfolio design: Theory vs. practice. arXiv
preprint arXiv:1302.1541 (2013)

12. Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.R., Bloem, R.: Synthesizing mul-
tiple Boolean functions using interpolation on a single proof. In: Proc. 2013 IEEE
Conf. Formal Methods in Computer-Aided Design. pp. 77–84. IEEE (2013)

13. John, A.K., Shah, S., Chakraborty, S., Trivedi, A., Akshay, S.: Skolem functions for
factored formulas. In: Proc. 2015 IEEE Conf. Formal Methods in Computer-Aided
Design. pp. 73–80. IEEE (2015)

14. Knuth, D.E.: The Art of Computer Programming, Volume 4, Pre-Fascicle 1B: A
Draft of Section 7.1.4: Binary Decision Diagrams. Addison-Wesley Professional,
12th edn. (2009)

15. Kukula, J.H., Shiple, T.R.: Building circuits from relations. In: Proc. 12th Int’l
Conf. on Computer Aided Verification. Lecture Notes in Computer Science,
vol. 1855, pp. 113–123. Springer (2000). https://doi.org/10.1007/10722167_12

16. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proc. 30th Design Automation Conference. pp. 272–277. ACM Press (1993).
https://doi.org/10.1145/157485.164890

82 Y. Lin et al.

https://doi.org/10.1007/978-3-319-96145-3_14
https://doi.org/10.1007/978-3-319-96145-3_14
https://doi.org/10.1007/978-3-319-96145-3_14
https://doi.org/10.23919/FMCAD.2018.8603000
https://doi.org/10.1109/TAI.2000.889839
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-319-41540-6_22
https://doi.org/10.1007/978-3-030-53291-8_31
https://doi.org/10.1007/978-3-030-53291-8_31
https://doi.org/10.1007/978-3-030-53291-8_31
https://doi.org/10.1007/10722167_12
https://doi.org/10.1145/157485.164890

17. Mishchenko, A.: Introduction to zero-suppressed decision diagrams. Synthesis Lec-
tures on Digital Circuits and Systems 45 (2001)

18. Narizzano, M., Pulina, L., Tacchella, A.: The QBFEVAL web portal.
In: Proc. 10th European Conf. on Logics in Artificial Intelligence. Lec-
ture Notes in Computer Science, vol. 4160, pp. 494–497. Springer (2006).
https://doi.org/10.1007/11853886_45, https://doi.org/10.1007/11853886_45

19. Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Proc.
10th Int’l Conf. Principles and Practice of Constraint Programming. Lec-
ture Notes in Computer Science, vol. 3258, pp. 453–467. Springer (2004).
https://doi.org/10.1007/978-3-540-30201-8_34

20. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Proc. 19th
Int’l Conf. on Theory and Applications of Satisfiability Testing. Lec-
ture Notes in Computer Science, vol. 9710, pp. 375–392. Springer (2016).
https://doi.org/10.1007/978-3-319-40970-2_23

21. Sasao, T., Butler, J.T.: Applications of zero-suppressed decision diagrams. Synthe-
sis Lectures on Digital Circuits and Systems 9(2), 1–123 (2014)

22. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0. University of
Colorado at Boulder (2015)

23. Tabajara, L.M., Vardi, M.Y.: Factored Boolean functional synthesis. In: Proc. 2017
IEEE Conf. on Formal Methods in Computer Aided Design. pp. 124–131. IEEE
(2017). https://doi.org/10.23919/FMCAD.2017.8102250

24. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis.
In: Proc. 26th Int’l Joint Conf. on Artificial Intelligence. pp. 1362–1369. ijcai.org
(2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

ZDD Boolean Synthesis 83

https://doi.org/10.1007/11853886_45
https://doi.org/10.1007/11853886_45
https://doi.org/10.1007/978-3-540-30201-8_34
https://doi.org/10.1007/978-3-319-40970-2_23
https://doi.org/10.23919/FMCAD.2017.8102250
http://creativecommons.org/licenses/by/4.0/

Verification

Comparative Verification of the
Digital Library of Mathematical Functions

and Computer Algebra Systems

André Greiner-Petter1(�) , Howard S. Cohl2 , Abdou Youssef 2,3,
Moritz Schubotz1,4 , Avi Trost5, Rajen Dey6, Akiko Aizawa7 , and Bela Gipp1

1 University of Wuppertal, Wuppertal, Germany,
{greinerpetter,schubotz,gipp}@uni-wuppertal.de

2 National Institute of Standards and Technology,
Mission Viejo, CA, U.S.A., howard.cohl@nist.gov

3 George Washington University, Washington, D.C., U.S.A, ayoussef@gwu.edu
4 FIZ Karlsruhe, Berlin, Germany, moritz.schubotz@fiz-karlsruhe.de

5 Brown University, Providence, RI, U.S.A., avitrost@gmail.com
6 University of California Berkeley, Berkeley, CA, U.S.A., rajhataj@gmail.com

7 National Institute of Informatics, Tokyo, Japan, aizawa@nii.ac.jp

Abstract. Digital mathematical libraries assemble the knowledge of years
of mathematical research. Numerous disciplines (e.g., physics, engineering,
pure and applied mathematics) rely heavily on compendia gathered findings.
Likewise, modern research applications rely more and more on computational
solutions, which are often calculated and verified by computer algebra systems.
Hence, the correctness, accuracy, and reliability of both digital mathematical
libraries and computer algebra systems is a crucial attribute for modern
research. In this paper, we present a novel approach to verify a digital math-
ematical library and two computer algebra systems with one another by
converting mathematical expressions from one system to the other. We use
our previously developed conversion tool (referred to as LACAST) to translate
formulae from the NIST Digital Library of Mathematical Functions to the
computer algebra systems Maple and Mathematica. The contributions of
our presented work are as follows: (1) we present the most comprehensive
verification of computer algebra systems and digital mathematical libraries
with one another; (2) we significantly enhance the performance of the un-
derlying translator in terms of coverage and accuracy; and (3) we provide
open access to translations for Maple and Mathematica of the formulae in
the NIST Digital Library of Mathematical Functions.

Keywords: Presentation to Computation, LaCASt, LaTeX, Semantic La-
TeX, Computer Algebra Systems, Digital Mathematical Library

1 Introduction

Digital Mathematical Libraries (DML) gather the knowledge and results from thou-
sands of years of mathematical research. Even though pure and applied mathematics
are precise disciplines, gathering their knowledge bases over many years results in

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 87–105, 2022.
https://doi.org/10.1007/978-3-030-99524-9_5

http://orcid.org/0000-0002-5828-5497
http://orcid.org/0000-0002-9398-455X
http://orcid.org/0000-0001-7141-4997
http://orcid.org/0000-0001-6544-5076
http://orcid.org/0000-0001-6522-3019
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_5

issues which every digital library shares: consistency, completeness, and accuracy.
Likewise, Computer Algebra Systems (CAS)8 play a crucial role in the modern era
for pure and applied mathematics, and those fields which rely on them. CAS can
be used to simplify, manipulate, compute, and visualize mathematical expressions.
Accordingly, modern research regularly uses DML and CAS together. Nonetheless,
DML [7,14] and CAS [1,20,11] are not exempt from having bugs or errors. Durán
et al. [11] even raised the rather dramatic question: “can we trust in [CAS]?”

Existing comprehensive DML, such as the Digital Library of Mathematical Func-
tions (DLMF) [10], are consistently updated and frequently corrected with errata9.
Although each chapter of the DLMF has been carefully written, edited, validated,
and proofread over many years, errors still remain. Maintaining a DML, such as the
DLMF, is a laborious process. Likewise, CAS are eminently complex systems, and in
the case of commercial products, often similar to black boxes in which the magic (i.e.,
the computations) happens in opaque private code [11]. CAS, especially commercial
products, are often exclusively tested internally during development.

An independent examination process can improve testing and increase trust in the
systems and libraries. Hence, we want to elaborate on the following research question.

How can digital mathematical libraries and computer algebra systems be utilized
to improve and verify one another?

Our initial approach for answering this question is inspired by our previous studies
on translating DLMF equations to CAS [7]. In order to verify a translation tool from
a specific LATEX dialect to Maple10. , we performed symbolic and numeric evaluations
on equations from the DLMF. Our approach presumes that a proven equation in a
DML must be also valid in a CAS. In turn, a disparity in between the DML and
CAS would lead to an issue in the translation process. However, assuming a correct
translation, a disparity would also indicate an issue either in the DML source or the
CAS implementation. In turn, we can take advantage of the same approach to improve
and even verify DML with CAS and vice versa. Unfortunately, previous efforts to
translate mathematical expressions from various formats, such as LATEX [8,14,29],
MathML [31], or OpenMath [18,30], to CAS syntax have shown that the translation
will be the most critical part of this verification approach.

In this paper, we elaborate on the feasibility and limitations of the translation
approach from DML to CAS as a possible answer to our research question. We
further focus on the DLMF as our DML and the two general-purpose CAS Maple
and Mathematica for this first study. This relatively sharp limitation is necessary in
order to analyze the capabilities of the underlying approach to verify commercial CAS
8 In the sequel, the acronyms CAS and DML are used, depending on the context, inter-

changeably with their plurals.
9 https://dlmf.nist.gov/errata/ [accessed 09/01/2021]

10 The mention of specific products, trademarks, or brand names is for purposes of iden-
tification only. Such mention is not to be interpreted in any way as an endorsement
or certification of such products or brands by the National Institute of Standards and
Technology, nor does it imply that the products so identified are necessarily the best
available for the purpose. All trademarks mentioned herein belong to their respective
owners.

88 A. Greiner-Petter et al.

https://dlmf.nist.gov/errata/

and large DML. The DLMF uses semantic macros internally in order to disambiguate
mathematical expressions [27,35]. These macros help to mitigate the open issue
of retrieving sufficient semantic information from a context to perform translations
to formal languages [31,14]. Further, the DLMF and general-purpose CAS have a
relatively large overlap in coverage of special functions and orthogonal polynomials.
Since many of those functions play a crucial role in a large variety of different research
fields, we focus in this study mainly on these functions. Lastly, we will take our
previously developed translation tool LACAST [8,14] as the baseline for translations
from the DLMF to Maple. In this successor project, we focus on improving LACAST
to minimize the negative effect of wrong translations as much as possible for our
study. In the future, other DML and CAS can be improved and verified following
the same approach by using a different translation approach depending on the data
of the DML, e.g., MathML [31] or OpenMath [18].

In particular, in this paper, we fix the majority of the remaining issues of LACAST [7],
which allows our tool to translate twice as many expressions from the DLMF to the
CAS as before. Current extensions include the support for the mathematical opera-
tors: sum, product, limit, and integral, as well as overcoming semantic hurdles associ-
ated with Lagrange (prime) notations commonly used for differentiation. Further, we
extend its support to include Mathematica using the freely available Wolfram Engine
for Developers (WED)11 (hereafter, with Mathematica, we refer to the WED). These
improvements allow us to cover a larger portion of the DLMF, increase the reliability
of the translations via LACAST, and allow for comparisons between two major general-
purpose CAS for the first time, namely Maple and Mathematica. Finally, we provide
open access to all the results contained within this paper, including all translations
of DLMF formulae, an endpoint to LACAST12, and the full source code of LACAST13.

The paper is structured as follows. Section 2 explains the data in the DLMF.
Section 3 focus on the improvements of LACAST that had been made to make the trans-
lation as comprehensive and reliable as possible for the upcoming evaluation. Section 4
explains the symbolic and numeric evaluation pipeline. Since Cohl et al. [7] only briefly
sketched the approach of a numeric evaluation, we will provide an in-depth discussion
of that process in Section 4. Subsequently, we analyze the results in Section 5. Finally,
we conclude the findings and provide an outlook for upcoming projects in Section 6.

1.1 Related Work

Existing verification techniques for CAS often focus on specific subroutines or func-
tions [26,20,5,12,6,25,21,17], such as a specific theorems [23], differential equations [19],
or the implementation of the math.h library [24]. Most common are verification ap-
proaches that rely on intermediate verification languages [5,20,21,19,17], such as
Boogie [25,2] or Why3 [21,4], which, in turn, rely on proof assistants and theorem
provers, such as Coq [5,3], Isabelle [19,28], or HOL Light [20,16,17]. Kaliszyk and
Wiedijk [20] proposed on entire new CAS which is built on top of the proof assis-
tant HOL Light so that each simplification step can be proven by the underlying
11 https://www.wolfram.com/engine/ [accessed 09/01/2021]
12 https://lacast.wmflabs.org/ [accessed 01/01/2022]
13 https://github.com/ag-gipp/LaCASt [accessed 04/01/2022]

Comparative Verification of the DLMF and CAS 89

https://www.wolfram.com/engine/
https://lacast.wmflabs.org/
https://github.com/ag-gipp/LaCASt

architecture. Lewis and Wester [26] manually compared the symbolic computations
on polynomials and matrices with seven CAS. Aguirregabiria et al. [1] suggested to
teach students the known traps and difficulties with evaluations in CAS instead to
reduce the overreliance on computational solutions.

Cohl et al. [7] developed the aforementioned translation tool LACAST, which trans-
lates expressions from a semantically enhanced LATEX dialect to Maple. By evaluating
the performance and accuracy of the translations, we were able to discover a sign-error
in one the DLMF’s equations [7]. While the evaluation was not intended to verify
the DLMF, the translations by the rule-based translator LACAST provided sufficient
robustness to identify issues in the underlying library. To the best of our knowledge,
besides this related evaluation via LACAST, there are no existing libraries or tools that
allow for automatic verification of DML.

2 The DLMF dataset

In the modern era, most mathematical texts (handbooks, journal publications, mag-
azines, monographs, treatises, proceedings, etc.) are written using the document
preparation system LATEX. However, the focus of LATEX is for precise control of the
rendering mechanics rather than for a semantic description of its content. In contrast,
CAS syntax is coercively unambiguous in order to interpret the input correctly. Hence,
a transformation tool from DML to CAS must disambiguate mathematical expres-
sions. While there is an ongoing effort towards such a process [32,22,34,13,36,33],
there is no reliable tool available to disambiguate mathematics sufficiently to date.

The DLMF contains numerous relations between functions and many other
properties. It is written in LATEX but uses specific semantic macros when applicable [35].
These semantic macros represent a unique function or polynomial defined in the DLMF.
Hence, the semantic LATEX used in the DLMF is often unambiguous. For a successful
evaluation via CAS, we also need to utilize all requirements of an equation, such as
constraints, domains, or substitutions. The DLMF provides this additional data too
and generally in a machine-readable form [35]. This data is accessible via the i-boxes
(information boxes next to an equation marked with the icon). If the information
is not given in the attached i-box or the information is incorrect, the translation via
LACAST would fail. The i-boxes, however, do not contain information about branch cuts
(see Section B) or constraints. Constraints are accessible if they are directly attached
to an equation. If they appear in the text (or even a title), LACAST cannot utilize them.
The test dataset, we are using, was generated from DLMF Version 1.1.3 (2021-09-15)
and contained 9,977 formulae with 1,505 defined symbols, 50,590 used symbols, 2,691
constraints, and 2,443 warnings for non-semantic expressions, i.e., expressions without
semantic macros [35]. Note that the DLMF does not provide access to the underlying
LATEX source. Therefore, we added the source of every equation to our result dataset.

3 Semantic LATEX to CAS translation

The aforementioned translator LACAST was developed by Cohl and Greiner-Petter et
al. [8,7,14]. They reported a coverage of 58.8% translations for a manually selected

A. Greiner-Petter et al.90

part of the DLMF to the CAS Maple. This version of LACAST serves as a baseline
for our improvements. In order to verify their translations, they used symbolic and
numeric evaluations and reported a success rate of ∼16% for symbolic and ∼12%
for numeric verifications.

Evaluating the baseline on the entire DLMF result in a coverage of only 31.6%.
Hence, we first want to increase the coverage of LACAST on the DLMF. To achieve this
goal, we first increasing the number of translatable semantic macros by manually defin-
ing more translation patterns for special functions and orthogonal polynomials. For
Maple, we increased the number from 201 to 261. For Mathematica, we define 279 new
translation patterns which enables LACAST to perform translations to Mathematica.
Even though the DLMF uses 675 distinguished semantic macros, we cover ∼70% of
all DLMF equations with our extended list of translation patterns (see Zipf’s law for
mathematical notations [15]). In addition, we implemented rules for translations that
are applicable in the context of the DLMF, e.g., ignore ellipsis following floating-point
values or \choose always refers to a binomial expression. Finally, we tackle the remain-
ing issues outlined by Cohl et al. [7] which can be categorized into three groups: (i)
expressions of which the arguments of operators are not clear, namely sums, products,
integrals, and limits; (ii) expressions with prime symbols indicating differentiation; and
(iii) expressions that contain ellipsis. While we solve some of the cases in Group (iii) by
ignoring ellipsis following floating-point values, most of these cases remain unresolved.
In the following, we elaborate our solutions for (i) in Section 3.1 and (ii) in Section 3.2.

3.1 Parse sums, products, integrals, and limits

Here we consider common notations for the sum, product, integral, and limit operators.
For these operators, one may consider mathematically essential operator metadata
(MEOM). For all these operators, the MEOM includes argument(s) and bound vari-
able(s). The operators act on the arguments, which are themselves functions of the
bound variable(s). For sums and products, the bound variables are referred to as
indices. The bound variables for integrals14 are called integration variables. For limits,
the bound variables are continuous variables (for limits of continuous functions) and
indices (for limits of sequences). For integrals, MEOM include precise descriptions of
regions of integration (e.g., piecewise continuous paths/intervals/regions). For limits,
MEOM include limit points (e.g., points in Rn or Cn for n∈N), as well as information
related to whether the limit to the limit point is independent or dependent on the
direction in which the limit is taken (e.g., one-sided limits).

For a translation of mathematical expressions involving the LATEX commands
\sum, \int, \prod, and \lim, we must extract the MEOM. This is achieved by (a)
determining the argument of the operator and (b) parsing corresponding subscripts,
superscripts, and arguments. For integrals, the MEOM may be complicated, but cer-
tainly contains the argument (function which will be integrated), bound (integration)
variable(s) and details related to the region of integration. Bound variable extraction
is usually straightforward since it is usually contained within a differential expression
14 The notion of integrals includes: antiderivatives (indefinite integrals), definite integrals,

contour integrals, multiple (surface, volume, etc.) integrals, Riemannian volume integrals,
Riemann integrals, Lebesgue integrals, Cauchy principal value integrals, etc.

Comparative Verification of the DLMF and CAS 91

(infinitesimal, pushforward, differential 1-form, exterior derivative, measure, etc.),
e.g., dx. Argument extraction is less straightforward since even though differential
expressions are often given at the end of the argument, sometimes the differential
expression appears in the numerator of a fraction (e.g.,

∫ f(x)dx
g(x)). In which case, the

argument is everything to the right of the \int (neglecting its subscripts and super-
scripts) up to and including the fraction involving the differential expression (which
may be replaced with 1). In cases where the differential expression is fully to the right
of the argument, then it is a termination symbol. Note that some scientists use an
alternate notation for integrals where the differential expression appears immediately
to the right of the integral, e.g.,

∫
dxf(x). However, this notation does not appear

in the DLMF. If such notations are encountered, we follow the same approach that
we used for sums, products, and limits (see Section 3.1).

Extraction of variables and corresponding MEOM The subscripts and super-
scripts of sums, products, limits, and integrals may be different for different notations
and are therefore challenging to parse. For integrals, we extract the bound (integra-
tion) variable from the differential expression. For sums and products, the upper
and lower bounds may appear in the subscript or superscript. Parsing subscripts is
comparable with the problem of parsing constraints [7] (which are often not consis-
tently formulated). We overcame this complexity by manually defining patterns of
common constraints and refer to them as blueprints. This blueprint pattern approach
allows LACAST to identify the MEOM in the sub- and superscripts. A more detailed
explanations with examples about the blueprints is available in the Appendix A15.

Identification of operator arguments Once we have extracted the bound variable
for sums, products, and limits, we need to determine the end of the argument. We
analyzed all sums in the DLMF and developed a heuristic that covers all the formulae
in the DLMF and potentially a large portion of general mathematics. Let x be the
extracted bound variable. For sums, we consider a summand as a part of the argument
if (I) it is the very first summand after the operation; or (II) x is an element of the
current summand; or (III) x is an element of the following summand (subsequent
to the current summand) and there is no termination symbol between the current
summand and the summand which contains x with an equal or lower depth according
to the parse tree (i.e., closer to the root). We consider a summand as a single logical
construct since addition and subtraction are granted a lower operator precedence than
multiplication in mathematical expressions. Similarly, parentheses are granted higher
precedence and, thus, a sequence wrapped in parentheses is part of the argument if
it obeys the rules (I-III). Summands, and such sequences, are always entirely part
of sums, products, and limits or entirely not.

A termination symbol always marks the end of the argument list. Termination
symbols are relation symbols, e.g., =, ≠, ≤, closing parentheses or brackets, e.g.,
),], or >, and other operators with MEOMs, if and only if, they define the same
bound variable. If x is part of a subsequent operation, then the following operator
15 The Appendix is available at https://arxiv.org/abs/2201.09488.

A. Greiner-Petter et al.92

https://arxiv.org/pdf/2201.09488.pdf
https://arxiv.org/abs/2201.09488

is considered as part of the argument (as in (II)). However, a special condition for
termination symbols is that it is only a termination symbol for the current chain of
arguments. Consider a sum over a fraction of sums. In that case, we may reach a
termination symbol within the fraction. However, the termination symbol would be
deeper inside the parse tree as compared to the current list of arguments. Hence, we
used the depth to determine if a termination symbol should be recognized or not.
Consider an unusual notation with the binomial coefficient as an example

n∑
k=0

(
n

k

)
=

n∑
k=0

∏n
m=1m∏k

m=1m
∏n−k

m=1m
. (1)

∑N
n=1c +2∑N
n=1c+ c

n∑N
n=1c+n2 +N∑N
n=1n +

∑N
k=1k∑N

n=1n+
∑n

k=1k

∑N
n=1c+

∑N
k=1k +n

Fig. 1: Example argu-
ment identifications for
sums.

This equation contains two termination symbols, marked
red and green. The red termination symbol = is obviously
for the first sum on the left-hand side of the equation. The
green termination symbol

∏
terminates the product to the

left because both products run over the same bound variable
m. In addition, none of the other = signs are termination
symbols for the sum on the right-hand side of the equation
because they are deeper in the parse tree and thus do not
terminate the sum.

Note that varN in the blueprints also matches multiple
bound variable, e.g.,

∑
m,k∈A. In such cases, x from above

is a list of bound variables and a summand is part of the
argument if one of the elements of x is within this summand.
Due to the translation, the operation will be split into two
preceding operations, i.e.,

∑
m,k∈A becomes

∑
m∈A

∑
k∈A.

Figure 1 shows the extracted arguments for some example
sums. The same rules apply for extraction of arguments for
products and limits.

3.2 Lagrange’s notation for differentiation and derivatives

Another remaining issue is the Lagrange (prime) notation for differentiation, since it
does not outwardly provide sufficient semantic information. This notation presents
two challenges. First, we do not know with respect to which variable the differentiation
should be performed. Consider for example the Hurwitz zeta function ζ(s,a) [10,
§25.11]. In the case of a differentiation ζ′(s,a), it is not clear if the function should be
differentiated with respect to s or a. To remedy this issue, we analyzed all formulae
in the DLMF which use prime notations and determined which variables (slots) for
which functions represent the variables of the differentiation. Based on our analysis, we
extended the translation patterns by meta information for semantic macros according
to the slot of differentiation. For instance, in the case of the Hurwitz zeta function,
the first slot is the slot for prime differentiation, i.e., ζ′(s,a)= d

dsζ(s,a). The identified
variables of differentiations for the special functions in the DLMF can be considered
to be the standard slots of differentiations, e.g., in other DML, ζ′(s,a) most likely
refers to d

dsζ(s,a).

Comparative Verification of the DLMF and CAS 93

https://dlmf.nist.gov/25.11

The second challenge occurs if the slot of differentiation contains complex expres-
sions rather than single symbols, e.g., ζ′(s2,a). In this case, ζ′(s2,a) = d

d(s2)ζ(s2,a)
instead of d

dsζ(s2,a). Since CAS often do not support derivatives with respect to
complex expressions, we use the inbuilt substitution functions16 in the CAS to over-
come this issue. To do so, we use a temporary variable temp for the substitution.
CAS perform substitutions from the inside to the outside. Hence, we can use the
same temporary variable temp even for nested substitutions. Table 1 shows the
translation performed for ζ′(s2,a). CAS may provide optional arguments to calculate
the derivatives for certain special functions, e.g., Zeta(n,z,a) in Maple for the n-th
derivative of the Hurwitz zeta function. However, this shorthand notation is generally
not supported (e.g., Mathematica does not define such an optional parameter). Our
substitution approach is more lengthy but also more reliable. Unfortunately, lengthy
expressions generally harm the performance of CAS, especially for symbolic manipula-
tions. Hence, we have a genuine interest in keeping translations short, straightforward
and readable. Thus, the substitution translation pattern is only triggered if the
variable of differentiation is not a single identifier. Note that this substitution only
triggers on semantic macros. Generic functions, including prime notations, are still
skipped.

Table 1: Example translations for the prime
derivative of the Hurwitz zeta function with
respect to s2.

System ζ′(s2,a)
DLMF \Hurwitzzeta’@{s^2}{a}
Maple subs(temp=(s)^(2),diff(

Zeta(0,temp,a),temp$(1)))
Mathe- D[HurwitzZeta[temp,a],
matica {temp,1}]/.temp->(s)^(2)

A related problem to MEOM of
sums, products, integrals, limits, and
differentiations are the notations of
derivatives. The semantic macro for
derivatives \deriv{w}{x} (rendered
as dw

dx) is often used with an empty
first argument to render the function
behind the derivative notation, e.g.,
\deriv{}{x}\sin@{x} for d

dx sin x.
This leads to the same problem we
faced above for identifying MEOMs.
In this case, we use the same heuris-
tic as we did for sums, products, and limits. Note that derivatives may be written
following the function argument, e.g., sin(x) d

dx . If we are unable to identify any
following summand that contains the variable of differentiation before we reach a
termination symbol, we look for arguments prior to the derivative according to the
heuristic (I-III).

Wronskians With the support of prime differentiation described above, we are
also able to translate the Wronskian [10, (1.13.4)] to Maple and Mathematica. A
translation requires one to identify the variable of differentiation from the elements
of the Wronskian, e.g., z for W {Ai(z),Bi(z)} from [10, (9.2.7)]. We analyzed all
Wronskians in the DLMF and discovered that most Wronskians have a special
16 Note that Maple also support an evaluation substitution via the two-argument eval

function. Since our substitution only triggers on semantic macros, we only use subs if the
function is defined in Maple. In turn, as far as we know, there is no practical difference
between subs and the two-argument eval in our case.

A. Greiner-Petter et al.94

https://dlmf.nist.gov/1.13.E4
https://dlmf.nist.gov/9.2.E7

function in its argument—such as the example above. Hence, we can use our previously
inserted metadata information about the slots of differentiation to extract the variable
of differentiation from the semantic macros. If the semantic macro argument is a
complex expression, we search for the identifier in the arguments that appear in both
elements of the Wronskian. For example, in W {Ai(za),ζ(z2,a)}, we extract z as the
variable since it is the only identifier that appears in the arguments za and z2 of the
elements. This approach is also used when there is no semantic macro involved, i.e.,
from W {za,z2} we extract z as well. If LACAST extracts multiple candidates or none,
it throws a translation exception.

4 Evaluation of the DLMF using CAS
Digital Library of Mathematical Functions Constraint Blueprints

=- \pm\frac12

Numeric Test
Value Filter

LaCASt
Translator

Symbolic
Evaluator

2,509 (≈ 37.9%)

1,910 (≈ 28.9%)

Workflow

Constraints
Success
Failure

Mathematica

1,357 (≈ 51.8%)

1,784 (≈ 51.4%)

1

2
−
1

2

698 (≈ 26.7%)

784 (≈ 22.6%)

1,084 (≈ 26.3%)

1,235 (≈ 26.2%)

∈ ℂ ∖ [1,∞) 1/2

Numeric
Evaluator

Test Def.

EQR
H

S

LH
S

𝐋 − 𝐑 = 0

Test Values
𝑒2𝑖𝜋/3

𝑒−5𝑖𝜋/6

𝑒𝑖𝜋/6

𝑒−𝑖𝜋/3

©Wolfram Research, Inc.

©Maplesoft, Inc.

1
.2

.1

𝑘: integer
𝑛: nonnegative integer

𝑘: integer
𝑛: nonnegative integer

LHS RHS

LHS 𝑛
𝑘

=
𝑛!

𝑛 − 𝑘 ! 𝑘!

EQ RHS

EQ𝑛!

𝑛 − 𝑘 ! 𝑘!
=

𝑛
𝑛 − 𝑘

1
.2

.1

𝑛
𝑘

=
𝑛!

𝑛 − 𝑘 ! 𝑘!
=

𝑛
𝑛 − 𝑘 1

.2
.1

𝑛
𝑘

:
binomial
coefficient

!: factorial
𝑘: integer

𝑛: nonnegative
integer C

as
e

A
n

al
yz

er

Substitutions

𝑛,𝑚, 𝑘, ℓ, 𝑙, 𝑖, 𝑗, 𝜖, 𝜀 ∈ {1,2,3}

±1/2

±1/2

±3/2

±3/2

2

−2

Constraints
𝑥, 𝛼, 𝛽 > 0

−𝜋 < ph 𝑧 < 𝜋

𝑥, 𝑦, 𝑎, 𝑏, 𝑐,
𝑟, 𝑠, 𝑡, 𝛼, 𝛽 ∈ ℝ

Case Filter

Fig. 2: The workflow of the evaluation engine and the overall results. Errors and
abortions are not included. The generated dataset contains 9,977 equations. In total,
the case analyzer splits the data into 10,930 cases of which 4,307 cases were filtered.
This sums up to a set of 6,623 test cases in total.

For evaluating the DLMF with Maple and Mathematica, we follow the same
approach as demonstrated in [7], i.e., we symbolically and numerically verify the
equations in the DLMF with CAS. If a verification fails, symbolically and numerically,
we identified an issue either in the DLMF, the CAS, or the verification pipeline.
Note that an issue does not necessarily represent errors/bugs in the DLMF, CAS,
or LACAST (see the discussion about branch cuts in Section B). Figure 2 illustrates
the pipeline of the evaluation engine. First, we analyze every equation in the DLMF
(hereafter referred to as test cases). A case analyzer splits multiple relations in a single
line into multiple test cases. Note that only the adjacent relations are considered,
i.e., with f(z)=g(z)=h(z), we generate two test cases f(z)=g(z) and g(z)=h(z)
but not f(z)=h(z). In addition, expressions with ± and ∓ are split accordingly, e.g.,
i±i =e∓π/2 [10, (4.4.12)] is split into i+i =e−π/2 and i−i =e+π/2. The analyzer utilizes
the attached additional information in each line, i.e., the URL in the DLMF, the
used and defined symbols, and the constraints. If a used symbol is defined elsewhere
in the DLMF, it performs substitutions. For example, the multi-equation [10, (9.6.2)]
is split into six test cases and every ζ is replaced by 2

3z3/2 as defined in [10, (9.6.1)].
The substitution is performed on the parse tree of expressions [14]. A definition is

Comparative Verification of the DLMF and CAS 95

https://dlmf.nist.gov/4.4.E12
https://dlmf.nist.gov/9.6.E2
https://dlmf.nist.gov/9.6.E1

only considered as such, if the defining symbol is identical to the equation’s left-hand
side. That means, z = (3

2ζ)3/2 [10, (9.6.10)] is not considered as a definition for ζ.
Further, semantic macros are never substituted by their definitions. Translations for
semantic macros are exclusively defined by the authors. For example, the equation [10,
(11.5.2)] contains the Struve Kν(z) function. Since Mathematica does not contain
this function, we defined an alternative translation to its definition Hν(z)−Yν(z) in
[10, (11.2.5)] with the Struve function Hν(z) and the Bessel function of the second
kind Yν(z), because both of these functions are supported by Mathematica. The
second entry in Table 3 in the Appendix D shows the translation for this test case.

Next, the analyzer checks for additional constraints defined by the used symbols
recursively. The mentioned Struve Kν(z) test case [10, (11.5.2)] contains the Gamma
function. Since the definition of the Gamma function [10, (5.2.1)] has a constraint
ℜz >0, the numeric evaluation must respect this constraint too. For this purpose,
the case analyzer first tries to link the variables in constraints to the arguments
of the functions. For example, the constraint ℜz > 0 sets a constraint for the first
argument z of the Gamma function. Next, we check all arguments in the actual test
case at the same position. The test case contains Γ(ν+1/2). In turn, the variable z
in the constraint of the definition of the Gamma function ℜz>0 is replaced by the
actual argument used in the test case. This adds the constraint ℜ(ν+1/2)>0 to the
test case. This process is performed recursively. If a constraint does not contain any
variable that is used in the final test case, the constraint is dropped.

In total, the case analyzer would identify four additional constraints for the test
case [10, (11.5.2)]. Table 3 in the Appendix D shows the applied constraints (including
the directly attached constraint ℜz>0 and the manually defined global constraints
from Figure 3). Note that the constraints may contain variables that do not appear
in the actual test case, such as ℜν+k+1>0. Such constraints do not have any effect
on the evaluation because if a constraint cannot be computed to true or false, the
constraint is ignored. Unfortunately, this recursive loading of additional constraints
may generate impossible conditions in certain cases, such as |Γ (iy)| [10, (5.4.3)]. There
are no valid real values of y such that ℜ(iy)>0. In turn, every test value would be
filtered out, and the numeric evaluation would not verify the equation. However, such
cases are the minority and we were able to increase the number of correct evaluations
with this feature.

To avoid a large portion of incorrect calculations, the analyzer filters the dataset
before translating the test cases. We apply two filter rules to the case analyzer. First,
we filter expressions that do not contain any semantic macros. Due to the limitations
of LACAST, these expressions most likely result in wrong translations. Further, it filters
out several meaningless expressions that are not verifiable, such as z = x in [10,
(4.2.4)]. The result dataset flag these cases with ‘Skipped - no semantic math’. Note
that the result dataset still contains the translations for these cases to provide a
complete picture of the DLMF. Second, we filter expressions that contain ellipsis17

(e.g., \cdots), approximations, and asymptotics (e.g., O(z2)) since those expressions
cannot be evaluated with the proposed approach. Further, a definition is skipped if it is
not a definition of a semantic macro, such as [10, (2.3.13)], because definitions without
17 Note that we filter out ellipsis (e.g., \cdots) but not single dots (e.g., \cdot).

A. Greiner-Petter et al.96

https://dlmf.nist.gov/9.6.E10
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.2.E5
https://arxiv.org/pdf/2201.09488.pdf
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/5.2.E1
https://dlmf.nist.gov/11.5.E2
https://arxiv.org/pdf/2201.09488.pdf
https://dlmf.nist.gov/5.4.E3
https://dlmf.nist.gov/4.2.E4
https://dlmf.nist.gov/2.3.13

an appropriate counterpart in the CAS are meaningless to evaluate. Definitions of
semantic macros, on the other hand, are of special interest and remain in the test set
since they allow us to test if a function in the CAS obeys the actual mathematical
definition in the DLMF. If the case analyzer (see Figure 2) is unable to detect a
relation, i.e., split an expression on <, ≤, ≥, >, =, or ≠, the line in the dataset is also
skipped because the evaluation approach relies on relations to test. After splitting
multi-equations (e.g., ±, ∓, a = b = c), filtering out all non-semantic expressions,
non-semantic macro definitions, ellipsis, approximations, and asymptotics, we end up
with 6,623 test cases in total from the entire DLMF.

After generating the test case with all constraints, we translate the expression to
the CAS representation. Every successfully translated test case is then symbolically
verified, i.e., the CAS tries to simplify the difference of an equation to zero. Non-
equation relations simplifies to Booleans. Non-simplified expressions are verified
numerically for manually defined test values, i.e., we calculate actual numeric values
for both sides of an equation and check their equivalence.

4.1 Symbolic Evaluation
The symbolic evaluation was performed for Maple as in [7]. However, we use the
newer version Maple 2020. Another feature we added to LACAST is the support of
packages in Maple. Some functions are only available in modules (packages) that
must be preloaded, such as QPochhammer in the package QDifferenceEquations18.
The general simplify method in Maple does not cover q-hypergeometric functions.
Hence, whenever LACAST loads functions from the q-hyper-geometric package, the
better performing QSimplify method is used. With the WED and the new support for
Mathematica in LACAST, we perform the symbolic and numeric tests for Mathematica
as well. The symbolic evaluation in Mathematica relies on the full simplification19. For
Maple and Mathematica, we defined the global assumptions x,y∈R and k,n,m∈N.
Constraints of test cases are added to their assumptions to support simplification.
Adding more global assumptions for symbolic computation generally harms the
performance since CAS internally uses assumptions for simplifications. It turned
out that by adding more custom assumptions, the number of successfully simplified
expressions decreases.

4.2 Numerical Evaluation
Defining an accurate test set of values to analyze an equivalence can be an arbitrarily
complex process. It would make sense that every expression is tested on specific values
according to the containing functions. However, this laborious process is not suitable
for evaluating the entire DML and CAS. It makes more sense to develop a general set
of test values that (i) generally covers interesting domains and (ii) avoid singularities,
branch cuts, and similar problematic regions. Considering these two attributes, we
come up with the ten test points illustrated in Figure 3. It contains four complex
values on the unit circle and six points on the real axis. The test values cover the
18 https://jp.maplesoft.com/support/help/Maple/view.aspx?path=

QDifferenceEquations/QPochhammer [accessed 09/01/2021]
19 https://reference.wolfram.com/language/ref/FullSimplify.html

[accessed 09/01/2021]

Comparative Verification of the DLMF and CAS 97

https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/QPochhammer
https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/QPochhammer
https://reference.wolfram.com/language/ref/FullSimplify.html

general area of interest (complex values in all four quadrants, negative and positive
real values) and avoid the typical singularities at {0,±1,±i}. In addition, several
variables are tied to specific values for entire sections. Hence, we applied additional
global constraints to the test cases.

ℑ

ℜ

Test Values

−1
2−3

2−2 1
2

3
2 2

e
iπ
6

e
2iπ
3

e
−iπ

3
e

−5iπ
6

Special Test Values
n,m,k,ℓ,l,i,j,ϵ,ε∈{1,2,3}

Global Constraints
x,α,β>0

−π<ph(z)<π
x,y,a,b,c,r,s,t,α,β ∈R

Fig. 3: The ten numeric test values in the com-
plex plane for general variables. The dashed line
represents the unit circle |z| = 1. At the right,
we show the set of values for special variable
values and general global constraints. On the
right, i is referring to a generic variable and not
to the imaginary unit.

The numeric evaluation engine
heavily relies on the performance of
extracting free variables from an ex-
pression. Unfortunately, the inbuilt
functions in CAS, if available, are
not very reliable. As the authors ex-
plained in [7], a custom algorithm
within Maple was necessary to
extract identifiers. Mathematica
has the undocumented function
Reduce‘FreeVariables for this
purpose. However, both systems,
the custom solution in Maple and
the inbuilt Mathematica function,
have problems distinguishing free variables of entire expressions from the bound
variables in MEOMs, e.g., integration and continuous variables. Mathematica some-
times does not extract a variable but returns the unevaluated input instead. We
regularly faced this issue for integrals. However, we discovered one example without
integrals. For EulerE[n,0] from [10, (24.4.26)], we expected to extract {n} as the
set of free variables but instead received a set of the unevaluated expression itself
{EulerE[n,0]}20. Since the extended version of LACAST handles operators, including
bound variables of MEOMs, we drop the use of internal methods in CAS and extend
LACAST to extract identifiers from an expression. During a translation process, LACAST
tags every single identifier as a variable, as long as it is not an element of a MEOM.
This simple approach proves to be very efficient since it is implemented alongside the
translation process itself and is already more powerful as compared to the existing
inbuilt CAS solutions. We defined subscripts of identifiers as a part of the identifier,
e.g., z1 and z2 are extracted as variables from z1+z2 rather than z.

The general pipeline for a numeric evaluation works as follows. First, we replace
all substitutions and extract the variables from the left- and right-hand sides of
the test expression via LACAST. For the previously mentioned example of the Struve
function [10, (11.5.2)], LACAST identifies two variables in the expression, ν and z.
According to the values in Figure 3, ν and z are set to the general ten values. A
numeric test contains every combination of test values for all variables. Hence, we
generate 100 test calculations for [10, (11.5.2)]. Afterward, we filter the test values
that violate the attached constraints. In the case of the Struve function, we end up
with 25 test cases.

In addition, we apply a limit of 300 calculations for each test case and abort
a computation after 30 seconds due to computational limitations. If the test case
generates more than 300 test values, only the first 300 are used. Finally, we calculate
20 The bug was reported to and confirmed by Wolfram Research Version 12.0.

A. Greiner-Petter et al.98

https://dlmf.nist.gov/24.4.E26
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.5.E2

the result for every remaining test value, i.e., we replace every variable by their value
and calculate the result. The replacement is done by Mathematica’s ReplaceAll
method because the more appropriate method With, for unknown reasons, does not
always replace all variables by their values. We wrap test expressions in Normal
for numeric evaluations to avoid conditional expressions, which may cause incorrect
calculations (see Section 5.1 for a more detailed discussion of conditional outputs).
After replacing variables by their values, we trigger numeric computation. If the
absolute value of the result (i.e., the difference between left- and right-hand side of the
equation) is below the defined threshold of 0.001 or true (in the case of inequalities),
the test calculation is considered successful. A numeric test case is only considered
successful if and only if every test calculation was successful. If a numeric test case
fails, we store the information on which values it failed and how many of these were
successful.

5 Results
The translations to Maple and Mathematica, the symbolic results, the numeric com-
putations, and an overview PDF of the reported bugs to Mathematica are available
online on our demopage. In the following, we mainly focus on Mathematica because
of page limitations and because Maple has been investigated more closely by [7]. The
results for Maple are also available online. Compared to the baseline (≈31%), our
improvements doubled the amount translations (≈62%) for Maple and reach ≈71%
for Mathematica. The majority of expressions that cannot be translated contain
macros that have no adequate translation pattern to the CAS, such as the macros for
interval Weierstrass lattice roots [10, §23.3(i)] and the multivariate hypergeometric
function [10, (19.16.9)]. Other errors (6% for Maple and Mathematica) occur for
several reasons. For example, out of the 418 errors in translations to Mathematica,
130 caused an error because the MEOM of an operator could not be extracted, 86
contained prime notations that do not refer to differentiations, 92 failed because of
the underlying LATEX parser [34], and in 46 cases, the arguments of a DLMF macro
could not be extracted.

Out of 4,713 translated expressions, 1,235 (26.2%) were successfully simplified
by Mathematica (1,084 of 4,114 or 26.3% in Maple). For Mathematica, we also
count results that are equal to 0 under certain conditions as successful (called
ConditionalExpression). We identified 65 of these conditional results: 15 of the
conditions are equal to constraints that were provided in the surrounding text but
not in the info box of the DLMF equation; 30 were produced due to branch cut
issues (see Section B in the Appendix); and 20 were the same as attached in the
DLMF but reformulated, e.g., z∈C\(1,∞) from [10, (25.12.2)] was reformulated to
ℑz≠0∨ℜz<1. The remaining translated but not symbolically verified expressions
were numerically evaluated for the test values in Figure 3. For the 3,474 cases, 784
(22.6%) were successfully verified numerically by Mathematica (698 of 2,618 or 26.7%
by Maple21). For 1,784 the numeric evaluation failed. In the evaluation process, 655
21 Due to computational issues, 120 cases must have been skipped manually. 292 cases

resulted in an error during symbolic verification and, therefore, were skipped also for
numeric evaluations. Considering these skipped cases as failures, decreases the numerically
verified cases to 23% in Maple.

Comparative Verification of the DLMF and CAS 99

https://dlmf.nist.gov/23.3.i
https://dlmf.nist.gov/19.16.9
https://dlmf.nist.gov/25.12.E2

computations timed out and 180 failed due to errors in Mathematica. Of the 1,784
failed cases, 691 failed partially, i.e., there was at least one successful calculation
among the tested values. For 1,091 all test values failed. Table 3 in the Appendix D
shows the results for three sample test cases. The first case is a false positive evaluation
because of a wrong translation. The second case is valid, but the numeric evaluation
failed due to a bug in Mathematica (see next subsection). The last example is valid
and was verified numerically but was too complex for symbolic verifications.
5.1 Error Analysis
The numeric tests’ performance strongly depends on the correct attached and utilized
information. The first example in Table 3 in the Appendix D illustrates the difficulty
of the task on a relatively easy case. Here, the argument of f was not explicitly
given, such as in f(x). Hence, LACAST translated f as a variable. Unfortunately, this
resulted in a false verification symbolically and numerically. This type of error mostly
appears in the first three chapters of the DLMF because they use generic functions
frequently. We hoped to skip such cases by filtering expressions without semantic
macros. Unfortunately, this derivative notation uses the semantic macro deriv. In
the future, we filter expressions that contain semantic macros that are not linked to
a special function or orthogonal polynomial.

As an attempt to investigate the reliability of the numeric test pipeline, we can run
numeric evaluations on symbolically verified test cases. Since Mathematica already
approved a translation symbolically, the numeric test should be successful if the
pipeline is reliable. Of the 1,235 symbolically successful tests, only 94 (7.6%) failed
numerically. None of the failed test cases failed entirely, i.e., for every test case, at
least one test value was verified. Manually investigating the failed cases reveal 74 cases
that failed due to an Indeterminate response from Mathematica and 5 returned
infinity, which clearly indicates that the tested numeric values were invalid, e.g.,
due to testing on singularities. Of the remaining 15 cases, two were identical: [10,
(15.9.2)] and [10, (18.5.9)]. This reduces the remaining failed cases to 14. We evaluated
invalid values for 12 of these because the constraints for the values were given in
the surrounding text but not in the info boxes. The remaining 2 cases revealed a
bug in Mathematica regarding conditional outputs (see below). The results indicate
that the numeric test pipeline is reliable, at least for relatively simple cases that
were previously symbolically verified. The main reason for the high number of failed
numerical cases in the entire DLMF (1,784) are due to missing constraints in the
i-boxes and branch cut issues (see Section B in the Appendix), i.e., we evaluated
expressions on invalid values.

Bug reports Mathematica has trouble with certain integrals, which, by default,
generate conditional outputs if applicable. With the method Normal, we can suppress
conditional outputs. However, it only hides the condition rather than evaluating
the expression to a non-conditional output. For example, integral expressions in [10,
(10.9.1)] are automatically evaluated to the Bessel function J0(|z|) for the condition22

z ∈ R rather than J0(z) for all z ∈ C. Setting the GenerateConditions23 option
22 J0(x) with x∈R is even. Hence, J0(|z|) is correct under the given condition.
23 https://reference.wolfram.com/language/ref/GenerateConditions.html [accessed

09/01/2021]

A. Greiner-Petter et al.100

https://arxiv.org/pdf/2201.09488.pdf
https://arxiv.org/pdf/2201.09488.pdf
https://dlmf.nist.gov/15.9.E2
https://dlmf.nist.gov/18.5.9
https://dlmf.nist.gov/10.9.1
https://reference.wolfram.com/language/ref/GenerateConditions.html

to None does not change the output. Normal only hides z ∈ R but still returns
J0(|z|). To fix this issue, for example in (10.9.1) and (10.9.4), we are forced to set
GenerateConditions to false.

Setting GenerateConditions to false, on the other hand, reveals severe errors
in several other cases. Consider

∫ ∞
z

t−1e−tdt [10, (8.4.4)], which gets evaluated to
Γ(0,z) but (condition) for ℜz >0∧ℑz =0. With GenerateConditions set to false,
the integral incorrectly evaluates to Γ(0,z)+ln(z). This happened with the 2 cases
mentioned above. With the same setting, the difference of the left- and right-hand
sides of [10, (10.43.8)] is evaluated to 0.398942 for x, ν = 1.5. If we evaluate the
same expression on x, ν = 3

2 the result is Indeterminate due to infinity. For
this issue, one may use NIntegrate rather than Integrate to compute the integral.
However, evaluating via NIntegrate decreases the number of successful numeric
evaluations in general. We have revealed errors with conditional outputs in (8.4.4),
(10.22.39), (10.43.8-10), and (11.5.2) (in [10]). In addition, we identified one critical
error in Mathematica. For [10, (18.17.47)], WED (Mathematica’s kernel) ran into
a segmentation fault (core dumped) for n > 1. The kernel of the full version of
Mathematica gracefully died without returning an output24.

Besides Mathematica, we also identified several issues in the DLMF. None of the
newly identified issues were critical, such as the reported sign error from the previous
project [7], but generally refer to missing or wrong attached semantic information.
With the generated results, we can effectively fix these errors and further semantically
enhance the DLMF. For example, some definitions are not marked as such, e.g.,
Q(z)=

∫ ∞
0 e−ztq(t)dt [10, (2.4.2)]. In [10, (10.24.4)], ν must be a real value but was

linked to a complex parameter and x should be positive real. An entire group of
cases [10, (10.19.10-11)] also discovered the incorrect use of semantic macros. In
these formulae, Pk(a) and Qk(a) are defined but had been incorrectly marked up as
Legendre functions going all the way back to DLMF Version 1.0.0 (May 7, 2010). In
some cases, equations are mistakenly marked as definitions, e.g., [10, (9.10.10)] and
[10, (9.13.1)] are annotated as local definitions of n. We also identified an error in
LACAST, which incorrectly translated the exponential integrals E1(z), Ei(x) and Ein(z)
(defined in [10, §6.2(i)]). A more explanatory overview of discovered, reported, and
fixed issues in the DLMF, Mathematica, and Maple is provided in the Appendix C.

6 Conclusion

We have presented a novel approach to verify the theoretical digital mathematical
library DLMF with the power of two major general-purpose computer algebra systems
Maple and Mathematica. With LACAST, we transformed the semantically enhanced
LATEX expressions from the DLMF to each CAS. Afterward, we symbolically and
numerically evaluated the DLMF expressions in each CAS. Our results are auspicious
and provide useful information to maintain and extend the DLMF efficiently. We
further identified several errors in Mathematica, Maple [7], the DLMF, and the
transformation tool LACAST, proving the profit of the presented verification approach.
24 All errors were reported to and partially confirmed by Wolfram Research. See Appendix C

for more information.

Comparative Verification of the DLMF and CAS 101

https://dlmf.nist.gov/10.9.1
https://dlmf.nist.gov/10.9.4
https://dlmf.nist.gov/8.4.4
https://dlmf.nist.gov/10.43.8
https://dlmf.nist.gov/8.4.4
https://dlmf.nist.gov/10.22.39
https://dlmf.nist.gov/10.43.8
https://dlmf.nist.gov/11.5.2
https://dlmf.nist.gov/18.17.47
https://dlmf.nist.gov/2.4.E2
https://dlmf.nist.gov/10.24.E4
https://dlmf.nist.gov/10.19.E10
https://dlmf.nist.gov/9.10.E10
https://dlmf.nist.gov/9.13.E1
https://dlmf.nist.gov/6.2.i
https://arxiv.org/pdf/2201.09488.pdf
https://arxiv.org/pdf/2201.09488.pdf

Further, we provide open access to all results, including translations and evaluations25.
and to the source code of LACAST26.

The presented results show a promising step towards an answer for our initial
research question. By translating an equation from a DML to a CAS, automatic
verifications of that equation in the CAS allows us to detect issues in either the DML
source or the CAS implementation. Each analyzed failed verification successively
improves the DML or the CAS. Further, analyzing a large number of equations from
the DML may be used to finally verify a CAS. In addition, the approach can be
extended to cover other DML and CAS by exploiting different translation approaches,
e.g., via MathML [31] or OpenMath [18].

Nonetheless, the analysis of the results, especially for an entire DML, is cumber-
some. Minor missing semantic information, e.g., a missing constraint or not respected
branch cut positions, leads to a relatively large number of false positives, i.e., unverified
expressions correct in the DML and the CAS. This makes a generalization of the
approach challenging because all semantics of an equation must be taken into account
for a trustworthy evaluation. Furthermore, evaluating equations on a small number
of discrete values will never provide sufficient confidence to verify a formula, which
leads to an unpredictable number of true negatives, i.e., erroneous equations that
pass all tests. A more sophisticated selection of critical values or other numeric tools
with automatic results verification (such as variants of Newton’s interval method)
potentially mitigates this issue in the future. After all, we conclude that the approach
provides valuable information to complement, improve, and maintain the DLMF,
Maple, and Mathematica. A trustworthy verification, on the other hand, might be
out of reach.

6.1 Future Work

The resulting dataset provides valuable information about the differences between
CAS and the DLMF. These differences had not been largely studied in the past
and are worthy of analysis. Especially a comprehensive and machine-readable list
of branch cut positioning in different systems is a desired goal [9]. Hence, we will
continue to work closely together with the editors of the DLMF to improve further
and expand the available information on the DLMF. Finally, the numeric evaluation
approach would benefit from test values dependent on the actual functions involved.
For example, the current layout of the test values was designed to avoid problematic
regions, such as branch cuts. However, for identifying differences in the DLMF and
CAS, especially for analyzing the positioning of branch cuts, an automatic evaluation
of these particular values would be very beneficial and can be used to collect a
comprehensive, inter-system library of branch cuts. Therefore, we will further study
the possibility of linking semantic macros with numeric regions of interest.
Acknowledgements We thank Jürgen Gerhard from Maplesoft for providing access and
support for Maple. We also thank the DLMF editors for their assistance and support. This
work was supported by the German Research Foundation (DFG grant no.: GI 1259/1) and
the German Academic Exchange Service (DAAD grant no.: 57515245).
25 https://lacast.wmflabs.org [accessed 01/01/2022]
26 https://github.com/ag-gipp/LaCASt [accessed 04/01/2022]

A. Greiner-Petter et al.102

https://lacast.wmflabs.org
https://github.com/ag-gipp/LaCASt

References

1. Aguirregabiria, J.M., Hernández, A.M., Rivas, M.: Are we careful enough
when using computer algebra? Computers in Physics 8(1), 56–61 (1994).
https://doi.org/10.1063/1.4823260

2. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie:
A modular reusable verifier for object-oriented programs. In: Formal Methods
for Components and Objects, pp. 364–387. Springer Berlin Heidelberg (2006).
https://doi.org/10.1007/11804192 17

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq´Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer Berlin Heidelberg (2004)

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of provers.
Boogie 2011: First International Workshop on Intermediate Verification Languages pp.
53–64 (5 2011), https://hal.inria.fr/hal-00790310/document

5. Boulmé, S., Hardin, T., Hirschkoff, D., Ménissier-Morain, V., Rioboo, R.: On the way
to certify computer algebra systems. Electronic Notes in Theoretical Computer Science
23(3), 370–385 (1999). https://doi.org/10.1016/S1571-0661(05)80609-7, cALCULEMUS
99, Systems for Integrated Computation and Deduction (associated to FLoC’99, the
1999 Federated Logic Conference)

6. Carette, J., Kucera, M.: Partial evaluation of Maple. Science of Computer Programming
76(6), 469–491 (6 2011). https://doi.org/10.1016/j.scico.2010.12.001

7. Cohl, H.S., Greiner-Petter, A., Schubotz, M.: Automated symbolic and numerical
testing of DLMF formulae using computer algebra systems. In: Intelligent Computer
Mathematics CICM. vol. 11006, pp. 39–52. Springer (2018). https://doi.org/10.1007/978-
3-319-96812-4 4

8. Cohl, H.S., Schubotz, M., Youssef, A., Greiner-Petter, A., Gerhard, J., Saunders,
B.V., McClain, M.A., Bang, J., Chen, K.: Semantic preserving bijective mappings
of mathematical formulae between document preparation systems and computer algebra
systems. In: Intelligent Computer Mathematics CICM. pp. 115–131. Springer (2017).
https://doi.org/10.1007/978-3-319-62075-6 9

9. Corless, R.M., Jeffrey, D.J., Watt, S.M., Davenport, J.H.: "According to Abramowitz
and Stegun" or arccoth needn’t be uncouth. SIGSAM Bulletin 34(2), 58–65 (2000).
https://doi.org/10.1145/362001.362023

10. DLMF: NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/, Release
1.1.4 of 2022-01-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A.
McClain, eds.

11. Durán, A.J., Pérez, M., Varona, J.L.: The misfortunes of a trio of mathematicians
using computer algebra systems. Can we trust in them? Notices of the AMS 61(10),
1249–1252 (2014)

12. Elphick, D., Leuschel, M., Cox, S.: Partial evaluation of MATLAB. In: Gen. Prog.
and Component Eng., pp. 344–363. Springer (2003). https://doi.org/10.1007/978-3-540-
39815-8 21

13. Greiner-Petter, A., Schubotz, M., Aizawa, A., Gipp, B.: Making presentation math
computable: Proposing a context sensitive approach for translating LaTeX to com-
puter algebra systems. In: International Congress of Mathematical Software (ICMS).
Lecture Notes in Computer Science, vol. 12097, pp. 335–341. Springer (2020).
https://doi.org/10.1007/978-3-030-52200-1 33

Comparative Verification of the DLMF and CAS 103

https://doi.org/10.1063/1.4823260
https://doi.org/10.1007/11804192_17
https://hal.inria.fr/hal-00790310/document
https://doi.org/10.1016/S1571-0661(05)80609-7
https://doi.org/10.1016/j.scico.2010.12.001
https://doi.org/10.1007/978-3-319-96812-4_4
https://doi.org/10.1007/978-3-319-96812-4_4
https://doi.org/10.1007/978-3-319-62075-6_9
https://doi.org/10.1145/362001.362023
https://dlmf.nist.gov/
https://doi.org/10.1007/978-3-540-39815-8_21
https://doi.org/10.1007/978-3-540-39815-8_21
https://doi.org/10.1007/978-3-030-52200-1_33

14. Greiner-Petter, A., Schubotz, M., Cohl, H.S., Gipp, B.: Semantic preserving bijective
mappings for expressions involving special functions between computer algebra systems
and document preparation systems. Aslib Journal of Information Management 71(3),
415–439 (2019). https://doi.org/10.1108/AJIM-08-2018-0185

15. Greiner-Petter, A., Schubotz, M., Müller, F., Breitinger, C., Cohl, H.S., Aizawa, A., Gipp,
B.: Discovering mathematical objects of interest - A study of mathematical notations. In:
WWW. pp. 1445–1456. ACM / IW3C2 (2020). https://doi.org/10.1145/3366423.3380218

16. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.) For-
mal Methods in Computer-Aided Design (FMCAD). Lecture Notes in Computer Science,
vol. 1166, pp. 265–269. Springer Berlin Heidelberg. https://doi.org/10.1007/BFb0031814

17. Harrison, J.R., Théry, L.: A skeptic’s approach to combining HOL and Maple 21(3),
279–294. https://doi.org/10.1023/A:1006023127567

18. Heras, J., Pascual, V., Rubio, J.: Using open mathematical documents to interface
computer algebra and proof assistant systems. In: Intelligent Computer Mathematics
MKM at CICM. Lecture Notes in Computer Science, vol. 5625, pp. 467–473. Springer
(2009). https://doi.org/10.1007/978-3-642-02614-0 37

19. Hickman, T., Laursen, C.P., Foster, S.: Certifying differential equation solutions from
computer algebra systems in Isabelle/HOL http://arxiv.org/abs/2102.02679

20. Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive the-
orem prover. In: Towards Mechanized Math. Assist., pp. 94–105. Springer (2007).
https://doi.org/10.1007/978-3-540-73086-6 8

21. Khan, M.T.: Formal Specification and Verification of Computer Algebra Software.
phdthesis, Johannes Kepler University Linz (Apr 2014)

22. Kristianto, G.Y., Topić, G., Aizawa, A.: Utilizing dependency relationships between
math expressions in math IR. Information Retrieval Journal 20(2), 132–167 (3 2017).
https://doi.org/10.1007/s10791-017-9296-8

23. Lambán, L., Rubio, J., Martín-Mateos, F.J., Ruiz-Reina, J.L.: Verifying the bridge
between simplicial topology and algebra: the Eilenberg-Zilber algorithm. Logic Journal
of IGPL 22(1), 39–65 (8 2013). https://doi.org/10.1093/jigpal/jzt034

24. Lee, W., Sharma, R., Aiken, A.: On automatically proving the correctness of
math.h implementations. Proc. ACM on Prog. Lang. (POPL) 2(47), 1–32 (2018).
https://doi.org/10.1145/3158135

25. Leino, K.R.M.: Program proving using intermediate verification languages (IVLs)
like Boogie and Why3. ACM SIGAda Ada Letters 32(3), 25–26 (11 2012).
https://doi.org/10.1145/2402709.2402689

26. Lewis, R.H., Wester, M.: Comparison of polynomial-oriented computer algebra systems.
SIGSAM Bull. 33(4), 5–13 (12 1999). https://doi.org/10.1145/500457.500459

27. Miller, B.R., Youssef, A.: Technical aspects of the digital library of math-
ematical functions. Ann. Math. Artif. Intell. 38(1-3), 121–136 (2003).
https://doi.org/10.1023/A:1022967814992

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer Berlin Heidelberg
(2002). https://doi.org/10.1007/3-540-45949-9

29. Parisse, B.: Compiling LATEX to computer algebra-enabled HTML5 http://arxiv.
org/abs/1707.01271

30. Prieto, H., Dalmas, S., Papegay, Y.: Mathematica as an OpenMath application 34(2),
22–26. https://doi.org/10.1145/362001.362016

31. Schubotz, M., Greiner-Petter, A., Scharpf, P., Meuschke, N., Cohl, H.S., Gipp,
B.: Improving the representation and conversion of mathematical formulae by con-
sidering their textual context. In: ACM/IEEE JCDL. pp. 233–242. ACM (2018).
https://doi.org/10.1145/3197026.3197058

A. Greiner-Petter et al.104

https://doi.org/10.1108/AJIM-08-2018-0185
https://doi.org/10.1145/3366423.3380218
https://doi.org/10.1007/BFb0031814
https://doi.org/10.1023/A:1006023127567
https://doi.org/10.1007/978-3-642-02614-0_37
http://arxiv.org/abs/2102.02679
https://doi.org/10.1007/978-3-540-73086-6_8
https://doi.org/10.1007/s10791-017-9296-8
https://doi.org/10.1093/jigpal/jzt034
https://doi.org/10.1145/3158135
https://doi.org/10.1145/2402709.2402689
https://doi.org/10.1145/500457.500459
https://doi.org/10.1023/A:1022967814992
https://doi.org/10.1007/3-540-45949-9
http://arxiv.org/abs/1707.01271
http://arxiv.org/abs/1707.01271
https://doi.org/10.1145/362001.362016
https://doi.org/10.1145/3197026.3197058

32. Schubotz, M., Grigorev, A., Leich, M., Cohl, H.S., Meuschke, N., Gipp, B.,
Youssef, A.S., Markl, V.: Semantification of identifiers in mathematics for better
math information retrieval. In: ACM SIGIR'16. pp. 135–144. ACM Press (2016).
https://doi.org/10.1145/2911451.2911503

33. Shan, R., Youssef, A.: Towards math terms disambiguation using machine learning. In:
Kamareddine, F., Sacerdoti Coen, C. (eds.) Proceedings of the International Conference
on Intelligent Computer Mathematics (CICM). Lecture Notes in Computer Science, vol.
12833, pp. 90–106. Springer. https://doi.org/10.1007/978-3-030-81097-9 7

34. Youssef, A.: Part-of-math tagging and applications. In: Intelligent Computer Mathemat-
ics CICM. Lecture Notes in Computer Science, vol. 10383, pp. 356–374. Springer (2017).
https://doi.org/10.1007/978-3-319-62075-6 25

35. Youssef, A., Miller, B.R.: A contextual and labeled math-dataset derived from NIST’s
DLMF. In: Intelligent Computer Mathematics CICM. Lecture Notes in Computer
Science, vol. 12236, pp. 324–330. Springer (2020). https://doi.org/10.1007/978-3-030-
53518-6 25

36. Zanibbi, R., Oard, D.W., Agarwal, A., Mansouri, B.: Overview of ARQMath 2020: CLEF
lab on answer retrieval for questions on math. In: CLEF. Lecture Notes in Computer
Science, vol. 12260, pp. 169–193. Springer (2020). https://doi.org/10.1007/978-3-030-
58219-7 15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Comparative Verification of the DLMF and CAS 105

https://doi.org/10.1145/2911451.2911503
https://doi.org/10.1007/978-3-030-81097-9_7
https://doi.org/10.1007/978-3-319-62075-6_25
https://doi.org/10.1007/978-3-030-53518-6_25
https://doi.org/10.1007/978-3-030-53518-6_25
https://doi.org/10.1007/978-3-030-58219-7_15
https://doi.org/10.1007/978-3-030-58219-7_15
http://creativecommons.org/licenses/by/4.0/

Verifying Fortran Programs with CIVL

Wenhao Wu1� , Jan Hückelheim2 , Paul D. Hovland2 , and
Stephen F. Siegel1

1 University of Delaware, Newark DE 19716, USA
{wuwenhao, siegel}@udel.edu

2 Argonne National Laboratory, Lemont IL 60439, USA
{jhueckelheim, hovland}@anl.gov

Abstract. Fortran is widely used in computational science, engineer-
ing, and high performance computing. This paper presents an extension
to the CIVL verification framework to check correctness properties of
Fortran programs. Unlike previous work that translates Fortran to C,
LLVM IR, or other intermediate formats before verification, our work
allows CIVL to directly consume Fortran source files. We extended the
parsing, translation, and analysis phases to support Fortran-specific fea-
tures such as array slicing and reshaping, and to find program violations
that are specific to Fortran, such as argument aliasing rule violations, in-
valid use of variable and function attributes, or defects due to Fortran’s
unspecified expression evaluation order. We demonstrate the usefulness
of our tool on a verification benchmark suite and kernels extracted from
a real world application.

Keywords: Fortran · verification · static analysis · model checking

1 Introduction

Fortran is a structured imperative programming language with a unique set of
features, such as common data blocks and array reshaping and sectioning, that
support efficient numerical computing. Many scientific applications, especially
those requiring high performance, are written entirely in Fortran; others have
core subroutines or rely on external components written in Fortran. A 2018
report from the European Performance Optimisation and Productivity Centre
states that over half of the 151 HPC programs the centre had analyzed over a
two-year period were written in pure Fortran or a combination of Fortran and
C or C++ [10]. Likewise, 12 of the 33 HPC benchmark applications in the U.S.
Department of Energy’s widely-used CORAL suite have components written in
Fortran [17].

The Fortran language has been used and revised for decades, and it has had
many standard versions. Early versions of Fortran employed a fixed-form coding
style, well-suited for punch cards and with strict positional constraints. Begin-
ning with Fortran 90, a free-form style was introduced, enabling more structured
programs, eliminating limits on line lengths, and providing more flexibility with

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 106–124, 2022.
https://doi.org/10.1007/978-3-030-99524-9_6

http://orcid.org/0000-0002-9087-4240
http://orcid.org/0000-0003-3479-6361
http://orcid.org/0000-0002-0907-2567
http://orcid.org/0000-0001-9359-3332
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_6

character positioning by removing the restriction that the first six columns could
be used only for labels and continuation characters. Modern Fortran programs
tend to use the free-form style, but programs derived from a Fortran 77 prede-
cessor or relying on legacy components may rely on fixed-form style or a mix of
both styles.

Fortran is used to implement applications such as Nek5000 [21] or Flash
[32] that are used for critical tasks such as nuclear reactor licensing reviews or
to answer important scientific questions. These applications are often compu-
tationally demanding, requiring hours of computation on millions of execution
units. Because of the critical importance and high resource requirements of these
applications, one would like to verify their correctness.

The Fortran language itself provides little support for verification—not even
assertions. Compilers can check certain simple syntactic and semantic properties,
and static analyzers such as Coverity [35] can detect standard violations and
other anomalies. But there are very few tools that can be used to specify and
verify deeper functional correctness properties of programs, and nothing like the
rich ecosystem of formal verification tools for C.

One might approach Fortran program verification by using a source-to-source
translator such as f2c [11] to convert to C and then applying a C verifier. Unfor-
tunately, even if the translator provides a completely valid translation, defects
in the original code may not be preserved in the translated code; an example
is given in Section 3.1. In addition, the C verifier may not be able to access
translator support libraries, or defects that manifest themselves via the library
may be difficult to map back to the original program.

A second approach is to use a compiler front end to convert Fortran code into
an intermediate form such as the LLVM [16] Intermediate Representation (IR),
and then apply a verifier for the IR. This is more difficult than it appears: most
verifiers that consume LLVM IR are tuned to a specific source language and front
end and cannot be easily modified to effectively verify multiple languages. This
issue is explored in [13] in the case of SMACK, a C-via-LLVM verifier that has
been extended to provide limited support for other languages, including Fortran.
Moreover, as with source-to-source translators, the front end may translate away
a defect in the original program; this is discussed in Section 3.2.

In this paper, we present an approach to extending the CIVL [33] verifica-
tion framework so that it can be directly applied to Fortran source code. CIVL
is a model checker that uses symbolic execution to verify correctness properties
and was originally designed for programs written in C with a set of parallel
programming language extensions such as OpenMP [26]. In our extended frame-
work, summarized in Section 2, a new Fortran front end with a static analyzer
has been integrated into the system. In Section 3 we describe the sequence of
defect-preserving transformations that convert the Fortran source to the CIVL
intermediate verification language, CIVL-C. Proper handling of arrays is a spe-
cial concern, discussed in Section 4. The Fortran extension supports a subset of
the major features defined in the language standard, focused on those features
necessary to verify code excerpts from real world applications.

Verifying Fortran Programs with CIVL 107

In Section 5, we evaluate our approach by verifying several examples of For-
tran code, including (1) a custom Fortran benchmark suite designed to test
CIVL’s ability to verify programs using unique Fortran features such as array
slicing and reshaping, (2) a published micro verification benchmark [13], and
(3) a set of code excerpts from Nek5000 [21]. The evaluation employs both of
CIVL’s verification modes on Fortran programs. The first uses assumptions and
assertions inserted in the program to specify the desired correctness properties.
The second compares two programs with the same input-ouput signatures to
determine whether they are functionally equivalent.

Related work is discussed in Section 6, and conclusions and future work are
summarized in Section 7.

2 Overview of CIVL Extension

The Concurrency Intermediate Verification Language (CIVL) platform was de-
veloped to verify C programs that use various concurrency language extensions
[33]. CIVL has two primary components: a front end and a back end verifier.
The front end consumes a set of source files, which, prior to this work, had to be
written in C or CUDA-C, possibly using certain CIVL extensions to C. These
source files may use one or more concurrency language extensions, including
MPI [18], OpenMP [26], Pthreads [25], and CUDA-C [24]. The input is parsed,
analyzed and merged to create a single abstract syntax tree (AST) representing
the whole program. This AST then undergoes a sequence of transformations to
replace all of the concurrency primitives with equivalent CIVL-C primitives, and
to simplify the AST in other ways, resulting in a “pure” CIVL-C AST.

The back end first converts the pure AST to a lower-level representation in
which each procedure is represented as a program graph. A node in this graph
represents a program counter value, i.e., a location in the procedure body. An
edge represents an atomic transition, and is decorated with a guard expression
that specifies when the transition is enabled, and a basic statement, such as
an assignment. The verifier then performs an explicit enumeration of the reach-
able states of the program (“model checking”). This is carried out by depth-first
search, while saving the seen states in a hash table. Each state maps variables
to symbolic expressions and includes a path condition—a symbolic expression of
boolean type that records the guards that held along the explored path (“sym-
bolic execution”). An interleaving model of concurrency is used, and processes
can be created and destroyed dynamically.

During the search, automated theorem provers are invoked to determine
whether the path condition has become unsatisfiable (in which case the search
backtracks) and to check assertions. CIVL checks both explicit assertions ap-
pearing in the program and implicit assertions (a divisor is not 0, a pointer
deference is valid, and so on). The supported provers include Z3 [20], CVC4 [4],
Why3 [5], and a number of additional provers invoked by Why3.

108 W. Wu et al.

Preprocessor

C Parser

Fortran
Parser

AST Builder
(C)

AST Builder
(Fortran)

AST Merger
and

Transformer

C
sources

Fortran
sources

C
tokens

Fortran
tokens

C parse
trees

Fortran parse
trees

CIVL-C
ASTs

CIVL-C
ASTs

Pure
CIVL-C

AST

Verifier
Provers:

Z3, CVC4,
Why3

Model Builder
Program
Graphs

queries

results

Pure
CIVL-C

AST

Fig. 1. CIVL architecture: front end (top) and back end (bottom)

Figure 1 shows the tool prior to this work and highlights the extensions
developed as part of this paper. Modifications were made to both the front and
back end to enable the direct application of CIVL to Fortran source code.

The CIVL preprocessor was generalized to accept a superset of C and For-
tran: it is common practice to use C preprocessor directives in Fortran programs
and Fortran compilers can invoke the preprocessor as a first pass. The tokens
emanating from the preprocessor have a type specific to the source language—C
or Fortran—which is determined by the file suffix or a command line option. It
is possible to invoke CIVL on a mix of C and Fortran source files—each will
be preprocessed separately and yield a separate stream of tokens in the correct
language.

Each Fortran token stream enters the Fortran parser. This was produced by
the parser generator ANTLR [28] using a grammar derived from the Open For-
tran Project (OFP) [31]. We extended the grammar by adding support for CIVL
primitives, such as assertions and assumptions, which can appear as structured
comments in the Fortran source. The parser produces a parse tree, which is then
converted to a CIVL-C AST. Each C token stream follows a similar path, and
also results in a CIVL-C AST. Finally, the individual ASTs, together with ASTs
generated from any libraries, are merged into a single AST, analogous to the
linking phase in a standard compilation flow. The supported Fortran subset is
listed below:

– program units: main programs, subroutines, and functions
– statements: allocate, assignment, call, computed goto, data, dimension, do,

exit, goto, if, implicit, intent, parameter, pointer assignment, print, return,
stop, target, type declaration, and write

– expressions: variable references, function calls, operators for scalar types
– intrinsic functions: mod, max, abs, sin, cos, atan, and sqrt
– extended features: CIVL preprocessor directives and CIVL primitives.

The transformation from a Fortran parse tree to a CIVL-C AST is quite
involved because the languages differ substantially. In almost every case, we were
able to find a way to represent a Fortran statement—in a semantics-preserving

Verifying Fortran Programs with CIVL 109

and defect-preserving way—using existing CIVL-C AST nodes; in a few cases
we had to add new fields to the AST node. Issues include the Fortran “intent”
specification for a procedure parameter (in, out, or in/out); pass-by-reference
semantics; and advanced array operations. Details for some of these translations
are described in Section 3.

The verifier was also upgraded to check specific Fortran runtime constraints
during state exploration. For example, the verifier normally uses short-circuit
semantics for evaluating and and or expressions. This is appropriate for C, but
Fortran does not mandate short-circuiting or the order in which subexpressions
are evaluated. Since evaluation can result in error, a verifier which assumes
short-circuiting semantics could miss defects in a Fortran program. By default,
our modified verifier turns off short-circuiting for Fortran code.

3 Defect-Preserving Translation

When used for verification, it is crucial that all translation phases preserve de-
fects. This is in contrast to translation and lowering phases in a compiler, which
generally are allowed to narrow the semantics of a program or choose arbitrarily
from multiple interpretations. In this section, we first demonstrate with small
examples that an approach relying on existing source-to-source translation tools
such as f2c, or compiler front ends such as Flang, is bound to miss certain de-
fects in the Fortran input, since these defects are removed by these tools. One
might be tempted to argue that defects which disappear during translation or
compilation are not really important. However, these defects are still present in
the original source code and may manifest themselves when a different compiler
is used or when other seemingly innocent changes are made to the code or the
translation/compilation tool chain.

3.1 Translation from Source to Source

Figure 2 shows a procedure in Fortran 77 and its C translation produced by f2c.
The example extracts a value x from an array at the given index, and computes
max(x, 0). An array bounds check is performed in the same boolean expression in
which the array is accessed. The C code is certainly valid, because it uses short-
circuiting when evaluating logic expressions. Thus, the evaluation of the second
part of the boolean expression is skipped if the first part is false. Fortran, on the
other hand, does not define the order in which the subexpressions are evaluated,

1 if (idx .le. size_arr .and.
2 arr(idx) .ge. 0) then
3 relu = arr(idx)
4 else
5 relu = 0
6 end if

1 /* Function Body */
2 if (*idx <= *arr_size__ && arr[*idx] >= 0.f) {
3 *relu = arr[*idx];
4 } else {
5 *relu = 0.f;
6 }

Fig. 2. Applying f2c to Fortran and operator removes a defect

110 W. Wu et al.

and the compiler may choose an evaluation order that causes an out-of-bounds
access in the second half of the expression. The implementation-defined order
chosen by f2c happens to remove this defect during translation, which makes
it difficult to detect for a verifier that is only provided with the C program.
Nevertheless, the Fortran program may break when a different translator or
compiler tool chain is used to execute it.

Besides the lack of defect preservation, there are other drawbacks when us-
ing a source-to-source converter, including the fact that some of them introduce
hard-to-verify external headers or libraries to simulate Fortran behaviors. Fur-
ther, by verifying translated code, source file information (e.g., file and identifier
names, code locations, etc.) can be harder to communicate to the user, and
translation tools may actually introduce new errors, leading to another poten-
tial source of unreliable verification results.

3.2 Translation for Compilation

A popular approach for verifying source code is to build a verifier based on a
mature compiler tool chain (e.g., LLVM [16]). This allows verification researchers
to spend more of their time on research and less time on maintaining language
front ends, and allows robust support of a variety of languages. We argue that
such an approach, while also very valuable, achieves a different outcome than
what we present in our work. Compiler front ends such as Clang or Flang are
not developed with the goal of preserving defects, and defective programs may
be lowered into correct LLVM intermediate representation (IR). Furthermore,
the compiler may in rare cases introduce new defects due to compiler bugs. In
the absence of such compiler bugs, verification based on the IR will ensure that
the input program is correct if compiled with the same compiler and settings that
were used for verification. With our approach, we instead aim to verify that a
program adheres to the language standard.

Figure 3 shows the LLVM-IR produced by Flang (version 1.5 2017-05-01) for
the Fortran code snippet in Figure 2. Similar to the case with f2c, it first checks
the array bounds by comparing %15 (element index) with %17 (array size). If
the index is out of bounds (i.e., %18 is evaluated as true), then the control flow
skips the block that accesses the array elements, and the second subexpression

1 L.LB1_339: ; preds = %L.entry
2 %14 = bitcast i64* %idx to i32*, !dbg !18
3 %15 = load i32, i32* %14, align 4, !dbg !18
4 %16 = bitcast i64* %arr_size to i32*, !dbg !18
5 %17 = load i32, i32* %16, align 4, !dbg !18
6 %18 = icmp sgt i32 %15, %17, !dbg !18
7 br i1 %18, label %L.LB1_313, label %L.LB1_349, !dbg !18
8 ..
9 L.LB1_313: ; preds = %L.LB1_349, %L.LB1_339

10 %41 = bitcast i64* %relu to float*, !dbg !21
11 store float 0.000000e+00, float* %41, align 4, !dbg !21
12 br label %L.LB1_314

Fig. 3. Result of applying Flang to Fortran code of Figure 2

Verifying Fortran Programs with CIVL 111

subroutine intent_bad(i)
integer, intent(out) :: i
i = i + 1

end subroutine

subroutine intent_good(i)
integer, intent(inout) :: i
i = i + 1

end subroutine

void INCR(int* __OUT_I) {
int I;
I = I + 1;
*__OUT_I = I;

}

Fig. 4. Fortran routine that fails to conform to specified intent; one that conforms; and
CIVL translation of the non-conforming code

in the condition expression is omitted. This means that the defect in the original
Fortran code is undetectable in the IR.

Figure 4 is another case where Flang translates an incorrect program into
valid IR. A Fortran subroutine may use the INTENT attribute in an illegal way,
for example by declaring an argument as INTENT(OUT) and subsequently reading
from it. This is problematic since the value of such a variable is undefined at
the entry of the subroutine, even if it was initialized in the caller. Flang never-
theless generates identical LLVM IR for the two subroutines, the first of which
violates the Fortran standard, the second of which declares the same argument
as INTENT(INOUT) and hence correctly passes the variable into and out of the
subroutine.

3.3 Translation for Verification

Based on these observations, we extended CIVL with a front end to translate
Fortran to CIVL-C ASTs in a way that is designed to preserve defects. The
front end avoids AST simplifications and optimizations that may introduce or
remove defects, or that may hide violations of the Fortran language standard.
The short-circuit evaluation of logic expressions is disabled by default when ver-
ifying Fortran source. When processing the code of Figure 2, the CIVL-C AST
builder thus keeps both subexpressions in the condition, and all parts of the ex-
pression are evaluated in the verification phase. The model checker consequently
reports an out-of-bounds access in the array.3

We also developed a static analyzer to detect certain defects before the pro-
gram is even translated to a CIVL-C AST. The analyzer mainly checks con-
straints on variable attributes or procedure specifications. For example, variables
in Fortran may have the ALLOCATABLE, POINTER, or TARGET attribute. It is le-
gal to pointer-assign a variable with the POINTER attribute to a variable with
the TARGET or POINTER attribute, but not to a variable without any of these
attributes. Both sides of each pointer assignment are statically checked for re-
quired attributes by the analyzer. When all constraints of a specific attribute
are verified for each associated variable, that attribute information is not passed
to the model checker. Similarly, a subroutine or function is only allowed to be
recursively called if it has the RECURSIVE attribute, and our analyzer checks this
by searching for loops in the call graph and checking if subroutines or functions

3 It is also possible (however unlikely) that a defect may manifest only when short-circuiting is
enabled. A strictly conservative solution could use nondeterministic choice to decide, at each
logical expression, whether to short-circuit. We plan to add such an option to CIVL.

112 W. Wu et al.

that are part of a loop have the required attribute. As a result, this kind of
constraint is checked by the analyzer and it is not necessary to include certain
attributes in the CIVL-C AST.

The defect-preserving translation is mainly performed by the Fortran AST
builder shown in Figure 1. For properties that can not be verified by the analyzer,
the translation phase inserts auxiliary structures into the CIVL-C AST for ver-
ification in a later phase. For example, the subroutines in Figure 4 have distinct
CIVL-C AST structures. A formal parameter having INTENT(OUT) attribute is
initialized with a value representing “undefined.” This allows the model checker
to find and report a violation (reading an undefined value) during the transi-
tion executing the assignment statement. The CIVL translation of the incorrect
routine is shown in Figure 4(right).

In summary, our extended front end focuses on preserving defects and trans-
lates source code into a CIVL-C AST specifically designed for verification. Vio-
lations of variable attributes and function specifications are guaranteed by per-
forming specialized analysis or by inserting auxiliary information into the AST
that is analyzed in a later phase.

4 Fortran Array Modeling

Fortran arrays are more powerful than arrays in most other languages, and re-
quire special handling during the translation to CIVL-C. Section 4.1 will briefly
discuss some of the features of Fortran arrays, before we discuss how these fea-
tures are modeled in Section 4.2.

4.1 Fortran Array Semantics

Fortran natively supports multi-dimensional arrays. For example, b and c in
Figure 5 are two-dimensional arrays. Fortran stores arrays in column major
style, unlike C arrays, which are stored in row major style.

1 REAL:: b(6,3), c(0:9,-3:3), u(3)
2 REAL, POINTER, DIMENSION(:) :: p
3 INTEGER, DIMENSION(3) :: idx
4 ! copy columns -1, 0, 1 from every other row of c into the first 5 rows of b
5 b(1:5,:) = c(::2,-1:1)
6 ! fill the array idx with constant values 1, 4, 17
7 idx = (/1, 4, 17/)
8 ! use the array idx as indices into a. This will copy a[1,4,17] into u[1,2,3]
9 u = a(idx)

10 ! associate the pointer p with column 1 in array c
11 p => c(:,1)
12 b = 42.0

Fig. 5. Examples of Fortran array usage: a 2-dimensional array of size 6 × 3, a 2-
dimensional array with non-default index ranges, a pointer to a one-dimensional array,
and two one-dimensional arrays of size 3, one for integers and one for reals, are declared.
Following that, several data copy operations and pointer associations are performed.

Verifying Fortran Programs with CIVL 113

Arrays in Fortran are 1-based by default, just like in Matlab or Julia, but
unlike in C and many other languages. However, Fortran allows the base to be
specified for each array dimension. For example, c in Figure 5 represents a two
dimensional array whose row dimension of size 10 is 0-based and whose column
dimension ranges from −3 to 3. Array sizes and index ranges can be either defined
statically or calculated from parameters or function and subroutine arguments.

Fortran programs can in most situations determine the size of arrays using
the intrinsic size or shape functions. It is also possible to modify an entire array,
or an array along an entire dimension, without explicitly referring to its size. For
example, one can assign a scalar value to an entire array though a simple assign-
ment as shown in line 12 of Figure 5. Fortran compilers usually implement this
behavior using an array descriptor that is embedded in the generated program
and contains the array size and shape information.

Furthermore, Fortran supports the extraction of slices from an array by spec-
ifying a subscript triplet for each dimension, which specifies a lower and upper
bound on the index as well as a stride. It is possible to omit the lower (and/or
upper) bound, in which case the start (and/or end) of the array is used. An op-
tional stride n can be specified to extract only every n-th element. For example,
line 5 in Figure 5 extracts even rows, and of those, only the columns from −1
to 1, from c. These values are then copied into the first five rows of b. Instead
of subscript triplets, one can also use an integer array as an index for another
array. This is shown in line 9. Fortran provides other ways to modify or rein-
terpret arrays, including the reshape function that can change the number of
dimensions and the size in each dimension, and has optional arguments to pad
or reorder an array.

When an array is passed to a function or subroutine as an argument, it may
be accessed with a different index scheme inside that function or subroutine. For
example, a three-dimensional array with index ranges [0 : 8][0 : 2][0 : 2] could be
passed to a subroutine that internally declares this argument as an array with
ranges [1 : 9][1 : 3][1 : 3] or [0 : 8][0 : 8] or any other number of dimensions
or index ranges, as long as the array within the callee has at most as many
overall entries as the array within the caller. This essentially provides a view
of the original array, and because Fortran uses the call-by-reference paradigm,
any changes to this re-interpreted array within the callee will also affect the
original array in the caller. Depending on the situation, the Fortran compiler
may implement this using an array descriptor and suitable index expressions,
or by transparently copying data to and from an array that is used within the
callee.

A similar situation occurs when Fortran pointers are used. Despite their
similar name with C pointers, their behavior and features differ significantly.
Fortran pointers can represent a view into a multi-dimensional array, and contain
size and shape information. For example, a pointer can be associated with an
array slice that represents column 1 across all rows in an array, as shown in line
11 of Figure 5. In this case, writing to the first element in p will also modify the
first row in c’s column 1. The size and shape functions can be used on p and

114 W. Wu et al.

will return the size and shape of the portion of c that p is associated with. The
pointer itself can be accessed with a subscript triplet or index array, and the
pointer can be passed to a subroutine or function that may reinterpret it with a
different dimensionality or index range.

There are a number of details regarding the use of arrays and pointers in For-
tran that we do not discuss in this paper for brevity. We refer to [1] (particularly
Sections 5.4, 5.6 and 12.6.4) for a more thorough discussion.

4.2 Modeling Fortran Arrays for Verification

Arrays in CIVL-C always have indices starting at 0 and do not support strides,
sectioning, or reshaping. To handle the features described in the previous subsec-
tion, each Fortran array is modeled by a CIVL-C array that is augmented with a
recursive data structure called FORTRAN_ARRAY_DESCRIPTOR. This allows CIVL
to model the rich Fortran array semantics using only CIVL-C language features.
As Figure 6 shows, the descriptor stores metadata for an array instance, and
contains the kind, rank, index upper and lower bounds and strides, as well as a
pointer.

When a Fortran program creates a new array from scratch, CIVL will create a
CIVL-C array whose length is the total number of elements in the Fortran array.
This array is then augmented with an array descriptor whose kind is SOURCE and
whose pointer holds the memory address of the CIVL-C array. The bounds and
stride in the descriptor are set according to those set by the Fortran program. In
essence, the descriptor provides a mapping from the Fortran array index (which
may be strided or non-zero-based) into the CIVL-C array index (which is dense
and zero-based). This mapping is used by the CIVL-C program whenever the
Fortran program accesses the array.

If a Fortran array instance is created by reshaping or sectioning an existing
array, no new CIVL-C array is created. Semantically, the new array instance
in Fortran provides a view into the existing array, which we model by creat-
ing a new array descriptor with appropriate bounds and stride whose kind is

1 typedef struct FORTRAN_ARRAY_MEMORY *farr_mem;
2 typedef struct FORTRAN_ARRAY_DESCRIPTOR *farr_desc;
3 typedef enum FORTRAN_ARRAY_DESCRIPTOR_KIND {
4 SOURCE, // A var. decl. w/ an array type or a dimension attr.
5 SECTION, // An array section
6 RESHAPE // An array, whose indices are reshaped w/ no cloning
7 } farr_kind;
8 struct FORTRAN_ARRAY_DESCRIPTOR {
9 farr_kind kind; // The kind of a Fortran array descriptor

10 unsigned int rank; // The rank or the number of dimensions.
11 int *lbnd; // A list of index left-bounds for each dim.
12 int *rbnd; // A list of index right-bounds for each dim.
13 int *strd; // A list of index stride for each dim.
14 farr_mem memory; // Being non-null iff kind is ’SOURCE’
15 farr_desc parent; // Being non-null iff kind is NOT ’SOURCE’
16 };

Fig. 6. Implementation of the CIVL-C array descriptor.

Verifying Fortran Programs with CIVL 115

1 PROGRAM ARRAYOP
2 INTEGER :: A(0:8)
3 CALL SUBR(A(1:7:2))
4 ! A: {0,1,0,2,0,3,0,4,0}
5 END PROGRAM ARRAYOP
6
7 SUBROUTINE SUBR(B)
8 INTEGER :: B(-1:0, 2:3)
9 B(-1, 2) = 1

10 B(-1, 3) = 2
11 B(0, 2) = 3
12 B(0, 3) = 4
13 END SUBROUTINE SUBR

1 int main() {
2 fa_desc A = fa_create(sizeof(int), 1, {{0},{8},{1}});
3 fa_desc __arg_A = fa_section(A, {{1},{7},{2}});
4 subr(__arg_A);
5 fa_destroy(__arg_A); ! pop section descriptor
6 fa_destroy(A); ! free array descriptor and data storage
7 }
8 void subr(fa_desc __B) {
9 fa_desc B = fa_reshape(__B, 2, {{-1,2},{0,3},{1,1}});
10 *(int*)fa_subscript(B, {-1,2}) = 1;
11 ...
12 *(int*)fa_subscript(B, {0,3}) = 4;
13 fa_destroy(B); ! pop reshape descriptor
14 }

Fig. 7. Transformation of array section and reshape operations

set to SECTION or RESHAPE, and whose pointer stores the location of the array
descriptor for the existing array. This new descriptor now provides a mapping
from indices of the new array instance into indices of the existing array instance.
Such an array section or reshaped array can itself be reshaped or sectioned by
the Fortran program, which will result in a stack of array descriptors. Whenever
the Fortran program accesses an array at a given index, CIVL will recursively
use the mappings provided by the descriptors until the index in the underlying
CIVL-C array is resolved by a descriptor of kind SOURCE. Figure 7 shows how
some basic Fortran array operations are translated to CIVL-C using the array
descriptor and associated utility functions.

5 Evaluation

The first goal of this evaluation is to determine whether CIVL correctly verifies
or finds defects in a suite of synthetic Fortran programs that use various language
features peculiar to Fortran. The second goal is to investigate how CIVL performs
on Fortran code from an existing production-level HPC application.

5.1 Compute Environment and Experimental Artifacts

All CIVL executions were conducted on a TACAS 2022 Artifact Evaluation
Virtual Machine (AEVM) with Ubuntu 20.04; the version of CIVL is 1.21. All
SMACK executions were conducted on a TACAS 2020 AEVM provided by the
authors of [13]; the version of SMACK is 1.9.1. Both virtual machines were
deployed by Oracle VirtualBox 6.1 on a laptop running MacOS 11.6.2 on a
2.5 GHz Quad-Core Intel Core i7 CPU with x86_64 architecture and 16 GB
memory. The CIVL program and all experimental artifacts can be downloaded
from https://vsl.cis.udel.edu/tacas2022.

5.2 Specification and Verification Approach

As shown in Figure 8, CIVL primitives are inserted as structured comments for
verifying a Fortran code, which have no effect on the normal build process. Sim-
ilar directives exist for C. These primitives have two major kinds: type qualifiers

116 W. Wu et al.

https://vsl.cis.udel.edu/tacas2022

1 PROGRAM civl_primitive_example
2 !$CVL $input
3 INTEGER :: arg
4 INTEGER :: x
5 !$CVL $assume(-1 .LE. arg .AND. arg .LE. 1);
6 x = arg
7 !$CVL $assume(x .LT. 0);
8 x = ABS(x)
9 !$CVL $assert(0 .LE. x .AND. x .LE. 1);

10 END PROGRAM civl_primitive_example

Fig. 8. Example illustrating CIVL Fortran primitives.

and verification statements. $input specifies that the variable in the following
declaration is to be initialized with an unconstrained value of its type. The value
can be subsequently constrained with an assumption statement. Alternatively,
an input variable may be given an exact concrete value on the command line.
Input variables are read-only.

The $output qualifier declares a variable to be write-only. Output variables
are used for functional equivalence verification. When two programs have the
same input and output variables, they can be compared to determine whether,
given the same inputs, the two programs will produce the same outputs. This
is carried out by CIVL’s compare command, which merges the two programs
into a single program with a new driver. The driver invokes the two programs in
sequence on the same input variables, and then asserts that the corresponding
outputs agree.

A CIVL assumption statement has the form $assume(expr);. It is used to
constrain the set of executions that are considered to be valid. If an assump-
tion is violated, no error is reported; instead, the execution is ignored and the
search backtracks immediately. $assert(expr); reports an assertion violation
if the argument expression does not hold. This statement provides the capabil-
ity of checking desired properties in Fortran, which has no intrinsic assertion
procedure. All primitives must be preceded by the prefix !$CVL.

5.3 Fortran Verification Benchmark Suites

Our suite incorporates the 22 synthetic examples from the SMACK suite [13].
These examples cover basic Fortran structures ranging from expressions to func-
tions and subroutines. The only change made is to switch SMACK-style asser-
tions and symbolic value assignment to CIVL primitives. SMACK uses calls of
the form assert(expr) to check desired properties, which is similar to CIVL’s
$assert primitive. With SMACK, symbolic values are generated by calling
__verifier_nondet_int() and assigning the result to a variable, while CIVL
uses the $input qualifier.

To these, we added 13 examples we created ourselves, exercising different
language features, including argument intent specification, array sectioning, and
boolean expressions that might lead to different results if short-circuiting is or is
not used. We include a parallel example that uses an OpenMP for loop, executed

Verifying Fortran Programs with CIVL 117

Fig. 9. Total verification time (in seconds) for CIVL and SMACK on benchmarks.
Each time is the mean over 5 of 7 executions after dropping the shortest and longest.

with 4 threads. Finally, we constructed 4 pairs of programs each of which can
be compared for functional equivalence.

The programs are listed on the x-axis in Figure 9. Where the name includes
“fail” or “bad”, a negative verification result is expected; otherwise, a positive
result is expected. The figure also shows the average verification execution time
printed by CIVL and SMACK on each example. CIVL has correct results in all
cases, while SMACK encounters exceptions or has incorrect results for some of
the CIVL Fortran examples. Thus, the figure only reports timing results when
the verification results are correct.

5.4 Verifying Nek5000 Components

Nek5000 [21] is a computational fluid dynamics code for simulating unsteady
incompressible two- or three-dimensional fluid flow. Nek5000 has hundreds of
industrial and academic users and won a Gordon Bell prize for its scalability on
high performance compute clusters.

The code contains many Fortran subroutines that perform a numerical com-
putation that can be easily expressed in a formal way. For example, there are
various implementations for matrix multiplication, each optimized for best per-
formance on a particular matrix size. We use CIVL to verify that these subrou-
tines indeed compute matrix multiplications, by showing their equivalence with
a straightforward un-optimized textbook implementation.

Furthermore, Nek5000 contains subroutines to numerically approximate the
integral of a function, a process known as quadrature. Quadrature rules typi-
cally define carefully chosen locations, known as quadrature points, at which the
function in question is evaluated. The results are then each multiplied with a
weight, and summed to obtain the overall integral. The quality of a quadrature
rule is often evaluated by quantifying its order of accuracy, where a higher order

118 W. Wu et al.

N Points 2 Degree 2
Ref soln 2*AF_SIN(2)
Quadrature 2*AF_SIN(2)
Expected error: ZERO

 .. Program Output Message ..

=== Source files ===
util.f (util.f)
driver_speclib.f (driver_speclib.f)
speclib.f (speclib.f)

=== Command ===
civl verify -checkMemoryLeak=false
util.f driver_speclib.f speclib.f

=== Stats ===
 time (s) : 11.64
 memory (bytes) : 3393191936
 max process count : 1
 states : 54336
 states saved : 50392
 state matches : 0
 transitions : 54335
 trace steps : 35239
 valid calls : 148085
 provers : cvc4, z3, why3
 prover calls : 10

=== Result ===
The standard properties hold for all
executions.

Violation 0 encountered at depth 3244:
CIVL execution violation in p0
(kind: ASSERTION_VIOLATION, certainty:
MAYBE)
at driver_speclib_bad.f:103.6-12

!$CVL $ASSERT(DIFF .EQ. MINDIFF)
 ^^^^^^^

 .. Detailed Violation Info ..

=== Source files ===
 ..

=== Command ===
 ..

=== Stats ===
 time (s) : 4.19
 memory (bytes) : 2587885568
 max process count : 1
 states : 4973
 states saved : 4585
 state matches : 0
 transitions : 4974
 trace steps : 3244
 valid calls : 13662
 provers : cvc4, z3, why3
 prover calls : 7

=== Result ===
The program MAY NOT be correct. See
CIVLREP/util_log.txt

Fig. 10. CIVL output for verifying correct and erroneous Nek5000 examples

quadrature rule yields the exact result for polynomials of a higher degree. The
Gauss-Lobatto Legendre quadrature rules are a unique set of weights and points
that are known to be optimal under certain conditions, and are used in Nek5000.
We use CIVL to verify that the quadrature implemented in Nek5000 indeed has
the claimed order of accuracy, by verifying that the quadrature is exact for poly-
nomials with symbolic coefficients of the claimed degree. Due to its uniqueness
properties, this also proves that Nek5000 indeed uses Gauss-Lobatto Legendre
weights and points.

We also seeded some of these implementations with defects and confirmed
that CIVL reports the defects. Figure 10 shows the output from CIVL on a
correct and incorrect example from Nek5000. Table 1 shows the verification
results for the Nek5000 excerpts for various parameter values. The expected
result is obtained in all cases, at modest cost (at most 12 seconds).

6 Related Work

Fortran has been the focus of early program verification research. One of the
first papers on symbolic execution dealt with Fortran [8], and one of the earliest
verification condition generation tools was for Fortran [6]. More recently, several
Fortran static analyzers have been developed, including ftnchek [19], Cleanscape
FORTRAN-Lint [9], and FORCHECK/Coverity [35]. These tools detect certain

Verifying Fortran Programs with CIVL 119

Name LoC Result Scale Time States
speclib 560 True 2 ≤ NP ≤ 2; 2 ≤ DEG ≤ 3 5.14s 10857
speclib 560 True 2 ≤ NP ≤ 3; 2 ≤ DEG ≤ 5 12.08s 55908
speclib_bad 560 False 2 ≤ NP ≤ 2; 2 ≤ DEG ≤ 3 4.67s 6011
speclib_bad 560 False 2 ≤ NP ≤ 3; 2 ≤ DEG ≤ 5 4.27s 3223
mxm_unroll 458 Eqv 3× 3 5.49s 26867
mxm_unroll 458 Eqv 4× 4 8.51s 59914
mxm_unroll_bad 458 NEq 3× 3 5.48s 26865
mxm_unroll_bad 458 NEq 4× 4 8.56s 59912
mxm_pencil 458 Eqv 2× 2 5.83s 9264
mxm_pencil 458 Eqv 3× 3 7.38s 26893
mxm_pencil 458 Eqv 4× 4 10.14s 59968
mxm_pencil_bad 458 NEq 2× 2 6.01s 9262
mxm_pencil_bad 458 NEq 3× 3 7.53s 26891
mxm_pencil_bad 458 NEq 4× 4 10.48s 59966

Table 1. Results of verifying Nek5000 code excerpts at various scales

pre-defined generic defects, such as variables that are read but never written, un-
used variables and functions, and inconsistencies in common block declarations.
They do not allow one to specify and verify functional correctness properties.

Other tools use dynamic analysis (or a combination of static and dynamic
analysis) to check such generic properties. One example uses the PIPS compiler
to detect forbidden aliasing in subroutines [22]. The NAG Fortran compiler can
also insert checking code to catch many defects at runtime [29].

In contrast, CamFort [27] implements a lightweight specification and static
analysis approach. The user annotates the Fortran program with comments in a
domain specific language for specifying array access patterns (stencils) or asso-
ciating units of measurements to variables. CamFort, which is written in Haskel,
parses the code, constructs an AST, and verifies conformance to the properties
using Z3. This approach strikes a balance between the generality of program ver-
ifiers such as CIVL, which can specify arbitrary assertions in a general purpose
assertion language, and the more tractable static analysis tools.

Several tools have been developed to translate Fortran to other languages.
These include f2c [11] (which translates to C) and Fable [14] (C++). In addition
to the issues discussed in Section 3.1, the potential of these tools as front ends for
verifiers is limited by the fact that the translated code is often considerably more
complex than the original or involves complex libraries which the verifier must
also understand. It should be noted that Fable’s approach to modeling Fortran
arrays is similar to ours in that it defines a class that bundles a reference to the
data with meta-data describing the “view” of the array.

A number of verification tools work off of the LLVM compiler’s low-level in-
termediate language, LLVM IR. These include SMACK [30], Divine [2], LLBMC
[34], and SeaHorn [15]. In theory, this should allow one to chain together any
of the many compiler front ends that generates LLVM IR with a general LLVM

120 W. Wu et al.

IR verifier. In practice, this is very difficult, and most of these verifiers accept
only a subset of LLVM IR generated by a particular front end from a partic-
ular source language—usually C or C++ [13]. To the best of our knowledge,
only SMACK has been applied to Fortran [13], using the Flang front end [12].
However, the subset of Fortran accepted and the example codes themselves are
small. A more significant concern, discussed in Section 3, is that a front end
may “compile away” defects in the source program by choosing one of several
acceptable ways to translate a construct with unspecified behavior, or assuming
the absence of undefined behaviors.

In this work we have translated Fortran to the intermediate verification lan-
guage (IVL) CIVL-C. Other, more widely-used, IVLs include Boogie [3] and
Why3 [5]. Among these languages, CIVL-C stands out for its robust support for
pointers and concurrency, which simplifies much of the modeling effort.

The CIVL verifier analyzes a CIVL-C program using symbolic execution, a
widely-used technique for test-case generation and verification. Other mature
symbolic execution tools include KLEE [7] (for C programs, via LLVM) and
Symbolic PathFinder [23] (for Java byte code).

7 Conclusion and Future Work

We presented a Fortran extension to CIVL, a novel model-checking approach
that preserves and reveals defects in source code written in Fortran. Compared
with compiler-based verifiers, this tool parses and analyzes source programs from
a verification perspective. In doing so, it mitigates against the risk of missing
defects that are eliminated via legal but non-defect-preserving compiler opti-
mizations.

The extension includes a data structure and associated algorithms for de-
scribing Fortran array metadata and tracking complex array transformations.
This method of handling Fortran arrays could be adopted by other verification
tools. The extension also supports a set of CIVL verification primitives which
can be introduced into Fortran programs as structured comments.

Evaluation results show that our tool performs correctly and quickly (com-
pared to previous work) on a range of synthetic benchmarks and some kernels
extracted from real world applications. In the future, we plan to enlarge the
supported subset of Fortran language features and to enhance support for veri-
fying Fortran programs with OpenMP directives. The resulting CIVL extension
is expected to cover the DataRaceBench [36] suite, including both the C and
Fortran examples.

Acknowledgements

This material is based upon work by the RAPIDS Institute, supported by the
U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research, Scientific Discovery through Advanced Computing (SciDAC)
program, and by contracts DE-AC02-06CH11357 and DE-SC0021162. Support
was also provided by U.S. National Science Foundation award CCF-1955852.

Verifying Fortran Programs with CIVL 121

References

1. Adams, J.C., Brainerd, W.S., Hendrickson, R.A., Maine, R.E., Martin, J.T., Smith,
B.T.: The Fortran 2003 Handbook: the Complete Syntax, Features and Procedures.
Springer Science & Business Media (2008). https://doi.org/10.1007/978-1-84628-
746-6

2. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai,
P., Štill, V.: Model checking of C and C++ with DIVINE 4. In: Automated Tech-
nology for Verification and Analysis. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_14

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boo-
gie: A modular reusable verifier for object-oriented programs. In: de Boer,
F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for
Components and Objects, 4th International Symposium (FMCO 2005). Lec-
ture Notes in Computer Science, vol. 4111, pp. 364–387. Springer (2005).
https://doi.org/10.1007/11804192_17

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6806,
pp. 171–177. Springer (2011), http://dl.acm.org/citation.cfm?id=2032305.2032319

5. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verifica-
tion Languages. pp. 53–64. Wrocław, Poland (August 2011), http://proval.lri.fr/
publications/boogie11final.pdf

6. Boyer, R.S., Moore, J.S.: A verification condition generator for Fortran. Tech. Rep.
CSL-103, SRI International, Computer Science Laboratory, Menlo Park, CA (June
1980), https://apps.dtic.mil/sti/pdfs/ADA094609.pdf

7. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation of
high-coverage tests for complex systems programs. Proc. 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’08) (2008)

8. Clarke, L.A.: A system to generate test data and symbolically ex-
ecute programs. IEEE Trans. Softw. Eng. 2, 215–222 (May 1976).
https://doi.org/10.1109/TSE.1976.233817

9. Cleanscape Software International: FORTRAN-lint: a pre-compile analysis tool,
https://stellar.cleanscape.net/docs_lib/data_F-lint2.pdf , accessed 13-Oct-2021

10. Dingle, N.: Not only Fortran and MPI: POP’s view of HPC software
in Europe, https://pop-coe.eu/blog/not-only-fortran-and-mpi-pops-view-of-hpc-
software-in-europe, accessed 14-Oct-2021

11. Feldman, S.I.: A Fortran to C converter. SIGPLAN Fortran Forum 9(2), 21–22
(Oct 1990). https://doi.org/10.1145/101363.101366

12. Flang Fortran language front-end. https://github.com/flang-compiler/flang, ac-
cessed 09-Oct-2021

13. Garzella, J.J., Baranowski, M., He, S., Rakamarić, Z.: Leveraging compiler inter-
mediate representation for multi- and cross-language verification. In: Beyer, D.,
Zufferey, D. (eds.) Verification, Model Checking, and Abstract Interpretation. pp.
90–111. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39322-9_5

14. Grosse-Kunstleve, R.W., Terwilliger, T.C., Sauter, N.K., Adams, P.D.: Automatic
Fortran to C++ conversion with FABLE. Source Code for Biology and Medicine
7(5) (2012). https://doi.org/10.1186/1751-0473-7-5

122 W. Wu et al.

https://doi.org/10.1007/978-1-84628-746-6
https://doi.org/10.1007/978-1-84628-746-6
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/11804192_17
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://proval.lri.fr/publications/boogie11final.pdf
http://proval.lri.fr/publications/boogie11final.pdf
https://apps.dtic.mil/sti/pdfs/ADA094609.pdf
https://doi.org/10.1109/TSE.1976.233817
https://stellar.cleanscape.net/docs_lib/data_F-lint2.pdf
https://pop-coe.eu/blog/not-only-fortran-and-mpi-pops-view-of-hpc-software-in-europe
https://pop-coe.eu/blog/not-only-fortran-and-mpi-pops-view-of-hpc-software-in-europe
https://doi.org/10.1145/101363.101366
https://github.com/flang-compiler/flang
https://doi.org/10.1007/978-3-030-39322-9_5
https://doi.org/10.1186/1751-0473-7-5

15. Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: A framework for verifying C pro-
grams (competition contribution). In: Baier, C., Tinelli, C. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 9035, pp. 447–450. Springer Berlin Heidelberg, Berlin, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0_41

16. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization (CGO’04). pp. 75–86. IEEE Computer Society
(2004). https://doi.org/10.1109/CGO.2004.1281665

17. Lawrence Livermore National Laboratory: CORAL benchmark codes (2014), https:
//asc.llnl.gov/coral-benchmarks, accessed 14-Oct-2021

18. Message Passing Interface Forum: MPI: A Message-Passing Interface standard,
version 3.1 (Jun 2015), https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.
pdf

19. Moniot, R.K.: ftnchek: a static analyzer for Fortran 77, https://www.dsm.fordham.
edu/~ftnchek/, accessed 09-Oct-2021

20. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3_24

21. NEK5000: a fast and scalable high-order solver for computational fluid dynamics
(2021), https://nek5000.mcs.anl.gov, accessed 14-Oct-2021

22. Nguyen, T.V.N., Irigoin, F.: Alias verification for Fortran code optimiza-
tion. Electronic Notes in Theoretical Computer Science 65(2), 52–66 (2002).
https://doi.org/10.1016/S1571-0661(04)80396-7, COCV’02, Compiler Optimiza-
tion Meets Compiler Verification (Satellite Event of ETAPS 2002)

23. Noller, Y., Păsăreanu, C.S., Fromherz, A., Le, X.B.D., Visser, W.: Symbolic
Pathfinder for SV-COMP. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems. pp.
239–243. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_21

24. NVIDIA: CUDA Toolkit Documentation, v11.4.2, https://docs.nvidia.com/cuda/,
accessed 14-Oct-2021

25. Open Group: IEEE Std 1003.1: Standard for information technology—Portable
Operating System Interface (POSIX(R)) base specifications, issue 7: pthread.h
(2018), https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.
html

26. OpenMP Architecture Review Board: OpenMP Application Programming Inter-
face (Nov 2020), https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5-1.pdf, version 5.1

27. Orchard, D., Contrastin, M., Danish, M., Rice, A.: Verifying spatial properties
of array computations. Proceedings of the ACM on Programming Languages
1(OOPSLA), 1–30 (Oct 2017). https://doi.org/10.1145/3133899, article no. 75

28. Parr, T.: The Definitive ANTLR4 Reference. The Pragmatic Bookshelf, Dallas,
TX (2013), https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference/

29. Polyhedron Solutions: Linux Fortran compiler diagnostic comparisons,
https://www.fortran.uk/fortran-compiler-comparisons/intellinux-fortran-
compiler-diagnostic-capabilities/, accessed 13-Oct-2021

Verifying Fortran Programs with CIVL 123

https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1109/CGO.2004.1281665
https://asc.llnl.gov/coral-benchmarks
https://asc.llnl.gov/coral-benchmarks
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.dsm.fordham.edu/~ftnchek/
https://www.dsm.fordham.edu/~ftnchek/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://nek5000.mcs.anl.gov
https://doi.org/10.1016/S1571-0661(04)80396-7
https://doi.org/10.1007/978-3-030-17502-3_21
https://docs.nvidia.com/cuda/
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://doi.org/10.1145/3133899
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference/
https://www.fortran.uk/fortran-compiler-comparisons/intellinux-fortran-compiler-diagnostic-capabilities/
https://www.fortran.uk/fortran-compiler-comparisons/intellinux-fortran-compiler-diagnostic-capabilities/

30. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from
verifier implementation. In: Biere, A., Bloem, R. (eds.) Proceedings of the
26th International Conference on Computer Aided Verification (CAV). Lec-
ture Notes in Computer Science, vol. 8559, pp. 106–113. Springer (2014).
https://doi.org/10.1007/978-3-319-08867-9_7

31. Rasmussen, C.E., et al.: OFP: Open Fortran Project, https://sourceforge.net/p/
fortran-parser/wiki/Home/, accessed 14-Oct-2021

32. Rosner, R., Calder, A., Dursi, L., Fryxell, B., Lamb, D., Niemeyer, J., Olson, K.,
Ricker, P., Timmes, F., Truran, J., Tufo, H., Young, Y.N., Zingale, M., Lusk, E.,
Stevens, R.: Flash code: Studying astrophysical thermonuclear flashes. Computing
in Science and Engineering 2, 33–41 (2000). https://doi.org/10.1109/5992.825747

33. Siegel, S.F., Zheng, M., Luo, Z., Zirkel, T.K., Marianiello, A.V., Edenhofner, J.G.,
Dwyer, M.B., Rogers, M.S.: CIVL: The Concurrency Intermediate Verification
Language. In: SC15: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis. ACM, New York (Nov
2015). https://doi.org/10.1145/2807591.2807635, article no. 61, pages 1–12

34. Sinz, C., Merz, F., Falke, S.: LLBMC: A bounded model checker for LLVM’s
intermediate representation. In: Flanagan, C., König, B. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Com-
puter Science, vol. 7214, pp. 542–544. Springer, Berlin, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28756-5_44

35. Synopsys: Synopsys static analysis (Coverity) Fortran syntax analysis,
https://community.synopsys.com/s/article/Synopsys-Static-Analysis-Coverity-
Fortran-Syntax-Analysis, accessed 13-Oct-2021

36. Verma, G., Shi, Y., Liao, C., Chapman, B., Yan, Y.: Enhancing DataRaceBench
for evaluating data race detection tools. In: 2020 IEEE/ACM 4th International
Workshop on Software Correctness for HPC Applications (Correctness). pp. 20–
30. IEEE (2020). https://doi.org/10.1109/Correctness51934.2020.00008

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

124 W. Wu et al.

https://doi.org/10.1007/978-3-319-08867-9_7
https://sourceforge.net/p/fortran-parser/wiki/Home/
https://sourceforge.net/p/fortran-parser/wiki/Home/
https://doi.org/10.1109/5992.825747
https://doi.org/10.1145/2807591.2807635
https://doi.org/10.1007/978-3-642-28756-5_44
https://community.synopsys.com/s/article/Synopsys-Static-Analysis-Coverity-Fortran-Syntax-Analysis
https://community.synopsys.com/s/article/Synopsys-Static-Analysis-Coverity-Fortran-Syntax-Analysis
https://doi.org/10.1109/Correctness51934.2020.00008
http://creativecommons.org/licenses/by/4.0/

NORMA: a tool for the analysis of
Relay-based Railway Interlocking Systems

Arturo Amendola1, Anna Becchi2(�) , Roberto Cavada2,
Alessandro Cimatti2 , Andrea Ferrando2, Lorenzo Pilati2,

Giuseppe Scaglione3, Alberto Tacchella2, and Marco Zamboni2

1 Consultant for RFI System Development – Roma, Italy
amendola.arturo@yahoo.com

2 Fondazione Bruno Kessler – Povo, Trento, Italy
{abecchi,cavada,cimatti,aferrando,lpilati,atacchella,mazamboni}@fbk.eu

3 RFI Rete Ferroviaria Italiana – Roma, Italy g.scaglione@rfi.it

Abstract. We present Norma, a tool for the modeling and analysis of
Relay-based Railways Interlocking Systems (RRIS). Norma is the result
of a research project funded by the Italian Railway Network, to support
the reverse engineering and migration to computer-based technology of
legacy RRIS. The frontend fully supports the graphical modeling of Ital-
ian RRIS, with a palette of over two hundred basic components, stubs
to abstract RRIS subcircuits, and requirements in terms of formal prop-
erties. The internal component based representation is translated into
highly optimized Timed nuXmv models, and supports various syntactic
and semantic checks based on formal verification, simulation and test
case generation. Norma is experimentally evaluated, demonstrating the
practical support for the modelers, and the effectiveness of the underlying
optimizations.

Keywords: Relay-based Railway Interlocking Systems · graphical mod-
eling · model checking

1 Introduction

Railway interlocking systems (RIS) are complex signaling apparatus that prevent
conflicting movements of trains through an arrangement of tracks, most notably
stations. The basic requirement is that a signal to proceed is not displayed unless
the route to be used is proven safe. This means positioning the switches in the
appropriate position, controlling the level crossings, and setting the aspects of
the signals to indicate the expected speed restrictions.

Although the world is slowly migrating to computer-based RIS, the predomi-
nant solutions are still based on electromechanical technology, where the logic of
the interlocking procedures is encoded in the evolution of the status of the circuit
relays. RRIS are a costly and hard to modify technology. Yet, RRIS have been
working correctly and safely for decades. In the migration from relay-based to
computer-based RIS, it would be a natural choice to use RRIS as golden require-
ments for the new implementations. However, they are de facto legacy systems,

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 125–142, 2022.
https://doi.org/10.1007/978-3-030-99524-9_7

http://orcid.org/0000-0002-2831-9529
http://orcid.org/0000-0002-1315-6990
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_7

A. Amendola et al.

whose behavior is known to a handful of highly specialized domain experts, hence
expensive to maintain and update. Even more, the RRIS schematics are often
available only in printed form, and their behaviour needs to be manually sim-
ulated. Understanding RRIS, modeling them in digital format and extracting
requirements from them is hence a major challenge in the migration process.

In this paper we present Norma, a real-world tool for the formal modeling
and analysis of RRIS. Norma is the result of a research project funded by
the Italian railway network company (Rete Ferrovie Italiane - RFI), within a
process of reverse engineering and migration to computer-based technology of
the legacy RRIS currently in operation [6]. Norma leverages formal verification
techniques to provide extensive support for modeling, debugging, understanding,
traceability and verification. This also enables simulation, testing, and properties
extraction from RRIS.

The Norma frontend fully supports the graphical modeling of the Italian
RRIS, with a palette of over two hundred types of configurable components,
both on direct and alternate current, and single- and double-wired convention; it
allows the use of stubs to abstract RRIS subcircuits, and to specify requirements
in terms of formal properties.

Given that RRIS often contain thousands of component instances, the task of
manually modeling RRIS is repetitive and error prone. To support the modeler,
Norma supports a modeling style where components are accurate at the elec-
trical level, so that the digital model is in a one-to-one correspondence with the
printed schematic, and no manual abstraction is needed. Furthermore, a number
of syntactic and semantic checks ease the debugging of the models. In fact, while
RRIS are operating correctly, errors may be introduced in the modeling process.

RRIS graphical models are internally represented with suitable data struc-
tures, and automatically formalized in nuXmv as symbolic timed transition
systems over Boolean and real-valued variables. Then, a rewriting pipeline im-
plements several domain-specific simplification steps that take into account the
features of the RRIS to produce a drastically reduced model. Notable simpli-
fications in the pipeline include the identification and inlining of functionally
dependent variables, and contextual determinization of unconstrained signals.

The simplified model is then amenable for simulation, checking of invariant
and temporal properties, and test case generation, in addition to providing a
number of semantic checks deriving from built-in properties.

Norma is based on an extensible software architecture. It is built on the DIA
toolset, and follows a library-based approach, where each component is modeled
and tested in isolation. In turn, the component library is built by means of an
automated process relying on configuration tables. At the core, the verification
process is carried out by the nuXmv model checker.

Norma is actively being used within RFI. We experimentally evaluated its
capabilities on real-world RRIS schematics with thousands of variables, with sev-
eral important findings. First, it is very effective in supporting the modelers: the
semantic checks proved to be invaluable to pinpoint several subtle modeling er-
rors. Second, the underlying optimizations dramatically reduce the computation

126

NORMA: a tool for the analysis of Relay-based RIS

time of the verification tasks. Third, Norma supports the automated extraction
of specifications, such as the table of mutually incompatible routes encoded in
the RRIS of a medium-sized station.

To the best of our knowledge, Norma is the only tool supporting the mod-
eling and the formal analysis of real-world RRIS. It integrates behind a graph-
ical front-end some powerful reasoning capabilities, without exposing domain
experts to the intricacies of formal verification. Approaches to the formal anal-
ysis of RRIS have been proposed [5,12,11,15]. However, the RRIS is modeled
at a high level of abstraction, so that important features are lost. More impor-
tantly, the user is in charge of ensuring the correspondence between the circuit
schematics and the formal model. Given the typical size of real-world RRIS, the
process appears to be very prone to errors. In contrast, we rely on a comprehen-
sive approach to component-based modeling [8], where the RRIS is described
as a multi-domain switched Kirchhoff network, hence supporting a precise and
electrically-accurate semantics.

This paper is structured as follows. In Section 2 we present the background
domain of RRIS. In Section 3 we overview the functions of Norma. Then, in
Section 4, 5 and 6 we discuss in detail the front end, the compiler and the
simplifier. In Section 7 we overview the software architecture of Norma, and
in Section 8 we present the experimental results. In Section 9 we draw some
conclusions and discuss the future developments.

2 Relay-based Railway Interlocking Systems

At the beginning of the 20th century, the rapid growth in the development of rail-
ways systems called for technological solutions to avoid collisions among trains
and other safety critical issues. Signals were originally installed at fixed track
side positions, featuring mechanical arms which were manually operated through
levers, pulleys and wires from local signal boxes. As purely mechanical devices
proved soon to be very unreliable, they were substituted by electric and elec-
tromechanical devices, like for example signals with colored lights and railroad
motor switches. Aside from being much more reliable and economically sustain-
able, these new devices could now be controlled remotely in a centralised fashion.
The control procedures went from manually operating each device individually,
to logics able to operate automatically multiple devices at once, for example
to safely create and monitor an itinerary for a train to leave a station. These
centralized logics were mainly based on relays and proved to be able to operate
reliably for decades.

A relay is an electromechanical element, generally composed by a coil and one
or more contacts: when the coil is traversed by sufficient current, it generates a
magnetic field that will close or open the contacts depending on the relay type.
When the current flow is interrupted, the contacts will return to their initial
state.

By combining relays in circuits it is possible to implement a sequential logic,
where the combinational part is made of series/parallel circuits of relay contacts,

127

Fig. 1. Extract of schematics of itinerary from Italian legacy RIS relay logic

and the memory part is encoded in the relay coil state, i.e. being powered or not.
Inputs from the environment of such logic are electrical signals coming from the
rail track (e.g. train pedals), or from the user-interface (e.g. buttons or levers).
Outputs to the environment are electrical commands to the plant (e.g. power to
a rail crossing motor) or to the user-interface (e.g. light bulbs that represent a
signal status).

The general concept of relay circuit logic is specialized in the solutions
adopted in the Italian railway network. In such a domain, circuits are represented
as schematics in separate sheets, along with informative material like topological
schematics of the track and devices controlled by the relay logic, tables, tex-
tual notes, etc. Circuits are made of interconnected components. Components
have terminals, and terminals are connected by lines representing electrical con-
nections. Some components have an associated name to represent the relation
between a coil and its contacts.

The domain has several interesting characteristics. The first one is the com-
plexity of the domain: there is a large number of components types that differ
on the timing required to operate, the amount of memory elements that can
be stored, and so on. In particular, base components like coils, contacts, levers,
loads, etc. can be combined with zero, one or more specifiers to specialize the
components behaviour. This combination leads to more than 5000 components
types which can be instantiated in a circuit. As an example, there exist dozen
types of relay which are characterized by being delayed or not (when activating,
deactivating, or both), polarized or not, single or double coil, stabilized or not,
etc.

Second, the circuits can be operating either with direct or alternate current,
where discrete signals (e.g. the maximum allowed train speed in a track segment)
are encoded by means of frequency and/or amplitude modulation. Some compo-
nent types can generate modulated current, and some corresponding component
types can read it and react accordingly.

Third, several design conventions were adopted for the sake of readability of
the relay logic circuits. Three significant cases are: (1) the logical representation
of components in circuits, (2) single/double-wired circuits and (3) units. Circuits

A. Amendola et al.128

are logically represented (1) in schematics, in contrast with the physical represen-
tation found in conventional electrical schematics. In such logical representation,
relay coils and their contacts are represented in separate circuits, dislocated ac-
cording to logical criteria, as the coil of a single relay and its contacts may indeed
belong to different logical functions. Like in computer programs, where messages
can be sent and received from different logical units, coils can be activated (mes-
sage sent) and contacts react accordingly (message received) in separate logical
units. Separation of coils and circuits in the schematics helps preserving logi-
cal cleanness and may improve the readability of the schematics. The relation
between a coil and its contacts is pragmatically kept by using the same name.
See for example Fig. 1, where the coil of relay “F” (bottom left) and some of its
contacts appear in the same circuit.

In single-wired circuits (2), an electrical connection line between two com-
ponents implicitly represents a pair of wires, i.e. the current flows in one direc-
tion through one wire in the implicit pair, and returns through the second wire
in the pair. The single-wire representation is frequently used as it is practical
and readable. However, sometimes it is needed to represent explicitly the two
wires, e.g. when a contact needs to cut explicitly the return wire. Sometimes the
single/double-wired representation is mixed in the same schematics or even in
the same circuit.

Units (3) are a pragmatic way of reusing parts of a schematics. A unit repre-
sents a generic functionality, e.g. the logic which can control a single rail switch.
A unit is a set of circuits associated with a name. Other circuits can refer (in-
deed so instantiating the unit) to a set of components which a unit contains, by
using the same component names along with the unit’s name as namespace. For
example, in Fig. 1, all contacts “H” belong to the unit “UGB92”.

As a final remark, consider that the schematics of relay circuits are legacy,
available in terms of large printouts. They have been designed along many
decades, with new features added incrementally and often monotonically. This
makes the logic of a medium sized station interlocking very large, containing
thousands of components spread over dozens of A0 sheets.

3 Norma: overview

Norma is a tool to model, trace, understand and analyze RRIS used in the
Italian railway network. The ultimate goal of Norma is to support the under-
standing and the reverse engineering of RRIS. This demands that all original
schematics in printouts get correctly digitalized into formal models that are
amenable for automated verification, e.g. by a model checker.

In the workflow supported by Norma (Fig. 2), there are three main working
lanes: Modeling, Traceability and Analysis.

Modeling supports the graphical digitalization of formal models. Traceability
keeps the links between the created models and the corresponding requirements
and regulatory documents. Analysis supports the verification of properties about

NORMA: a tool for the analysis of Relay-based RIS 129

Activities in Norma
Traceability

Trace

Regulations
Documents

Modeler

Modeling
Scanner

Add Documents

Classify

User

Create Project

Administrator

Centralized
Norma Project

Add Images

Manual
Modelling

Modeler

Local
Norma Project

Checkout
Project

Modeler

Commit
Modifications

Merge
Modifications

Run
Checkers

Fix
Diagram

Modeler

Components
Palette

Schematics

Modeler

Modeler

Administrator

Administrator

Analisys

Compile

Local
Norma Project

RRIS
SMV Stubs

SMV model

Formal
Components

Library

Simplify

Simplified
SMV model

Model Checking

Verification
Properties

Yes/No+Trace

Create
Properties

Model Stubs

Checkout
Project

Analyzer

Administrator

Analyzer

Analyzer

Fig. 2. High-level workflow with Norma

the RIS. These lanes are described further in Section 4 (Graphical Modeling)
and Sections 5 and 6 (Analysis).

The activities involved in these lanes are performed by different users oper-
ating as a structured team: the administrator inserts input artifacts to enable
modelers and analyzers to work on them. Each modeler works on schematics
areas exclusively, and their contributions are merged by the administrator into
the project. This avoids any risk of conflicts.

Modeling and Traceability Modeling is enabled by an administrator that creates
a project, adds images of RRIS schematics to be modeled, adds regulatory docu-
ments for traceability, and commits the modifications to a centralized repository
which all enabled users can access. Modelers can then checkout the project lo-
cally and graphically model components (picked from a palette), connections,
units and all other parts that are relevant for the formal analysis. As the size

A. Amendola et al.130

and number of schematics is very relevant, Norma enables in its architecture
the integration of an image classifier/recognizer to (semi)automatically recognize
components and connections among them. This feature is currently under eval-
uation and not yet deployed. The modeler can also select regions of the modeled
RRIS and associate those regions with parts in regulatory documents describ-
ing the requirements that the selected RRIS covers. The modeler can check the
model against a set of syntactic rules (e.g. there are no floating connections) and
iterate, then they can commit the local modifications to the remote repository
for the administrator evaluation and admittance of the contribution.

Analysis The formal core of Norma is based on a compiler that transforms a
graphical model into a formal model in SMV language, that can be processed by
nuXmv model checker. The compiler picks components from a SMV library of
timed automata with real-valued variables, each corresponding to a component
type in the graphical model, and composes the networks accordingly to the
electrical and logical connections among them. Stubs are SMV modules that
Analyzer exploits to model abstracted parts of the RRIS which do not appear
in the graphical model. The compiler injects and connects the stubs directly in
the generated SMV model. The result of the compilation is a model whose size
is directly related to the size of the modeled RRIS. In order to ease the formal
verification process, the SMV model passes through a conservative simplification
process that can dramatically reduce its size. Model checking is finally carried out
by expressing LTL or invariant properties and using the nuXmv model checker.

4 Graphical modeling of RRIS

A Norma project is defined as a set of Documents and RRIS, with meta in-
formation to link them. The key idea is to allow modelers to draw the digital
schematic on top of the original RRIS image. Hence, the RRIS within a project
are structured in layers , where contents in higher levels hide the content in lower
ones. Layering enables a clear separation between different types of elements, and
supports the modelers during the digitalization process.

There are 5 layers: Original RRIS, holding the image of the original RRIS
schematics; Masks, used to hide sections of Original as soon as they get modeled;
Modeled Components, the main working layer where modelers put components
and connections; Units layer, holding named polygons modeling Units; Trace-
ability, holding several types of tracing information. By hiding/showing a layer,
the modeler is able to focus on specific parts of the RRIS, e.g. to identify those
parts that still need to be modeled.

Modeling mainly consists in placing components, connections and units in the
diagram. The components palette (Fig. 3) has a central role in this process. As
there exist such a large number of components, a customized interactive palette
was designed to substitute the default, flat palette which could not be effectively
used. The modeler is guided through the process of picking and configuring the

NORMA: a tool for the analysis of Relay-based RIS 131

Fig. 3. 1. Modeled component 2. Not yet modeled component 3. Modeling through
interactive palette 4. Example of unit

required component and specifiers matching the RRIS section being modeled.
The selection begins from the typology (coils, contacts, load, etc.) and contin-
ues in interactive steps to allow the characterization of specifiers, single/double
wiring, number of terminals, parameters, flipping and rotations, etc. The effec-
tiveness of the process is increased by means of domain-specific constraints to
restrict the user choices. These constraints are automatically generated, as de-
scribed in section 7. Connections and junctions are also customized with respect
to the default modeled style.

Traceability aims at linking requirements, found in regulatory documents, to the
fragments of RRIS implementing them. Norma allows the modelers to select
texts and images in PDF documents, and to select regions of the model. Each
selection is given automatically an ID, and IDs can be linked at project level to
keep traceability information.

Utilities are made available to help the modeler. It is possible to search through
traceability data and models, for example to search components by name or by
type, or to search the coil corresponding to a given contact. Syntactic checkers
can be run to spot errors or other issues like for example missing or wrong param-
eters, missing components (e.g. a contact without a corresponding coil), missing
connections, etc. Selecting an issue moves the focus to the specific location in
the model.

5 Compilation in Timed SMV

A RRIS is stored internally as a set of bipartite graphs {Gi(T,N,W)}i≤n where
each Gi represents a circuit, i.e., a set of components terminals (T) connected to
junctures – or nodes – (N) by wired edges (W).

A. Amendola et al.132

The compilation converts such a description into an symbolic, infinite-state
timed automaton specified using (timed) SMV, the language of the nuXmv
model checker. The hierarchical structure of SMV modules enables us to produce
specifications that directly reproduce the structure of the starting schematics;
combined with a library of component models, we fully leverage the advantages
of the compositional approach of Multi-Domain Switched Kirchhoff Networks
(MDSKN) described in [8].

SMV library of components. The SMV library of components consists of
41 different formal models. Most of them depend on one or more parameters,
which are automatically instantiated at network generation time, based on the
parameter choices in the RRIS. The values of such parameters are either supplied
directly by the user or automatically selected according to the component role
in the network.

In some cases, different electrical components are mapped to the same SMV
model; this happens when the differences between the components are not rel-
evant for their electrical modeling (e.g. in case of manufacturing differences be-
tween relays).

Single-wired schemes are translated into equivalent double-wired schemes by
a preliminary pass. After this, only double-wired components are considered, so
that no connection is left implicit in the resulting formal model.

The interface between components is realized by means of a special terminal
module. This module defines a pair of electrical variables ii and vv representing,
respectively, the current and the voltage at the terminal, corresponding to flow
and effort in the MDSKN framework [8].

In addition to electrical connections, there are logical connections between
components, e.g. between a relay R and its contacts. To handle this kind of
connections, the models in the SMV library are divided in two classes: master
and slave components.

The SMV model for a master component exports the appropriate state vari-
ables (e.g. the activation status of a relay) that trigger a corresponding action
in its slaves. The SMV model for a slave component is characterized by the
presence of one or more parameters, which play the role of external inputs for
the component. The connection between these inputs and the correct master
outputs is then resolved when the models are composed together to form the
final network, as explained in the next subsection.

Compared to the approach described in [8], that relied on a network of hybrid
automata, supporting arbitrary continuous dynamics, here we consider networks
of timed automata (extended with real variables), whose only continuous evo-
lution is based on the standard clocks of the form ċ = 1. In fact, the domain
experts pointed out that a precise modeling of transient states (e.g. in RC circuits
implementing an activation delay for a relay) is not necessary for the correct de-
scription of the RRIS and could be safely approximated with timing constraints.
Hence, we adopt a modeling style where the continuous dynamics are replaced
by a set of discrete transitions happening within a constrained time interval.

NORMA: a tool for the analysis of Relay-based RIS 133

While being sufficient for all practical purposes, it supports a more adequate
synchronous composition and makes the verification task easier.

Circuits composition. The SMV model C for a circuit G(T,N,W) is obtained
as the synchronous composition of the models for its components, with additional
constraints representing both wired and logical connections.

For each wired juncture in N , connected to terminals t1, . . . , tk, we add to
the invariant of the circuit the Kirchhoff conservation of current law t1.ii + · · ·+
tk.ii = 0, and the equality of potentials law ti.vv = · · · = tk.vv . Since all the
components expose the same interface of current and potential variables at the
terminals, this composition step is component-agnostic and localized to a single
circuit.

Logical connections, instead, require to resolve the correct binding between
master outputs and slave inputs which corresponds to the configuration of the
graphical specifiers used. Then, the master output is passed as input parameter
to the slave component’s module.

The high level topology of the network is defined by a graph N = ({Ci}, R)
showing the logical connections between circuits. Namely, an oriented edge (Ci, Cj)
belongs to R iff there exists a component in circuit Ci which is the master of a
component in circuit Cj . The network topology may have cycles: a master com-
ponent may be associated to a slave in the same circuit, therefore inducing a
self loop in the graph N . In order to preserve the causality of the events, it is
important to model the remote action of a master on its input with a transition
in the SMV model. More specifically, in every master we should use an urgent
transition relation which delays the master output signal to the next state, in
which it will be actually read by the slave. The analysis of N allows for an opti-
mization of the SMV module for the network, which aims to shorten the paths
of the resulting transition system. Namely, we insert the minimum number of
delayed masters needed to break cycles.

Stubs and Assumptions. The RRIS network may have dangling inputs in the
switches which respond to the status of a lever or a button controlled by a human
operator. In order to have a self contained closed system, we explicitly model
the environment module E which includes the models of the external masters.

In order to support a localized analysis of the RRIS, focusing only on a subset
of the circuits in the network and abstracting the others, Norma supports the
addition of a stub module S, which includes the masters belonging to removed
circuits.

Both the environment and the stub modules can be used to model assump-
tions on the language of the inputs read by the network. As an example, when
modeling the inputs coming from the trackside, we can add nominal or faulty
assumptions on the behaviour of the signals. Such hypotheses can be provided
by the user directly as SMV constraints. Furthermore, in order to ease the task
for railway experts (e.g. having to define sophisticated or repetitive assump-

A. Amendola et al.134

tions), Norma also supports the automatic translation of such constraints from
standardized Excel spreadsheets.

6 Simplification of RRIS models

Norma contains a simplifier to reduce the number of variables, especially the
real-valued ones, in the SMV models of the RRIS produced by the compiler. The
steps of the simplifier are conservative: the optimized model is equivalent to the
previous one with respect to the observable variables, i.e., the ones which can
be included in a property to verify.

6.1 Equivalence propagation

Due to the compositional approach, the variables involved in the invariants of
the circuits are highly redundant. Current and voltage variables are exposed by
all component terminals and are strongly interconnected by Kirchhoff laws. For
this reason, the first simplification step tries to reduce the number of variables by
inlining equivalences. Namely, we clusterize the real variables into equivalence
classes, propagating the equivalences that can be inferred syntactically from
atoms of the form x = y or x + y = 0. Variables are substituted with a unique
representative element for their equivalence class, and clusterization is repeated
until fixpoint.

6.2 Abstracting electrical variables

The variables occurring in the invariant of each module of the network (cir-
cuits, environment or stub) can be classified exploiting the information about
the topology as follows.

– Input variables I: boolean variables possibly defined in other circuits used to
model the open / closed condition of a switch. Each configuration of these
variables correspond to a discrete mode of the circuit.

– State variables including: real-valued clock variables C, used to model timers
inside components; history boolean variables H, needed in some component
to keep track of the previous state; all the real-valued electrical variables E
used for the values of current and voltage in each terminal.

– Output variables including: boolean variables representing the exposed mas-
ter outputs Q, such as the status of a coil; real-valued probes P . Probes are
added to the circuit to pin the points in which one would like to read the
values of current or voltages.

We simplify the model by removing the electrical variables which are only
needed to establish a binding from the switches to the relays and probes. As
a matter of fact, the input and output variables are the only observable ones,
i.e., they can be used in the specifications to verify. This simplification step is
based on the fact that electrical variables do not evolve during timed transitions.

NORMA: a tool for the analysis of Relay-based RIS 135

Pseudocode 1 Removal of electrical variables from the network
function remove-electrical-vars(N = ({Ci}, R))

for all Ci do
classify vars in Invari(I, C,H,E,Q, P)
Invari := determinize-vars(Invari);
Invari := quantify-electrical-vars(Invari);

function determinize-vars(Invar(I, C,H,E,Q, P))
if sat (Invar ∧ Invar[Q / Q′] ∧ (Q 6= Q′)) then . Check boolean outputs

throw error: Q variables are non-deterministic.
ψ := Invari ∧ Invari[E / E′, P / P ′] . Check real vars
for all x ∈ (E ∪ P) do

if sat (ψ ∧ (x 6= x′)) then
throw warning: variable x is non-deterministic
if x ∈ P then

Invar := Invar ∧ get-default-con(x)
return Invar

function quantify-electrical-vars(Invar)
DefC :=

{
bα(c) ↔ α(c) | c ∈ C,α(c) ∈ atoms(Invar)

}
DefP :=

{
b(p=v) ↔ (p = v) | p ∈ P, v ∈ get-values(Invar, p)

}
Invar′ := Invar ∧ DefC ∧ DefP
φ := qelim (∃E,C, P . Invar′)
Invar(I, C,H,Q, P) := φ[b(p=v) / (p = v), . . . , bα(c) / α(c), . . .]
return Invar

In fact, the continuous evolution of currents and voltages (e.g., the exponential
dynamic of the charging process of a capacitor) is pragmatically abstracted in
the modeling of the components using clock variables, which define lower and
upper time bounds connecting two stationary conditions (e.g. no vs full charge).
It follows that the electrical variables should be uniquely determined by the
discrete modes, and that the outputs (Q and P) are function of only the inputs
I, clocks C and history variables H.

Function remove-electrical-vars reported in Pseudocode 1, firstly checks
and solves the non-determinism of the outputs, then quantifies out the electrical
variables. Observe that circuits can be analyzed independently and in parallel.

Solving non-determinism. In a purely theoretical setting, Kirchhoff laws
may actually allow unconstrained electrical variables. For example, current can
separate non-deterministically in a branching node if the wires of a loop have
no load; similarly, the voltage of a terminal which is neither connected neither
to a ground nor to a power source is non-deterministic. Non-determinism of real
variables is an issue only if variables in P are affected, e.g. in case we verify
that an unpowered terminal has always a null value. Nonetheless, reporting all
the non-deterministic real-valued variables (including the ones in E) is a very
important checker for the validation of the model: if many non-deterministic

A. Amendola et al.136

checkout
commit

use

Norma

Create/Remove projects, Add/Remove documents and images
Support graphical editing of RRIS through a palette of components
Support traceability between modeled RRIS and regulatory docs
Handle interaction with the remote repository
Support syntactic checking of the modeled circuits
Support the compilation of the simplified SMV model

create/manage/delete projects
discuss/assept/reject contribs

Administrator

Create/Manage/Delete projects
Add/Remove images
Add/Remove traceability docs
Discuss/Accept/Reject contribs

Modeler

Checkout/Submit contribs
Model RRIS
Add/Remove/Edit Traceability data
Run syntactic checks

Analyser

Edit stubs
Compile simplified SMV model
Edit formal properties
Perfom model checking

nuXmv

Process formal models
Process formal invairant and temporal properties
Perform model checking

Git/Gitlab

Host projects/users/repositories
Handle user issues
Handle user contribs

discuss issues

add/remove
images/docs

compile

trace
check

remote git
repository

local git
repository

read SMV
model

read/write

Traces

model check

generate

generate

model

pySMT

Construct formulae
Interact w/ Mathsat

use

Fig. 4. System level architecture of Norma

variables are found in a circuit, then it is possible that a connection has been
missed during the manual modeling.

Function determinize-vars checks that the boolean outputs are uniquely
defined and reports to the user the set of non-deterministic real-valued variables.
For non-deterministic probes, it also enriches the invariant assigning a default
unique value (e.g., the null value for potentials) for the configurations of inputs
in which they are under-specified.

Removing electrical variables. We want to compute Invar′(I, C,H,Q, P)
.
=

∃E . Invar, where the real-valued variables C and P are preserved. In order
to avoid a possibly expensive geometric projection [14], function quantify-
electrical-vars initially builds a boolean encoding for them, that enables the
use of more efficient All-SMT quantifier elimination [13].

For clock variables we add a boolean variable bα(c) for every linear constraint
α(c) ∈ atoms(Invar) involving a c ∈ C.

Probe variables, instead, occur in atoms mixed with other electrical variables
that are to be quantified. Thanks to the previous determinization step, we know
that each variable p ∈ P can assume a finite number of values, induced by the
finite configurations of the inputs. Therefore, a boolean encoding for p is obtained
by enumerating the values that it can have in Invar with function get-values.

After the projection is performed on a purely boolean target, the original C
and P are recovered by substituting the boolean hooks with the corresponding
atoms.

7 Software architecture

At system level Norma interacts with several entities (Fig. 4). Norma is built
on top of Dia [2], a mature open source program for drawing diagrams. To han-
dle the interactions with the remote repository, Norma uses Git [1] and Git-
Lab [4]. To perform the SMV model simplification task Norma uses nuXmv [7]
and pySMT [10]. The traceability block is implemented by using Poppler [3]

NORMA: a tool for the analysis of Relay-based RIS 137

as backend for visualizing and annotating PDF documents. The domain-specific
palette is automatically generated out of a set of tables filled in by the do-
main experts . These tables contain logical constraints over base components
and specifiers, such as their graphical aspects, compatibility matrices, physical
properties, admissible terminal configurations, orientation constraints, etc. Base
components and specifiers are combined into a generated palette of over five
thousand component types that can be directly read by Dia.

Norma is the result of about 2 years development, with a team of 2 to 4
person/year. Extensions made on top of Dia are implemented in C and Python,
for a total of about 20KLOC. The compiler is implemented in Python and counts
about 10KLOC. Norma is developed with an agile process, adopting continuous
integration, feedback and testing from domain experts, and formal verification of
the model library. Norma is a proprietary software and is currently not licensed
to third parties.

8 Experimental Evaluation

Norma has been used for several months by a team of 3 domain experts to
model several schematics of the Italian railway logic. For this experimental eval-
uation, we consider two reference schemas: r-switch and routes48. r-switch
is a complete RRIS controlling a railway switch; it represents a general net-
work which is replicated and connected to other schemas. routes48 describes
the route formation for a medium sized interlocking station, with 48 shunting
routes. Each route is associated to a button and can be enabled/disabled by a
human operator.

Modeling support. The considered schemas include thousands of interconnected
components and several units. The modeling activity in Norma took approxi-
mately 1 person/week for each RRIS. Several further iterations were required.
The checkers implemented within the graphical interface were able to immedi-
ately report to the user syntactic errors, like dangling terminals or misspelled
names. Subsequent analyses, like the classification of the circuits variables and
the checks of deterministic outputs, pinpointed several errors that had been
missed by the syntactic checks: swap of identifiers between components (result-
ing in wrong logical connections between master and slaves), missing connec-
tions in n-ary junctures, and wrong initial condition for switches. The fixes were
validated by examining simulations and by verifying basic properties on the
corresponding SMV model.

Stubs and assumptions also proved very useful in modeling. RRIS routes48
is connected to 11 railway switches, which have been excluded from the model-
ing and abstracted by a stub. Assumptions on their behaviour were expressed in
tabular format, and automatically imported in Norma by way of a dedicated
conversion module. Assumptions were also used to specify typical scenarios con-
straining the actions of the human operator. RRIS r-switch is attached to a
stub which abstracts the behaviour of some physical entities in both nominal
and faulty modalities.

A. Amendola et al.138

Table 1. Effects of the simplifications on the number of real-valued variables and
times (in seconds) spent in each phase.

simplifier
compiler load inliner E removal

RRIS #comps #circuits #bools #reals time time #reals time #reals time
r-switch 185 16 94 1362 2 7 325 6 6 26
routes48 691 13 580 8397 14 205 1467 188 1170 21
routes02 51 7 40 642 2 2 108 2 5 1
routes04 95 8 74 1220 3 5 214 5 8 4
routes06 149 9 102 1935 3 12 337 11 124 12
routes12 210 9 139 2629 3 20 473 19 347 3

Effectiveness of Simplifications. In Table 1 we evaluate the impact of the sim-
plification steps on the analyzed RRIS, including a set of handcrafted scaled
versions of routes48, which control a reduced number of routes.

Column “compiler” shows the features of the obtained SMV models in terms
of the number of components, circuits, boolean and real-valued variables, to-
gether with the time spent for the compilation. Column “load” reports the time
spent for the untiming (with timed nuXmv [9]) and the conversion to pySMT
formulae. Column “inliner” shows the effects of the propagation of equivalences,
which drastically reduces the number of real variables. Column “E removal” cor-
responds to both the determinization and the quantification of the real variables.
While the determinization check is always performed, in these experiments we
heuristically enable the removal of electrical variables circuit-wise, depending on
the number of input variables. As a result, the un-needed electrical variables were
fully removed only in the smaller circuits. In RRIS such as r-switch, routes02
and routes04, we obtained a simplified model where the left real-valued vari-
ables are only clocks and probes. Finally, observe that the reported time for this
simplification steps corresponds to the sequential analysis of each circuit, which
are independent of each other and could be parallelized. Despite this, the per-
formance of the tool was considered to be adequate, given the strong support in
pinpointing modeling errors.

Verification. We verified the obtained SMV models against a set of domain
dependent specifications. For RRIS r-switch we consider 16 safety properties
describing how the switch changes in response to commands, for both the nom-
inal and faulty stub modalities. RRIS routes48 implements a controlling logic
which avoids that two incompatible routes are enabled simultaneously: incom-
patibilities are checked with a system of lockings of the railway switches shared
by concurrent routes. An incompatibility table represents which pairs of routes
can be sequentially activated. The table is not symmetric, as the incompatibility
relation depends on the activation order. Thanks to the simplifications, we were
able to model check all the 2256 entries, proving both safety (incompatible pairs)
and liveness (compatible pairs) properties.

Fig. 5 shows the impact of the simplification steps on the model checking
times for the verification of r-switch (on the left hand side) and routes48 (on
the right hand side). For the latter, we consider 105 queries tackled with IC3

NORMA: a tool for the analysis of Relay-based RIS 139

Fig. 5. Effect of the simplifications on the model checking times.

and 91 queries tackled with BMC under 1 hour timeout. Only 17 IC3 instances
encountered this threshold with the simplified model, against the 50 time outs
of the original model, for both IC3 and BMC.

9 Conclusions

In this paper we presented Norma, a tool for the modeling and formal analysis
of relay-based railway interlocking systems (RRIS). Norma allows to graphically
represent the wide class of RRIS of the Italian railway network, and provides
various checks to ease the task of the modeler. Furthermore, it provides an op-
timized compilation to the input language of timed nuXmv, that converts the
RRIS into a symbolic infinite-state timed transition system. This enables sim-
ulation and effective model checking of temporal properties. The experimental
results clearly demonstrate the effectiveness of the simplification techniques. The
tool is also shown to provide strong feedback to the user to support debugging
in the modeling process.

Norma is being extensively used within RFI. Despite the support provided
to the modelers, the sheer size of real-world RRIS results in a very high human
modeling effort. We are currently experimenting with deep learning techniques
to automate – at least partially – the modeling step. In this setting, the formal
analysis capabilities will be fundamental to detect misclassified samples. In the
future, we will work on obtaining high-coverage test suites for RRIS, to improve
testing of computer-based RIS. We will also explore compositional contract-
based reasoning to reduce the computation time of model checking, and provide
clear interfaces between RRIS modules. A tighter integration of the simulation
capabilities within the tool front-end is also planned.

A. Amendola et al.140

References

1. Git: A free and open source distributed version control system. https://git-scm.
com/

2. Dia: A GTK+ based diagram creation program. https://gitlab.gnome.org/
GNOME/dia

3. Poppler: a PDF rendering library. https://poppler.freedesktop.org/
4. GitLab: A web-based DevOps lifecycle tool. https://gitlab.com/
5. De Almeida Pereira, D.I., Déharbe, D., Perin, M., Bon, P.: B-specification of relay-

based railway interlocking systems based on the propositional logic of the system
state evolution. In: RSSRail. Lecture Notes in Computer Science, vol. 11495, pp.
242–258. Springer (2019)

6. Amendola, A., Becchi, A., Cavada, R., Cimatti, A., Griggio, A., Scaglione, G., Susi,
A., Tacchella, A., Tessi, M.: A model-based approach to the design, verification
and deployment of railway interlocking system. In: ISoLA (3). Lecture Notes in
Computer Science, vol. 12478, pp. 240–254. Springer (2020)

7. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification. pp. 334–342. Springer Interna-
tional Publishing, Cham (2014)

8. Cavada, R., Cimatti, A., Mover, S., Sessa, M., Cadavero, G., Scaglione, G.: Analysis
of relay interlocking systems via SMT-based model checking of switched multi-
domain kirchhoff networks. In: FMCAD. pp. 1–9. IEEE (2018)

9. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with timed transition systems and timed temporal properties. In: CAV (1). Lecture
Notes in Computer Science, vol. 11561, pp. 376–386. Springer (2019)

10. Gario, M., Micheli, A., Kessler, F.B.: PySMT: a solver-agnostic library for fast
prototyping of SMT-based algorithms

11. Haxthausen, A.E., Kjær, A.A., Bliguet, M.L.: Formal development of a tool for
automated modelling and verification of relay interlocking systems. In: FM. Lecture
Notes in Computer Science, vol. 6664, pp. 118–132. Springer (2011)

12. James, P., Moller, F., Nga, N.H., Roggenbach, M., Schneider, S.A., Treharne, H.:
Techniques for modelling and verifying railway interlockings. Int. J. Softw. Tools
Technol. Transf. 16(6), 685–711 (2014)

13. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate
abstraction. In: CAV. Lecture Notes in Computer Science, vol. 4144, pp. 424–437.
Springer (2006)

14. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993)

15. Sun, P., Dutilleul, S.C., Bon, P.: A model pattern of railway interlocking system
by Petri nets. In: MT-ITS. pp. 442–449. IEEE (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

NORMA: a tool for the analysis of Relay-based RIS 141

https://git-scm.com/
https://git-scm.com/
https://gitlab.gnome.org/GNOME/dia
https://gitlab.gnome.org/GNOME/dia
https://poppler.freedesktop.org/
https://gitlab.com/
http://creativecommons.org/licenses/by/4.0/

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

A. Amendola et al.142

Efficient Neural Network Analysis with
Sum-of-Infeasibilities

Haoze Wu1� , Aleksandar Zeljić1 , Guy Katz2 , and Clark Barrett1

1 Stanford University, Stanford, USA
2 The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract. Inspired by sum-of-infeasibilities methods in convex optimiza-
tion, we propose a novel procedure for analyzing verification queries on
neural networks with piecewise-linear activation functions. Given a convex
relaxation which over-approximates the non-convex activation functions,
we encode the violations of activation functions as a cost function and
optimize it with respect to the convex relaxation. The cost function,
referred to as the Sum-of-Infeasibilities (SoI), is designed so that its mini-
mum is zero and achieved only if all the activation functions are satisfied.
We propose a stochastic procedure, DeepSoI, to efficiently minimize the
SoI. An extension to a canonical case-analysis-based complete search
procedure can be achieved by replacing the convex procedure executed
at each search state with DeepSoI. Extending the complete search with
DeepSoI achieves multiple simultaneous goals: 1) it guides the search
towards a counter-example; 2) it enables more informed branching deci-
sions; and 3) it creates additional opportunities for bound derivation. An
extensive evaluation across different benchmarks and solvers demonstrates
the benefit of the proposed techniques. In particular, we demonstrate
that SoI significantly improves the performance of an existing complete
search procedure. Moreover, the SoI-based implementation outperforms
other state-of-the-art complete verifiers. We also show that our technique
can efficiently improve upon the perturbation bound derived by a recent
adversarial attack algorithm.

Keywords: neural networks · sum of infeasibilities · convex optimization
· stochastic local search.

1 Introduction

Neural networks have become state-of-the-art solutions in various application
domains, e.g., face recognition, voice recognition, game-playing, and automated
piloting [47,30,55,7]. While generally successful, neural networks are known to be
susceptible to input perturbations that humans are naturally invariant to [61,41].
This calls the trustworthiness of neural networks into question, particularly in
safety-critical domains.

In recent years, there has been a growing interest in applying formal methods
to neural networks to analyze certain robustness or safety specifications [43]. Such
specifications are often defined by a collection of partial input/output relations:

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 143–163, 2022.
https://doi.org/10.1007/978-3-030-99524-9_8

mailto:haozewu@stanford.edu
http://orcid.org/0000-0002-5077-144X
http://orcid.org/0000-0003-0673-9327
http://orcid.org/0000-0001-5292-801X
http://orcid.org/0000-0002-9522-3084
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_8

H. Wu et al.

e.g., the network uniformly and correctly classifies inputs within a certain distance
(in some lp norm) of a selection of input points. The goal of formal verification
is to either prove that the network meets the specification or to disprove it by
constructing a counter-example.

Most standard activation functions in neural networks are non-linear, making
them challenging to reason about. Consider the rectified linear unit (ReLU): if a
ReLU can take both positive and negative inputs, a verifier will typically need
to consider, separately, each of these two activation phases. Naive case analysis
requires exploring a number of combinations that is exponential in the number
of ReLUs, which quickly becomes computationally infeasible for large networks.
To mitigate this complexity, neural network verifiers typically operate on convex
relaxations of the activation functions. The relaxed problem can often be solved
with an efficient convex procedure, such as Simplex [35,23] or (sub-)gradient
methods [51,21]. Due to the relaxation, however, a solution may be inconsistent
with the true activation functions. When this happens, the convex procedure
cannot make further progress on its own. For this reason, to ensure completeness,
the convex procedure is typically embedded in an exhaustive search shell, which
encodes the activation functions explicitly and branches on them when needed.
While the exhaustive search ensures progress, it also brings back the problem
of combinatorial explosion. This raises the key question: can we guide the
convex procedure to satisfy the activation functions without explicitly
encoding them?

In convex optimization, the sum-of-infeasibilities (SoI) [10] function measures
the error (with respect to variable bounds) of a variable assignment. Minimizing
the SoI naturally guides the procedure to a satisfying assignment. In this paper,
we extend this idea to instead represent the error in the non-linear activation
functions. The goal is to “softly” guide the search over the relaxed problem using
information about the precise activation functions. If an assignment is found
for which the SoI is zero, then not only is the assignment a solution for the
relaxation, but it also solves the precise problem. Encoding the SoI w.r.t. the
piecewise-linear activation functions yields a concave piecewise-linear function,
which is challenging to minimize directly. Instead, we propose to minimize the SoI
for individual activation patterns and reduce the SoI minimization to a stochastic
search for the activation pattern where the SoI is minimal. The advantage is that
for each activation pattern, the SoI collapses into a linear cost function, which
can be easily handled by a convex solver. We introduce a specialized procedure,
DeepSoI, which uses Markov chain Monte Carlo (MCMC) search to efficiently
navigate towards activation patterns at the global minimum of the SoI. If the
minimal SoI is ever zero for an activation pattern, then a solution has been found.

An extension to a canonical complete search procedure can be achieved
by replacing the convex procedure call at each search state with the DeepSoI
procedure. Since the SoI contains additional information about the problem, we
propose a novel SoI-aware branching heuristic based on the estimated impact
of each activation function on the SoI. Finally, DeepSoI naturally preserves new
bounds derived during the execution of the underlying convex procedure (e.g.,

144

Efficient Neural Network Analysis with Sum-of-Infeasibilities

Simplex), which further prunes the search space in the complete search. For
simplicity, we focus on ReLU activation functions in this paper, though the
proposed approach can be applied to any piecewise-linear activation function.

We implemented the proposed techniques in the Marabou framework for
Neural Network Analysis [36] and performed an extensive performance evaluation
on a wide range of benchmarks. We compare against multiple baselines and
show that extending a complete search procedure with our SoI-based techniques
results in significant overall speed-ups. Finally, we present an interesting use
case for our procedure — efficiently improving the perturbation bounds found by
AutoAttack [17], a state-of-the-art adversarial attack algorithm.

To summarize, the contributions of the paper are: (i) a technique for guiding
a convex solver with an SoI function w.r.t. the activation functions; (ii) DeepSoI—
a procedure for minimizing the non-linear SoI via the interleaving use of an
MCMC sampler and a convex solver; (iii) an SoI-aware branching heuristic, which
complements the integration of DeepSoI into a case-analysis based search shell;
and (iv) a thorough evaluation of the proposed techniques.

The rest of the paper is organized as follows. Section 2 presents an overview of
related work. Section 3 introduces preliminaries. Section 4 introduces the SoI and
proposes a solution for its minimization. Section 5 presents the analysis procedure
DeepSoI, its use in the complete verification setting, and an SoI-aware branching
heuristic. Section 6 presents an extensive experimental evaluation. Conclusions
and future work are in Section 7.

2 Related Work

Approaches to complete analysis of neural networks can be divided into SMT-
based [35,36,23], reachability-analysis based [5,64,65,29,25], and the more general
branch-and-bound approaches [1,63,24,44,13,37,9]. As mentioned in [14], these
approaches are related, and differ primarily in their techniques for bounding and
branching. Given the computational complexity of neural network verification, a
diverse set of research directions aims to improve performance in practice. Many
approaches prune the search space using tighter convex relaxations and bound infe-
rence techniques [64,23,31,58,56,45,76,70,67,66,20,63,69,52,62,51,73,26,68,59,8,57].
Another direction leverages parallelism by exploiting independent structures in
the search space [48,75,71]. Different encodings of the neural network verification
problems have also been studied: e.g., as MILP problems that can be tackled by
off-the-shelf solvers [63,2], or as dual problems admitting efficient GPU-based
algorithms [12,21,22,19]. DeepSoI can be instantiated with any sound convex
relaxations and matching convex procedures. It can also be installed in any case-
analysis-based complete search shell, therefore integrating easily with existing
parallelization techniques, bound-tightening passes, and branching heuristics.

Two approaches most relevant to our work are Reluplex [35] and Pere-
griNN [37]. Reluplex invokes an LP solver to solve the relaxed problem, and then
updates its solution to satisfy the violated activation functions — with the hope
of nudging the produced solutions towards a satisfying assignment. However,

145

the updated solution by Reluplex could violate the linear relaxation, leading to
non-convergent cycling between solution updates and LP solver calls, which can
only be broken by branching. In contrast, our approach uses information about
the precise activation functions to actively guide the convex solver. Furthermore,
in the limit DeepSoI converges to a solution (if one exists). PeregriNN also uses
an objective function to guide the solving of the convex relaxation. However,
their objective function approximates the ReLU violation and does not guaran-
tee a real counter-example when the minimum is reached. In contrast, the SoI
function captures the exact ReLU violation, and if a zero-valued point is found,
it is guaranteed to be a real counter-example. We compare our techniques to
PeregriNN in Section 6.

We use MCMC-sampling combined with a convex procedure to minimize the
concave piecewise-linear SoI function. MCMC-sampling is a common approach for
stochastically minimizing irregular cost functions that are not amenable to exact
optimization techniques [32,53,3]. Other stochastic local search techniques [54,27]
could also be used for this task. However, we chose MCMC because it is adept at
escaping local optima, and in the limit, it samples more frequently the region
around the optimum value. As one point of comparison, in Section 6, we compare
MCMC-sampling with a Walksat-based [54] local search strategy.

3 Preliminaries

Neural Networks. We define a feed-forward, convolutional, or residual neural
network with k + 1 layers as a set of neurons N , topologically ordered into
layers L0, ..., Lk, where L0 is the input layer and Lk is the output layer. Given
ni, nj ∈ N , we use ni ≺ nj to denote that the layer of ni precedes the layer of nj .
The value of a neuron ni ∈ N\L0 is computed as act i(bi +

∑
nj≺ni

wij ∗ nj), an
affine transformation of the preceding neurons followed by an activation function
act i. We use nbi and nai to represent the pre- and post-activation values of such a
neuron: nai = act i(n

b
i). For ni ∈ L0, nbi is undefined and we assume nai can take

any value. In this paper, we focus on ReLU neural networks. That is, act i is the
ReLU function (ReLU (x) = max(0, x)) unless ni belongs to the output layer Lk,
in which case act i is the identity function. We use R(N) to denote the set of
ReLU neurons in N . An activation pattern is defined by choosing a particular
phase (either active or inactive) for every n ∈ R(N) (i.e., choosing either nbi < 0
or nbi ≥ 0 for each ni ∈ R(N)).
Neural Network Verification as Satisfiability. Consider the verification of
a property P over a neural network N . The property P has the form Pin ⇒ Pout,
where Pin and Pout constrain the input and output layers, respectively. P states
that for each input point satisfying Pin, the output layer satisfies Pout. To
formalize the verification problem, we first define the set of variables in a neural
network N , denoted as Var(N), to be ∪ni∈N\Lk

{nai } ∪ ∪ni∈N\L0
{nbi}. We define

a variable assignment, α : Var(N)→ R, to be a mapping from variables in N to
real values. The verification task thus can be formally stated as finding a variable
assignment α that satisfies the following set of constraints over Var(N) (denoted

H. Wu et al.146

as φ):3

∀ni ∈ N\L0, n
b
i = bi +

∑
nj≺ni

wij ∗ naj (1a)

∀ni ∈ R(N), nai = act i(n
b
i) (1b)

Pin ∧ ¬Pout (1c)

If such an assignment α exists, we say that φ is satisfiable and can conclude
that P does not hold, as from α we can retrieve an input x ∈ Pin, such that
the neural network’s output violates Pout. If such an α does not exist, we say
φ is unsatisfiable and can conclude that P holds. We use α |= φ to denote that
an assignment α satisfies φ. In short, verifying whether P holds on a neural
network N boils down to deciding the satisfiability of φ. We refer to φ also as
the verification query in this paper.
Convex Relaxation of Neural Networks. Deciding whether P holds on a
ReLU network N is NP-complete [35]. To curb intractability, many verifiers
consider the convex (e.g., linear, semi-definite) relaxation of the verification
problem, sacrificing completeness in exchange for a reduction in the computational
complexity. We use φ̃ to denote the convex relaxation of the exact problem φ.
If φ̃ is unsatisfiable, then φ is also unsatisfiable, and property P holds. If the
convex relaxation is satisfiable with satisfying assignment α and α also satisfies
φ, then P does not hold.

nb

na

0 ul

Fig. 1: The Planet relaxation.

In this paper, we use the Planet re-
laxation introduced in [23]. It is a linear
relaxation, illustrated in Figure 1. Each
ReLU constraint ReLU(nb) = na is over-
approximated by three linear constraints:
na ≥ 0, na ≥ nb, and na ≤ u

u−ln
b − u∗l

u−l ,
where u and l are the upper and lower
bounds of nb, respectively (which can be
derived using bound-tightening techniques
such as those in [67,58,76]). If Constraint
1c is also linear, the convex relaxation φ̃ is a Linear Program, whose satisfiability
can be decided efficiently (e.g., using the Simplex algorithm [18]).
Sum-of-Infeasibilities. In convex optimization [10,39], the sum-of-infeasibilities
(SOI) method can be used to direct the feasibility search. The satisfiability of
a formula φ is cast as an optimization problem, with an objective function
representing the total error (i.e., the sum of the distances from each out-of-
bounds variable to its closest bound). The lower bound of f is 0 and is achieved
only if φ is satisfiable. In our context, we use a similar function fsoi , but with
the difference that it represents the total error of the ReLU constraints in φ. In
our case, fsoi is non-convex, and thus a more sophisticated approach is needed
to minimize it efficiently.

3 The verification can also be equivalently viewed as an optimization problem [14].

Efficient Neural Network Analysis with Sum-of-Infeasibilities 147

Complete Analysis via Exhaustive Search. One common approach for
complete verification involves constructing a search tree and calling a convex
procedure solveConv at each tree node, as shown in Algorithm 1. solveConv
solves the convex relaxation φ̃ and returns a pair r, α where either: 1) r = SAT
and α |= φ̃; or 2) r = UNSAT and φ̃ is unsatisfiable. If φ̃ is unsatisfiable or α
also satisfies φ, then the result for φ̃ also holds for φ and is returned. Otherwise,
the search space is divided further using branch, which returns a set Ψ of
sub-problems such that φ and

∨
Ψ are equisatisfiable.

Algorithm 1 Complete search.
1: Input: a verification query φ.
2: Output: SAT/UNSAT
3: function completeSearch(φ)
4: φ← tightenBounds(φ)
5: r, α← solveConv(φ̃)
6: if r = UNSAT ∨ α |= φ then
7: return r
8: for φi ∈ branch(φ) do
9: if completeSearch(φi) = SAT then
10: return SAT
11: return UNSAT

Before invoking solveConv to
solve φ̃, it is common to first
call an efficient bound-tightening
procedure (tightenBounds) to
prune the search space or even
derive UNSAT preemptively. This
tightenBounds procedure can be
instantiated in various ways, in-
cluding with analyses based on
LiPRA [74,76,58,70], kReLU [56], or
PRIMA [49]. In addition to the ded-
icated bound-tightening pass, some
convex procedures (e.g., Simplex) also naturally lend themselves to bound in-
ference during their executions [38,35]. The overall performance of Algorithm 1
depends on the efficacy of bound-tightening, the branching heuristics, and the
underlying convex procedure.
Adversarial attacks. Adversarial attacks [61,46,28,15] are another approach
for assessing neural network robustness. While verification uses exhaustive search
to either prove or disprove a particular specification, adversarial attacks focus on
efficient heuristic algorithms for the latter. From another perspective, they can
demonstrate upper bounds on neural network robustness. In Section 6, we show
that our analysis procedure can improve the bounds found by AutoAttack [17].

4 Sum of Infeasibilities in Neural Network Analysis

In this section, we introduce our SoI function, consider the challenge of its
minimization, and present a stochastic local search solution.

4.1 The Sum of Infeasibilities

As mentioned above, in convex optimization, an SoI function represents the sum
of errors in a candidate variable assignment. Here, we build on this idea by
introducing a cost function fsoi , which computes the sum of errors introduced
by a convex relaxation of a verification query. We aim to use fsoi to reduce the
satisfiability problem for φ to a simpler optimization problem. We will need the
following property to hold.
Condition 1. For an assignment α, α |= φ iff α |= φ̃ ∧ fsoi ≤ 0.

H. Wu et al.148

If Condition 1 is met, then satisfiability of φ reduces to the following mini-
mization problem:

minimize
α

fsoi

subject to α |= φ̃
(2)

To formulate the SoI for ReLU networks, we first define the error in a ReLU
constraint n as:

E(n) = min(na − nb, na) (3)

The two arguments correspond to the error when the ReLU is in the active and
inactive phase, respectively. Recall that the Planet relaxation constrains (nb, na)
in the triangular area in Figure 1, where na ≥ nb and na ≥ 0. Thus, the minimum
of E(n) subject to φ̃ is non-negative, and furthermore, E(n) = 0 iff the ReLU
constraint n is satisfied (this is also true for any relaxation at least as tight as the
Planet relaxation). We now define fsoi as the sum of errors in individual ReLUs:

fsoi =
∑

n∈R(N)

E(n) (4)

Theorem 1. Let N be a set of neurons for a neural network, φ a verification
query (an instance of (1)), and φ̃ the planet relaxation of φ. Then fsoi as given
by (4) satisfies Condition 1.
Proof. It is straightforward to show that fsoi subject to φ̃ is non-negative and is
zero if and only if each E(ni) is zero. That is, min fsoi subject to φ̃ is zero if and
only if all ReLUs are satisfied. Therefore, if α satisfies φ, then α |= fsoi = 0. On
the other hand, since an assignment α that satisfies φ̃ can only violate the ReLU
constraints in φ, if α |= fsoi = 0, then all the constraints in φ must be satisfied,
i.e., α |= φ.

Note that the error E, and its extension to SoI, can easily be defined for
other piecewise-linear functions besides ReLU. We now turn to the question of
minimizing fsoi . Observe that

min fsoi = min
∑

n∈R(N)

E(n) = min
({
f | f =

∑
ni∈R(N)

ti, ti ∈ {nai − nbi , nai }
})
.

(5)
Thus, fsoi is the minimum over a set, which we will denote Ssoi , of linear
functions. Although min fsoi cannot be used directly as an objective in a convex
procedure, we could minimize each individual linear function f ∈ Ssoi with a
convex procedure and then keep the minimum over all functions. We refer to
the functions in Ssoi as phase patterns of fsoi . For notational convenience, we
define cost(f, φ) to be the minimum of f subject to φ. The minimization problem
(2) can thus be restated as searching for the phase pattern f ∈ Ssoi , where
cost(f, φ̃) is minimal. Note that for a particular activation pattern, fsoi = f for
some f ∈ Ssoi . From this perspective, searching for the f ∈ Ssoi where cost(f, φ̃)
is minimal can also be viewed as searching for the activation pattern where the
global minimum of fsoi is achieved.

Efficient Neural Network Analysis with Sum-of-Infeasibilities 149

4.2 Stochastically Minimizing the SoI with MCMC Sampling

In the worst case, finding the minimal value of cost(f, φ̃) requires enumerating
and minimizing each f in Ssoi (or equivalently, minimizing fsoi for each activation
pattern), which has size 2|R(N)|. However, importantly, the search can terminate
immediately if a phase pattern f is found such that cost(f, φ̃) = 0. We leverage
this fact below. Note that each phase pattern has |R(N)| adjacent phase patterns,
each differing in only one linear subexpression. The space of phase patterns is
thus fairly dense, making it amenable to traversal using stochastic local search
methods. In particular, intelligent hill-climbing algorithms, which can be made
robust against local optima, are well suited for this task.

Markov chain Monte Carlo (MCMC) [11] methods are such an approach.
In our context, MCMC methods can be used to generate a sequence of phase
patterns f0, f1, f2... ∈ Ssoi , with the desirable property that in the limit, the
phase patterns are more frequently from the minimum region of cost(f, φ̃).

We use the Metropolis-Hastings (M-H) algorithm [16], a widely applicable
MCMC method, to construct the sequence. The algorithm maintains a current
phase pattern f and proposes to replace f with a new phase pattern f ′. The
proposal comes from a proposal distribution q(f ′|f) and is accepted with a certain
acceptance probability m(f→f ′). If the proposal is accepted, f ′ becomes the new
current phase pattern. Otherwise, another proposal is considered. This process is
repeated until one of the following scenarios happen: 1) a phase pattern f is chosen
with cost(f, φ̃) = 0; 2) a predetermined computational budget is exhausted; or 3)
all possible phase patterns have been considered. The last scenario is generally
infeasible for non-trivial networks. In order to employ the algorithm, we transform
cost(f, φ̃) into a probability distribution p(f) using a common method [34]:

p(f) ∝ exp(−β · cost(f, φ̃))

where β is a configurable parameter. If the proposal distribution is symmetric
(i.e., q(f |f ′) = q(f ′|f)), the acceptance probability is the following (often referred
to as the Metropolis ratio) [34]:

m(f→f ′) = min(1,
p(f ′)

p(f)
) = min

(
1, exp

(
− β ·

(
cost(f ′, φ̃)− cost(f, φ̃)

)))
Importantly, under this acceptance probability, a proposal reducing the value of
the cost function is always accepted, while a proposal that does not may still be
accepted (albeit with a probability that is inversely correlated with the increase
in the cost). This means that the algorithm always greedily moves to a lower cost
phase pattern whenever it can, but it also has an effective means for escaping
local minima. Note that since the sample space is finite, as long as the proposal
strategy is ergodic,4 in the limit, the probability of sampling every phase pattern
(therefore deciding the satisfiability of φ) converges to 1. However, we do not
4 A proposal strategy is ergodic if it is capable of transforming any phase pattern
to any other through a sequence of applications. We use a symmetric and ergodic
proposal distribution as explained in Section 5.1.

H. Wu et al.150

have formal guarantees about the convergence rate, and it is usually impractical
to prove unsatisfiability this way. Instead, as we shall see in the next section, we
enable complete verification by embedding the M-H algorithm in an exhaustive
search shell.

5 The DeepSoI Algorithm

In this section, we introduce DeepSoI, a novel verification algorithm that leverages
the SoI function, and show how to integrate it with a complete verification
procedure. We also discuss the impact of DeepSoI on complete verification and
propose an SoI-aware branching heuristic.

5.1 DeepSoI

Algorithm 2 Analyzing φ with DeepSoI.
1: Input: A verification query φ.
2: Output: SAT/UNSAT/UNKNOWN
3: function DeepSoI(φ)
4: r, α0 ← solveConv(φ̃)
5: if r = UNSAT ∨ α0 |= φ then return r, α0

6: k, f ← 0, initPhasePattern(α0)
7: α, c← optimizeConv(f, φ̃)
8: while c > 0 ∧ ¬ exhausted() ∧ k < T do
9: f ′ ← propose(f)
10: α′, c′ ← optimizeConv(f ′, φ̃)
11: if accept(c, c′) then f, c, α← f ′, c′, α′

12: else k ← k + 1

13: if c = 0 then return SAT, α
14: else return exhausted() ? UNSAT : UNKNOWN

Phs. I

Phs. II

Our procedure DeepSoI,
shown in Algorithm 2,
takes an input verifica-
tion query φ and tries
to determine its sat-
isfiability. DeepSoI fol-
lows the standard two-
phase convex optimiza-
tion approach. Phase I
finds some assignment
α0 satisfying φ̃, and
phase II attempts to opti-
mize the assignment us-
ing the M-H algorithm.
Phase II uses a convex
optimization procedure
optimizeConv which takes an objective function f and a formula φ as in-
puts and returns a pair α, c, where α |= φ and c = cost(f, φ) is the optimal
value of f . Phase II chooses an initial phase pattern f based on α0 (Line 6) and
computes its optimal value c. The M-H algorithm repeatedly proposes a new
phase pattern f ′ (Line 9), computes its optimal value c′, and decides whether to
accept f ′ as the current phase pattern f . The procedure returns SAT when a phase
pattern f is found such that cost(f, φ̃) = 0 and UNSAT if all phase patterns have
been considered (exhausted returns true) before a threshold of T rejections is
exceeded. Otherwise, the analysis is inconclusive (UNKNOWN).

The accept method decides whether a proposal is accepted based on the
Metropolis ratio (see Section 4). Function initPhasePattern proposes the
initial phase pattern f induced by the activation pattern corresponding to
assignment α0. Our proposal strategy (propose) is also simple: pick a ReLU n
at random and flip its cost component in the current phase pattern f (either
from na − nb to na, or vice-versa). This proposal strategy is symmetric, ergodic,

Efficient Neural Network Analysis with Sum-of-Infeasibilities 151

and performs well in practice. Both the initialization strategy and the proposal
strategy are crucial to the performance of the M-H Algorithm, and exploring more
sophisticated strategies is a promising avenue for future work. Importantly, the
same convex procedure is used in both phases. Therefore, from the perspective
of the convex procedure, DeepSoI solves a sequence of convex optimization
problems that differ only in the objective functions, and each problem can be
solved incrementally by updating the phase pattern without the need for a restart.

5.2 Complete Analysis and Pseudo-impact Branching

To extend a canonical complete verification procedure (i.e., Algorithm 1), its
solveConv call is replaced with DeepSoI. Note that the implementation of
branch in this algorithm has a significant influence on its performance. Here,
we consider an SoI-aware implementation of branch, which makes decisions by
selecting a particular ReLU to be active or inactive. The choice of which ReLU
is crucial. Intuitively, we want to branch on the ReLU with the most impact on
the value of fsoi . After branching, DeepSoI should be closer to either: finding
a satisfying assignment (if fsoi is decreased), or determining unsatisfiability (if
fsoi is increased). Computing the exact impact of each ReLU n on fsoi would be
expensive; however, we can estimate it by recording changes in fsoi during the
execution of DeepSoI.

Concretely, for each ReLU n, we maintain its pseudo-impact,5 PI(n), which
represents the estimated impact of n on fsoi . For each n, PI(n) is initialized to
0. Then during the M-H algorithm, whenever the next proposal flips the cost
component of ReLU n, we calculate the local impact on fsoi : ∆ = |cost(f, φ̃)−
cost(f ′, φ̃)|. We use ∆ to update the value of PI(n) according to the exponential
moving average (EMA): PI(n) = γ ∗ PI(n) + (1 − γ) · ∆, where γ attenuates
previous estimates of n’s impact. We use EMA because recent estimates are
more likely to be relevant to the current phase pattern. At branching time,
the pseudo-impact heuristic picks argmaxnPI(n) as the ReLU to split on. The
heuristic is inaccurate early in the search, so we use a static branching order
(e.g., [71,13]) while the depth of the search tree is shallow (e.g., < 3).

6 Experimental Evaluation

In this section, we present an experimental evaluation of the proposed techniques.
Our experiments include: 1. an ablation study to examine the effect of each pro-
posed technique; 2. a run-time comparison of our prototype with other complete
analyzers; 3. an empirical study of the choice of the rejection threshold T in
Algorithm 2; and 4. an experiment in using our analysis procedure to improve the
perturbation bounds found by AutoAttack [17], an adversarial attack algorithm.
An artifact with which the results can be replicated is available on Zenodo [72].

5 The name is in analogy to pseudo-cost branching heuristics in MILP, where the
integer variable with the largest impact on the objective function is chosen [6].

H. Wu et al.152

6.1 Implementation.

We implemented our techniques in Marabou [36], an open-source toolbox for
analyzing Neural Networks. It features a user-friendly python API for defining
properties and loading networks, and a native implementation of the Simplex
algorithm. Besides the Markov chain Monte Carlo stochastic local search algorithm
presented in Section 5.1 and the pseudo-impact branching heuristic presented in
Section 5.2, we also implemented a Walksat-inspired [54] stochastic local search
strategy to evaluate the effectiveness of MCMC-sampling as a local minimization
strategy. Concretely, from a phase pattern f , the strategy greedily moves to a
neighbor f ′ of f , with cost(f ′, φ̃) < cost(f, φ̃). If no such f ′ exists (i.e., a local
minimum has been reached), the strategy moves to a random neighbor.

The solveConv and optimizeConv methods in Algorithm 2 can be instan-
tiated with either the native Simplex engine of Marabou or with Gurobi, an
off-the-shelf (MI)LP-solver. The tightenBounds method is instantiated with
the DeepPoly analysis from [58], an effective and light-weight bound-tightening
pass, which is also implemented in Marabou.

6.2 Benchmarks.

We evaluate on networks from four different applications: MNIST, CIFAR10,
TaxiNet, and GTSR. The network architectures are shown in Table 2.

Bench. Model Type ReLUs Hid. Layers

MNIST MNIST1 FC 512 2
MNIST2 FC 1024 4
MNIST3 FC 1536 6

TaxiNet Taxi1 Conv 688 6
Taxi2 Conv 2048 4
Taxi3 Conv 2752 6

CIFAR10 CIFAR10b Conv 1226 4
CIFAR10w Conv 4804 4
CIFAR10d Conv 5196 6

GTSR GTSR1 FC 600 3
GTSR2 Conv 2784 4

Fig. 2: Architecture overview.

The MNIST [42] and CIFAR10 [40] net-
works are established benchmarks used
in previous literature (e.g., [19,37,71,75])
as well as in the 2021 VNN Competi-
tion [4]. Notably, the same MNIST net-
works are used to evaluate the original
PeregriNN work.

For MNIST and CIFAR10 networks,
we check robustness against targeted
l∞ attacks on randomly selected images
from the test sets. The target labels are
chosen randomly from the incorrect la-
bels, and the perturbation bound is sam-
pled uniformly from {0.01, 0.03, 0.06, 0.09, 0.12, 0.15}. The TaxiNet [33] bench-
mark set comprises robustness queries over regression models used for vision-based
autonomous taxiing. Given an image of the taxiway captured by the aircraft, the
model predicts its displacement (in meters) from the center of the taxiway. A
controller uses the output to adjust the heading of the aircraft. Robustness is
parametrized by input perturbation δ and output perturbation ε; we sample (δ, ε)
uniformly from {0.01, 0.03, 0.06} × {2, 6}. The GTSR benchmark set comprises
robustness queries on image classifiers trained on a subset of the German Traffic
Sign Recognition benchmark set [60]. Given a 32× 32 RGB image the networks
classify it as one of seven different kinds of traffic signs. A hazing perturbation [50]
drains color from the image to create a veil of colored mist. Given an image I, a

Efficient Neural Network Analysis with Sum-of-Infeasibilities 153

Bench. (#) MILPMIPVerify LPsnc SOIsncmcmc SOIpimcmc SOI
pi
wsat

Solv. Time Solv. Time Solv. Time Solv. Time Solv. Time

MNIST1 (90) 77 19791 47 6892 66 5635 70 5976 68 5388
MNIST2 (90) 29 6125 24 514 36 4356 31 757 31 909
MNIST3 (90) 23 957 21 1609 34 9519 35 8327 33 5270

Taxi1 (90) 90 786 61 9054 80 4257 89 1390 90 1489
Taxi2 (90) 40 17093 2 891 70 5503 71 6889 71 7407
Taxi3 (90) 89 5058 64 69715 87 1034 88 2164 87 997

CIFAR10b (90) 76 4316 26 7425 69 6286 73 16469 69 5200
CIFAR10w (90) 38 9879 18 845 41 4619 42 8129 42 6415
CIFAR10d (90) 30 4198 21 3395 51 17679 51 15056 51 15015

GTSR1 (90) 90 2541 90 2435 89 4900 90 15238 90 4805
GTSR2 (90) 90 23613 90 4456 90 7507 90 10426 90 6180

Total (990) 673 94354 463 107230 711 71294 730 90822 721 59073

Table 1: Instances solved by different configurations and their runtime (in seconds)
on solved instances.

perturbation parameter ε, and a haze color Cf , the perturbed image I ′ is equal
to (1− ε) · I + ε ·Cf . The robustness queries check whether the bound yielded by
the test-based method in [50] is minimal.All pixel values are normalized to [0, 1],
and the chosen perturbation values yield a mix of non-trivial SAT and UNSAT
instances.

6.3 Experimental Setup.

Experiments are run on a cluster equipped with Intel Xeon E5-2637 v4 CPUs
running Ubuntu 16.04. Unless specified otherwise, each job is run with 1 thread,
8GB memory, and a 1-hour CPU timeout. By default, the solveConv and
optimizeConv methods use Gurobi. The following hyper-parameters are used:
the rejection threshold T in Algorithm 2 is 2; the discount factor γ in the EMA
is 0.5; and the probability density parameter β in the Metropolis ratio is 10.
These parameters are empirically optimal on a subset of MNIST benchmarks.
In practice, the performance is most sensitive to the rejection threshold T , and
below (Section 6.6), we conduct experiments to study its effect.

6.4 Ablation study of the proposed techniques.

To evaluate each individual component of our proposed techniques, we run several
configurations across the full set of benchmarks described above.

We first consider two baselines that do not minimize the SoI: 1. LPsnc— runs
Algorithm 1 with the Split-and-Conquer (SnC) branching heuristic [71], which
estimates the number of tightened bounds from a ReLU split; 2. MILPMIPVerify—
encodes the query in Gurobi using MIPVerify’s MILP encoding [63].6

We then evaluate three configurations of SoI-based complete analysis parame-
terized by the branching heuristic and the SoI-minimization algorithm: 1. SOIsncmcmc—
6 This configuration does not use the LP/MILP-based preprocessing passes from
MIPVerify [63] because they degrade performance on our benchmarks.

H. Wu et al.154

Bench. (#) SOIpimcmc PeregriNN ERAN1 ERAN2

Solv. Time Solv. Time Solv. Time Solv. Time

MNIST1 (90) 70 5976 64 11117 76 18679 75 19520
MNIST2 (90) 31 757 31 2287 28 1910 28 3126
MNIST3 (90) 35 8327 26 2344 24 1538 24 3292

Taxi1 (90) 89 1390 - - 90 1653 90 3262
Taxi2 (90) 71 6889 - - 40 16460 35 31778
Taxi3 (90) 88 2164 - - 88 1389 88 4581

CIFAR10b (90) 73 16469 - - 77 4604 77 14269
CIFAR10w (90) 42 8129 - - 41 14403 37 14453
CIFAR10d (90) 51 15056 - - 31 7587 26 5245

GTSR1 (90) 90 15238 - - 90 2023 90 32585
GTSR2 (90) 90 10426 - - 78 77829 75 81232

Total (990) 730 90822 - - 663 148075 645 213343

Table 2: Instances solved by different complete verifiers and their runtime (in
seconds) on solved instances.

runs DeepSoI with the SnC branching heuristic; 2. SOIpimcmc— runs DeepSoI with
the pseudo-impact (PI) heuristic; 3. SOIpiwsat— runs the Walksat-based algorithm
with the PI heuristic. Each SoI configuration differs in one parameter w.r.t. the
previous, so that pair-wise comparison highlights the effect of that parameter.

Table 1 summarizes the runtime performance of different configurations on
the four benchmark sets. The three configurations that minimize the SoI, namely
SOI

pi
mcmc, SOIpiwsat and SOIsncmcmc, all solve significantly more instances than the two

baseline configurations. In particular, SOIsncmcmc solves 248 (53.4%) more instances
than LPsnc. Since all configurations start with the same variable bounds derived
by the DeepPoly analysis, the performance gain is mainly due to the use of SoI.

Among the three SoI configurations, the one with both pi and mcmc solves the
most instances. In particular, it solves 8 more instances than SOI

pi
wsat, suggesting

that MCMC sampling is, overall, a better approach than the Walksat-based
strategy. On the other hand, SOIpimcmc and SOIsncmcmc show complementary behaviors.
For instance, the latter solves 5 more instances on MNIST1, and the former
solves 11 more on the Taxi benchmarks. This motivates a portfolio configuration
SOIportfolio,which runs SOIpimcmc and SOIsncmcmc in parallel. This strategy is able to
solve 742 instances overall with a 1-hour wall-clock timeout, yielding a gain of at
least 12 more solved instances compared with any single-threaded configuration.

6.5 Comparison with other complete analyzers.

In this section, we compare our implementation with other complete analyzers.
We first compare with PeregriNN, which as described in Section 2 introduces a
heuristic cost function to guide the search. We evaluate PeregriNN on the MNIST

networks, the same set of networks used in its original evaluation. We did not
run PeregriNN on the other benchmarks because it only supports .nnet format,
which is designed for fully connected feed-forward ReLU networks.

In addition, we also compare with ERAN, a state-of-the-art complete analyzer
based on abstract interpretation, on the full set of benchmarks. ERAN is often
used as a strong baseline in recent neural network verification literature and was

Efficient Neural Network Analysis with Sum-of-Infeasibilities 155

among the top performers in the past VNN Competition 2021. We compare with
two ERAN configurations: 1. ERAN1 — ERAN using the DeepPoly analysis [58] for
abstract interpretation and Gurobi for solving; 2. ERAN2 — same as above except
using the k-ReLU analysis [56] for abstract interpretation. We choose to compare
with ERAN instead of other state-of-the-art neural network analyzers, e.g., alpha-
beta crown [76,68], OVAL [19], and fast-and-complete [75], mainly because the
latter tools are GPU-based, while ERAN supports execution on CPU, where our
prototype is designed to run. This makes a fair comparison possible. Note that
our goal in this section is not to claim superiority over all state-of-the-art solvers.
Rather, the goal is to provide assurance that our implementation is reasonable.
As explained earlier, our approach can be integrated into other complete search
shells with different search heuristics, and is orthogonal to techniques such as
GPU-acceleration, parallelization, and tighter convex relaxation (e.g., beyond
the Planet relaxation), which are all future development directions for Marabou.

Table 2 summarizes the runtime performance of different solvers. We include
again our best configuration, SOIpimcmc, for ease of comparison. On the three
MNIST benchmark sets, PeregriNN either solves fewer instances than SOI

pi
mcmc

or takes longer time to solve the same number of instances. We note that
PeregriNN’s heuristic objective function could be employed during the feasibility
check of DeepSoI (Line 4, Algorithm 2). Exploring this complementarity between
PeregriNN and our approach is left as future work.

l

400

500

600

700

0 1,000 2,000 3,000
 Time (s)

N
um

be
r

of
 In

st
an

ce
s

S
ol

ve
d

l

MILP

LP^snc

SOI^snc_mcmc

SOI^pi_wsat

SOI^pi_mcmc

ERAN_1

ERAN_2

Fig. 3: Cactus plot on all benchmarks.

Compared with ERAN1 and ERAN2,
SOI

pi
mcmc also solves significantly more

instances overall, with a performance
gain of at least 10.1% more solved in-
stances. Taking a closer look at the
performance breakdown on individual
benchmarks, we observe complemen-
tary behaviors between SOI

pi
mcmc and

ERAN1, with the latter solving more
instances than SOI

pi
mcmc on 3 of the 11

benchmark sets. Figure 3 shows the
cactus plot of configurations that run
on all benchmarks. ERAN1 is able to
solve more instances than all the other
configurations when the time limit is short, but is overtaken by the three SoI-
based configurations once the time limit exceeds 30s. One explanation for this
is that the SoI-enabled configurations spend more time probing at each search
state, and for easier instances, it might be more beneficial to branch eagerly.

Finally, we compare the portfolio strategy SOIportfolio described in the previ-
ous subsection to ERAN1 running 2 threads. The latter solves 10.3% fewer instances
(673 overall). Figure 4 shows a scatter plot of the runtime performance of these
two configurations. For unsatisfiable instances, most can be resolved efficiently
by both solvers, and each solver has a few unique solves. On the other hand,
SOIportfolio is able to solve significantly more satisfiable benchmarks.

H. Wu et al.156

Fig. 4: Runtime of SOIportfolio and ERAN1
running with 2 threads.

Fig. 5: Improvements over the pertur-
bation bounds found by AutoAttack.

6.6 Incremental Solving and the Rejection Threshold T

The rejection threshold T in Algorithm 2 controls the number of rejected proposals
allowed before returning UNKNOWN. An incremental solver is one that can accept
a sequence of queries, accumulating and reusing relevant bounds derived by
each query. To investigate the interplay of T and incrementality, we perform
an experiment using the incremental simplex engine in Marabou while varying
the value of T . We additionally control the branching order (by using a fixed
topological order). We conduct the experiment on 180 MNIST1 and 180 Taxi1
benchmarks from the aforementioned distributions.

Table 3 shows the number of solved instances, as well as the average time (in
seconds) and number of search states on the 95 commonly solved UNSAT instances.
As T increases, more satisfiable benchmarks are solved.

Rejection threshold T 1 2 3 4 5 6

SAT Solv. 192 199 196 204 203 207

UNSAT Solv. 91 90 90 89 90 89
Avg. time (common) 97.75 129.0 83.6 108.1 137.0 187.8
Avg. states (common) 12948 12712 6122 5586 6404 8948

Table 3: Effect of the rejection threshold.

Increasing T can also result in improvement on unsatisfiable instances—either
the average time decreases, or fewer search states are required to solve the same
instance. We believe this improvement is due to the reuse of bounds derived
during the execution of DeepSoI. This suggests that adding incrementality to the
convex solver (like Gurobi) could be highly beneficial for verification applications.
It also suggests that the bounds derived during the simplex execution cannot be
subsumed by bound-tightening analyses such as DeepPoly.

Efficient Neural Network Analysis with Sum-of-Infeasibilities 157

6.7 Improving the perturbation bounds found by AutoAttack

Our proposed techniques result in significant performance gain on satisfiable
instances. It is natural to ask whether the satisfiable instances solvable by the
SoI-enabled analysis can also be easily handled by adversarial attack algorithms,
which as mentioned in Section 2, focus solely on finding satisfying assignments. In
this section, we show that this is not the case by presenting an experiment where
we use our procedure in combination with AutoAttack [17], a state-of-the-art
adversarial attack algorithm, to find higher-quality adversarial examples.

Conceretely, we first use AutoAttack to find an upper bound on the minimal
perturbation required for a successful l∞ attack.We then use our procedure to
search for smaller perturbation bounds, repeatedly decreasing the bound by 2%
until either UNSAT is proven or a timeout (30 minutes) is reached. We use the
adversarial label of the last successful attack found by AutoAttack as the target
label. We do this for the first 40 correctly classified test images for the three
MNIST architectures, which yields 120 instances. Figure 5 shows the improvement
of the perturbation bounds. Reduction of the bound is obtained for 53.3% of the
instances, with an average reduction of 26.3%, a median reduction of 22%, and a
maximum reduction of 58%. This suggests that our procedure can help obtain a
more precise robustness estimation.

7 Conclusions and Future Work

In this paper, we introduced a procedure, DeepSoI, for efficiently minimizing
the sum of infeasibilities in activation function constraints with respect to the
convex relaxation of a neural network verification query. We showed how DeepSoI
can be integrated into a complete verification procedure, and we introduced a
novel SoI-enabled branching heuristic. Extensive experimental results suggest
that our approach is a useful contribution towards scalable analysis of neural
networks. Our work also opens up multiple promising future directions, including:
1) improving the scalability of DeepSoI by using heuristically chosen subsets of
activation functions in the cost function instead of all unfixed activation functions;
2) leveraging parallelism by using GPU-friendly convex procedures or minimizing
the SoI in a distributed manner; 3) devising more sophisticated initialization and
proposal strategies for the Metropolis-Hastings algorithm; 4) understanding the
effects of the proposed branching heuristics on different types of benchmarks; 5)
investigating the use of DeepSoI as a stand-alone adversarial attack algorithm.

Acknowledgements We thank Gagandeep Singh for providing useful feedback
and Haitham Khedr for help with running PeregriNN. This work was partially sup-
ported by DARPA (grant FA8750-18-C-0099), a Ford Alliance Project (199909),
NSF (grant 1814369), and the US-Israel Binational Science Foundation (grant
2020250).

H. Wu et al.158

References

1. Anderson, G., Pailoor, S., Dillig, I., Chaudhuri, S.: Optimization and abstrac-
tion: A synergistic approach for analyzing neural network robustness. In: Proc.
Programming Language Design and Implementation (PLDI). p. 731–744 (2019)

2. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Mathematical
Programming pp. 1–37 (2020)

3. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to mcmc for
machine learning. Machine learning 50(1), 5–43 (2003)

4. Bak, S., Liu, C., Johnson, T.: The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint
arXiv:2109.00498 (2021)

5. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumera-
tion for verifying relu neural networks. In: International Conference on Computer
Aided Verification. pp. 66–96. Springer (2020)

6. Bénichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribière, G., Vincent, O.:
Experiments in mixed-integer linear programming. Mathematical Programming
1(1), 76–94 (1971)

7. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 (2016)

8. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Cnn-cert: An efficient
framework for certifying robustness of convolutional neural networks. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 3240–3247 (2019)

9. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient
verification of relu-based neural networks via dependency analysis. In: Proceedings
of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 3291–3299 (2020)

10. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge university
press (2004)

11. Brooks, S., Gelman, A., Jones, G., Meng, X.L.: Handbook of markov chain monte
carlo. CRC press (2011)

12. Bunel, R., De Palma, A., Desmaison, A., Dvijotham, K., Kohli, P., Torr, P., Kumar,
M.P.: Lagrangian decomposition for neural network verification. In: Conference on
Uncertainty in Artificial Intelligence. pp. 370–379. PMLR (2020)

13. Bunel, R., Lu, J., Turkaslan, I., Kohli, P., Torr, P., Mudigonda, P.: Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning
Research 21(2020) (2020)

14. Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view of
piecewise linear neural network verification. In: Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems. vol. 31. Curran Associates, Inc. (2018), https://proceedings.
neurips.cc/paper/2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf

15. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 ieee symposium on security and privacy (sp). pp. 39–57. IEEE (2017)

16. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. The
american statistician 49(4), 327–335 (1995)

17. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: International conference on machine learning.
pp. 2206–2216. PMLR (2020)

Efficient Neural Network Analysis with Sum-of-Infeasibilities 159

https://proceedings.neurips.cc/paper/2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/be53d253d6bc3258a8160556dda3e9b2-Paper.pdf

18. Dantzig, G.B., Orden, A., Wolfe, P., et al.: The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of
Mathematics 5(2), 183–195 (1955)

19. De Palma, A., Behl, H., Bunel, R.R., Torr, P., Kumar, M.P.: Scaling the convex
barrier with active sets. In: International Conference on Learning Representations
(2020)

20. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods - 10th International
Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings
(2018)

21. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach
to scalable verification of deep networks. In: UAI. vol. 1, p. 3 (2018)

22. Dvijotham, K.D., Stanforth, R., Gowal, S., Qin, C., De, S., Kohli, P.: Efficient neural
network verification with exactness characterization. In: Uncertainty in Artificial
Intelligence. pp. 497–507. PMLR (2020)

23. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

24. Fischetti, M., Jo, J.: Deep neural networks as 0-1 mixed integer linear programs: A
feasibility study. CoRR abs/1712.06174 (2017)

25. Fromherz, A., Leino, K., Fredrikson, M., Parno, B., Păsăreanu, C.: Fast geometric
projections for local robustness certification. arXiv preprint arXiv:2002.04742 (2020)

26. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA. pp. 3–18 (2018).
https://doi.org/10.1109/SP.2018.00058, https://doi.org/10.1109/SP.2018.00058

27. Gent, I.P., IRST, T.: Hybrid problems, hybrid solutions 73 j. hallam et al.(eds.) ios
press, 1995 unsatisfied variables in local search. Hybrid problems, hybrid solutions
27, 73 (1995)

28. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

29. Henriksen, P., Lomuscio, A.: Deepsplit: An efficient splitting method for neural
network verification via indirect effect analysis. In: Zhou, Z.H. (ed.) Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21. pp.
2549–2555. International Joint Conferences on Artificial Intelligence Organization
(8 2021). https://doi.org/10.24963/ijcai.2021/351, https://doi.org/10.24963/ijcai.
2021/351, main Track

30. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.r., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine 29(6), 82–97 (2012)

31. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: CAV (2017)

32. Jia, Z., Zaharia, M., Aiken, A.: Beyond data and model parallelism for deep neural
networks. In: Talwalkar, A., Smith, V., Zaharia, M. (eds.) Proceedings of Machine
Learning and Systems. vol. 1, pp. 1–13 (2019), https://proceedings.mlsys.org/paper/
2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf

33. Julian, K.D., Lee, R., Kochenderfer, M.J.: Validation of image-based neural net-
work controllers through adaptive stress testing. In: 2020 IEEE 23rd International
Conference on Intelligent Transportation Systems (ITSC). pp. 1–7. IEEE (2020)

H. Wu et al.160

https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351
https://doi.org/10.24963/ijcai.2021/351
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf

34. Kass, R.E., Carlin, B.P., Gelman, A., Neal, R.M.: Markov chain monte carlo in
practice: a roundtable discussion. The American Statistician 52(2), 93–100 (1998)

35. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An Efficient
SMT Solver for Verifying Deep Neural Networks. In: Proc. 29th Int. Conf. on
Computer Aided Verification (CAV). pp. 97–117 (2017)

36. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The marabou framework for verification and
analysis of deep neural networks. In: International Conference on Computer Aided
Verification. pp. 443–452 (2019)

37. Khedr, H., Ferlez, J., Shoukry, Y.: Peregrinn: Penalized-relaxation greedy neural
network verifier. arXiv preprint arXiv:2006.10864 (2020)

38. King, T.: Effective algorithms for the satisfiability of quantifier-free formulas over
linear real and integer arithmetic. Ph.D. thesis, Citeseer (2014)

39. King, T., Barrett, C., Dutertre, B.: Simplex with sum of infeasibilities for smt. In:
2013 Formal Methods in Computer-Aided Design. pp. 189–196. IEEE (2013)

40. Krizhevsky, A., Nair, V., Hinton, G.: Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html 5(4), 1 (2010)

41. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: ICLR (Workshop). OpenReview.net (2017)

42. LeCun, Y., Cortes, C.: MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/ (2010), http://yann.lecun.com/exdb/mnist/

43. Liu, C., Arnon, T., Lazarus, C., Strong, C., Barrett, C., Kochenderfer, M.J.:
Algorithms for verifying deep neural networks. arXiv preprint arXiv:1903.06758
(2019)

44. Lu, J., Kumar, M.P.: Neural network branching for neural network verification.
arXiv preprint arXiv:1912.01329 (2019)

45. Lyu, Z., Ko, C.Y., Kong, Z., Wong, N., Lin, D., Daniel, L.: Fastened crown:
Tightened neural network robustness certificates. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 34, pp. 5037–5044 (2020)

46. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

47. Masi, I., Wu, Y., Hassner, T., Natarajan, P.: Deep face recognition: A survey. In:
2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI).
pp. 471–478. IEEE (2018)

48. Müller, C., Serre, F., Singh, G., Püschel, M., Vechev, M.: Scaling polyhedral neural
network verification on gpus. Proceedings of Machine Learning and Systems 3
(2021)

49. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.: Precise multi-
neuron abstractions for neural network certification. arXiv preprint arXiv:2103.03638
(2021)

50. Paterson, C., Wu, H., Grese, J., Calinescu, R., Pasareanu, C.S., Barrett, C.: Deepcert:
Verification of contextually relevant robustness for neural network image classifiers.
arXiv preprint arXiv:2103.01629 (2021)

51. Raghunathan, A., Steinhardt, J., Liang, P.: Semidefinite relaxations for certifying
robustness to adversarial examples. arXiv preprint arXiv:1811.01057 (2018)

52. Salman, H., Yang, G., Zhang, H., Hsieh, C.J., Zhang, P.: A convex relax-
ation barrier to tight robustness verification of neural networks. In: Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems. vol. 32.
Curran Associates, Inc. (2019), https://proceedings.neurips.cc/paper/2019/file/
246a3c5544feb054f3ea718f61adfa16-Paper.pdf

Efficient Neural Network Analysis with Sum-of-Infeasibilities 161

http://yann.lecun.com/exdb/mnist/
https://proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/246a3c5544feb054f3ea718f61adfa16-Paper.pdf

53. Schkufza, E., Sharma, R., Aiken, A.: Stochastic superoptimization. ACM SIGARCH
Computer Architecture News 41(1), 305–316 (2013)

54. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In:
AAAI. vol. 94, pp. 337–343 (1994)

55. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering
the game of go with deep neural networks and tree search. nature 529(7587), 484
(2016)

56. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. Advances in Neural Information Processing
Systems 32, 15098–15109 (2019)

57. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. Advances in Neural Information Processing Systems 31,
10802–10813 (2018)

58. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

59. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (2019)

60. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The german traffic sign recognition
benchmark: a multi-class classification competition. In: The 2011 international joint
conference on neural networks. pp. 1453–1460. IEEE (2011)

61. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

62. Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., PATEL, K.K., Vielma,
J.P.: The convex relaxation barrier, revisited: Tightened single-neuron relaxations
for neural network verification. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33,
pp. 21675–21686. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/
paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf

63. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net
(2019), https://openreview.net/forum?id=HyGIdiRqtm

64. Tran, H.D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using imagestars. In: International Conference on Computer Aided
Verification. pp. 18–42. Springer (2020)

65. Vincent, J.A., Schwager, M.: Reachable polyhedral marching (rpm): A safety
verification algorithm for robotic systems with deep neural network components.
arXiv preprint arXiv:2011.11609 (2020)

66. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada. pp. 6369–6379 (2018), http://papers.nips.
cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks

67. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018. pp. 1599–
1614 (2018), https://www.usenix.org/conference/usenixsecurity18/presentation/
wang-shiqi

H. Wu et al.162

https://proceedings.neurips.cc/paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f6c2a0c4b566bc99d596e58638e342b0-Paper.pdf
https://openreview.net/forum?id=HyGIdiRqtm
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
http://papers.nips.cc/paper/7873-efficient-formal-safety-analysis-of-neural-networks
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

68. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.J., Kolter, J.Z.: Beta-crown:
Efficient bound propagation with per-neuron split constraints for complete and
incomplete neural network verification. arXiv preprint arXiv:2103.06624 (2021)

69. Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Daniel, L., Boning, D.,
Dhillon, I.: Towards fast computation of certified robustness for relu networks. In:
International Conference on Machine Learning. pp. 5276–5285. PMLR (2018)

70. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: International Conference on Machine Learning. pp.
5286–5295. PMLR (2018)

71. Wu, H., Ozdemir, A., Zeljić, A., Julian, K., Irfan, A., Gopinath, D., Fouladi, S.,
Katz, G., Pasareanu, C., Barrett, C.: Parallelization techniques for verifying neural
networks. In: 2020 Formal Methods in Computer Aided Design (FMCAD). pp.
128–137. IEEE (2020)

72. Wu, H., Zeljić, A., Katz, G., Barrett, C.: Artifact for Paper Efficient Neural Network
Analysis with Sum-of-Infeasibilities (Feb 2022), https://doi.org/10.5281/zenodo.
6109456

73. Xiang, W., Tran, H.D., Johnson, T.T.: Output reachable set estimation and verifi-
cation for multilayer neural networks. IEEE transactions on neural networks and
learning systems 29(11), 5777–5783 (2018)

74. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B., Lin,
X., Hsieh, C.J.: Automatic perturbation analysis for scalable certified robustness
and beyond. Advances in Neural Information Processing Systems 33 (2020)

75. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.J.: Fast and
complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. arXiv preprint arXiv:2011.13824 (2020)

76. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neu-
ral network robustness certification with general activation functions. In: Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems. vol. 31.
Curran Associates, Inc. (2018), https://proceedings.neurips.cc/paper/2018/file/
d04863f100d59b3eb688a11f95b0ae60-Paper.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Efficient Neural Network Analysis with Sum-of-Infeasibilities 163

https://doi.org/10.5281/zenodo.6109456
https://doi.org/10.5281/zenodo.6109456
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d04863f100d59b3eb688a11f95b0ae60-Paper.pdf
http://creativecommons.org/licenses/by/4.0/

Blockchain

Formal Verification of the Ethereum 2.0

Beacon Chain?

Franck Cassez (�)1, , Joanne Fuller1, and Aditya Asgaonkar2

1 ConsenSys, New York, USA
2 Ethereum Foundation, Zug, Switzerland

franck.cassez@consensys.net joanne.fuller@consensys.net

aditya.asgaonkar@ethereum.org

Abstract. We report our experience in the formal verification of the
reference implementation of the Beacon Chain. The Beacon Chain is
the backbone component of the new Proof-of-Stake Ethereum 2.0 net-
work: it is in charge of tracking information about the validators, their
stakes, their attestations (votes) and if some validators are found to be
dishonest, to slash them (they lose some of their stakes). The Beacon
Chain is mission-critical and any bug in it could compromise the whole
network. The Beacon Chain reference implementation developed by the
Ethereum Foundation is written in Python, and provides a detailed op-
erational description of the state machine each Beacon Chain’s network
participant (node) must implement. We have formally specified and ver-
ified the absence of runtime errors in (a large and critical part of) the
Beacon Chain reference implementation using the verification-friendly
language Dafny. During the course of this work, we have uncovered sev-
eral issues, proposed verified fixes. We have also synthesised functional
correctness specifications that enable us to provide guarantees beyond
runtime errors. Our software artefact with the code and proofs in Dafny
is available at https://github.com/ConsenSys/eth2.0-dafny.

1 Introduction

The Ethereum network is gradually transitioning to a more secure, scalable and
energy efficient Proof-of-Stake (PoS) consensus protocol, known as Ethereum
2.0 and based off GasperFFG [2]. The Proof-of-Stake discipline ensures that
participants who propose (and vote) for blocks are chosen with a frequency that
is proportional to their stakes. Another major feature of Ethereum 2.0 is sharding
which enables the main blockchain to split into a number of independent and
hopefully smaller and faster chains. The transition from the current Ethereum
1 to the final version of Ethereum 2.0 (Serenity) is planned over a number of
years and will be rolled out in a number of phases. The first phase, Phase 0, is
known as the Beacon Chain. It is the backbone component of Ethereum 2.0 as
it coordinates the whole network of stakers and shards.
? This work was partially supported by the Ethereum Foundation, grant FY20-285,

Q4-2020.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 167–182, 2022.
https://doi.org/10.1007/978-3-030-99524-9_9

http://orcid.org/0000-0002-4317-5025
https://github.com/ConsenSys/eth2.0-dafny
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_9

F. Cassez, J. Fuller and A. Asgaonkar

The Beacon Chain. The Beacon Chain (and its underlying protocol) is in
charge of enforcing consensus, among the nodes, called validators, participating
in the network, on the state of the system. The set of validators is dynamic: new
validators can register by staking some ETH (Ethereum crypto-currency). Once
registered, validators are eligible to participate and propose and vote for new
blocks (of transactions) to be appended to the blockchain. The Beacon Chain
shipped on December 1, 2020. At the time of writing (October 14, 2021), close
to 250, 000 validators have staked 7, 780, 000 ETH ($30 Billion USD). Consid-
ering the coordination role and the amount of assets managed by the Beacon
Chain, it is a mission-critical component of the Ethereum 2.0 ecosystem. The
Beacon Chain reference implementation developed by the Ethereum Foundation
is written in Python, and provides a detailed operational description of the state
machine each Beacon Chain’s network participant (node) must implement.

Our Contribution. Our contribution is many-fold:

– We have formally specified and verified the absence of runtime errors in (a
large and critical part of) the Beacon Chain reference implementation using
the verification-friendly language Dafny.

– During the course of this work, we have uncovered several issues, proposed
verified fixes, some of which have been integrated in the reference imple-
mentation, and others have resulted in sunstnatial improvements (accuracy,
readability) of the reference implementation.

– We have also manually synthesised functional correctness specifications that
enable us to provide guarantees beyond runtime errors.

– Our software artefact with the code and proofs in Dafny is publicly available
in our repository at https://github.com/ConsenSys/eth2.0-dafny .

Related Work. The Ethereum Foundation has supported several projects re-
lated to applying formal methods for the analysis of the Beacon Chain (and
other components). A foundational project3 was undertaken in 2019 by Run-
time Verification Inc. and provided a formal and executable semantics in the
K framework, to the reference implementation [1]. The semantics was validated
and the reference implementation could be tested which resulted in a first set of
recommendations and fixes to the reference implementation. Although it may be
possible to formally verify the Beacon Chain with the K-framework tools, to the
best of our knowledge it has not been done yet. Runtime Verification Inc. have
also formally specified and verified (in Coq [11]) the underlying GasperFFG [2]
protocol. Our work complements these formal verification projects. Indeed, our
objective is to provide guarantees for the absence of bugs (runtime errors), and
loop termination which goes beyond testing. We have chosen to use a verification-
friendly programming language, Dafny [10], as it enables us to write the code in
a more developer-friendly manner (compared to K).

3 https://github.com/runtimeverification/beacon-chain-spec

168

https://github.com/ConsenSys/eth2.0-dafny
https://github.com/runtimeverification/beacon-chain-spec

Formal Verification of the Beacon Chain

2 The Beacon Chain Reference Implementation

In this section we introduce the system we want to formally verify, what are the
potential benefits and impacts of such of study, and we set out the goals of our
experiment.

2.1 System Description and Scope of the Study

As a robust decentralised system, the Beacon Chain aims to implement a repli-
cated state machine [9] that is fault-tolerant to a fraction of unreliable par-
ticipants (e.g., participants that can crash). The replicated state machine is
implemented with a number of networked identical state machines running con-
currently. This provides redundancy and a more reliable system. The state of
each machine changes on an occurrence of an event. As the machines operate
asynchronously, two different machines may receive different events that cannot
be totally ordered time-wise. This is why before processing an event and chang-
ing their states, the state machines run a consensus protocol to decide which
event they should all process next. The consensus protocol aims to guarantee
(under certain conditions) that an agreement will be reached which ensures that
events are processed in the same order on each machine.

2.2 The Beacon Chain Reference Implementation

The Beacon Chain (Phase 0) reference implementation [6] describes the state
machine that every Beacon node (participant) has to implement. The idea is
that anyone is allowed to be a participant in the decentralised Ethereum 2.0
ecosystem when it is fully deployed. However, as the consensus protocol is Proof-
of-Stake there must be a mechanism for participants to register and stake, to
slash a participant’s stake if they are caught4 misbehaving, i.e., not following the
consensus protocol, and to reward them if they are honest. The Beacon Chain
provides these mechanisms. It maintains records about the participants, called
validators, ensuring fairness (each honest participant should have a voting power,
for new blocks, related to its stake), and safety (a dishonest participant may be
slashed and lose part of their stakes).

The full Beacon Chain (Phase 0) reference implementation [6] comprises three
main sections:

1. the Beacon Chain State Transition describing the Beacon state machine
which is the most complex component;

2. The Simple SerialiZe (SSZ) library for how to encode/decode (serialise/de-
serialise) data that have to be communicated over the network;

3. the Merkleise library for how to build efficient encoding of data structures
into Merkle trees, and how to use them to verify Merkle proofs.

4 In a distributed system with potentially dishonest participants, it is not always
possible to detect who is dishonest (byzantine). However, sometimes a participant
can sometimes be proved to be dishonest.

169

The State Transition. The Beacon Chain state transition part is the most
critical part and at the operational level the complexity stems from:

– time is logically divided into epochs, and each epoch into a fixed number of
slots ; the state is updated at each slot;

– at the beginning of each epoch, disjoint subsets of validators are assigned to
each slot to participate in the block proposal for the slot and attest (vote)
for links in the chain;

– the state updates that apply at an epoch boundary are more complex than
the other updates;

– the actual state of the chain is a block-tree i.e., a tree of blocks, and the
canonical chain is defined as a particular branch in this tree. How this branch
is determined is defined by the fork choice rule.

– the fork choice rule relies on properties of nodes, justification and finalisa-
tion, in the block-tree. The state update describes how nodes in the block-
tree are deemed justified/finalised. The rules for justification and finalisation
are introduced in a separate document, the GasperFFG [2] protocol.

SSZ and Merkleise. These libraries are self-contained and independent from
the state transition. We used them as a feasibility study and we had verified
them before this project started. We have provided a complete Dafny reference
implementation for them in the merkle and ssz packages [3].

2.3 Motivation for Formal Verification

As mentioned previously, the Beacon Chain shipped on December 1, 2020 and up
to date, 250, 000 validators have staked 7, 780, 000 ETH ($30 Billion USD). It is
clear that any bug, or logical error, could have disastrous consequences resulting
is losses of assets for regular users, or downtimes and degradation of service, or
losses of rewards for the validators.

There are regular opportunities (forks) to update the code of Beacon Chain
nodes, so continuously running projects like ours is very valuable as what is
important is to find and fix bugs before attackers can exploit them. The op-
erational description of the Beacon Chain in the reference implementation is
provided in Python. It was written by several reference implementation writers
at the Ethereum Foundation and due to its size it is hard for one person to
have a complete picture of it. It is the reference for any Beacon Chain client
implementer. As a result, inaccuracies, ambiguities, or bugs in the reference im-
plementation will lead to erroneous and/or buggy clients that can compromise
the integrity, or the performance of the network. Moreover the reference imple-
mentation uses a defensive mechanism against unexpected errors:

(Rule 1) “State transitions that trigger an unhandled exception (e.g. a
failed assert or an out-of-range list access) are considered invalid. State
transitions that cause a uint64 overflow or underflow are also considered
invalid.” [6]

F. Cassez, J. Fuller and A. Asgaonkar170

However this creates a risk that errors unrelated to the logic of the state tran-
sition function may introduce spurious exceptions. At the time of writing, there
are at least 4 different Ethereum 2.0 client softwares that are used by validators.
Bugs in the reference implementation may be handled differently in the various
clients, and in some cases lead to a split in the network5. The correctness of the
consensus mechanism is guaranteed for up to 1/3 of malicious nodes, that is,
nodes deviating from the reference implementation, be it intentionally or unin-
tentionally (e.g., because of a bug in the code). Hence, we should try to make
sure we reduce (buggy) unintentionally malicious nodes.

2.4 Objectives of the Study

Our goal is to improve the overall safety, readability and usability of the reference
implementation. Testing is of course an option, and Beacon Chain clients all
implement some form of testing. In this project we are interested in proving the
absence of bugs which goes beyond what testing techniques can do: testing can
show the presence of bugs but not their absence (Dijkstra, 1970).

The primary aspect of our project was to make sure that the code was
free of runtime errors (e.g., over/underflows, array-out-of-bounds, division-by-
zero, . . .). This provides more confidence that when an exception occurs and
a state is left unchanged as per (Rule 1), the root cause is a genuine prob-
lem related to the state transition having been given an ill-formed block: if
state_transition(state,signed_block) triggers an exception, it should im-
ply that there is a problem with the signed_block not that some intermediate
computations resulted in runtime errors. A secondary goal was to try and synthe-
sise functional specifications from the reference implementation. This can help
developers to design tests, and contributes to the specifications being language-
agnostic. For instance, it can help write a client in a functional language which
results in a more inclusive ecosystem.

3 Formal Specification and Verification

In this section we present the challenges of the project, motivate our methodology
and conclude with our results’ breakdown.

3.1 Challenges

The main challenges in this formal verification project are in the verification of
the code of the state_transition component of the Beacon Chain. The SSZ
and Merkleise libraries are much smaller, simpler, and independent components
that can be dealt with separately.

The reference implementation for the Beacon Chain [6] introduces data types
and algorithms that should be interpreted as Python 3 code. As a result it may

5 A network split can be caused if some clients reject a chain that is being followed
by the other clients, which leads to a hard fork-like situation.

Formal Verification of the Beacon Chain 171

not be straightforward for those who are not familiar with Python to under-
stand the meaning of some parts of the code. More importantly, the reference
implementation is not executable and may contain type mismatches, incompat-
ible function signatures, and bugs that can result in runtime errors like under-
overflows or array-out-of-bounds.

Listing A.1. The state transition function.

1 def state_transition(

2 state: BeaconState ,

3 signed_block: SignedBeaconBlock ,

4 validate_result: bool=True

5) -> None:

6 block = signed_block.message

7 # Process slots (including those with no blocks) since block

8 process_slots(state , block.slot)

9 # Verify signature

10 if validate_result:

11 assert verify_block_signature (state , signed_block)

12 # Process block

13 process_block(state , block)

14 # Verify state root

15 if validate_result:

16 assert block.state_root == hash_tree_root(state)

A typical function in the reference implementation is written as a sequence
of control blocks (including function calls) intertwined with checks in the form of
assert statements. The state_transition function (Listing A.1) is the com-
ponent that computes the update of the Beacon Chain’s state. The state (of
type BeaconState) records some information including the validators’ stakes,
the subsets of validators (committees) allocated to a given slot, and the hashes6

of the blocks that have already been added to the chain. A state update is
triggered when a (signed) block is added to Beacon Chain. The state machine
implicitly defined by the reference implementation generates sequences of states
of the form:

s0
b0−−→ s1

b1−−→ s2 . . .
bn−−−→ sn+1 . . . (StateT)

where s0 is given (initial values), b0 is the genesis block and for each i ≥ 1, si+1 =
state_transition(si, bi).

There are several challenges in testing or verifying this kind of code:

– the functions calls (lines 8, 13) mutate the input variable state; those func-
tions also call other functions that mutate the state.

– the semantics is not fully captured by the Python 3 interpretation because
of the defensive mechanism [S1] (Section 2.3, page 4).

– a valid state transition is the opposite of an invalid state transition (char-
acterised by [S1]). Determining when a computation is not going to trigger
runtime errors or failed asserts is non-trivial. This is due to the use of mu-
tating functions that can contain assert statements on values that are the
results of intermediate computations.

6 The actual blocks are recorded in the Store which is a separate data structure.

F. Cassez, J. Fuller and A. Asgaonkar172

– overall the code in the reference implementation does not explicitly define
what properties signed_block should satisfy to guarantee that executing the
function state_transition(state,signed_block) is not going to trigger
an exception. The implicit semantics of the code is: if an exception occurs
in executing state_transition with input signed_block, then this block
must be invalid (assuming state is always valid).
It follows that, if the code contains a bug that triggers a runtime error un-
related to signed_block (e.g., an intermediate computation that overflows,
or an array-out-of-bounds in a sorting algorithm), signed_block is declared
invalid and not added to the chain. To alleviate this problem, we have col-
lected the conditions (predicates) under which the addition of a block should
not fail, which clearly defines when a block is valid.

– as there is no reference functional specification it is not immediate to under-
stand when a block is invalid, and to write (unit) tests.

– finally the correctness of parts of the code rely on hidden assumptions,
e.g., the total amount of ETH is X so no overflow should happen.

The challenges pertaining to the SSZ and Merkleise libraries are more manage-
able. First, the reference implementation is shorter. Second, even if there is no
functional specification available, it is reasonably easy to synthesise them. Due to
the previous weaknesses, the reference implementation [6] has been the subject
of several informal explainers [15,5,6].

3.2 Methodologies

Resource Constraints. Resource-wise, the timeframe for our project was ap-
proximately 8 months (October 2020 to June 2021), with a team of two formal
verification researchers (first two co-authors) and one Beacon Chain expert re-
searcher (third co-author).

Verification Technique. The reference implementation is not the opera-
tional description of a distributed system, but rather a sequential state machine,
as per (StateT), Section 3.1. Thus, techniques and tools that are adequate for
the goals we set are related to program formal verification.

There are several techniques to approach program verification, ranging from
fully automated (e.g., static analysis/abstract interpretation [4], software model-
checking [8]) to interactive theorem proving [13]. Most static analysers are un-
sound (they cannot prove the absence of bugs) which disqualifies them for our
project. It is anticipated that fully automated verification techniques can be ef-
fective to detect runtime errors but may have limited applicability to proving
functional correctness.

On the other side of the spectrum, interactive theorem provers offer a com-
plete arsenal of logics/rules that can certainly be used for this kind of projects.
However they usually require encoding the software to be verified in a high-level
mathematical language that is rather different to a language like Python. The
level of expertise/experience required to properly use these tools is also high.
Overall this seemed incompatible with our available resources.

Formal Verification of the Beacon Chain 173

A middle-ground between fully automated and interactive techniques is de-
ductive verification available in verification-friendly programming languages like
Dafny [10], Why3 [7], Viper [12] or Whiley [14]. Deductive verification lets veri-
fication engineers propose proofs and check them fully automatically.

We opted for Dafny [10], an award-winning verification-friendly language.
Dafny is actively maintained7 and under continuous improvement. It offers im-
perative/object oriented and functional programming styles. Moreover, some of
us had a previous exposure to Dafny (working on the SSZ/Merkleise libraries
early in 2020), and we could be fully operational quickly, and it was compatible
with our resources. We are convinced that similar results could be achieved with
Why3, Viper or Whiley but did not have the resources to launch concurrent
experiments.

Verification Strategy. Our strategy to write the Beacon Chain reference im-
plementation in Dafny and detect/fix runtime errors, and prove some functional
properties is three-fold:

1. Identify simplifications. The reference implementation is complex and
trying to encode it fully in Dafny may result in inessential details hindering
our verification progress. One example is the different data types (classes)
for Attestations. There are several variations of the type Attestations

and functions to convert between them. For our verification purposes, using
PendingAttestations instead of the fully fledged Attestations was ade-
quate. Another example is the abstraction of hashing functions. We assumed
an uninterpreted collision-free hash function as we did not aim to prove any
probabilistic properties involving this function.

2. Translate the reference implementation in Dafny. This helped the
formal verification researchers to familiarise themselves with the reference
implementation. During this phase, we focussed on adding pre and post con-
ditions to the functions of the reference implementation to guarantee the
absence of runtime errors. We were also able to prove some interesting invari-
ants: the data structure that contains the block-tree is indeed a well-formed
tree. This structure is implemented with links from nodes to their parent
(where null is a possible parent in the code). The invariant states that the
block-tree that is built with the state_transition function satisfies: i) the
set of ancestors of any block contain blocks with strictly smaller slot number
and is finite (no cycles) ii) the set of ancestors of any block in the block-tree
always contains the genesis block (with slot 0).

3. Synthesise functional specifications. In the last phase, we manually
synthesised functional specifications for each function in the reference im-
plementation. We proved that each function in the reference implementation
satisfied its functional specification. This enabled us to prove more complex
properties as we could do the formal reasoning and proofs on the functional
specifications and the results would carry over to the reference implemen-
tation. This was an effective solution to be able to prove properties of the

7 https://github.com/dafny-lang/dafny

F. Cassez, J. Fuller and A. Asgaonkar174

https://github.com/dafny-lang/dafny

reference implementation with lots of mutations (side-effects) without having
to embed them deep in the proofs.

3.3 Results

The complete code base is freely available in [3]. There are several resources
apart from the verified code: a Docker container to batch verify the code, and
some notes/videos to help navigate the Dafny specifications.

Coverage. We estimated that we have verified 85% of the reference imple-
mentation. The remaining 15% are simplifications e.g., data types, or using a
fixed set of validators instead of a dynamic set. Adding the remaining details
to the released version would require a substantial amount of work and at the
same time it seems that the likelihood of finding new issues is low. Since the
Beacon Chain has shipped in December 1, 2020, only a few minor issues have
been uncovered and promptly fixed which seems to confirm the previous claim.

Absence of Runtime Errors. All of the functions we have implemented
in Dafny are annotated with pre (requires) and post (ensures) conditions
that are verified, including loop termination. The Dafny version of function
state_transition is given in Listing A.2. Other functions are written simi-
larly e.g., process_slots and process_block. The Dafny verifier enforces the
absence of runtime errors like division by zero, under/overflows, array-out-of-
bounds. It follows that our code base is provably free of this kind of defect.
Moreover, additional checks can be added like the assert statement at line 28.
We have added all the assert statements from the reference implementation
and proved that they could not be violated. This requires adding suitable pre-
conditions.

Regarding loop termination proofs, most of the proofs are based on relatively
simple ranking functions. An example of a non-trivial proof termination can be
found in a functional correctness proof: the ancestors of a given block form a
strictly decreasing sequence, slot-wise, and consequently end up in the genesis
block. The corresponding code is in the Forkchoice.dfy file.

Functional Correctness. Beyond the absence of runtime errors, we have syn-
thesised functional specifications based off the reference implementation code.
For instance we have decomposed the state update in state_transition into
a sequence of simpler steps, updateBlock, forwardStateToSlot, nextSlot and
proved that the result is a composition of these functions. This provides more
confidence that the code is functionally correct as our decomposition specifies
smaller changes in the state. It also enables us to prove properties on the func-
tional specifications and transfer them to the imperative version of the code.

Impact of our Project. During the course of this projects we have reported
several issues, some of them bugs (3), some of them need for clarifications (5)
in the reference implementation. The issues we have uncovered are tracked in
the issues tracker of our github repository. Some of the bugs we reported have
been fixed and our clarifications category has led to several improvements in

Formal Verification of the Beacon Chain 175

https://github.com/ConsenSys/eth2.0-dafny/blob/4e41de2866c8d017ccf4aaf2154471ffa722b308/src/dafny/beacon/forkchoice/ForkChoice.dfy#L339

the writing of the reference implementation. Moreover, we have provided a fully
documented version of the reference implementation in Dafny. The Dafny code
contains clear pre and post conditions that can help developers understand the
effect of a function and can be used to write unit tests.

Listing A.2. Dafny version of state transition

1 method state_transition(s:BeaconState ,b:BeaconBlock)

2 returns (s’: BeaconState)

3 // A valid state to start from

4 requires |s.validators| == |s.balances|

5 requires is_valid_state_epoch_attestations (s)

6 // b must a block compatible with s

7 requires isValidBlock(s, b)

8 // Functional correctness

9 ensures s’ ==

10 updateBlock(forwardStateToSlot (nextSlot(s),b.slot),b)

11 // Other post -conditions

12 ...

13 ensures s’.slot == b.slot

14 ensures s’. latest_block_header .parent_root ==

15 hash_tree_root(

16 forwardStateToSlot(nextSlot(s), b.slot)

17 .latest_block_header

18)

19 ensures |s’. validators| == |s’. balances|

20 ...

21 {

22 // Finalise slots before b.slot.

23 s’ := process_slots(s, b.slot);

24
25 // Process block and compute the new state.

26 s’ := process_block(s’, b);

27
28 // Verify state root (from eth2.0 specs)

29 assert (b.state_root == hash_tree_root(s’));

30 }

Statistics. Table 1, page 11, provides some insights into the actual code,
per file. We have tried to keep the size of each file small and provide optimal
modularity in the proofs. The files in the packages fall into one of the three
categories: file.dfy is the Python-reference implementation translated into
Dafny; file.s.dfy contains the functional specifications we have synthesised
and file.p.dfy any additional proofs (Lemmas) that are used in the correct-
ness proofs. It is hard to estimate the lines of code to lines of proofs ratio for
many reasons: i) it is not always possible to locate all the proofs in a separate
unit (e.g. a module in Dafny), as this can create circular dependencies.

It follows that counting lines of proofs as lines in the Lemmas is not an
accurate measure; ii) in some of the proofs, we have, on purpose, provided re-
dundant hints. As a result some proofs can be shortened but this may be at the
expense of readability (and verification time). For this project, a conservative
(and empirical) lines of code to lines of proofs ratio seems to be around 1 to 7.

F. Cassez, J. Fuller and A. Asgaonkar176

Table 1. Statistics. A file providing functional specifications. A file providing proofs
(lemmas in Dafny). #LoC (resp. #DoC) is the number of lines of code (resp. docu-
mentation), Lem. the number of proper lemmas, Imp. the number of proved impera-
tive functions with pre/post conditions.

Files Package #LoC Lem. Imp. #Doc #Doc
#LoC (%) Proved

ActiveValidatorBounds.p.dfy beacon 52 3 0 29 56 3

BeaconChainTypes.dfy beacon 54 0 0 171 317 0

Helpers.dfy beacon 1003 9 89 670 67 98

Helpers.p.dfy beacon 136 13 0 114 84 13

Helpers.s.dfy beacon 136 9 6 67 49 15

AttestationsTypes.dfy beacon/attestations 30 0 0 68 227 0

ForkChoice.dfy beacon/forkchoice 229 3 15 172 75 18

ForkChoiceTypes.dfy beacon/forkchoice 9 0 0 17 189 0

Crypto.dfy beacon/helpers 7 0 1 3 43 1

EpochProcessing.dfy beacon/statetransition 384 0 14 127 33 14

EpochProcessing.s.dfy beacon/statetransition 398 24 0 336 84 24

ProcessOperations.dfy beacon/statetransition 361 0 11 119 33 11

ProcessOperations.p.dfy beacon/statetransition 160 10 0 74 46 10

ProcessOperations.s.dfy beacon/statetransition 410 12 6 137 33 18

StateTransition.dfy beacon/statetransition 215 0 8 126 59 8

StateTransition.s.dfy beacon/statetransition 213 11 1 100 47 12

Validators.dfy beacon/validators 11 0 0 53 482 0

Merkleise.dfy merkle 504 9 18 135 27 27

BitListSeDes.dfy ssz 262 7 3 64 24 10

BitVectorSeDes.dfy ssz 155 4 3 53 34 7

BoolSeDes.dfy ssz 22 0 2 3 14 2

BytesAndBits.dfy ssz 90 7 6 44 49 13

Constants.dfy ssz 104 0 0 36 35 0

IntSeDes.dfy ssz 130 2 2 20 15 4

Serialise.dfy ssz 514 3 5 36 7 8

DafTests.dfy utils 62 0 4 25 40 4

Eth2Types.dfy utils 227 1 3 77 34 4

Helpers.dfy utils 220 11 3 103 47 14

MathHelpers.dfy utils 293 18 6 105 36 24

NativeTypes.dfy utils 28 0 0 13 46 0

NonNativeTypes.dfy utils 8 0 0 6 75 0

SeqHelpers.dfy utils 69 8 2 58 84 10

SetHelpers.dfy utils 74 6 0 50 68 6

TOTAL 6570 170 208 3212 49 378

Formal Verification of the Beacon Chain 177

4 Findings and Lessons Learned

During the course of our formal verification effort we found subtle bugs and also
proposed some clarifications for the reference implementations. In addition, our
work was the opportunity to start some discussions about how to improve the
readability of the reference implementation, e.g., by using pre and post conditions
rather than assert statements. In this section we provide more insights into
some of the main issues we reported8, and also on the practicality of this kind
of project.

4.1 Array-out-of-bounds Runtime Error

The function get_attesting_indices (Listing A.3) is called from within several
important components of the state transition function including the process-
ing of rewards and penalties, justification and finalisation, as well as the pro-
cessing of attestations (votes).

Listing A.3. Python code for get attesting indices.

1 def get_attesting_indices (

2 state: BeaconState ,

3 data: AttestationData ,

4 bits: Bitlist[MAX1]

5) -> Set[ValidatorIndex]:

6 """

7 Return the set of attesting indices corresponding to

8 ‘‘data ‘‘ and ‘‘bits ‘‘.

9 """

10 committee=get_beacon_committee (state , data.slot , data.index)

11 return

12 # Collect indices in committee for which bits is set

13 set(index for i, index in enumerate(committee) if bits[i])

The last line (13) of get_attesting_indices collects the indices in the ar-
ray committee that have a corresponding bit set to true in array bits and
returns it as a set of indices. The length of bits, noted |bits|, is MAX1. Conse-
quently, the following relation must be satisfied to avoid an array-out-of-bounds
error: |committee| ≤ MAX1. It follows that to prove9 the absence of array-out-of-
bounds error in Dafny, the specification of get_attesting_indices (in Dafny)
requires a pre-condition, |get beacon committee(. . .)| ≤ MAX1 (line 10). This
pre-condition naturally imposes a post-condition for get_beacon_committee

and trying to prove this post-condition we uncovered a very subtle bug: de-
pending on the number of active validators V in state:

V ≤ 4,194,304: there is no array-out-of-bounds error as we can prove that
|get beacon committee(. . .)| ≤ MAX1 for all values of the input parameters
data.slot and data.index,

8 https://github.com/ConsenSys/eth2.0-dafny/issues
9 In Dafny, this check is built-in so you cannot avoid this proof.

F. Cassez, J. Fuller and A. Asgaonkar178

https://github.com/ConsenSys/eth2.0-dafny/issues

4,194,304 < V < 4,196,352: there is at least one value of the input parame-
ters data.slot and data.index for which |get beacon committee(. . .)| >
MAX1, which results in an array-out-of-bounds, and

4,196,352 ≤ V: for all input combination of data.slot and data.index, there
is an array-out-of-bounds |get beacon committee(. . .)| > MAX1.

This previously undocumented bug was difficult to detect. It required many
hours of effort to model the dynamics of the problem; the analysis was quite
complex due to the multiple interrelated parameter calculations, as well as the
use of floored integer division. The full description and the analysis of this bug
has been reported as issue10 to the reference implementation github repository.
The issue was confirmed by the reference implementation writers.

4.2 Beyond Runtime Errors

We have also been able to establish some well-formedness properties of the data
structure that represents the block-tree built by each node. Each added block
has a stamp, the slot number and a link to its parent. The block-tree is the tree
representation of the parent relation. The block-tree should satisfy the following
properties:

– Every block b except the genesis block has a parent,
– Every block b with parent p is such that the slot of b is strictly larger than

the slot of p,
– the transitive closure of the parent relation produces chains of blocks that

are totally ordered using the < relation on slot,
– the smallest element of each chain has slot 0 (and consequently is the genesis

block).

We have established these properties in ForkChoice.dfy using a list of invariants
on the Store.

Another noticeable contribution compared to other approaches (like testing)
is that we have proved the termination of all loops. For the majority of the
loops, the ranking function used to prove termination is rather straightforward.
An example of a more complicated (decreasing) ranking function can be found
in the proof of a (functional correctness) lemma in ForkChoice.dfy : the proof
relies on the slot number of a block’s parent being strictly smaller than the slot
number of a block itself. The lemma establishes that the graph defined by the
parent relation on the blocks in the store, is always well-formed and is a (block-
)tree: the list of ancestors of any block in the store is ordered (slot-wise) and the
smallest element is the genesis block.

4.3 Finalisation and Justification

During the course of the project we benefited from the guidance of the third co-
author who has comprehensive expertise in various aspects of the Beacon Chain,

10 https://github.com/ethereum/consensus-specs/issues/2500

Formal Verification of the Beacon Chain 179

https://github.com/ConsenSys/eth2.0-dafny/blob/4e41de2866c8d017ccf4aaf2154471ffa722b308/src/dafny/beacon/forkchoice/ForkChoice.dfy#L203
https://github.com/ConsenSys/eth2.0-dafny/blob/4e41de2866c8d017ccf4aaf2154471ffa722b308/src/dafny/beacon/forkchoice/ForkChoice.dfy#L339
https://github.com/ethereum/consensus-specs/issues/2500

including the fork choice part, and identified the fork choice implementation of
the reference implementation as a component that needed verification.

The fork choice rules are designed to identify a canonical branch in the block-
tree which in turn defines the canonical chain. To achieve this goal, we first as-
sumed a fixed set of validators. Then we built a Dafny proof of the GasperFFG [2]
protocol and tried to prove properties about the justified and finalised blocks in
the block-tree. We could mechanically prove Lemmas 4.11 and 5.1, Theorem 5.2
from [2]. Note that a complete proof in Coq is available in [11] but it does not
use the Beacon Chain data structures. We only managed to push these proper-
ties up to a certain level on the functional specifications of our code base and
not on the actual reference implementation. Doing so would require us to add
a substantial amount of details and to modify the structure of several proofs
which was not doable in our timeframe. This experimental work is archived in
branch goal1 of the repository. There is a currently ongoing work focussing on
this topic: designing the mechanised proofs11 of the refinement soundness of the
state transition function (Phase 0) w.r.t. the GasperFFG protocol.

4.4 Reflection

Verification Effort. The effort for formal verification took 16 person-months.
This figure is for the Beacon Chain State Transition and does not include the
time spent on the SSZ and Merkleise libraries that were completed before this
project started. The division of time was primarily between the second and
third components of the project. Translation of the reference implementation in
Dafny, took approximately 6 person-months12. Synthesis of functional specifica-
tions (manually), including proofs, took approximately 10 person-months. The
time allocation for the identification of simplifications is more difficult to assess.
Though some consideration was given initially, this aspect was ongoing, as our
understanding of the reference implementation evolved.

Trust Base. The validity of the verification results assumes the correctness
of the Dafny specification and the Z3 verifier. Dafny is actively maintained and
under continuous improvement. And in the rare instance where Dafny behaves
unpredictability, bug reports are responded to in a timely manner. During the
course of this project a few bugs were reported. For example it was found that
the definition of an inconsistent const could lead to unsound verification results
and reported as an issue13 (fixed) to the Dafny language github repository.

Practicality of the Approach. The use of Dafny does not require any spe-
cific knowledge beyond standard program verification (Hoare style proofs) and
first-order logics. There is ample support (videos, tutorials, books) to help learn-
ing how to write Dafny programs and proofs. The main difficulties/challenges
in writing and verifying projects of this size with Dafny (and the same holds for

11 https://github.com/runtimeverification/beacon-chain-verification
12 This translation includes the proof of absence of runtime errors.
13 https://github.com/dafny-lang/dafny/issues/922

F. Cassez, J. Fuller and A. Asgaonkar180

https://github.com/runtimeverification/beacon-chain-verification
https://github.com/dafny-lang/dafny/issues/922

other verification-friendly automated deductive verifiers) are: 1. when the veri-
fication fails, it requires some experience to interpret the verifier feedback and
make some progress, and 2. the unpredictability (time-wise) of the reasoning
engine; this is due to the fact that verification conditions that are generated by
Dafny are in semi-decidable theories of the underlying SMT-solver (Z3). In our
experience, adding a seemingly innocuous line of proof may result in either a
surge or a drastic reduction of verification time.

5 Conclusion

Overall this project was a significant undertaking. The complexity of the state
transition mechanism, combined with the ambitious project scope, makes this
one of the largest formal verification projects to be completed using Dafny. Even
with the model simplifications, the Python language is not particularly compat-
ible with the fundamentals that underpin formal verification, which presented
continual challenges. Upon reflection: i) the project would have benefited from a
larger team and ii) consideration of the application of formal verification meth-
ods earlier, ideally within the design process, would have had a positive impact.

The interest generated from this project provided an opportunity to facili-
tate Dafny training for the reference implementation writers at the Ethereum
Foundation. This training included the translation of code into Dafny, as well
as the more advanced topic of proof construction. Participants were able to gain
insight into the formal verification process which could provide valuable context
when drafting future reference implementations and specifications.

Acknowledgements. We thank the anonymous referees for their constructive
feedback which helped improve the initial version of the paper. We thank the
reference implementation writers at the Ethereum Foundation for their insightful
feedback. This project was supported by an Ethereum Foundation Grant, FY20-
285 and we thank Danny Ryan (Ethereum Foundation) and Ben Edgington
(ConsenSys) for their help in setting up this project and their support and
encouragements. We also thank Roberto Saltini (ConsenSys) for his contribution
at the early stage of the project.

References

1. Alturki, M., Bogdanas, D., Hathhorn, C., Park, D., Roşu, G.: An executable K
model of ethereum 2.0 beacon chain phase 0 specification. Project Report (2020),
https://github.com/runtimeverification/beacon-chain-spec

2. Buterin, V., Hernandez, D., Kamphefner, T., Pham, K., Qiao, Z., Ryan, D., Sin, J.,
Wang, Y., Zhang, Y.X.: Combining GHOST and casper. CoRR abs/2003.03052
(2020), https://arxiv.org/abs/2003.03052

3. ConsenSys: Formal verification of the ethereum 2.0 specifications in dafny. (2021),
https://github.com/ConsenSys/eth2.0-dafny

4. Cousot, P.: Principles of Abstract Interpretation. MIT Press (2021)
5. Edgington, B.: (2020), https://benjaminion.xyz/eth2-annotated-spec/

Formal Verification of the Beacon Chain 181

https://github.com/runtimeverification/beacon-chain-spec
https://arxiv.org/abs/2003.03052
https://github.com/ConsenSys/eth2.0-dafny
https://benjaminion.xyz/eth2-annotated-spec/

6. Ethereum Foundation: Beacon chain specifications (2020), https://github.com/
ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md

7. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 125–
128. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6 8,

8. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4)
(Oct 2009). https://doi.org/10.1145/1592434.1592438,

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563,

10. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Softw. 34(6),
94–97 (2017). https://doi.org/10.1109/MS.2017.4121212,

11. Li, E., Serbanuta, T., Diaconescu, D., Zamfir, V., Rosu, G.: Formalizing correct-
by-construction casper in coq. In: IEEE International Conference on Blockchain
and Cryptocurrency, ICBC 2020, Toronto, ON, Canada, May 2-6, 2020. pp. 1–3.
IEEE (2020). https://doi.org/10.1109/ICBC48266.2020.9169468,

12. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastructure for
permission-based reasoning. In: Pretschner, A., Peled, D., Hutzelmann, T. (eds.)
Dependable Software Systems Engineering, NATO Science for Peace and Security
Series - D: Information and Communication Security, vol. 50, pp. 104–125. IOS
Press (2017). https://doi.org/10.3233/978-1-61499-810-5-104,

13. Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer Publish-
ing Company, Incorporated (2014)

14. Pearce, D.J., Utting, M., Groves, L.: An introduction to software verification with
Whiley. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) Engineering Trustworthy Software
Systems - 4th International School, SETSS 2018, Chongqing, China, April 7-12,
2018, Tutorial Lectures. Lecture Notes in Computer Science, vol. 11430, pp. 1–37.
Springer (2018). https://doi.org/10.1007/978-3-030-17601-3 1,

15. Ryan, D.: (2020), https://notes.ethereum.org/@djrtwo/Bkn3zpwxB#Phase-0-for-
Humans-v0100

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

F. Cassez, J. Fuller and A. Asgaonkar182

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1109/ICBC48266.2020.9169468
https://doi.org/10.3233/978-1-61499-810-5-104
https://doi.org/10.1007/978-3-030-17601-3_1
https://notes.ethereum.org/@djrtwo/Bkn3zpwxB#Phase-0-for-Humans-v0100
https://notes.ethereum.org/@djrtwo/Bkn3zpwxB#Phase-0-for-Humans-v0100
http://creativecommons.org/licenses/by/4.0/

Fast and Reliable Formal Verification of Smart
Contracts with the Move Prover

David Dill, Wolfgang Grieskamp(�)?,
Junkil Park, Shaz Qadeer, Meng Xu, and Emma Zhong

Novi Research, Meta Platforms, Menlo Park, USA

Abstract. The Move Prover (MVP) is a formal verifier for smart contracts
written in the Move programming language. MVP has an expressive specifi-
cation language, and is fast and reliable enough that it can be run routinely by
developers and in integration testing. Besides the simplicity of smart contracts
and the Move language, three implementation approaches are responsible for
the practicality of MVP: (1) an alias-free memory model, (2) fine-grained in-
variant checking, and (3) monomorphization. The entirety of the Move code
for the Diem blockchain has been extensively specified and can be completely
verified by MVP in a few minutes. Changes in the Diem framework must be
successfully verified before being integrated into the open source repository
on GitHub.

Keywords: Smart contracts · formal verification · Move language · Diem blockchain

1 Introduction

The Move Prover (MVP) is a formal verification tool for smart contracts that in-
tends to be used routinely during code development. The verification finishes fast
and predictably, making the experience of running MVP similar to the experience
of running compilers, linters, type checkers, and other development tools. Build-
ing a fast verifier is non-trivial, and in this paper, we would like to share the most
important engineering and architectural decisions that have made this possible.

One factor that makes verification easier is applying it to smart contracts. Smart
contracts are easier to verify than conventional software for at least three reasons:
1) they are small in code size, 2) they execute in a well-defined, isolated environ-
ment, and 3) their computations are typically sequential, deterministic, and have
minimal interactions with the environment (e.g., no explicit I/O operations). At the
same time, formal verification is more appealing to the advocates for smart contracts
because of the large financial and regulatory risks that smart contracts may entail if
misbehaved, as evidenced by large losses that have occurred already [29,19,22].

The other crucial factor to the success of MVP is a tight coupling with the Move
programming language [26]. Move is developed as part of the Diem blockchain [24]
and is designed to be used with formal verification from day one. Move is currently

? Correspondence to: wgrieskamp@gmail.com

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 183–200, 2022.
https://doi.org/10.1007/978-3-030-99524-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_10

D. Dill, W. Grieskamp et. al.

co-evolving with MVP. The language supports specifying pre-, post-, and aborts con-
ditions of functions, as well as invariants over data structures and over the content
of the global persistent memory (i.e., the state of the blockchain). One feature that
makes verification harder is that quantification can be used freely in specifications.

Despite this specification richness, MVP is capable of verifying the full Move
implementation of the Diem blockchain (called the Diem framework [25]) in a few
minutes. The framework provides functionality for managing accounts and their in-
teractions, including multiple currencies, account roles, and rules for transactions. It
consists of about 8,800 lines of Move code and 6,500 lines of specifications (includ-
ing comments for both), which shows that the framework is extensively specified.
More importantly, verification is fully automated and runs continuously with unit and
integration tests, which we consider a testament to the practicality of the approach.
Running the prover in integration tests requires more than speed: it requires re-
liability, because tests that work sometimes and fail or time out other times are
unacceptable in that context.

MVP is a substantial and evolving piece of software that has been tuned and
optimized in many ways. As a result, it is not easy to define exactly what imple-
mentation decisions lead to fast and reliable performance. However, we can at least
identify three major ideas that resulted in dramatic improvements in speed and re-
liability since the description of an early prototype of MVP [32]:

– an alias-free memory model based on Move’s semantics, which are similar to the
Rust programming language;

– fine-grained invariant checking, which ensures that invariants hold at every state,
except when developer explicitly suspends them; and

– monomorphization, which instantiates type parameters in Move’s generic struc-
tures, functions, and specification properties.

The combined effect of all these improvements transformed a tool that worked,
but often exhibited frustrating, sometimes random [12], timeouts on complex and
especially on erroneous specifications, to a tool that almost always completes in less
than 30 seconds. In addition, there have been many other improvements, including a
more expressive specification language, reducing false positives, and error reporting.

The remainder of the paper first introduces the Move language and how MVP
is used with it, then discusses the design of MVP and the three main optimizations
above. There is also an appendix that describes injection of function specifications.

2 Move and the Prover

Move was developed for the Diem blockchain [24], but its design is not specific to
blockchains. A Move execution consists of a sequence of updates evolving a global
persistent memory state, which we just call the (global) memory. Similar to other
blockchains, updates are a series of atomic transactions. All runtime errors result in
a transaction abort, which does not change the blockchain state except to transfer
some currency (“gas”) from the account that sent the transaction to pay for cost of
executing the transaction.

184

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover

Fig. 1: Account Example Program

module Account {
struct Account has key {

balance: u64 ,
}

fun withdraw(account: address , amount: u64) acquires Account {
let balance = &mut borrow_global_mut <Account >(account).balance;
assert (* balance >= amount , Errors :: limit_exceeded ());
*balance = *balance - amount;

}

fun deposit(account: address , amount: u64) acquires Account {
let balance = &mut borrow_global_mut <Account >(account).balance;
assert (* balance <= Limits :: max_u64 () - amount , Errors :: limit_exceeded ());
*balance = *balance + amount;

}

public(script) fun transfer(from: &signer , to: address , amount: u64)
acquires Account {

assert(Signer :: address_of(from) != to, Errors :: invalid_argument ());
withdraw(Signer :: address_of(from), amount);
deposit(to, amount);

}
}

The global memory is organized as a collection of resources, described by Move
structures (data types). A resource in memory is indexed by a pair of a type and an
address (for example the address of a user account). For instance, the expression
exists<Coin<USD>>(addr) will be true if there is a value of type Coin<USD> stored
at addr. As seen in this example, Move uses type generics, and working with generic
functions and types is rather idiomatic for Move.

A Move application consists of a set of transaction scripts. Each script defines
a Move function with input parameters but no output parameters. This function
updates the global memory and may emit events. The execution of this function can
abort because of an abort instruction or implicitly because of a runtime error such
as an out-of-bounds vector index.

Programming in Move In Move, one defines transactions via script functions which
take a set of parameters. Those functions can call other functions. Script and regu-
lar functions are encapsulated in modules. Move modules are also the place where
structs are defined. An illustration of a Move contract is given in Fig. 1 (for a more
complete description see the Move Book [26]). The example is a simple account
which holds a balance in the struct Account, and offers the script function transfer
to manipulate this resource. Scripts generally have signer arguments, which are

tokens which represent an account address that has been authenticated by a crypto-
graphic signature. The assert statement in the example causes a Move transaction
to abort execution if the condition is not met. Notice that Move, similar as Rust, sup-
ports references (as in &signer) and mutable references (as in &mut T). However,
references cannot be part of structs stored in global memory.

185

Fig. 2: Account Example Specification

module Account {
spec transfer {

let from_addr = Signer :: address_of(from);
aborts_if from_addr == to;
aborts_if bal(from_addr) < amount;
aborts_if bal(to) + amount > Limits :: max_u64 ();
ensures bal(from_addr) == old(bal(from_addr)) - amount;
ensures bal(to) == old(bal(to)) + amount;

}

spec fun bal(acc: address): u64 {
global <Account >(acc).balance

}

invariant forall acc: address where exists <Account >(acc):
bal(acc) >= AccountLimits :: min_balance ();

invariant update forall acc: address where exists <Account >(acc):
old(bal(acc)) - bal(acc) <= AccountLimits :: max_decrease ();

}

Specifying in Move The specification language supports Design By Contract [18].
Developers can provide pre and post conditions for functions, which include condi-
tions over parameters and global memory. Developers can also provide invariants
over data structures, as well as the contents of the global memory. Universal and
existential quantification over bounded domains, such as like the indices of a vector,
as well as effectively unbounded domains, such as memory addresses and integers,
are supported. Quantifiers make the verification problem undecidable and cause dif-
ficulties with timeouts. However, in practice, we notice that quantifiers have the ad-
vantage of allowing more direct formalization of many properties, which increases
the clarity of specifications.

Fig. 2 illustrates the specification language by extending the account example in
Fig. 1 (for the definition of the specification language see [27]). This adds the spec-
ification of the transfer function, a helper function bal for use in specs, and two
global memory invariants. The first invariant states that a balance can never drop
underneath a certain minimum. The second invariant refers to an update of global
memory with pre and post state: the balance on an account can never decrease in
one step more than a certain amount. Note that while the Move programming lan-
guage has only unsigned integers, the specification language uses arbitrary precision
signed integers, making it convenient to specify something like x + y <= limit,
without the complication of arithmetic overflow.

Specifications for the withdraw and deposit functions have been omitted in this
example. MVP supports omitting specs for non-recursive functions, in which case
they are treated as being inlined at caller site.

Running the Prover MVP is fully automatic, like a type checker or linter, and
is expected to finish in a reasonable time, so it can be integrated in the regular
development workflow. Running MVP on the module Account produces multiple
errors. The first is this one:

D. Dill, W. Grieskamp et. al.186

Fig. 3: Move Prover Architecture

error: abort not covered by any of the ‘aborts_if ‘ clauses
-- account.move :24:3
|

13 | let balance = &mut borrow_global_mut <Account >(account).balance;
| ----------------- abort happened here
|
= at account.move :18: transfer
= from = signer {0x18be}
= to = 0x18bf
= amount = 147u8
= at ...

MVP detected that an implicit abort condition is missing in the specification of the
withdraw function. It prints the context of the error, as well as an execution trace
which leads to the error. Values of variable assignments from the counterexample
found by the SMT solver are printed together with the execution trace. Logically,
the counterexample presents an assignment to variables where the program fails to
meet the specification. In general, MVP attempts to produce readable diagnostics
for Move developers without the need of understanding any internals of the prover.

There are more verification errors in this example, related to the global in-
variants: the code makes no attempt to respect the limits in min_balance() and
max_decrease(). The problem can be fixed by adding more assert statements to
check that the limits are met (see full version of the paper [7]).

The programs and specifications MVP deals with are much larger than this ex-
ample. The conditions under which a transaction in the Diem framework can abort
typically involve dozens of individual predicates, stemming from other functions
called by this transaction. Moreover, there are hundreds of memory invariants spec-
ified, encoding access control and other requirements for the Diem blockchain.

3 Move Prover Design

The architecture of MVP is illustrated in Fig. 3. Move code (containing specifica-
tions) is given as input to the tool chain, which produces two artifacts: an abstract

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 187

syntax tree (AST) of the specifications, and the generated bytecode. The Move Model
merges both bytecode and specifications, as well as other metadata from the original
code, into a unified object model which is input to the remaining tool chain.

The next phase is the actual Prover Compiler, which is a pipeline of bytecode
transformations. We focus on the transformations shown (Reference Elimination,
Specification Injection, and Monomorphization). The Prover uses a modified version
of the Move VM bytecode as an intermediate representation for these transforma-
tions, but, for clarity, we describe the transformations at the Move source level.

The transformed bytecode is next compiled into the Boogie intermediate verifi-
cation language [3]. Boogie supports an imperative programming model which is
well suited for the encoding of the transformed Move code. Boogie in turn can trans-
late to multiple SMT solver backends, namely Z3 [20] and CVC5 [23]; the default
choice for the Move prover is currently Z3.

3.1 Reference Elimination

The reference elimination transformation is what enables the alias-free memory
model in the Move Prover, which is one of the most important factors contributing
to the speed and reliability of the system. In most software verification and static
analysis systems, the explosion in number of possible aliasing relationships between
references leads either to high computational complexity or harsh approximations.

In Move, the reference system is based on borrow semantics [5] as in the Rust
programming language. The initial borrow must come from either a global memory
or a local variable on stack (both referred to as locations from now on). For local
variables, one can create immutable references (with syntax &x) and mutable refer-
ences (with syntax &mut x). For global memories, the references can be created via
the borrow_global and borrow_global_mut built-ins. Given a reference to a whole
struct, field borrowing can occur via &mut x.f and &x.f. Similarly, with a reference
to a vector, element borrowing occurs via native functions Vector::borrow(v, i)
and Vector::borrow_mut(v, i). Move provides the following guarantees, which
are enforced by the borrow checker:

– For any location, there can be either exactly one mutable reference, or n im-
mutable references. Enforcing this rule is similar to enforcing the borrow seman-
tics in Rust, except for global memories, which do not exist in Rust. For global
memories, this rule is enforced via the acquires annotations. Using Fig. 1 as an
example, function withdraw acquires the Account global location, therefore,
withdraw is prohibited from calling any other function that might also borrow
or modify the Account global memory (e.g., deposit).

– The lifetime of references to data on the stack cannot exceed the lifetime of
the stack location. This includes global memories borrowed inside a function
as well—a reference to a global memory cannot be returned from the function,
neither in whole nor in parts.

These properties effectively permit the elimination of references from a Move pro-
gram, eliminating need to reason about aliasing.

D. Dill, W. Grieskamp et. al.188

Immutable References Immutable references are replaced by values. An example
of the applied transformation is shown below. We remove the reference type con-
structor and all reference-taking operations from the code:

fun select_f(s: &S): &T { &s.f } fun select_f(s: S): T { s.f }

When executing a Move program, immutable references are important to avoid
copies for performance and to enforce ownership; however, for symbolic reason-
ing on correct Move programs, the distinction between immutable references and
values is unimportant.

Mutable References Each mutation of a location l starts with an initial borrow for
the whole data stored in this location. This borrow creates a reference r. As long as
r is alive, Move code can either update its value (*r = v), or derive a sub-reference
(r’ = &mut r.f). The mutation ends when r (and the derived r’) go out of scope.

The borrow checker guarantees that during the mutation of the data in l, no
other reference can exist into the same data in l – meaning that it is impossible for
other Move code to test whether the value has mutated while the reference is held.

These semantics allow mutable references to be handled via read-update-write
cycles. One can create a copy of the data in l and perform a sequence of mutation
steps which are represented as purely functional data updates. Once the last refer-
ence for the data in l goes out of scope, the updated value is written back to l. This
converts an imperative program with references into an imperative program which
only has state updates on global memory or variables on the stack, with no aliasing.
We illustrate the basics of this approach by an example:

fun increment(x: &mut u64) { *x = *x + 1 }
fun increment_field(s: &mut S) { increment (&mut s.f) }
fun caller (): S { let s = S{f:0}; update (&mut s); s }

fun increment(x: u64): u64 { x + 1 }
fun increment_field(s: S): S { s[f = increment(s.f)] }
fun caller (): S { let s = S{f:0}; s = update(s); s }

Dynamic Mutable References While the setup in above example covers a majority
of the use cases in every day Move code, the general case is more complex, since the
referenced location may not be known statically. Consider the following Move code:

let r = if (p) &mut s1 else &mut s2;
increment_field(r);

Additional information in the logical encoding is required to deal with such cases.
When a reference goes out of scope, we need to know from which location it was
derived in order to write back the updated value. Fig. 4 illustrates the approach for
doing this. Essentially, a new type Mut<T>, which is internal to MVP, is introduced
to track both the location from which T was derived and the value of T. Mut<T>
supports the following operations:

– Mvp::mklocal(value, LOCAL_ID) creates a new mutation value for a local with
the given local id. A local id uniquely identifies a local variable in the function.

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 189

Fig. 4: Elimination of Mutable References

1 fun increment(x: &mut u64) { *x = *x + 1 }
2 fun increment_field(s: &mut S) {
3 let r = if (s.f > 0) &mut s.f else &mut s.g;
4 increment(r)
5 }
6 fun caller(p: bool): (S, S) {
7 let s1 = S{f:0, g:0}; let s2 = S{f:1, g:1};
8 let r = if (p) &mut s1 else &mut s2;
9 increment_field(r);

10 (s1, s2)
11 }

12
13 fun increment(x: Mut <u64 >): Mut <u64 > { Mvp::set(x, Mvp::get(x) + 1) }
14 fun increment_field(s: Mut <S>): Mut <S> {
15 let r = if (s.f > 0) Mvp::field(s.f, S_F) else Mvp::field(s.g, S_G);
16 r = increment(r);
17 if (Mvp:: is_field(r, S_F))
18 s = Mvp::set(s, Mvp::get(s)[f = Mvp::get(r)]);
19 if (Mvp:: is_field(r, S_G))
20 s = Mvp::set(s, Mvp::get(s)[g = Mvp::get(r)]);
21 s
22 }
23 fun caller(p: bool): S {
24 let s1 = S{f:0, g:0}; let s2 = S{f:1, g:1};
25 let r = if (p) Mvp:: mklocal(s1, CALLER_s1)
26 else Mvp:: mklocal(s2, CALLER_s2);
27 r = increment_field(r);
28 if (Mvp:: is_local(r, CALLER_s1))
29 s1 = Mvp::get(r);
30 if (Mvp:: is_local(r, CALLER_s2))
31 s2 = Mvp::get(r);
32 (s1, s2)
33 }

– Similarly, Mvp::mkglobal(value, TYPE_ID, addr) creates a new mutation for
a global with given type and address.

– With r’ = Mvp::field(r, FIELD_ID) a mutation value for a sub-reference is
created for the identified field.

– The value of a mutation is replaced with r’ = Mvp::set(r, v) and retrieved
with v = Mvp::get(r).

– With the predicate Mvp::is_local(r, LOCAL_ID) one can test whether r was
derived from the given local, and with Mvp::is_global(r, TYPE_ID, addr)
for a specific global location. Mvp::is_field(r, FIELD_ID) tests whether r is
derived from the given field.

MVP implements the illustrated transformation by construction a borrow graph
from the program via data flow analysis. This graph tracks both when references
are released as well as how they relate to each other: e.g. r’ = &mut r.f creates an
edge from r to r’ labeled with f, and r’ = &mut r.g creates another also starting
from r. The borrow analysis is inter-procedural, requiring computed summaries for
the borrow graph of called functions.

The resulting borrow graph is then used to guide the transformation, inserting
the operations of the Mut<T> type as illustrated in Fig 4. Specifically, when the bor-

D. Dill, W. Grieskamp et. al.190

row on a reference ends, the associated mutation value must be written back to its
parent mutation or the original location (e.g. line 29 in Fig. 4). The presence of mul-
tiple possible origins leads to case distinctions via Mvp::is_X predicates; however,
these cases are rare in actual Move programs.

3.2 Global Invariant Injection

Correctness of smart contracts is largely about the correctness of the blockchain
state, so global invariants are particular important in the move specification lan-
guage. For example, in the Diem framework, global invariants can capture the re-
quirement that an account be accompanied by various other types that are be stored
at the same address and the requirement certain state changes are only permitted
for certain accounts by the access control scheme.

Most software verification tools prove that functions preserve invariants by as-
suming the invariant at the entry to each function and proving them at the exit. In a
module or class, it is only necessary to prove that invariants are preserved by public
functions, since invariants are often violated internally in the implementation of a
module or class. An earlier version of the Move Prover used exactly this approach.

The current implementation of the Prover takes the opposite approach: it ensures
that invariants hold after every instruction, unless explicitly directed to suspend
some invariants by a user. This fine-grained approach has performance advantages,
because, unless suspended, invariants are only proven when an instruction is executed
that could invalidate them, and the proofs are often computationally simple because
the change from a single instruction is usually small. Relatively few invariants are
suspended, and, when they are, it is over a relatively small span of instructions,
preserving these advantages. There is another important advantage, which is that
invariants hold almost everywhere in the code, so they are available to approve
other properties, such as abort conditions. For example, if a function accesses type
T1 and then type T2, the access to T2 will never abort if the presence of T1 implies
the presence of T2 at every state in the body of the function. This situation occurs
with some frequency in the Diem framework.

Invariant Types and Proof Methodology Inductive invariants are properties de-
clared in Move modules that must (by default) hold for the global memory at all
times. Those invariants often quantify over addresses (See Fig. 2 for example.) Based
on Move’s borrow semantics, inductive invariants don’t need to hold while memory
is mutated because the changes are not visible to other code until the change is
written back. This is reflected by the reference elimination described in Sec. 3.1,

Update invariants are properties that relate two states, a previous state and the
current state. Typically they are enforced after an update of global memory. The old
operator is used to evaluate specification expressions in the previous state.

Verification of both kinds of invariants can be suspended. That means, instead of
being verified at the time a memory update happens, they are verified at the call site
of the function which updates memory. This feature is necessitated by fine-grained
invariant checking, because invariants sometimes do not hold in the midst of internal
computations of a module. For example, a relationship between state variables may

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 191

Fig. 5: Basic Global Invariant Injection

fun f(a: address) {
let r = borrow_global_mut <S>(a);
r.value = r.value + 1

}
invariant [I1] forall a: address: global <S>(a).value > 0;
invariant [I2] update forall a: address:

global <S>(a).value > old(global <S>(a).value);

fun f(a: address) {

spec assume I1;
Mvp:: snapshot_state(I2_BEFORE);
r = <increment mutation >;
spec assert I1;
spec assert I2[old = I2_BEFORE];

}

not hold when the variables are being updated sequentially. Functions with external
callers (public or script functions) cannot suspend invariant verification, since the
invariants are assumed to hold at the beginning and end of each such function.

Inductive invariants are proven by induction over the evolution of the global
memory. The base case is that the invariant must hold in the empty state that pre-
cedes the genesis transaction. For the induction step, we can assume that the invari-
ant holds at each verified function entry point for which it is not suspended, and
now must prove that it holds after program points which are either direct updates
of global memory, or calls to functions which suspend invariants.

For update invariants, no induction proof is needed, since they just relate two
memories. The pre-state is some memory captured before an update happens, and
the post state the current state.

Modular Verification We wish to support open systems to which untrusted modules
can be added with no chance of violating invariants that have already been proven.
For each invariant, there is a defined subset of Move modules (called a cluster). If the
invariant is proven for the modules in the cluster, it is guaranteed to hold in all other
modules – even those that were not yet defined when the invariant was proven. The
cluster must contain every function that can invalidate the invariant, and, in case
of invariant suspension, all callers of such a function. Importantly, functions outside
the cluster can never invalidate an invariant. Those functions trivially preserve the
invariant, so it is only necessary to verify functions defined in the cluster.

MVP verifies a given set of modules at a time (typically one). The modules being
verified are called the target modules, and the global invariants to be verified are
called target invariants, which are all invariants defined in the target modules. The
cluster is then the smallest set as specified above such that all target modules are
contained.

Basic Translation We first look at injection of global invariants in the absence of
type parameters. Fig. 5 contains an example for the supported invariant types and
their injection into code. The first invariant, I1, is an inductive invariant. It is as-
sumed on function entry, and asserted after the state update. The second, I2, is an

D. Dill, W. Grieskamp et. al.192

Fig. 6: Global Invariant Injection and Genericity

invariant [I1] global <S<u64 >>(0).value > 1;
invariant <T> [I2] global <S<T>>(0).value > 0;
fun f(a: address) { borrow_global_mut <S<u8 >>(0).value = 2 }
fun g<R>(a: address) { borrow_global_mut <S<R>>(0).value = 3 }

fun f(a: address) {

spec assume I2[T = u8];
<<mutate >>
spec assert I2[T = u8];

}
fun g<R>(a: address) {

spec assume I1; spec assume I2[T = R];
<<mutate >>
spec assert I1; spec assert I2[T = R];

}

update invariant, which relates pre and post states. For this a state snapshot is stored
under some label I2_BEFORE, which is then used in an assertion.

Global invariant injection is optimized by knowledge of the prover, obtained
by static analysis, about accessed and modified memory. Let accessed(f) be the
memory accessed by a function, and modified(f) be the memory modified. Let
accessed(I) by an invariant (including transitively by all functions it calls).

– Inject assume I at entry to f if accessed(f) has overlap with accessed(I).
– Inject assert I after each program step if one of the following is true (a) the

step modifies a memory location M in accessed(I) or, (b) the step is a call to
function f’ in which I is suspended and modifies(f’) intersects with accessed
(I). Also, if I is an update invariant, inject a save of a memory snaptshot before
the update or call.

Genericity Generic type parameters make the problem of determining whether a
function can modify an invariant more difficult. Consider the example in Fig. 6.
Invariant I1 holds for a specific type instantiation S<u64>, whereas I2 is generic
over all type instantiations for S<T>.

The non-generic function f which works on the instantiation S<u8> will have to
inject the specialized instance I2[T = u8]. The invariant I1, however, does not apply
for this function, because there is no overlap with S<u64>. In contrast, g is generic
in type R, which could be instantiated to u64. So, I1, which applies to S<u64> needs
to be injected in addition to I2.

The general solution depends on type unification. Given the accessed memory
of a function f<R> and an invariant I<T>, we compute the pairwise unification of
memory types. Those types are parameterized over R resp. T. Successful unification
results in a substitution for both type parameters, and we include the invariant with
T specialized according to the substitution.

3.3 Monomorphization

Monomorphization is a transformation which removes generic types from a Move
program by specializing the program for relevant type instantiations. In the context

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 193

Fig. 7: Basic Monomorphization

struct S<T> { .. }
fun f<T>(x: T) { g<S<T>>(S(x)) }
fun g<S:key >(s: S) { move_to <S>(.., s) }

struct T{}
struct S_T{ .. }
fun f_T(x: T) { g_S_T(S_T(x)) }
fun g_S_T(s: S_T) { move_to <S_T >(.., s) }

of verification, the goal is that the specialized program verifies if and only if the
generic program verifies in an encoding which supports types as first class values.
We expect the specialized program to verify faster because it avoids the problem
of generic representation of values, supporting a multi-sorted representation in the
SMT logic.

To verify a generic function for all possible instantiations, monomorphization
skolemizes the type parameter, i.e. the function is verified for a new type with no
special properties that represents an arbitrary type. It then specializes all called func-
tions and used data types with this new type and any other concrete types they may
use. Fig. 7 sketches this approach.

However, this approach has one issue: the type of genericity Move provides does
not allow for full type erasure (unlike many programming languages) because types
are used to index global memory (e.g. global<S<T>>(addr) where T is a generic
type). Consider the following Move function:

fun f<T>(..) { move_to <S<T>>(s, ..); move_to <S<u64 >>(s, ..) }

Depending on how T is instantiated, this function behaves differently. Specifically,
if T is instantiated with u64 the function will always abort at the second move_to,
since the target location is already occupied.

The important property enabling monomorphization in the presence of such type
dependent code is that one can identify the situation by looking at the memory ac-
cessed by code and injected specifications. From this one can derive additional in-
stantiations of the function which need to be verified. In the example above, verifying
both f_T and an instantiation f_u64 will cover all relevant cases of the function be-
havior.

The algorithm for computing the instances that require verification works as
follows. Let f<T1,..,Tn> be a verified target function which has all specifications
injected and inlined function calls expanded.

– For each memory M in modified(f), if there is a memory M’ in modified(f)
+ accessed(f) such that M and M’ can unify via T1,..,Tn, collect an instantia-
tion of the type parameters Ti from the resulting substitution. This instantiation
may not assign values to all type parameters, and those unassigned parameters
stay as is. For instance, f<T1, T2> might have a partial instantiation f<T1, u8>.

– Once all partial instantiations are computed, the set is extended by unifying the
instantiations against each other. If <T> and <T’> are in the set, and they unify
under the substitution s, then <s(T)> will also be part of the set. For example,
consider f<T1, T2> which modifies M<T1> and R<T2>, as well as accesses M<u64>

D. Dill, W. Grieskamp et. al.194

and R<u8>. From this the instantiations <u64, T2> and <T1, u8> are computed,
and the additional instantiation <u64, u8> will be added to the set.

– If after computing and extending instantiations any type parameters remain,
they are skolemized into a given type as described earlier.

To understand the correctness of this procedure, consider the following arguments
(a full formal proof is outstanding):

– Direct interaction Whenever a modified memory M<t> can influence the interpre-
tation of M<t’>, a unifier must exist for the types t and t’, and an instantiation
will be verified which covers the overlap of t and t’.

– Indirect interaction If there is an overlap between two types which influences
whether another overlap is semantically relevant, the combination of both over-
laps will be verified via the extension step.

Notice that even though it is not common in regular Move code to work with
both memory S<T> and, say, S<u64> in one function, there is a scenario where such
code is implicitly created by injection of global invariants. Consider the example in
Fig. 6. The invariant I1 which works on S<u64> is injected into the function g<R>
which works on S<R>. When monomorphizing g, we need to verify an instance g_u64
in order to ensure that I1 holds.

4 Analysis

Reliability and Performance The three improvements described above resulted in
a major qualitative change in performance and reliability. In the version of MVP
released in September 2020, correct examples verified fairly quickly and reliably.
But that is because we needed speed and reliability, so we disabled some properties
that always timed out and others that timed out unpredictably when there were
small changes in the framework. We learned that incorrect programs or specifica-
tions would time out predictably enough that it was a good bet that examples that
timed out were erroneous. However, localizing the error to fix it was very hard, be-
cause debugging is based on a counterexample that violates the property, and getting
a counterexample requires termination!

With each of the transformations described, we witnessed significant speedups
and, more importantly, reductions in timeouts. Monomorphization was the last fea-
ture implemented, and, with it, timeouts almost disappeared. Although this was the
most important improvement in practice, it is difficult to quantify because there have
been many changes in Diem framework, its specifications, MVP, and even the Move
language over that time.

It is simpler (but less important) to quantify the changes in run time of MVP
on one of our more challenging modules, the DiemAccount module, which is the
biggest module in the Diem framework. This module implements basic function-
ality to create and maintain multiple types of accounts on the blockchain, as well
as manage their coin balances. It was called LibraAccount in release 1.0 of MVP,
and is called DiemAccount today. The comparison requires various patches as de-
scribed in [17]. The table below lists the consolidated numbers of lines, functions,

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 195

invariants, conditions (requires, ensures, and aborts-if), as well as the verification
times:

Module Lines Functions Invariants Conditions Timing
LibraAccount 1975 72 10 113 9.899s
DiemAccount 2554 64 32 171 7.340s

Notice that DiemAccount has significantly grown in size compared to the older ver-
sion. Specifically, additional specifications have been added. Moreover, in the origi-
nal LibraAccount, some of the most complex functions had to be disabled for ver-
ification because the old version of MVP would time out on them. In contrast, in
DiemAccount and with the new version, all functions are verified. Verification time
has been improved by roughly 20%, in the presence of three times more global invari-
ants, and 50% more function conditions.

We were able to observe similar improvements for the remaining of the 40 mod-
ules of the Diem framework. All of the roughly half-dozen timeouts resolved after
introduction of the transformations described in this paper.

Causes for the Improvements It’s difficult to pin down and measure exactly why
the three transformations described improved performance and reliability so dra-
matically. We have explained some reasons in the subsections above: the alias-free
memory model reduced search through combinatorial sharing arrangments, and the
fine-grained invariant checking results in simpler formulas for the SMT solver.

We found that most timeouts in specifications stemmed from our liberal use of
quantifiers. To disprove a property P0 after assuming a list of properties, P1, . . . pn,
the SMT solver must show that ¬P0 ∧ P1 ∧ . . . ∧ Pn is satisfiable. The search usu-
ally involves instantiating universal quantifiers in P1, . . . , Pn. The SMT solver can do
this endlessly, resulting in a timeout. Indeed, we often found that proving a post-
condition false would time out, because the SMT solver was instantiating quanti-
fiers to find a satisfying assignment of P1∧ . . .∧ Pn. Simpler formulas result in fewer
intermediate terms during solving, resulting in fewer opportunities to instantiate
quantified formulas.

We believe that one of the biggest impacts, specifically on removing timeouts and
improving predictability, is monomorphization. The reason for this is that monomor-
phization allows a multi-sorted representation of values in Boogie (and eventually
the SMT solver). In contrast, before monomorphization, we used a universal domain
for values in order to represent values in generic functions, roughly as follows:

type Value = Num(int) | Address(int) | Struct(Vector <Value >) | ...

This creates a large overhead for the SMT solver, as we need to exhaustively in-
ject type assumptions (e.g. that a Value is actually an Address), and pack/un-
pack values. Consider a quantifier like forall a: address: P(x) in Move. Be-
fore monomorphization, we have to represent this in Boogie as forall a: Value:
is#Address(a)=> P(v#Address(a)). This quantifier is triggered where ever is#
Address(a) is present, independent of the structure of P. Over-triggering or inad-
equate triggering of quantifiers is one of the suspected sources of timeouts, as also
discussed in [12].

D. Dill, W. Grieskamp et. al.196

Moreover, before monomorphization, global memory was indexed in Boogie by
an address and a type instantiation. That is, for struct R<T> we would have one
Boogie array [Type, int]Value. With monomorphization, the type index is elim-
inated, as we create different memory variables for each type instantiation. Quan-
tification over memory content works now on a one-dimensional instead of an n-
dimensional Boogie array.

Discussion and Related Work Many approaches have been applied to the verifica-
tion of smart contracts; see e.g. the surveys [14,29]. [29] refers to at least two dozen
systems for smart contract verification. It distinguishes between contract and pro-
gram level approaches. Our approach has aspects of both: we address program level
properties via pre/post conditions, and contract (“blockchain state”) level properties
via global invariants. To the best of our knowledge, among the existing approaches,
the Move ecosystem is the first one where contract programming and specification
language are fully integrated, and the language is designed from first principles in-
fluenced by verification. Methodologically, Move and the Move prover are thereby
closer to systems like Dafny [11], or the older Spec# system [4], where instead of
adding a specification approach posterior to an existing language, it is part from the
beginning. This allows us not only to deliver a more consistent user experience, but
also to make verification technically easier by curating the programming language.

In contrast to other approaches that only focus on specific vulnerability pat-
terns [6,15,21,31], MVP offers a universal specification language. To the best of
our knowledge, no existing specification approach for smart contracts based on in-
ductive Hoare logic has similar expressiveness. We support universal quantification
over arbitrary memory content, a suspension mechanism of invariants to allow non-
atomic construction of memory content, and generic invariants. For comparison,
the SMT Checker build into Solidity [8,9,10] does not support quantifiers, because
it interprets programming language constructs (requires and assert statements) as
specifications and has no dedicated specification language. While in Solidity one can
simulate aspects of global invariants using modifiers by attaching pre/post condi-
tions, this is not the same as our invariants, which are guaranteed to hold indepen-
dent of whether a user may or (accidentally) may not attach a modifier, and which
are optimized to be only evaluated as needed.

While the expressiveness of Move specifications comes with the price of unde-
cidability and the dependency from heuristics in SMT solvers, MVP deals with this
by its elaborated translation to SMT logic, as described in this paper. The result
is a practical verification system that is fully integrated into the Diem blockchain
production process, running in continuous integration, which is (to the best of our
knowledge) a first in the industry.

The individual techniques we described are novel each by themselves. Reference
elimination relies on borrow semantics, similar as in the Rust [16] language. We ex-
pect reference elimination to apply for the safe subset of Rust, though some extra
work would be needed to deal with references aggregated by structs. However, we
are not aware of that something similar has been attempted in existing Rust veri-
fication work [1,2,13,30]. Global invariant injection and the approach to minimize
the number of assumptions and assertions is not applied in any existing verification

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 197

approach we know of; however, we co-authored a while ago a similar line of work
for runtime checking of invariants in Spec# [28], yet that work never left the concep-
tual state. Monomorphization is well known as a technique for compiling languages
like C++ or Rust, where it is called specialization; however, we are not aware of it
being generalized for modular verification of generic code where full type erasure
is not possible, as it is the case in Move.

Future Work MVP is conceived as a tool for achieving higher assurance systems, not
as a bug hunting tool. Having at least temporarily achieved satisfactory performance
and reliability, we are turning our attention to the question of the goal of higher
assurance, which raises several issues. If we’re striving for high assurance, it would
be great to be able to measure progress towards that goal. Since system requirements
often stem from external business and regulatory needs, lightweight processes for
exposing those requirements so we know what needs to be formally specified would
be highly desirable.

As with many other systems, it is too hard to write high-quality specifications.
Our current specifications are more verbose than they need to be, and we are work-
ing to require less detailed specifications, especially for individual functions. We
could expand the usefulness of MVP for programmers if we could make it possi-
ble for them to derive value from simple reusable specifications. Finally, software
tools for assessing the consistency and completeness of formal specifications would
reduce the risk of missing bugs because of specification errors.

However, as more complex smart contracts are written and as more people write
specifications, we expect that the inherent computational difficulty of solving logic
problems will reappear, and there will be more opportunities for improving perfor-
mance and reliability. In addition to translation techniques, it will be necessary to
identify opportunities to improve SMT solvers for the particular kinds of problems
we generate.

5 Conclusion

We described key aspects of the Move prover (MVP), a tool for formal verification
of smart contracts written in the Move language. MVP has been successfully used
to verify large parts of the Diem framework, and is used in continuous integration
in production. The specification language is expressive, specifically by the powerful
concept of global invariants. We described key implementation techniques which
(as confirmed by our benchmarks) contributed to the scalability of MVP. One of the
main areas of our future research is to improve specification productivity and reduce
the effort of reading and writing specs, as well as to continue to improve speed and
predictability of verification.

Acknowledgements This work would not have been possible without the many
contributions of the Move platform team and collaborators. We specifically like to
thank Bob Wilson, Clark Barrett, Dario Russi, Jack Moffitt, Jake Silverman, Mathieu
Baudet, Runtian Zhou, Sam Blackshear, Tim Zakian, Todd Nowacki, Victor Gao, and
Kevin Cheang.

D. Dill, W. Grieskamp et. al.198

References

1. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for modular spec-
ification and verification. PACMPL 3(OOPSLA), 147:1–147:30 (2019)

2. Baranowski, M.S., He, S., Rakamaric, Z.: Verifying rust programs with SMACK. In: ATVA.
Lecture Notes in Computer Science, vol. 11138, pp. 528–535. Springer (2018)

3. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: International Symposium on For-
mal Methods for Components and Objects. pp. 364–387. Springer (2005)

4. Barnett, M., DeLine, R., Fähndrich, M., Jacobs, B., Leino, K.R.M., Schulte, W., Venter, H.:
The Spec# Programming System: Challenges and Directions, pp. 144–152. Springer
Berlin Heidelberg, Berlin, Heidelberg (2008), https://doi.org/10.1007/978-3-540-
69149-5_16

5. Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: A survey. In: Clarke,
D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, Lecture Notes in Computer Science, vol. 7850, pp. 15–58.
Springer (2013). https://doi.org/10.1007/978-3-642-36946-9_3

6. ConsenSys: Mythril Classic: Security analysis tool for Ethereum smart contracts, https:
//github.com/skylightcyber/mythril-classic

7. Dill, D.L., Grieskamp, W., Park, J., Qadeer, S., Xu, M., Zhong, J.E.: Fast and reliable for-
mal verification of smart contracts with the move prover (extended version). CoRR
abs/2110.08362 (2021), https://arxiv.org/abs/2110.08362

8. Foundation, E.: Solidity documentation (2018), http://solidity.readthedocs.io
9. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for solidity smart contracts. CoRR

abs/1907.04262 (2019)
10. Hajdu, Á., Jovanovic, D.: SMT-Friendly Formalization of the Solidity Memory Model. In:

ESOP. Lecture Notes in Computer Science, vol. 12075, pp. 224–250. Springer (2020)
11. Leino, K.M.: Accessible software verification with dafny. IEEE Software 34(06), 94–97

(nov 2017). https://doi.org/10.1109/MS.2017.4121212
12. Leino, K.R.M., Pit-Claudel, C.: Trigger Selection Strategies to Stabilize Program Verifiers.

In: Proceedings of the 28th International Conference on Computer Aided Verification,
Part I. pp. 361–381. Springer (2016). https://doi.org/10.1007/978-3-319-41528-
4_20

13. Lindner, M., Aparicius, J., Lindgren, P.: No panic! verification of rust programs by symbolic
execution. In: INDIN. pp. 108–114. IEEE (2018)

14. Liu, J., Liu, Z.: A survey on security verification of blockchain smart contracts. IEEE Access
7, 77894–77904 (2019)

15. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In:
ACM Conference on Computer and Communications Security. pp. 254–269. ACM
(2016)

16. Matsakis, N.D., Klock, II, F.S.: The Rust Language, nourl =
http://doi.acm.org/10.1145/2692956.2663188. Ada Lett. 34(3), 103–104 (Oct
2014). https://doi.org/10.1145/2692956.2663188

17. Meng Xu: Artifact for Paper “Fast and Reliable Formal Verification of Smart Contracts
with the Move Prover” (2020), https://github.com/meng-xu-cs/mvp-artifact

18. Meyer, B.: Applying "design by contract". Computer 25(10), 40–51 (Oct 1992).
https://doi.org/10.1109/2.161279

19. Morisander: The Biggest Smart Contract Hacks in History Or How to Endanger up to US
$2.2 Billion. https://medium.com/solidified/the-biggest-smart-contract-hacks-in-
history-or-how-to-endanger-up-to-us-2-2-billion-d5a72961d15d (2018)

Fast and Reliable Formal Verification of Smart Contracts with the Move Prover 199

https://doi.org/10.1007/978-3-540-69149-5_16
https://doi.org/10.1007/978-3-540-69149-5_16
https://doi.org/10.1007/978-3-642-36946-9_3
https://github.com/skylightcyber/mythril-classic
https://github.com/skylightcyber/mythril-classic
https://arxiv.org/abs/2110.08362
http://solidity.readthedocs.io
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1145/2692956.2663188
https://github.com/meng-xu-cs/mvp-artifact
https://doi.org/10.1109/2.161279
https://medium.com/solidified/the-biggest-smart-contract-hacks-in-history-or-how-to-endanger-up-to-us-2-2-billion-d5a72961d15d
https://medium.com/solidified/the-biggest-smart-contract-hacks-in-history-or-how-to-endanger-up-to-us-2-2-billion-d5a72961d15d

20. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. Lecture Notes in
Computer Science, vol. 4963, pp. 337–340. Springer (2008)

21. Nikolic, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and
suicidal contracts at scale. In: ACSAC. pp. 653–663. ACM (2018)

22. Sigalos, M.: Bug Puts $162 Million up for Grabs, Says Founder of DeFi Platform Com-
pound. https://www.cnbc.com/2021/10/03/162-million-up-for-grabs-after-bug-i
n-defi-protocol-compound-.html (2021)

23. The CVC Team: CVC5, https://github.com/cvc5/cvc5
24. The Diem Association: An Introduction to Diem (2019), https://www.diem.com/en-us/
25. The Diem Association: The Diem Framework (2020), https://github.com/diem/diem/t

ree/release-1.5/diem-move/diem-framework
26. The Move Team: The Move Programming Language (2020), https://diem.github.io/m

ove
27. The Move Team: The Move Specification Language (2020), https://github.com/diem/

diem/blob/release-1.5/language/move-prover/doc/user/spec-lang.md
28. Tillmann, N., Grieskamp, W., Schulte, W.: Efficient checking of state-dependent con-

straints (US Patent 20050198621A1, 2004)
29. Tolmach, P., Li, Y., Lin, S., Liu, Y., Li, Z.: A survey of smart contract formal specification

and verification. CoRR abs/2008.02712 (2020), https://arxiv.org/abs/2008.02712
30. Toman, J., Pernsteiner, S., Torlak, E.: Crust: A bounded verifier for rust (N). In: ASE. pp.

75–80. IEEE Computer Society (2015)
31. Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Bünzli, F., Vechev, M.T.: Securify:

Practical security analysis of smart contracts. In: ACM Conference on Computer and
Communications Security. pp. 67–82. ACM (2018)

32. Zhong, J.E., Cheang, K., Qadeer, S., Grieskamp, W., Blackshear, S., Park, J., Zohar, Y.,
Barrett, C., Dill, D.L.: The Move Prover. In: Lahiri, S.K., Wang, C. (eds.) Computer
Aided Verification. pp. 137–150. Springer International Publishing (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Cre-
ative Commons license, unless indicated otherwise in a credit line to the material. If material is
not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

D. Dill, W. Grieskamp et. al.200

https://www.cnbc.com/2021/10/03/162-million-up-for-grabs-after-bug-in-defi-protocol-compound-.html
https://www.cnbc.com/2021/10/03/162-million-up-for-grabs-after-bug-in-defi-protocol-compound-.html
https://github.com/cvc5/cvc5
https://www.diem.com/en-us/
https://github.com/diem/diem/tree/release-1.5/diem-move/diem-framework
https://github.com/diem/diem/tree/release-1.5/diem-move/diem-framework
https://diem.github.io/move
https://diem.github.io/move
https://github.com/diem/diem/blob/release-1.5/language/move-prover/doc/user/spec-lang.md
https://github.com/diem/diem/blob/release-1.5/language/move-prover/doc/user/spec-lang.md
https://arxiv.org/abs/2008.02712
http://creativecommons.org/licenses/by/4.0/

A Max-SMT Superoptimizer for EVM handling
Memory and Storage?

Elvira Albert1,2 , Pablo Gordillo2(�) ,
Alejandro Hernández-Cerezo2 , and Albert Rubio1,2

1 Instituto de Tecnoloǵıa del Conocimiento, Madrid, Spain
2 Complutense University of Madrid, Madrid, Spain

pabgordi@ucm.es

Abstract. Superoptimization is a compilation technique that searches
for the optimal sequence of instructions semantically equivalent to a given
(loop-free) initial sequence. With the advent of SMT solvers, it has been
successfully applied to LLVM code (to reduce the number of instructions)
and to Ethereum EVM bytecode (to reduce its gas consumption). Both
applications, when proven practical, have left out memory operations and
thus missed important optimization opportunities. A main challenge to
superoptimization today is handling memory operations while remaining
scalable. We present GASOLv2, a gas and bytes-size superoptimization
tool for Ethereum smart contracts, that leverages a previous Max-SMT
approach for only stack optimization to optimize also wrt. memory and
storage. GASOLv2 can be used to optimize the size in bytes, aligned with
the optimization criterion used by the Solidity compiler solc, and it can
also be used to optimize gas consumption. Our experiments on 12,378
blocks from 30 randomly selected real contracts achieve gains of 16.42% in
gas wrt. the previous version of the optimizer without memory handling,
and gains of 3.28% in bytes-size over code already optimized by solc.

1 Introduction and Related Work

Superoptimization is an automated technique for code optimization that was
proposed back in 1987 [20]. It aims at automatically finding the optimal (wrt.
the considered optimization criteria) instruction sequence —which is semanti-
cally equivalent— to a given sequence of loop-free instructions. It differs from
traditional optimization techniques in that it uses search rather than applying
pre-cooked transformations. However, as it requires exhaustive search in the
space of valid instruction sequences, it suffers from high computation demands
and it was considered impractical for many years. The first attempts of applying
superoptimization were within a GNU C compiler back in the nineties [15] and,
later, it has also been applied for an x86-64 assembly language [10,11].

There is a recent revival of superoptimization due to the availability of
SMT solvers which offer powerful techniques to handle enumerative search and

? This research was funded by the Spanish MCIN/AEI/10.13039/ 501100011033/-
FEDER “Una manera de hacer Europa” projects RTI2018-094403-B-C31 and
RTI2018-094403-B-C33, by the CM project S2018/TCS-4314 co-funded by EIE
Funds of the European Union, and by the Ethereum Foundation grant FY21-0372.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 201–219, 2022.
https://doi.org/10.1007/978-3-030-99524-9_11

http://orcid.org/0000-0003-0048-0705
http://orcid.org/0000-0001-6189-4667
http://orcid.org/0000-0003-2109-8863
http://orcid.org/0000-0002-0501-9830
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_11

E. Albert et al.

to check semantic equivalence. The approaches to supercompilation based on
SMT can be roughly classified into two types: (1) Those that use an external
synthesis algorithm with pruning techniques, such as [9, 12, 17], and that invoke
the SMT solver to solve certain queries. This is the approach of the Souper
superoptimizer [22] that relies on the synthesis algorithm for loop-free programs
of Gulwani et al. [17]; (2) Those that directly produce an SMT encoding of the
problem and use the search engine of the solver. This is the approach of [18],
EBSO [21] and SYRUP [7]. Both types of approaches have been proven to be
practical on their own settings and optimization criteria: the analysis of blocks
does not reach the timeout of 10 sec in 90% of the cases [7] in SYRUP, and
Souper optimized three million lines of C++ in 88 minutes [22]. The optimizations
achieved vary for the considered criteria, Souper reported around 4.4% reduction
in number of instructions, and SYRUP reported 0.58% in the global Ethereum
gas usage. Scalability has been partly achieved because challenging features
have been left out of the encoding: memory operations have been excluded both
in Souper and SYRUP. While EBSO included a basic encoding for memory
operations, its practicality was not proven: EBSO times out in 82% of the blocks
and achieves optimization in less than 1% of all analyzed blocks. Leaving out
memory operations dismisses optimization opportunities of two kinds: (a) as it
works on smaller blocks of instructions (since the optimizer stops when finding
a memory operation), the stack optimization is more limited, and (b) besides
it misses possible optimizations on the memory operations themselves (e.g.,
eliminating unnecessary accesses).

The Ethereum Virtual Machine (EVM) has two areas where it can store items
(besides the stack): (1) the storage is where all contract state variables reside, every
contract has its own storage and it is persistent between external function calls
(transactions) and has a higher gas cost to use; (2) the memory is used to hold
temporary values, and it is erased between transactions and thus is cheaper to use.
For conciseness, we often use “memory” to include both storage and memory, as
their treatment for optimization is identical except for their associated costs. Our
big challenge is to be able to handle memory operations while remaining practical,
i.e., not reaching the timeout in the optimization of the vast majority of the
blocks. This is achieved by leveraging SYRUP’s two-staged method [7] to handle
memory: (i) the first stage is devoted to synthesize a stack specification from the
bytecode and apply simplification rules to it, and (ii) in a second stage a Max-
SMT solver is used to perform the search for the optimal solution. When lifting
such two-staged method to handle memory operations, we make two important
extensions: in stage (i), we now synthesize a stack and memory specification
from the bytecode on which we detect dependencies among memory operations
and possibly remove redundant operations; (ii) this dependency information is
included in our second stage as part of the encoding so that the SMT solver
only needs to consider the dependence among such memory instructions when
performing the search. Our two-staged approach allows isolating the dependency
analysis process from the search itself, reducing the effort the SMT solver does
in order to find the optimal sequence. The approach of Bansal and Aiken [10]

202

A Max-SMT Superoptimizer for EVM handling Memory and Storage

to handle memory operations differs from ours on the superoptimization scope
and the search process itself. Their tool considers multiple target sequences from
a training set simultaneously and generates a database of (possibly) millions of
optimizations. They enumerate all well-formed instructions sequences up to a
certain size, including memory operations, and test the equivalence among them
via a hash function. Our tool considers each sequence of instructions to optimize
independently and the search is done via the search engine of an SMT solver.

GASOLv2 can be considered a successor of SYRUP [7], as it adopts its two-
staged process and reuses part of its components, but it incorporates three
fundamental extensions, and a new experimental evaluation, that constitute
the main contributions of this paper: (1) GASOLv2 starts from the assembly
json [1] generated by the solc compiler, rather than being used as a standalone
optimization tool as SYRUP. This is fundamental to achieve a wide use of the tool
since it is already linked to one of the most used compilers for coding Ethereum
smart contracts. (2) It optimizes memory and storage operations using on one
hand rule simplifications at the level of a specification synthesized from the
bytecode, and on the other hand, a new SMT encoding which enables achieving
a great balance between the accuracy and the overhead of the process. (3) While
SYRUP is a tool that only optimizes the gas consumption of the bytecode, we
have generalized some of its components to enable other optimization criteria.
Currently we have included as well size in bytes, but other criteria can be
easily incorporated now to the superoptimizer. (4) Besides we have performed a
thorough experimental evaluation of our tool and have compared the results wrt.
those obtained by SYRUP. The main conclusion of our evaluation is that handling
memory operations in superoptimization pays off: it can achieve gains of 16.42%
in gas over SYRUP, and reductions of 0.1% in gas and 3.28% in size (on already
optimized code). If we assume that these savings are uniformly distributed, and
the gas data obtained from Etherscan is constant, the 0.1% gas saved wrt the
SYRUP [7] would amount nearly to 9.5 Million dollars in 2021.

GASOLv2 is part of the GASOL project [3], a GAS Optimization tooLkit for
Ethereum smart contracts. The initial GASOL tool (i.e., GASOLv1), presented
in [5], aimed at detecting gas-expensive patterns within program loops (using
resource analysis) and made a program transformation (which does not rely on
SMT solvers) at the source code level. Hence, it contains a global (inter-block)
optimization technique that is orthogonal to our superoptimizer, in which we
perform local (or intra-block) transformations on loop-free code, and besides we
work at bytecode rather than at source level. Both complementary techniques
will be integrated within the GASOL toolkit, hence their names. In what follows,
we drop v2 and use GASOL to refer to the tool presented in this paper.

2 The Architecture of GASOL

Figure 1 displays the architecture of GASOL, white components are borrowed
from other tools, while gray components correspond to the new developments of
this paper (either completely new, like DEP, or novel extensions for memory
handling of previous SYRUP’s implementations, like SPEC, SIMP and SMS).

203

BLK

Input

Output

Optimized
EVM

Bytecode

Solidity / EVM
Bytecode Assembly

 JSON code

BLK Blocks

BLKSPEC

SMS

SOLC

BLKBLKSIMP

BLK

DEPPre-Order Simplified
SMS

BLK
Max
SMT

System
Settings

Optimization
Report

Phase 2

Phase 1

Conflicts

Fig. 1: Architecture of GASOLv2

The input to GASOL is a smart contract (either its source in Solidity or its
compiled EVM bytecode [23]), a selection of the optimization criteria (currently
we are supporting gas consumption and size in bytes), and system settings (this
includes compiler options for invoking the solc compiler and GASOL settings like
the timeout per block of instructions). The output of GASOL is an optimized
bytecode program and optionally a report with detailed information on the
optimizations achieved (e.g., number of blocks optimized, number of blocks
proven optimal, gas/size reduction gains, optimization time, among others).

The first component, labeled SOLC in the figure, invokes the Solidity compiler
solc to obtain the bytecode in their assembly json exchange format [1]. Working on
this exchange format has many advantages, one is that we can enable the optimizer
of solc [4] and start the superoptimization from an already optimized bytecode.
Besides, the format has been designed to be a usable common denominator
for EVM 1.0, EVM 1.5 and Ewasm. Hence, we argue it is a good source for
superoptimization as different target platforms will be able to use our tool
equally. The assembly json format provides the EVM bytecode of the smart
contract, metadata that relates it with the source Solidity code, and compilation
information such as the version used to generate the bytecode. The output yield
by GASOL can also be returned in assembly json format so that it can be used
by other tools working on this format in the future. From the assembly json,
the next component BLK partitions the bytecode given by solc into a set of
sequences of loop-free bytecode instructions, named blocks, which correspond to
the blocks of the CFG and also computes the size of the stack when entering each
block.3 We omit details of this step as it is standard in compiler construction
and, for the case of the EVM, has been already subject of other analysis and
optimization papers (see, e.g. [8, 14, 16] and their references).

The next component SPEC synthesizes a functional specification of the
operand stack and of the memory and storage (SMS for short) for each block of
bytecode instructions. This is done by symbolically executing the bytecodes in
the block to extract from them what the contents of the operand stack and of
the memory/storage are after executing them. The description of this component
is given in Sec. 3.1. Next, DEP establishes the dependencies among the memory
accesses from which a pre-order, that determines when a memory access needs

3 In EVM, it is possible to reach a block with different stack sizes, and all such sizes
can be statically computed. We will refer to the minimum or maximum when needed.

E. Albert et al.204

(1) τ(MLOAD, < S,M,St >) := < [MLOAD(S[0])] + S[1 : n],M + [MLOAD(S[0])],St >
(2) τ(MSTORE, < S,M,St >) := < S[2 : n],M + [MSTORE(S[0],S[1])],St >
(3) τ(SLOAD, < S,M,St >) := < [SLOAD(S[0])] + S[1 : n],M,St+ [SLOAD(S[0])] >
(4) τ(SSTORE, < S,M,St >) := < S[2 : n],M,St+ [SSTORE(S[0],S[1])] >
(5) τ(SWAPX, < S,M,St >) := let temp = S[0] < S[0/X][X/temp],M,St >
(6) τ(POP, < S,M,St >) := < S[1 : n],M,St >

Fig. 2: SMS Synthesis by Symbolic execution

to be performed before another one, is generated. For instance, subsequent load
accesses, which are not interleaved by any store, do not have dependencies among
them, while they do have with subsequent write accesses to the same positions.
This phase is described in Secs. 3.2 (dependencies) and 3.3 (pre-order). In the
next component SIMP, we apply simplification rules on the SMS. We include
all stack simplification rules of SYRUP [7], as well as the additional rules we
have developed for memory/storage simplifications. For instance, successive write
accesses that overwrite the same memory position are simplified to a single one
provided the same memory location is not read by any other instruction between
them. The description of this component is given in Sec. 3.2. Finally, we generate
a Max-SMT encoding from the (simplified) SMS that incorporates the pre-order
established by the component DEP and from which the optimized bytecode is
obtained. The description of this component is given in Sec. 4.

3 Synthesis of Stack and Memory Specifications

This section describes the first stage of the optimization (components SPEC,
SIMP and DEP) that consists in synthesizing from a loop-free sequence of byte-
code instructions a simplified specification of the stack and of the memory/storage
(with the dependencies) that the execution of such bytecodes produces.

3.1 Initial Stack and Memory/Storage Specification

For each block, we synthesize its Stack and Memory Specification (SMS) by
symbolically executing the instructions in the sequence. Function τ in Fig. 2
defines the symbolic execution for the memory/storage operations (1-4) and
includes two representative stack opcodes (5-6). The first parameter of τ is a
bytecode instruction and the second one is the SMS data structure < S,M,St >
whose first element corresponds to the stack (S), the second one to the memory
(M), and the third one to the storage (St). The stack S is a list whose position
S[0] corresponds to the top of the stack. At the beginning of executing a block,
the stack contains the minimum number of elements needed to execute the block
represented by symbolic variables si, where si models the element at S[i]. The
resulting list M (St resp.) will contain the sequence of memory (storage resp.)
accesses executed by the block. By abuse of notation, we often treat lists as
sequences. Both M and St are empty before executing the block symbolically.
As an example, the symbolic execution of SSTORE removes the two top-most
elements from S, and adds the symbolic expression SSTORE(S[0],S[1]) to the
storage sequence. Similarly, SLOAD removes from the top of the stack the position
to be read, puts on the top of the stack the symbolic expression SLOAD(S[0]) that

A Max-SMT Superoptimizer for EVM handling Memory and Storage 205

represents the value read from the storage position S[0], and adds the same
expression to the storage sequence St. As a result of applying τ to a sequence of
bytecodes, the SMS obtained provides a specification of the target stack after
executing the sequence in terms of the elements located in the stack before
executing the sequence and, the target memory/storage (given as a sequence of
accesses) after executing the sequence in terms of the input stack elements too.

Example 1. Consider the following bytecode that belongs to a real contract
(bytecodes 0 to 47 of Welfare [2]). Its assembly json yield by the SOLC component
contains 4524 bytecodes and after being partitioned by BLK we have 437 blocks
to optimize. We illustrate the superoptimization of this block that contains in
total 48 bytecodes from which 5 are the (underlined) memory/storage accesses:

1 PUSH1 80
2 PUSH1 40
3 MSTORE
4 PUSH1 64
5 PUSH1 1
6 PUSH1 14
7 PUSH2 100
8 EXP

9 DUP2
10 SLOAD
11 DUP2
12 PUSH2 FFFF
13 MUL
14 NOT
15 AND
16 SWAP1

17 DUP4
18 PUSH2 FFFF
19 AND
20 MUL
21 OR
22 SWAP1
23 SSTORE
24 POP

25 PUSH2 3E8
26 PUSH1 1
27 PUSH1 16
28 PUSH2 100
29 EXP
30 DUP2
31 SLOAD
32 DUP2

33 PUSH2 FFFF
34 MUL
35 NOT
36 AND
37 SWAP1
38 DUP4
39 PUSH2 FFFF
40 AND

41 MUL
42 OR
43 SWAP1
44 SSTORE
45 POP
46 CALLVALUE
47 DUP1
48 ISZERO

As BLK returns that the stack is empty when entering the block, we apply τ to
the initial state < [], [], [] > and produce the following SMS at the next selected
lines: L1 : τ(PUSH1 80, < [], [], [] >) =< [128], [], [] >

L2 : τ(PUSH1 40, < [128], [], [] >) =< [64, 128], [], [] >
L3 : τ(MSTORE, < [64, 128], [], [] >) =< [], [MSTORE(64,128)], [] >

Finally, we get that at L48 S = [ISZERO(CALLVALUE), CALLVALUE], M = [MSTORE(64,128)],
St = [SLOAD1(1), SSTORE(1,V1), SLOAD2(1), SSTORE(1,V2)] where V1 = OR(MUL(...)),
AND(NOT(..)), SLOAD1(1)) (omitting subexpressions) and V2 is another similar expression
involving arithmetic, binary operations and SLOAD2(1). Note that we use subscripts
to distinguish the SLOAD instructions by their position in St. The stack specification
contains a term that represents the result of the opcode CALLVALUE (executed at line 46,
L46 for short), and a term with the result of executing the opcode ISZERO on CALLVALUE,
stored on top of the stack. The memory only contains one element that is obtained by
symbolically executing the three first instructions. The PUSH instructions at L1 and L2
introduce the values 64 and 128 on the stack, and the MSTORE executed at L3 introduces
in M the symbolic expression MSTORE(40,80). Similarly, St contains the sequence of
symbolic expressions that represent the storage instructions executed in the block at
L10, L23, L31 and L44 respectively. The expressions corresponding to V1 and V2 are also
obtained by applying function τ to the corresponding state. These stack expressions
can be simplified in the next step using the rules in [7].

We note that the EVM memory is byte addressable (e.g., with instruction MSTORE8)
and two different memory accesses may overlap. For simplicity of the presentation,
we only consider the general case of word-addressable accesses, but the technique
extends easily to the byte addressable case. In what follows, we use LOAD to
abstract from the specific memory (MLOAD) and storage (SLOAD) bytecodes (and
the same for STORE), when they are treated in the same way.

3.2 Memory/Storage Simplifications

In order to define the simplifications, and to later indicate to the SMT solver
which memory instructions need to follow an order, we compute the conflicts
between the different load and store instructions within each sequence.

E. Albert et al.206

Definition 1. Two memory accesses A and B conflict, denoted as conf(A,B) if:

(i) A is a store and B is a load and the positions they access might be the same;
(ii) A and B are both stores, the positions they modify might be the same, and

they store different values.

Note that in (ii) two store instructions that might operate on the same position
do not conflict if the values they store are equal, as we will reach the same
memory state regardless of the order in which the stores are executed. Note that
two load instructions are never in conflict as the memory state does not change
if we execute them in one order or another.

Given the SMS obtained in Sec. 3.1, we achieve simplifications by applying
the stack simplification rules of [7] and, besides, the following new memory
simplification rules based on Def. 1 to the M and S components (that achieve
optimizations of type (b) according to the classification mentioned in Sec. 1):

Definition 2 (memory simplifications). Let < S,M,St > be an SMS, we
can apply the following simplifications to any subsequence b1, . . . , bn in M or St:

i) if b1 =STORE(p, v) and bn =LOAD(p) and @bi =STORE with i ∈ {2, . . . , n−1} and
conf(b1,bi), we simplify it to b1, . . . , bn−1 and replace bn by v in the resulting
SMS.

ii) if b1 =STORE(p, v) and bn =STORE(p, w) and @bi =LOAD with i ∈ {2, . . . , n− 1}
conf(b1,bi), we simplify it to b2, . . . , bn.

iii) if b1 =LOAD(p) and bn =STORE(p,LOAD(p)) and @bi =STORE with i ∈ {2, . . . , n−
1} conf(b1,bi), we simplify it to b1, . . . , bn−1.

The simplifications can be applied in any order within M and St until the process
converges and the resulting sequence cannot be further simplified.

Intuitively, in (i), a load instruction from a position after a store instruction to
the same position is simplified in the stack to the stored value provided there
is no other store operation in between that might have changed the content
of this position. In (ii), two subsequent store instructions to the same position
are simplified to a single store if there is no load access on the same position
between them. In (iii), a store instruction that stores in a position the result of
the load in the same position can be removed, provided there is no other store in
between that might have changed the content of this position. Note that such
simplification rules can be applied to general-purpose compilers.

Example 2. In the SMS of Ex. 1, we have that conf(SLOAD1(1),SSTORE(1,V1)), conf
(SLOAD1(1),SSTORE(1,V2)), conf(SLOAD2(1),SSTORE(1,V1)), conf(SLOAD2(1),SSTORE(1,
V2)) and conf(SSTORE(1,V1,SSTORE(1,V2)) as all accesses operate on the same lo-
cation. With these conflicts, we can apply rule i) to SLOAD2(1), as the previous
SSTORE instruction has stored the value V1 at the same location and there are no
other storage instructions with conflict between them. Hence, we eliminate it
from St and replace it by V1 in the resulting SMS. After that, we are able to apply
rule ii) on the two SSTORE instructions as they store a value at the same position
without conflict loads in between. Then, we remove SSTORE(1,V1) from St. The
resulting SMS has the same S and M and St is now [SLOAD1(1), SSTORE(1,V2’)]
where V2’ is V2 replacing SLOAD2(1) by V1.

A Max-SMT Superoptimizer for EVM handling Memory and Storage 207

3.3 Pre-Order for Memory and Uninterpreted Functions

Given the SMS and using the conflict definition above, we generate a pre-order,
as defined below, that indicates to the SMT solver the order between the memory
accesses that needs to be kept in order to obtain the same memory state as the
original one. Clearly, having more accurate conflict tests will result in weaker
pre-orders and hence a wider search space for the SMT solver. This in turn will
result in potentially larger optimization. Our implementation is highly parametric
on the conflict test DEP so that more accurate tests can be easily incorporated.

Definition 3. Let A and B be two memory accesses in a sequence S. We say
that B has to be executed after A in S, denoted as A @ B if:

i) (store-store) B is a store instruction and A is the closest store instruction
predecessor of B in S such that conf(A,B).

ii) (load-store) A is a load instruction and B is the closest store instruction
successor of A in S such that conf(B,A).

iii) (store-load) B is a load instruction and A is the closest store instruction
predecessor of B in S such that conf(A,B).

Let us observe that we do not compute the closure for the dependencies at this
stage, as the SMT solver will infer them, as explained in Sec. 4.2.

Example 3. From the simplified SMS of Ex. 2, we get the following load-store
dependency, SLOAD1(1) @ SSTORE(1,V2’), while the access MSTORE(64,128) has no
dependencies as it is the unique memory operation.

Importantly, the notion of pre-order between memory instructions can also be
naturally extended to all other operations that occur in the specification of the
target stack. These operations are handled as uninterpreted functions and have to
be called in the right order to build the result that is required in the target stack.
Therefore, we propose a novel implementation (both in SYRUP and GASOL) that
extends the pre-order @ to uninterpreted functions by adding A @ B also when:

iv) (uninterpreted-functions) A and B are uninterpreted functions that occur in
the target stack as B(. . . , A(. . .), . . .).

While in the case of uninterpreted functions the pre-order is used for improving
performance, for memory operations the use of the pre-order is mandatory for
soundness, since it is what ensures that the obtained block after optimization has
the same final state (in the stack, memory and storage) than the original block.

3.4 Bounding the Operations Position

As we will show in the next section, a solution to our SMT encoding assigns a
position in the final instruction list to each operation such that the target stack
is obtained. A key element for the performance of the encoding we propose in
this paper is based on extracting from the instruction pre-order @, upper and
lower bounds to the position the operations can take in the instruction list. The
lower bound for a given function is obtained by inspecting the subterm where it
occurs in the target stack and analyzing its operands to detect the earliest point

E. Albert et al.208

in which the result of all them can be placed in the stack, taking into account
that shared subcomputations can be obtained using a DUP opcode. On the other
hand, the upper bound for a function is obtained by inspecting the position in
the target stack they occur and analyzing the operations that use the term that
is headed by this function, to obtain the latest point in which this term could be
computed. From this analysis, we obtain both the upper UB(ι) and lower LB(ι)
bounds for every uninterpreted (which includes the load) and store operation ι,
which are extensively used in the encoding provided in the next section.

4 Max-SMT Superoptimization

This section describes the second stage of the optimization process (named Max
SMT in Fig. 1) that consists in producing, from the SMS and the dependencies,
a Max-SMT encoding such that any valid model corresponds to a bytecode
equivalent to the initial one and optimized for the selected criterion.

4.1 Stack Representation in the SMT Encoding

The stack representation is the same as in [7]: the stack can hold non-negative
integer constants in the range {0, . . . , 2256−1}, matching the 256-bit words in the
EVM; initial stack variables s0, . . . , sk−1, represent the initial (unknown) elements
of the stack; and fresh variables sk, . . . , sv abstract each different subterm (built
from opcodes and the initial stack variables) that appears in the SMS. A stack
variable of the form si is represented in the encoding as the integer constant
2256 + i, so that all stack elements in the model are integer values. To represent
the contents of the stack after applying a sequence of instructions, a bound on
the number of operations bo and the size of the stack bs must be given. These
numbers are statically computed by considering the size of the initial block and
the maximum number of stack elements involved. Then, propositional variables
ui,j , with i ∈ {0, . . . , bs−1} and j ∈ {0, . . . , bo}, are used to denote whether there
exists an element at position i in the stack after executing the first j operations,
where the element u0,j refers to the topmost element of the stack. Quantified
variables xi,j ∈ Z are introduced to identify the word at position i after applying
j operations, following the same format as ui,j .

An instruction ι ∈ I in the encoding can be either a basic stack opcode
(POP, SWAPk, . . .), a distinct expression that appears in the SMS or the extra
instruction NOP that represents the possibility no opcode has been applied. A
mapping θ is introduced to link every instruction in I to a non-negative integer
in {0, . . . ,mι}, where mι + 1 = |I|. This way, we can introduce the existentially
quantified variables tj , with tj ∈ {0, . . . ,mι} and j ∈ {0, . . . , bo − 1}, to denote
that the instruction ι is applied at step j when tj = θ(ι). There is a special case
to be considered when identifying the instructions from an SMS: each expression
containing a single occurrence of an opcode in Wbase (see [23]) is considered as an
independent expression with a different ι. Opcodes in Wbase consume no operand
from top of the stack and have lower gas cost and equal byte count as DUPk, so we
can safely assume that in an optimal block such expressions are never duplicated.
For efficiency reasons, we also apply the reciprocal: any other expression is forced
to appear exactly once in our solution, as our experiments show that duplicating

A Max-SMT Superoptimizer for EVM handling Memory and Storage 209

the expression is always better than computing it more than once. However, note
that this may not hold, in general, when the cost of the expression is low or the
size of the operating stack is high, and hence, although is highly unlikely, we may
lose some better solutions. From this assumption, we have that every ι we have
introduced must appear exactly once in every model, which simplifies greatly
both the pre-order encoding and the gas model used. The following example
illustrates how the SMS is processed and the relevance of considering Wbase:

Example 4. Consider a modified version of Ex. 1, in which S = [ISZERO(CALLVALUE),
CALLVALUE] but M,St are both empty. b0, bs are bounded to 3 and 2 resp., as
three instructions are enough to compute the given SMS and it reaches a stack
size of two elements. Each application of CALLVALUE is considered independently,
as CALLVALUE ∈ Wbase . Variables s0 := 2256, s1 := 2256 + 1, s2 := 2256 + 2 are
introduced to represent the stack variable obtained from CALLVALUE0, CALLVALUE1
and ISZERO(CALLVALUE1). GASOL creates the following θ map:

θ := {PUSH : 0, POP : 1, NOP : 2, DUP1 : 3, SWAP1 : 4,

CALLVALUE0 : 5, CALLVALUE1 : 6, ISZERO(CALLVALUE1) : 7}
The optimal sequence is CALLVALUE CALLVALUE ISZERO, which consumes 7 units of
gas. It improves the cost of L46-L48, which consumes 8 due to the use of DUP1.

The set of instructions I can be split in four subsets IS] IU] IC] ISt:

– IS contains the basic stack operations: PUSH, POP, NOP, DUPk, and SWAPk, with
k ∈ {1, . . . ,min(bs − 1, 16)}. DUPk and SWAPk are restricted by bs because
they cannot deal with elements that go beyond the maximum stack size.

– IU contains the non-commutative uninterpreted functions that appear in the
SMS. Its subset IL ⊆ IU denotes the set of load instructions.

– IC contains the commutative uninterpreted functions in the SMS.

– ISt contains the write operations in memory structures.

The encoding for subsets IS] IU] IC was already considered in [7], whereas
ISt was left out. Instead, blocks were split when an opcode belonging to ISt was
found. The inclusion of ISt instructions in the model leads to more savings in
gas, as more optimizations can be applied in larger blocks (those correspond to
optimizations of type (a) in the classification given in Sec. 1).

For each ι ∈ I and each possible position j in the sequence of instructions, we
add a constraint to represent the impact of this combination on the stack. These
constraints match the semantics of τ when projecting onto the stack component,
so that we encode the elements of the stack after executing ι in terms of the
ones before its execution. They follow the structure tj = θ(ι) ⇒ Cι(j), where
Cι(j) expresses the changes in the stack after applying ι. The constraints for
IS] IU] IC are detailed in [7], our extension in this section is only to include
the constraints to reflect the impact of storage operations on the stack. For this
purpose, we use an auxiliary predicate Move (already used in [7]) to denote that
all elements in the stack are moved two positions to the right in the resulting
stack state. Thus, we have the following constraint for each position j and each

E. Albert et al.210

ι ∈ ISt, where o0 and o1 denote the position and value stored:

CSt(j, ι) := tj = θ(ι)⇒ u0,j ∧ u1,j ∧ x0,j = o0 ∧ x1,j = o1 ∧
Move(j, 2, bs − 1,−2) ∧ ¬ubs−1,j+1 ∧ ¬ubs−2,j+1

Finally, we express the contents of the stack before executing the instructions
of the block (initial stack) and after having executed them (target stack) by
assigning the corresponding values (whether constants or stack variables) to
ui,0, xi,0 and to ui,bo , xi,bo respectively. The overall SMT encoding for the stack
representation is denoted as CSFS and it is encoded using QF LIA logic.

Example 5. Following Ex. 4, GASOL generates the constraint shown below to
update the contents of the stack after applying ι = ISZERO(CALLVALUE1) at step 2:

Cι(2, ι) := t2 = 7⇒ u0,2 ∧ x0,2 = 2256 + 1 ∧
u0,3 ∧ x0,3 = 2256 + 2 ∧ u1,3 = u1,2 ∧ x1,3 = x1,2

4.2 Encoding the Pre-order Relation

Once the stack representation has been formalized, we also need to consider the
conflicts that appear among memory operations as part of our encoding, as well as
the dependencies between uninterpreted functions. All this is made by encoding
the pre-order relation given in Sec. 3.3. We consider each pair of instructions ι, ι′

s.t. ι @ ι′. We aim to prevent conflicting operations from appearing in the wrong
order in a model, by imposing that ι cannot occur in the assignment after ι′.

Our proposed approach consists in introducing a variable lθ(ι) for every
instruction ι ∈ IC ∪ IU ∪ ISt := Ilord to track the position it appears in a
sequence. This information is useful for specifying multiple conditions in the
encoding that are difficult to reflect otherwise. Firstly, these variables implicitly
enforce that ι must be tied to exactly one position, and thus, included in every
sequence exactly once. Besides, we can narrow the positions in which ι can appear
by using LB(ι), UB(ι) bounds. Finally, as QF LIA supports ordering among
variables, the order between conflicting instructions can be encoded as a plain
comparison between their positions. Hence, the following constraints are derived:

LP (ι) := LB(ι) ≤ lθ(ι) ≤ UB(ι) ∧
∧

LB(ι)≤j≤ UB(ι)

(lθ(ι) = j)⇔ (tj = θ(ι))

Llord(ι, ι
′) := lθ(ι) < lθ(ι′) where ι @ ι′

Regarding memory operations, there is no need to consider special cases. The
whole encoding can be expressed as follows:

CSMS := CSFS ∧
∧

ι∈Ilord

LP (ι) ∧
∧
ι@ι′

Llord(ι, ι
′)

4.3 Optimization using Max-SMT

As in [7], we formulate the problem of finding an optimal block as a partial
weighted Max-SMT problem. In this section we show that the same encoding
for gas optimization can be used in the presence of memory operations and
that other optimization criterion, like bytes-size, can be included as well in
our framework. Basically, in our Max-SMT problem, the hard constraints that

A Max-SMT Superoptimizer for EVM handling Memory and Storage 211

must be satisfied by every model are those constraints for computing the SMS;
and the soft constraints are used to find the optimal solution: a set of pairs
{[C1, ω1], . . . , [Cn, ωn]}, where Ci denotes an SMT clause and ωi its weight. The
Max-SMT solver minimizes the weights of the falsified soft constraints. The
weights of soft constraints presented in [7] match the gas spent for the sequence of
instructions, thus ensuring an optimal model corresponds to a block that spends
the least possible amount of gas. This gas encoding is also included in GASOL,
but instructions in Ilord are removed from the soft constraints. Hard constraints
already assert the exact number of times these instructions must appear in a
sequence and therefore, they only add unnecessary extra cost that may harm the
search of an optimality proof.

However, gas consumption is not the only relevant objective to consider when
optimizing the code. When a contract is deployed, a fee of 200 units of gas must
be paid for each non-zero byte of the EVM binary code. The desired trade-off
between the initial deployment cost and invoking transactions can be specified in
solc by setting the expected number of contract runs. In some cases, this leads to
solc intentionally not fully replacing expressions that have a constant result by
the value they represent if this constant is a large number, since the needed PUSH

instructions will need many more non-zero bytes and hence will increment the
deployment gas cost. For instance, if we want to have 2256 − 1 on the top of the
stack we can either push a zero and perform the bitwise NOT operation, which
has gas cost 6 and non-zero bytes length 2 or push 2256 − 1 directly which has
gas cost 3 but non-zero bytes length 33.

When the bytes-size criterion is selected, we disable the application of the
simplification rules of [7] that increase the byte-size and, besides, propose the
next approach based on the bytes-size model for the Max-SMT encoding. This
model is fairly simple except for the handling of the PUSH related instructions,
denoted as IP in what follows. All instructions that are not in IP use exactly
one byte. Instead PUSHx instructions take one byte to specify the opcode itself,
and x bytes to include the pushed value. A first attempt to encode the weight
of the PUSHx we tried was based on precisely describing the size in bytes based
on the corresponding 32 options that x can take in terms of number of bytes.
(recall that in EVM we have 256-bit words). This encoding is precise, but did
not work in practice. An alternative, much simpler encoding, is based on the
observation that numerical values can only appear in a model because at least
once the corresponding PUSHx instruction is made. Later on, this value can be
repeated using DUP, which has a minimal cost wrt. size of bytes, but if the
block is large, some SWAP operation may also be needed. To make the encoding
perform well in practice, we need to associate a single constant weight to all PUSHx
operations, that is high enough to avoid models where expensive PUSHx operations
are performed more than once instead of duplicating them. Our experiments have
shown that a weight of 5 is enough to obtain optimal results for the sizes of blocks
that the Max-SMT is able to handle. Then, we can assume NOP instructions cost
0 units, instructions in Ip costs 5 units and the remaining instructions cost 1 unit.
Hence, three disjoint sets are introduced to match previous costs: W0 := {NOP},

E. Albert et al.212

W5 := Ip and W1 := IS \ (W0]W5). Ω′ bytes-size model is followed directly:

Ω′SMS :=
⋃

06j<bo

{[tj = θ(NOP), 1], [
∨

ι∈W0]W1

tj = θ(ι), 4]}

Example 6. The optimized bytecode returned by GASOL for the gas criterion
is PUSH24* PUSH 80 PUSH 40 MSTORE PUSH 1 SLOAD PUSH32* AND PUSH21* OR PUSH32* AND OR PUSH 1 SSTORE

CALLVALUE CALLVALUE ISZERO (using * to skip large constants), which achieves a reduction
of 5905 units wrt. the original version and is proven optimal. For the bytes-size
criterion, GASOL times out due to the larger size of the block when size-increasing
simplification rules are disabled. This issue will be discussed in Sec. 5.

5 Implementation and Experiments

This section provides further implementation details and describes our experimen-
tal evaluation. The GASOL tool is implemented in Python and uses as Max-SMT
solver OptiMathSAT (OMS) [13] version 1.6.3 (which is the optimality framework
of MathSAT). The aim of the experiments is to assess the effectiveness of our
proposal by comparing it with the previous tool SYRUP. A timeout is given to the
tools to specify the maximum amount of time that they can use for the analysis of
each block. The timeout given to GASOL must be larger than for SYRUP because
it works on less and larger blocks in order to analyze the same contract. We
have used as timeout for SYRUP 10 sec, and for GASOL, we use 10*(#store+1)
sec, as this would correspond to the addition of the times in SYRUP given to
the partitioned blocks. It should be noted though that the cost of the search to
be performed grows exponentially with the number of additional instructions.
Therefore, in spite of giving a similar timeout, GASOL might time out in cases
in which it has to deal with rather large blocks, while SYRUP does not on the
corresponding smaller partitioned blocks. For this reason, we have implemented
two additional versions: gasolall splits the blocks at all stores as SYRUP, and
gasol24 splits at store instructions only those blocks that have a size larger than
24 instructions. This is because we have observed during experimentation that
the SMT search does not terminate in a reasonable time from that size on. The
24-partitioning starts from the end of the block and splits it if it finds a store. If
the partitioned sub-block (from the start) still has a size larger than 24, further
partitioning is done again if a new store is found from its end, and so on. Still,
depending on where the stores are, the resulting blocks can have sizes larger than
24, as it happens in SYRUP as well. Further experimentation will be needed
to come up with intelligent heuristics for the partitioning. The gasol versions
implement all techniques described in the paper, including the SMT encoding
dependencies between uninterpreted functions as described in Sec. 3.3. We have
the following versions of GASOL and SYRUP in the evaluation: (1) syrupcav is
the original tool from [7], (2) gasolall splits the blocks at all stores as in syrupcav,
(3) gasol24 performs the 24-partitioning described above, (4) gasolnone does not
perform any additional partitioning of blocks, and (5) gasolbest uses gasolall,
gasol24, and gasolnone, as a portfolio of possible optimization results (running
them in parallel) and keeps the best result.

We run the tools using the gas usage and the bytes-size criteria in Sec. 4.3.
As already mentioned, SYRUP in [7] did not include the bytes-size criterion,

A Max-SMT Superoptimizer for EVM handling Memory and Storage 213

Gnormal Gtimeout %Gtotal Tgas Bnormal Btimeout %Btotal Tbytes

syrupcav 35689 11129 0.62% 142,93 – – – –

gasolall 36344 11975 0.64% 120,21 3712 2213 2.64% 200,17

gasol24 38765 12336 0.68% 327,36 4315 2238 2.92% 558,48

gasolnone 39977 0 0.53% 850,75 3871 0 1.72% 1194,38

gasolbest 41307 13197 0.72% 933,66 4676 2692 3.28% 1313,36

Table 2: Overall gains in gas and bytes-size and overheads

marked as “–” in the figures. Experiments have been performed on an Intel Core
i7-7700T at 4.2GHz x 8 and 64Gb of memory, running Ubuntu 16.04.

The benchmark set. We have downloaded the last 30 verified smart contracts
from Etherscan that were compiled using the version 8 of solc and whose source
code was available as of June 21, 2021. The reason for this selection is twofold:
(1) we require version 8 in order to be able to apply the latest solc optimizer and
start from a worst-case scenario in which we have the most possible optimized
version and, this way, assess if there is room for further optimization and, in
particular, for the two types of gains achievable by GASOL (see Sec. 1), (2)
we want to make a random choice (e.g., the last 30) rather than picking up
contracts favorable to us. The benchmarks in [7] require using an old version
of the compiler (at most 4), hence the last solc optimizer cannot be activated.
The source code of GASOL as well as the smart contracts analyzed are available
at https://github.com/costa-group/gasol-optimizer. We provide the results of
analyzing the compiled smart contracts generated by the version 0.8.9 of solc with
the complete optimization options. The total number of blocks, given by BLK,
for the 30 contracts is 12,378. Within them, there are 1,044 SSTORE instructions,
6,631 MSTORE and 43 MSTORE8. These memory instructions are used by SYRUP to
split the basic blocks, while GASOL does not split them always as explained above.
This results on 15,416 blocks when considering the additional 24-partitioning,
13,030 without partitioning at stores by gasolnone, and 20,467 blocks by syrupcav
and gasolall. As in [7] all tools split blocks at instructions like LOGX or CODECOPY .

Efficiency gains and performance overhead. Table 2 shows the overall gas and
size gains and the optimization time (in minutes). The total gas consumed by all
contracts before running the optimizers is 7,538,907, and the bytes-size is 224,540.
As it is customary, we are calculating such gas (resp. size) as the sum of the gas
(resp. size) consumed by all EVM instructions in the considered contracts.4 For
those EVM instructions that do not consume a constant and fixed amount of gas,
such as SSTORE, EXP or SHA3, we choose the lower bound that they may consume.
Column Gnormal refers to the gains for the blocks that do not timeout giving no
solution, Gtimeout represents the gas saved by the optimized blocks that reached
the timeout in gasolnone with no result (note that Gnormal is the complementary
of Gtimeout), and Gtotal the total gains computed as the sum of the previous
two, given as a percentage wrt. the initial gas consumption. Columns B have the
analogous meanings for size and T gives the time in minutes. The first observation
is that our proposal of using dependencies in gasolall pays off, as we achieve larger

4 Estimating the actual gains of executing transactions on the involved contracts is a
research problem on its own which has been subject of other work, e.g., [6,16,19,24].

E. Albert et al.214

https://github.com/costa-group/gasol-optimizer

#B Alrg Optg Betg Nong Toutg Alrb Optb Betb Nonb Toutb
syrupcav 20467 70.54 27.01 0.47 0.08 1.9 – – – – –

gasolall 20467 70.63 27.36 0.64 0.35 1.02 83.25 12.83 1.2 0.69 2.03

gasol24 15416 62.2 33.79 1.47 0.91 1.63 75.48 16.29 3.21 1.78 3.24

gasolnone 13030 65.48 25.3 3.81 0.34 5.07 73.44 11.7 3.1 2.57 9.19

Table 3: Optimization report (%) for SYRUP and GASOL

gains than syrupcav in less time. The second observation is that the gains in gas
of GASOL are notably larger for blocks that do not time out Gnormal, as a larger
search space can be explored. However, those blocks that would require a larger
timeout might behave worse than the syrupcav and gasolall versions working on
smaller blocks, as the original bytecode is taken as the optimization result in case
of timeout. This sometimes happens in the version gasol24, and more often in
gasolnone. The problem is exacerbated for the bytes-size criterion because larger
blocks are considered as a result of skipping size-increasing simplification rules.
Even in Bnormal the gain is smaller for gasolnone than for gasol24. This is because
Bnormal includes timeouts for which a solution is found. Our solution to mitigate
the huge computation demands required in these cases is in row gasolbest that
runs in parallel gasolall, gasol24 and gasolnone and returns the best result. As it
can be seen, gasolbest clearly outperforms the other systems in gas and size gains.
As regards the overhead, it is also the most expensive option, as it reaches the
timeout more often than the other systems and these timeouts are accumulated to
the time. However, as superoptimizers are often used as offline optimization tools,
which are run only prior to deployment, we argue that the gains compensate the
further optimization time. Finally, it remains to be investigated the interaction
between the two optimization criteria, namely how the reduction in bytes-size
affects the gas consumption and vice versa.

Impact of phases 1 and 2. We would also like to estimate how much is gained in
gasolbest by applying the simplification rules and how much is gained by the SMT
encoding. Regarding the simplification rules on memory, gasolbest has applied 6
rules on storage and 11 on memory: 15 of them correspond to the rule i) (4 on
storage and 11 on memory) described in Def. 2, and 2 to the rule ii) (both on
storage). Rule iii) is never applied on this benchmark set, but we have applied
it when optimizing other real smart contracts. As regards the percentage of the
gains, 14.6% of the gas savings come from applying the memory rules, 34.4%
from the stack rules and 51% is saved by the use of the Max-SMT solver. As
in [7], the gains due to each phase are roughly half (i.e., 50% each). Regarding the
simplification rules on stack for the gas criterion, their application has increased
11.4% in gasolbest because it works on larger blocks and has more opportunities
to apply them. However, when selecting the bytes-size criteria, there are less
simplification rules applied (namely 96% less) as when the rules generate larger
code in terms of size they are not applied (see Sec. 4.3).

Optimality results. Table 3 provides additional detailed information, which is
also part of the optimization report of Fig. 1. Column #B shows the total
number of blocks analyzed in each case, depending on the partitioning. In the
remaining columns, we show the percentages of: Column Alr blocks that are

A Max-SMT Superoptimizer for EVM handling Memory and Storage 215

already optimal, i.e., those blocks that cannot be optimized because they already
consume the minimal amount of gas; Opt blocks that have been optimized and
the SMT solver has proved the optimality of the solution, i.e., they consume
the minimum amount of gas needed to generate the provided SMS; Bet blocks
that have been optimized and therefore, consume less gas than the original ones,
but the solution is not proved to be optimal; Non blocks that have not been
optimized and the solver has not been able to prove if they are optimal, i.e., the
solution found is the original one but it may exist a better one; Tout blocks
where the solver reached the timeout without finding a model. The subscripts b

are the analogous for the bytes-size criterion. We can observe in the table that
gasolnone times out in more cases due to the larger sizes of the blocks that it
optimizes, but the percentages of blocks for which it finds a better and optimal
solution are notably high. It should also be noted that the results of SYRUP (and
gasolall) and, to a lesser extent, of gasol24 wrt. optimality are weaker. This is
because they work on strictly smaller blocks and hence they can prove optimality
for the partitioned blocks, but when glued together, the optimality may be lost.
This is also the reason why the results for gasolbest are not included, because it
mixes different notions of optimality and the concepts are not well-defined. Due
to this weaker optimality, the Opt and Bet results are only slightly better for
GASOL than for SYRUP. However, the truly important aspect is that the actual
gas and size gains for GASOL in Table 2 are notably larger.

6 Conclusions and Future Work

We have presented GASOLv2, a Max-SMT based superoptimizer for Ethereum
smart contracts that uses the assembly json exchange format of the solc compiler
for a direct integration into it. GASOLv2 extends the Max-SMT approach of
SYRUP [7] with memory and storage operations, which constitute the most chal-
lenging and relevant features left out in SYRUP’s approach. GASOLv2 is part of
the GASOL project [3] that aims at developing a GAS Optimization tooLkit that
will integrate inter-block optimizations [5] as well. Namely, the initial optimizer [5]
of the GASOL project uses inter-block analysis to detect storage accesses that can
be replaced by cheaper memory accesses, thus making global optimizations that
are orthogonal and complementary to our intra-block ones. As part of our future
work, we plan to investigate potential synergies among the different proposals
to optimization for smart contracts. This includes also the cooperation with the
solc optimizer [4] that incorporates classical compiler optimizations (e.g., dead
code elimination, constant propagation, etc.) from which our superoptimizer
is already benefiting (since we are applying the solc optimizer). In the other
order of application, we expect also gains when applying classical analyses after
superoptimization. For instance, we have also observed that after applying rule
simplification (i) in Def. 2 and eliminating load instructions, we might leave
store operations on memory locations that will never be accessed again, and that
could be eliminated afterwards by applying an inter-block analysis ensuring that
there are no further access to such memory location. The combination of the
techniques and tools thus seems a promising direction for future research.

E. Albert et al.216

References

1. Compiler Input and Output JSON Description.
https://docs.soliditylang.org/en/v0.8.7/using-the-compiler.html#compiler-
input-and-output-json-description.

2. Welfare contract. https://etherscan.io/address/
0x3E873439949793e8c577E08629c36Ed8c184e7D9#code.

3. GASOL – A GAS Optimization tooLkit, 2021. Funded by the Ethereum Foundation
https://blog.ethereum.org/2021/07/01/esp-allocation-update-q1-2021/.

4. The solc optimizer, 2021. https://docs.soliditylang.org/en/v0.8.7/internals/
optimizer.html.

5. Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Dı́ez, and Albert
Rubio. GASOL: Gas Analysis and Optimization for Ethereum Smart Contracts. In
Armin Biere and David Parker, editors, Proceedings of 26th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS
2020, volume 12079 of Lecture Notes in Computer Science, pages 118–125, 2020.

6. Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Dı́ez, and Albert
Rubio. Don’t run on fumes—parametric gas bounds for smart contracts. Journal
of Systems and Software, 176:110923, 2021.

7. Elvira Albert, Pablo Gordillo, Albert Rubio, and Maria A. Schett. Synthesis of
super-optimized smart contracts using max-smt. In Shuvendu K. Lahiri and Chao
Wang, editors, Computer Aided Verification - 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I, volume 12224
of Lecture Notes in Computer Science, pages 177–200. Springer, 2020.

8. Elvira Albert, Pablo Gordillo, Albert Rubio, and Ilya Sergey. Running on Fumes:
Preventing Out-Of-Gas Vulnerabilities in Ethereum Smart Contracts using Static
Resource Analysis. In 13th International Conference on Verification and Evaluation
of Computer and Communication Systems, VECoS 2019. Proceedings, volume 11847
of LNCS, pages 63–78. Springer, 2019.

9. Rajeev Alur, Rastislav Bod́ık, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. Syntax-guided synthesis. In Formal Methods in
Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013,
pages 1–8. IEEE, 2013.

10. Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers.
In John Paul Shen and Margaret Martonosi, editors, Proceedings of the 12th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006, pages
394–403. ACM, 2006.

11. Sorav Bansal and Alex Aiken. Binary translation using peephole superoptimizers.
In Richard Draves and Robbert van Renesse, editors, 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2008, December 8-10, 2008,
San Diego, California, USA, Proceedings, pages 177–192. USENIX Association,
2008.

12. James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing synthesis
with metasketches. In Rastislav Bod́ık and Rupak Majumdar, editors, Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, pages 775–788. ACM, 2016.

A Max-SMT Superoptimizer for EVM handling Memory and Storage 217

https://etherscan.io/address/0x3E873439949793e8c577E08629c36Ed8c184e7D9#code
https://etherscan.io/address/0x3E873439949793e8c577E08629c36Ed8c184e7D9#code
https://blog.ethereum.org/2021/07/01/esp-allocation-update-q1-2021/
https://docs.soliditylang.org/en/v0.8.7/internals/optimizer.html
https://docs.soliditylang.org/en/v0.8.7/internals/optimizer.html

13. Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto
Sebastiani. The mathsat5 SMT solver. In Tools and Algorithms for the Construction
and Analysis of Systems - 19th International Conference, TACAS 2013. Proceedings,
pages 93–107, 2013.

14. F. Contro, M. Crosara, M. Ceccato, and M. Dalla Preda. Ethersolve: Computing
an accurate control-flow graph from ethereum bytecode. In 29th IEEE/ACM
International Conference on Program Comprehension, ICPC 2021, Madrid, Spain,
May 20-21, 2021, pages 127–137. IEEE, 2021.

15. Torbjörn Granlund and Richard Kenner. Eliminating branches using a superopti-
mizer and the GNU C compiler. In Stuart I. Feldman and Richard L. Wexelblat,
editors, Proceedings of the ACM SIGPLAN’92 Conference on Programming Lan-
guage Design and Implementation (PLDI), San Francisco, California, USA, June
17-19, 1992, pages 341–352. ACM, 1992.

16. Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. MadMax: surviving out-of-gas conditions in Ethereum smart
contracts. PACMPL, 2(OOPSLA):116:1–116:27, 2018.

17. Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthe-
sis of loop-free programs. In Mary W. Hall and David A. Padua, editors, Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 62–73.
ACM, 2011.

18. Abhinav Jangda and Greta Yorsh. Unbounded superoptimization. In Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2017, Vancouver, BC,
Canada, October 23 - 27, 2017, pages 78–88, 2017.

19. Matteo Marescotti, Martin Blicha, Antti E. J. Hyvärinen, Sepideh Asadi, and
Natasha Sharygina. Computing Exact Worst-Case Gas Consumption for Smart
Contracts. In ISoLA, volume 11247 of LNCS, pages 450–465. Springer, 2018.

20. Henry Massalin. Superoptimizer - A look at the smallest program. In Proceedings
of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), pages 122–126, 1987.

21. Julian Nagele and Maria A Schett. Blockchain superoptimizer. In Preproceedings
of 29th International Symposium on Logic-based Program Synthesis and Transfor-
mation (LOPSTR 2019), 2019. https://arxiv.org/abs/2005.05912.

22. Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gratian
Lup, Jubi Taneja, and John Regehr. Souper: A Synthesizing Superoptimizer.
arXiv:1711.04422 [cs], November 2017.

23. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,
2019.

24. Renlord Yang, Toby Murray, Paul Rimba, and Udaya Parampalli. Empirically
analyzing ethereum’s gas mechanism. In 2019 IEEE European Symposium on
Security and Privacy Workshops, EuroS&P Workshops 2019, Stockholm, Sweden,
June 17-19, 2019, pages 310–319, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

E. Albert et al.218

https://arxiv.org/abs/2005.05912
http://creativecommons.org/licenses/by/4.0/

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

A Max-SMT Superoptimizer for EVM handling Memory and Storage 219

Grammatical Inference

A New Approach for Active Automata Learning
Based on Apartness⋆

Frits Vaandrager� , Bharat Garhewal ,
Jurriaan Rot, and Thorsten Wißmann

Institute for Computing and Information Sciences,
Radboud University, Nijmegen, the Netherlands

{f.vaandrager,b.garhewal,jrot,t.wissmann}@cs.ru.nl

Abstract. We present L#, a new and simple approach to active automata
learning. Instead of focusing on equivalence of observations, like the L∗

algorithm and its descendants, L# takes a different perspective: it tries to
establish apartness, a constructive form of inequality. L# does not require
auxiliary notions such as observation tables or discrimination trees, but
operates directly on tree-shaped automata. L# has the same asymptotic
query and symbol complexities as the best existing learning algorithms,
but we show that adaptive distinguishing sequences can be naturally
integrated to boost the performance of L# in practice. Experiments
with a prototype implementation, written in Rust, suggest that L# is
competitive with existing algorithms.

Keywords: L# algorithm · active automata learning · Mealy machine ·
apartness relation · adaptive distinguishing sequence · observation tree ·
conformance testing

1 Introduction

In 1987, Dana Angluin published a seminal paper [5], in which she showed that
the class of regular languages can be learned efficiently using queries. In Angluin’s
approach of a minimally adequate teacher (MAT), learning is viewed as a game
in which a learner has to infer a deterministic finite automaton (DFA) for an
unknown regular language L by asking queries to a teacher. The learner may
pose two types of queries: “Is the word w in L?” (membership queries), and “Is
the language recognized by DFA H equal to L?” (equivalence queries). In case of
a no answer to an equivalence query, the teacher supplies a counterexample that
distinguishes hypothesis H from L. The L∗ algorithm proposed by Angluin [5] is
able to learn L by asking a polynomial number of membership and equivalence
queries (polynomial in the size of the corresponding canonical DFA).

Angluin’s approach triggered a lot of subsequent research on active automata
learning and has numerous applications in the area of software and hardware
⋆ Research supported by NWO TOP project 612.001.852 “Grey-box learning of Inter-

faces for Refactoring Legacy Software (GIRLS)”.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 223–243, 2022.
https://doi.org/10.1007/978-3-030-99524-9_12

http://orcid.org/0000-0003-3955-1910
http://orcid.org/0000-0003-4908-2863
http://orcid.org/0000-0001-8993-6486
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_12

F. Vaandrager et al.

analysis, for instance for generating conformance test suites of software compo-
nents [28], finding bugs in implementations of security-critical protocols [22,23,21],
learning interfaces of classes in software libraries [33], inferring interface protocols
of legacy software components [8], and checking that a legacy component and a
refactored implementation have the same behavior [55]. We refer to [63,34] for
surveys and further references.

Since 1987, major improvements of the original L∗ algorithm have been
proposed, for instance by [52,53,38,41,56,35,45,50,32,37,25]. Yet, all these im-
provements are variations of L∗ in the sense that they approximate the Nerode
congruence by means of refinement. Isberner [36] shows that these descendants
of L∗ can be described in a single, general framework.1

Variations of L∗ have also been used as a basis for learning extensions of DFAs
such as Mealy machines [48], I/O automata [2], non-deterministic automata [16],
alternating automata [6], register automata [1,17], nominal automata [46], sym-
bolic automata [40,7], weighted automata [14,11,30], Mealy machines with timers
[64], visibly pushdown automata [36], and categorical generalisations of au-
tomata [62,29,12,18]. It is fair to say that L∗-like algorithms completely dominate
the research area of active automata learning.

In this paper we present L#, a fresh approach to automata learning that differs
from L∗ and its descendants. Instead of focusing on equivalence of observations,
L# tries to establish apartness, a constructive form of inequality [61,26]. The
notion of apartness is standard in constructive real analysis and goes back to
Brouwer, with Heyting giving an axiomatic treatment in [31]. This change in
perspective has several key consequences, developed and presented in this paper:

– L# does not maintain auxiliary data structures such as observation tables or
discrimination trees, but operates directly on the observation tree. This tree
is a partial Mealy machine itself, and is very close to an actual hypothesis
that can be submitted to the teacher. As a result, our algorithm is simple.

– The asymptotic query complexity of L# is O(kn2 + n logm) and the asymp-
totic symbol complexity2 is O(kmn2 + nm logm). Here k is the number of
input symbols, n is the number of states, and m is the length of the longest
counterexample. These are the same asymptotic complexities as the best
existing (L∗-like) learning algorithms [52,53,32,37,36,25].

– The use of observation trees as primary data structure makes it easy to
integrate concepts from conformance testing to improve the performance
of L#. In particular, adaptive distinguishing sequences [39], which we can
compute directly from the observation tree, turn out to be an effective boost
in practice, even if their use does not affect asymptotic complexities. Through
L# testing and learning become even more intertwined [13,4].

1 Except for the ZQ algorithm of [50], which was developed independently, and the
ADT algorithm of [25], that was developed later and uses adaptive distinguishing
sequences which are not covered in Isberner’s framework.

2 The symbol complexity is the number of input symbols required to learn an automaton.
This is a relevant measure for practical learning scenarios, where the total time needed
to learn a model is proportional to the number of input symbols.

224

A New Approach for Active Automata Learning

– Experiments on benchmarks of [47], with a prototype implementation written
in Rust, suggest that L# is competitive with existing, highly optimized
algorithms implemented in LearnLib [51].

Related work. Despite the different data structures, L# and L∗ [5] still have
many similarities, since both store all the information gained from all queries so
far. Moreover, both maintain a set of those states that have been learned with
absolute certainty already. A few other algorithms have been proposed that follow
a different approach than L∗. Meinke [43,44] developed a dual approach where,
instead of starting with a maximally coarse approximating relation and refining
it during learning, one starts with a maximally fine relation and coarsens it by
merging equivalence classes. Although Meinke reports superior performance in
the application to learning-based testing, these algorithms have exponential worst-
case query complexities. Using ideas from [53], Groz et al. [27] use a combination
of homing sequences and characterization sets to develop an algorithm for active
model learning that does not require the ability to reset the system. Via an
extensive experimental evaluation involving benchmarks from [47] they show
that the performance of their algorithm is competitive with the L∗ descendant of
[56], but there can be huge differences in the performance of their algorithm for
models that are similar in size and structure. Several authors have explored the
use of SAT and SMT solvers for obtaining learning algorithms, see for instance
[49,58], but these approaches suffer from fundamental scalability problems. In
a recent paper, Soucha & Bogdanov [60] outline an active learning algorithm
which also takes the observation tree as the primary data structure, and use
results from conformance testing to speed up learning. They report that an
implementation of their approach outperforms standard learning algorithms
like L∗, but they have no explicit apartness relation and associated theoretical
framework. It is precisely this theoretical underpinning which allowed us to
establish complexity and correctness results, and define efficient procedures for
counterexample processing and computing adaptive distinguishing sequences.

In the present paper, we first define partial Mealy machines, observation trees,
and apartness (Section 2). Then, we present the full L# algorithm (Section 3)
and benchmark our prototype implementation (Section 4). The proofs of all
theorems and complete benchmark results can be found in the appendix of the
full version [65] of this paper.

2 Partial Mealy Machines and Apartness

The L# algorithm learns a hidden (complete) Mealy machine, and its primary
data structure is a partial Mealy machine. We first fix notation for partial maps.

We write f : X ⇀ Y to denote that f is a partial function from X to Y
and write f(x)↓ to mean that f is defined on x, that is, ∃y ∈ Y : f(x) = y,
and conversely write f(x)↑ if f is undefined for x. Often, we identify a partial
function f : X ⇀ Y with the set {(x, y) ∈ X×Y | f(x) = y}. The composition of
partial maps f : X ⇀ Y and g : Y ⇀ Z is denoted by g ◦ f : X ⇀ Z, and we have

225

(g ◦ f)(x)↓ iff f(x)↓ and g(f(x))↓. There is a partial order on X ⇀ Y defined by
f ⊑ g for f, g : X ⇀ Y if for all x ∈ X, f(x)↓ implies g(x)↓ and f(x) = g(x).

Throughout this paper, we fix a finite set I of inputs and a set O of outputs.

Definition 2.1. A Mealy machine is a tuple M = (Q, q0, δ, λ), where
– Q is a finite set of states and q0 ∈ Q is the initial state,
– ⟨λ, δ⟩ : Q × I ⇀ O × Q is a partial map whose components are an output

function λ : Q× I ⇀ O and a transition function δ : Q× I ⇀ Q (hence,
δ(q, i)↓ ⇔ λ(q, i)↓, for q ∈ Q and i ∈ I).

We use superscript M to disambiguate to which Mealy machine we refer, e.g.

QM, qM0 , δM and λM. We write q
i/o−−→ q′, for q, q′ ∈ Q, i ∈ I, o ∈ O to denote

λ(q, i) = o and δ(q, i) = q′. We call M complete if δ is total, i.e., δ(q, i) is
defined for all states q and inputs i. We generalize the transition and output
functions to input words of length n ∈ N by composing ⟨λ, δ⟩ n times with itself:
we define maps ⟨λn, δn⟩ : Q× In → On ×Q by ⟨λ0, δ0⟩ = idQ and

⟨λn+1, δn+1⟩ : Q× In+1 On ×Q× I On+1 ×Q
⟨λn,δn⟩×idI idOn×⟨λ,δ⟩

Whenever it is clear from the context, we use λ and δ also for words.

Definition 2.2. The semantics of a state q is a map JqK : I∗ ⇀ O∗ defined by
JqK(σ) = λ(q, σ). States q, q′ in possibly different Mealy machines are equivalent,
written q ≈ q′, if JqK = Jq′K. Mealy machines M and N are equivalent if their
respective initial states are equivalent: qM0 ≈ qN0 .

In our learning setting, an undefined value in the partial transition map
represents lack of knowledge. We consider maps between Mealy machines that
preserve existing transitions, but possibly extend the knowledge of transitions:

Definition 2.3. For Mealy machines M and N , a functional simulation
f : M → N is a map f : QM → QN with

f(qM0) = qN0 and q
i/o−−→ q′ implies f(q)

i/o−−→ f(q′).

Intuitively, a functional simulation preserves transitions. In the literature, a
functional simulation is also called refinement mapping [3].

Lemma 2.4. For a functional simulation f : M → N and q ∈ QM, we have
JqK ⊑ Jf(q)K.

For a given machine M, an observation tree is simply a Mealy machine itself
which represents the inputs and outputs we have observed so far during learning.
Using functional simulations, we define it formally as follows.

Definition 2.5 ((Observation) Tree). A Mealy machine T is a tree if for
each q ∈ QT there is a unique sequence σ ∈ I∗ s.t. δT (qT0 , σ) = q. We write
access(q) for the sequence of inputs leading to q. A tree T is an observation
tree for a Mealy machine M if there is a functional simulation f : T → M.

F. Vaandrager et al.226

t0t0

t1t1

t2t2 t3t3

t5t5

t4t4

q0q0 q1q1

q2q2

f

a/A

b/B b/B

a/
A

a/C

b/B

a/A
b/B

a/A

a/C

b/B

Fig. 1: An observation tree (left) for a Mealy machine (right).

Figure 1 shows an observation tree for the Mealy machine displayed on the
right. The functional simulation f is indicated via coloring of the states.

By performing output and equivalence queries, the learner can build an
observation tree for the unknown Mealy machine M of the teacher. However,
the learner does not know the functional simulation. Nevertheless, by analysis of
the observation tree, the learner may infer that certain states in the tree cannot
have the same color, that is, they cannot be mapped to same states of M by a
functional simulation. In this analysis, the concept of apartness, a constructive
form of inequality, plays a crucial role [61,26]. A similar concept has previously
been studied in the context of automata learning under the name inequivalence
constraints in work on passive learning of DFAs, see for instance [15,24].

Definition 2.6. For a Mealy machine M, we say that states q, p ∈ QM are
apart (written q # p) if there is some σ ∈ I∗ such that JqK(σ)↓, JpK(σ)↓, and
JqK(σ) ̸= JpK(σ). We say that σ is the witness of q # p and write σ ⊢ q # p.

Note that the apartness relation # ⊆ Q × Q is irreflexive and symmetric. A
witness is also called separating sequence [59]. For the observation tree of Figure 1
we may derive the following apartness pairs and corresponding witnesses:

a ⊢ t0 # t3 a ⊢ t2 # t3 b a ⊢ t0 # t2

The apartness of states q # p expresses that there is a conflict in their semantics,
and consequently, apart states can never be identified by a functional simulation:

Lemma 2.7. For a functional simulation f : T → M,

q # p in T =⇒ f(q) ̸≈ f(p) in M for all q, p ∈ QT .

Thus, whenever states are apart in the observation tree T , the learner knows
that these are distinct states in the hidden Mealy machine M.

The apartness relation satisfies a weaker version of co-transitivity, stating
that if σ ⊢ r # r′ and q has the transitions for σ, then q must be apart from at
least one of r and r′, or maybe even both:

Lemma 2.8 (Weak co-transitivity). In every Mealy machine M,

σ ⊢ r # r′ ∧ δ(q, σ)↓ =⇒ r # q ∨ r′ # q for all r, r′, q ∈ QM, σ ∈ I∗.

A New Approach for Active Automata Learning 227

We use the weak co-transitivity property during learning. For instance in Fig. 1, by
posing the output query aba, consisting of the access sequence for t1 concatenated
with the witness ba for t0 # t2, co-transitivity ensures that t0 # t1 or t2 # t1.
By inspecting the outputs, the learner may conclude that t2 # t1.

3 Learning Algorithm

The task solved by L# is to find a strategy for the learner in the following game:

Definition 3.1. In the learning game between a learner and a teacher, the
teacher has a complete Mealy machine M and answers the following queries from
the learner:

OutputQuery(σ): For σ ∈ I∗, the teacher replies with the corresponding
output sequence λM(qM0 , σ) ∈ O∗.3

EquivQuery(H): For a complete Mealy machine H, the teacher replies yes
if H ≈ M or no, providing some σ ∈ I∗ with λM(qM0 , σ) ̸= λH(qH0 , σ).

Our L# algorithm operates on an observation tree T = (Q, q0, δ, λ) for the
unknown complete Mealy machine M, where T contains the results of all output
and equivalence queries so far. An observation tree is similar to the cache which
is commonly used in implementations of L∗-based learning algorithms to store
the answers to previously asked queries, avoiding duplicates [10,42]. But whereas
for L∗-based learning algorithms the cache is an auxiliary data structure and
only used for efficiency reasons, it is a first-class citizen in L#.

Remark 3.2. The learner has no information about the teacher’s hidden Mealy
machine. In particular, whenever we write #, we always refer to the apartness
relation on the observation tree T .

The observation tree is structured in a very similar way as Dijkstra’s shortest
path algorithm [19] structures a graph. Recall that during the execution of
Dijkstra’s algorithm ‘the nodes are subdivided into three sets’ [19]:

1. the nodes S to which a shortest path from the initial node is known. S
initially only contains the initial node and grows from there.

2. the nodes F from which the next node to be added to S will be selected.
3. the remaining nodes.

This scheme adapts to the observation tree as follows and is visualized in Fig. 2a.

1. The states S ⊆ QT , which already have been fully identified, i.e. the learner
found out that these must represent distinct states in the teacher’s hidden
Mealy machine. We call S the basis. Initially, S := {qT0 }, and throughout
the execution S forms a subtree of T and all states in S are pairwise apart:
∀p, q ∈ S, p ̸= q : p # q.

3 In fact, later on we will assume that the teacher responds to slightly more general
output queries to enable the use of adaptive distinguishing sequences, see Section 3.5.

F. Vaandrager et al.228

qT0

ba
si
s
S

fr
on

tie
r
F

b/ob/o
a/oa/o

a/pa/p b/ob/o

•

•

• • •

b/o

a/o

a/p b/o

• ••
(a) T , S, and F

qT0

b/ob/o
a/oa/o

a/pa/p b/ob/o

•

•

• • •

b/o

a/o

a/p b/o

(b) A choice h : F → S

qH0

b/ob/o

•

•

b/o

(c) Hypothesis H for h

Fig. 2: From the observation tree to the hypothesis (|I| = 2)

2. the frontier F ⊆ QT , from which the next node to be added to S is chosen.
Throughout the execution, F is the set of immediate non-basis successors of
basis states: F := {q′ ∈ Q \ S | ∃q ∈ S, i ∈ I : q′ = δ(q, i)}.

3. the remaining states Q \ (S ∪ F).

Initially, T consists of only an initial state qT0 with no transitions. For every
OutputQuery(σ) during the execution, the input σ ∈ I∗ and the corresponding
response of type O∗ is added automatically to the observation tree T , and
similarly every negative response to a EquivQuery leads to new states and
transitions in the observation tree. With every extension T ′ of the observation
tree T , the apartness relation can only grow: whenever p # q in T , then still
p # q in T ′. Thus, along the learning game, T and # grow steadily:

Assumption 3.3 We implicitly require that via output and equivalence queries,
the observation tree T and the basis S are gradually extended, with the frontier
F automatically moving along while S grows.

3.1 Hypothesis construction

At almost any point during the learning game, the learner can come up with a
hypothesis H based on the knowledge in the observation tree T . Since the basis
S contains the states already discovered, the set of states of such a hypothesis is
simply set to QH := S, and it contains every transition between basis states (in
T). The hypothesis must also reflect the transitions in T that leave the basis S,
i.e. the transitions to the frontier. Those are resolved by finding for every frontier
state a base state, for which the learner conjectures that they are equivalent
states in the hidden Mealy machine. This choice boils down to a map h : F → S

(7→ in Fig. 2b). Then, a transition q
i/o−−→ p in T with q ∈ S, p ∈ F leads to a

transition q
i/o−−→ h(p) in H (Fig. 2c). These ideas are formally defined as follows.

Definition 3.4. Let T be an observation tree with basis S and frontier F .

1. A Mealy machine H contains the basis if QH = S and δH(qH0 , access(q)) =
q for all q ∈ S.

A New Approach for Active Automata Learning 229

2. A hypothesis is a complete Mealy machine H containing the basis such that

q
i/o′−−→ p′ in H (q ∈ S) and q

i/o−−→ p in T imply o = o′ and ¬(p # p′) (in T).
3. A hypothesis H is consistent if there is a functional simulation f : T → H.
4. For a Mealy machine H containing the basis, an input sequence σ ∈ I∗ is

said to lead to a conflict if δT (qT0 , σ) # δH(qH0 , σ) (in T).

Intuitively, the first three notions describe how confident we are in the correctness
of the ‘back loops’ in H obtained from a choice h : F → S. Notion 1 does not
provide any warranty, notion 2 asserts that ¬(q # h(q)) for all q ∈ F , and
notion 3 (by definition) means that T is an observation tree for H, that is, all
observations so far are consistent with the hypothesis H. The learner can verify
the consistency of a hypothesis without querying the teacher (algorithm is in
Section 3.3 below). The existence and uniqueness of a hypothesis are related to
criteria on T :

Definition 3.5. In an observation tree T , a state in F is 1. isolated if it is
apart from all states in S and 2. is identified if it is apart from all states in S
except one. 3. The basis S is complete if each state in S has a transition for
each input in I.

Lemma 3.6. For an observation tree T , if F has no isolated states then there
exists a hypothesis H for T . If S is complete and all states in F are identified
then the hypothesis is unique.

With a growing observation tree T , the hidden Mealy machine is found as
soon as the basis is big enough:

Theorem 3.7. Suppose T is an observation tree for a (hidden) Mealy machine
M such that S is complete, all states in F are identified, and |S| is the number
of equivalence classes of ≈M. Then H ≈ M for the unique hypothesis H.

The theorem itself is not necessary for the correctness of L#, but guarantees
feasibility of learning.

3.2 Main loop of the algorithm

The L# algorithm is listed in Algorithm 1 in pseudocode. The code uses Dijkstra’s
guarded command notation [20], which means that the following rules are applied
non-deterministically until none of them can be applied anymore:

(R1) If F contains an isolated state, then this means that we have discovered a
new state not yet present in S, hence we move it from F to S.

(R2) When a state q ∈ S has no outgoing i-transition, for some i ∈ I, the output
query for access(q) i will add the generated i successor, implicitly extending
the frontier F .

F. Vaandrager et al.230

Algorithm 1 Overall L# algorithm
procedure LSharp

do q isolated, for some q ∈ F → ▷ Rule (R1)
S ← S ∪ {q}

δT (q, i) ↑, for some q ∈ S, i ∈ I → ▷ Rule (R2)
OutputQuery(access(q) i)

¬(q # r), ¬(q # r′), for some q ∈ F , r, r′ ∈ S, r ̸= r′ → ▷ Rule (R3)
σ ← witness of r # r′

OutputQuery(access(q) σ)

F has no isolated states and basis S is complete → ▷ Rule (R4)
H ← BuildHypothesis
(b, σ)← CheckConsistency(H)
if b = yes then

(b, ρ)← EquivQuery(H)
if b = yes then: return H
else: σ ← shortest prefix of ρ such that δH(qH0 , σ) # δT (qT0 , σ) (in T)

end if
ProcCounterEx(H, σ)

end do
end procedure

(R3) When q ∈ F is a state in the frontier that is not yet identified, then there are
at least two states in S that are not apart from q. In this case, the algorithm
picks a witness σ ∈ I∗ for r # r′. After the OutputQuery(access(q)σ), the
observation tree is extended and thus q will be apart from at least r or r′ by
weak co-transitivity (Lemma 2.8).

(R4) When F has no isolated states and S is complete, BuildHypothesis
picks a hypothesis H (at least one exists Lemma 3.6). If H is not consistent
with observation tree T we get a conflict σ for free. Otherwise, we pose an
equivalence query for H. If the hypothesis is correct, L# terminates, and
otherwise we obtain a counterexample ρ. The counterexample decomposes
into two words ση, where σ leads to a conflict and η witnesses it. The conflict
σ means that one of the frontier states was merged with an apart basis state
in H, causing a wrong transition in H. Since σ can be very long, the task
of ProcCounterEx(σ) is to shorten σ until we know which frontier state
caused the conflict. So after ProcCounterEx, H is not a hypothesis for
the updated T anymore.

We will show the correctness of L# in a top-down approach discussing the
subroutines later and only assuming now that:

1. BuildHypothesis picks one of the possible hypotheses (Lemma 3.6)
2. CheckConsistency(H) tells if there is a functional simulation T → H, and

if not, provides σ ∈ I∗ leading to a conflict (Lemma 3.10 below).
3. If H contains the basis and σ leads to a conflict, then ProcCounterEx(H, σ),

extends T such that H is not a hypothesis anymore (Lemma 3.11 below).

A New Approach for Active Automata Learning 231

Whenever the algorithm terminates, the learner has found the correct model.
Therefore, correctness amounts to showing termination. The rough idea is that
each rule will let S, F , or # restricted to S × F grow, and each of these sets are
bounded by the hidden Mealy machine M. We define the norm N(T) by

|S| · (|S|+ 1)

2
+ |{(q, i) ∈ S × I | δT (q, i)↓}| + |{(q, q′) ∈ S × F | q # q′}| (1)

The first summand increases whenever a state is moved from F to S (R1); it is
quadratic in |S| because (R1) reduces the third summand. The second summand
records the progress achieved by extending the frontier (R2). The third summand
counts how much the states in the frontier are identified (R3). Rule (R4) extends
the apartness relation, leading to an increase of the third summand.

Theorem 3.8. Every rule application in L# increases the norm N(T) in (1).

The norm N(T) and therefore also the number of rule applications is bounded:

Theorem 3.9. If T is an observation tree for M with n equivalence classes of
states and |I| = k, then N(T) ≤ 1

2 · n · (n+ 1) + kn+ (n− 1)(kn+ 1) ∈ O(kn2).

At any point of execution, either rule (R1), (R2), or (R4) is applicable, so L#

never blocks. As soon as the norm N(T) hits the bound, the only applicable rule
is rule (R4) with the teacher accepting the hypothesis. Thus, the correct Mealy
machine is learned within O(k · n2) rule applications. The complexity in terms of
the input parameters is studied in Section 3.6.

We now continue defining the subroutines and proving them correct.

3.3 Consistency checking

A hypothesis H is not necessarily consistent with T , in the sense of a functional
simulation T → H. Via a breadth-first search of the Cartesian product of T
and H (Algorithm 2), we may check in time linear in the size of T whether a
functional simulation T → H exists. In the negative case, we obtain σ ∈ I∗

leading to a conflict without any equivalence or output query to the teacher
needed. Thus, this is also called ‘counterexample milking’ [10].

Lemma 3.10. Algorithm 2 terminates and is correct, that is, if H is a hypothesis
for T with a complete basis, then CheckConsistency(H)

1. returns yes, if H is consistent,
2. returns no and ρ ∈ I∗, if ρ leads to a conflict (δT (qT0 , ρ) # δH(qH0 , ρ) in T).

3.4 Counterexample processing

The L∗ algorithm [5] performs O(m) queries to analyze a counterexample of
length m. So if a teacher returns really long counterexamples, their analysis will
dominate the learning process. Rivest & Schapire [52,53] improve counterexample

F. Vaandrager et al.232

Algorithm 2 Check if hypothesis H is consistent with observation tree T
procedure CheckConsistency(H)

Q← new queue ⊆ S × S
enqueue(Q, (qT0 , qH0)))
while (q, r)← dequeue(Q)

if q # r then: return no: access(q)

for all q
i/o−−→ p in T do

enqueue(Q, (p, δH(r, i)))
end for

end while
return yes

end procedure

analysis of L∗ using binary search, requiring only O(logm) queries. A similar
trick is applied in L#.

Suppose σ leads to a conflict q # r for q = δH(qH0 , σ) and r = δT (qT0 , σ).
Then, ProcCounterEx(σ) (Algorithm 3) extends T such that H will never be
a hypothesis for T again.

If r ∈ S ∪ F , then the conflict q # r is obvious and H is not a hypothesis
again. If otherwise r ̸∈ S ∪ F , the binary search will successively reduce the
number of transitions of σ outside S ∪ F by a factor of 2 until we reach the
above base case S ∪ F . Let σ1 σ2 := σ such that the run of σ1 in T ends halfway
between the frontier and r. By an additional output query, the binary search
checks whether already σ1 leads to a conflict. In the two cases, we can either
avoid σ1 or σ2, so we reduce the number of transitions outside S ∪ F to half the
amount. The precise argument is in:

Lemma 3.11. Suppose basis S is complete, H is a complete Mealy machine
containing the basis, and σ ∈ I∗ leads to a conflict. Then ProcCounterEx(H, σ)
terminates, performs at most O(log2 |σ|) output queries and is correct: upon
termination, the machine H is not a hypothesis for T anymore.

3.5 Adaptive distinguishing sequences

As an optimization in practice, we may extend the rules (R2) and (R3) by
incorporating adaptive distinguishing sequences (Ads) into the respective output
queries. Adaptive distinguishing sequences, which are commonly used in the
area of conformance testing [39], are input sequences where the choice of an
input may depend on the outputs received in response to previous inputs. Thus,
strictly speaking, an ADS is a decision graph rather than a sequence. This mild
extension of the learning framework reflects the actual black box behaviour of
Mealy machines: for every input in I sent to the hidden Mealy machine, the
learner observes the output O before sending the next input symbol. Use of
adaptive distinguishing sequences may reduce the number of output queries that
are required for the identification of frontier states.

A New Approach for Active Automata Learning 233

Algorithm 3 Processing σ that leads to a conflict, i.e. δH(q0, σ) # δT (q0, σ)

procedure ProcCounterEx(H, σ ∈ I∗)
q ← δH(qH0 , σ)
r ← δT (qT0 , σ)
if r ∈ S ∪ F then

return
else

ρ← unique prefix of σ with δT (qT0 , ρ) ∈ F

h← ⌊ |ρ|+|σ|
2
⌋

σ1 ← σ[1..h]
σ2 ← σ[h+ 1..|σ|]
q′ ← δH(qH0 , σ1)
r′ ← δT (qT0 , σ1)
η ← witness for q # r
OutputQuery(access(q′) σ2 η)
if q′ # r′ then

ProcCounterEx (H, σ1)
else

ProcCounterEx (H, access(q′) σ2)
end if

end if
end procedure

T

ba
si
s

fr
on

ti
er

ρρ

σ[|ρ|+1..h]σ[|ρ|+1..h]

σ2σ2

ac
ce
ss
q
′

ac
ce
ss
q
′

σ2σ2

•

• rr

• r′r′

•

•q′q′

•

As an example, consider the observation tree of Figure 3(left). The basis for
this tree consists of 5 states, which are pairwise apart (separating sequences are
a, ab and aa). Frontier states can be identified by the single adaptive sequence
of Figure 3(right). The ADS starts with input a. If the response is 2 we have
identified our frontier state as t4. If the response is 0 then the frontier state
is either t0 or t2, and we may identify the state with a subsequent input a.
Similarly, if the response is 1 then the frontier state is either t1 or t3, and we
may identify the state by a subsequent input b. We can therefore identify (or
isolate) frontier state t5 with a single (extended) output query that starts with
the access sequence for t5 (bbbba) followed by the ADS of Figure 3(right). If we
used separating sequences, we would need at least 2 output queries.

In the setting of L#, we can directly compute an optimal ADS from the
current observation tree. To this end, we recursively define an expected reward
function E, which sends a set U ⊆ QT of states to the maximal expected number
of apartness pairs (in the absence of unexpected outputs).

E(U) = max
i∈inp(U)

∑
o∈O

|U i/o−−→ | · (|U i−→ | − |U i/o−−→ |+ E(U
i/o−−→))

|U i−→ |

 (2)

where inp(U) := {i ∈ I | ∃q ∈ U : δT (q, i)↓ }, U i−→ := {q ∈ U | δT (q, i)↓ } and

U
i/o−−→ := {q′ ∈ QT | ∃q ∈ U : q

i/o−−→ q′}. We define the maximum over the empty
set to be 0. Then Ads(U) is the decision tree constructed as follows:

F. Vaandrager et al.234

t0t0 t1t1 t2t2 t3t3 t4t4

t5t5t6t6 t7t7

t8t8 t9t9

t10t10 t11t11

t12t12 t13t13

b/0

a/0

b/1

a/1

b/0

a/0

b/1

a/1

a/2

a/0

b/0

a/1

b/1 aa

aa bb

t4

t0

t2 t1

t3

0

1

2

0 1 0

1

Fig. 3: An observation tree (left) and an ADS for its basis (right)

– If U i−→ = ∅ then Ads(U) consists of a single node U without a label.
– If U i−→ ̸= ∅ then Ads(U) is constructed by choosing an input i that witnesses

the maximum E(U), creating a node U with label i, and, for each output o

with U
i/o−−→ ̸= ∅, adding an o-transition to ADS(U

i/o−−→).

For the observation tree of Figure 3(left) we may compute E({t0, . . . , t4}) = 4
and obtain the decision tree of Figure 3(right) as ADS. Running the ADS from
state t5 will create 4 new apartness pairs with basis states (or 5 in case an
unexpected output occurs, e.g. a(1)b(2)).

Proposition 3.12. Define L#
Ads by replacing the output queries in L# with

(R2’) OutputQuery(access(q) i Ads(S)) in (R2) and
(R3’) OutputQuery(access(q) Ads({b ∈ S | ¬(b # q)})) in (R3).

Then, L#
Ads lets the norm N(T) grow for each rule application and thus is correct.

3.6 Complexity

Since equivalence queries are costly in practice and since processing of long
counterexamples of length m requires O(logm) output queries, it makes sense to
postpone equivalence queries as long as possible:

Definition 3.13. Strategic L# (resp. L#
Ads) is the special case of Algorithm 1

where rule (R4) is only applied if none of the other rules is applicable.

Then we obtain the following query complexity for the L# algorithm.

Theorem 3.14. Strategic L# (resp. L#
Ads) learns the correct Mealy machine

within O(kn2 + n logm) output queries and at most n− 1 equivalence queries.

The query complexity of L# equals the best known query complexity for
active learning algorithms, as achieved by Rivest & Schapire’s algorithm [52,53],
the observation pack algorithm [32], the TTT algorithm [37,36], and the ADT
algorithm [25].

A New Approach for Active Automata Learning 235

In a black box learning setting in practice, answering an output query for
σ ∈ I∗ grows linearly with the length σ. Therefore, the (asymptotic) total
number of input symbols sent by the learner is also a metric for comparing
learning algorithms:

Theorem 3.15. Let n ∈ O(m). Then the strategic L# algorithm learns the
correct Mealy machine with O(kmn2 + nm logm) input symbols.

This matches the asymptotic symbol complexity of the best known active
learning algorithms. Although ProcCounterEx reduces the length of the
sequence leading to the conflict, the witness of the conflict remains of size Θ(m)
in the worst case. This means that we need O(m logm) symbols to process a
single counterexample and O(nm logm) symbols to process all counterexamples.

4 Experimental Evaluation

In the previous sections, we have introduced and discussed the L# algorithm. We
now present a short experimental evaluation of the algorithm to demonstrate its
performance when compared to other state-of-art algorithms. We run two versions
of L#: the base version (Algorithm 1), and the ADS optimised variant (L#

Ads), and
compare these with the (highly optimized) LearnLib4 implementations of TTT,
ADT,5 and ‘RS’, by which we refer to L∗ with Rivest-Schapire counterexample
processing [52,53]. All source-code and data is available online.6

Implementing EquivQuery: We implement equivalence queries using confor-
mance testing, which also makes output queries. We have fixed the testing tool
to Hybrid-ADS7 [57]. Hybrid-ADS has multiple configuration options, and we
have set the state cover mode to “buggy”, the number of extra states to check for
to 10, the number of infix symbols to 10, and the mode of execution to “random”,
generating an infinite test-suite. Note that with these settings, the equivalence
queries are not exact in general but approximated via random testing.

Data-set and metrics: We use a subset of the models available from the Au-
tomataWiki (see [47]): we learn models for the SSH, TCP, and TLS protocols,
alongside the BankCard models. The largest model in this subset has 66 states
and 13 input symbols. We record the number of output queries and input symbols
used during learning and testing, alongside the number of equivalence queries
required to learn each model. An output query is a sequence σ ∈ I∗ of |σ| input
symbols and one reset symbol. A reset symbol returns the system under test
(SUT) to its initial state. So resets denotes the number of output queries and
inputs denotes the total number of symbols sent to the SUT. We believe that
these metrics accurately portray the effort required to learn a model.
4 https://learnlib.de/
5 The ADT algorithm makes use of some heuristics to guide the learning process, we

have selected the “Best-Effort” settings.
6 https://gitlab.science.ru.nl/sws/lsharp and 10.5281/zenodo.5735533
7 https://github.com/Jaxan/hybrid-ads

F. Vaandrager et al.236

https://learnlib.de/
https://gitlab.science.ru.nl/sws/lsharp
https://dx.doi.org/10.5281/zenodo.5735533
https://github.com/Jaxan/hybrid-ads

Experiment Set-up: All experiments were run on a Ryzen 3700X processor with
32GB of memory, running Linux. Each experiment refers to completely learning a
model of the SUT. Due to the effects of randomization in the equivalence oracle,
we repeat each experiment 100 times.

Models (ascending order of size)

103

104

105

To
ta

l i
np

ut
 sy

m
bo

ls
an

d
re

se
ts

 (l
og

 sc
al

e)

ADT
RS
TTT
L#-ADS
L#

(a) Symbols used during learning phase

Models (ascending order of size)

103

104

105

106

To
ta

l i
np

ut
 sy

m
bo

ls
an

d
re

se
ts

 (l
og

 sc
al

e)

ADT
RS
TTT
L#-ADS
L#

(b) Symbols used both learning and testing

Fig. 4: Performance plots of the selected learning algorithms (lower is better.)

Results and Discussion Fig. 4a shows the total size of data sent by the learning
algorithms via output queries – so both the number and the size of output queries
are counted. In order to incorporate the equivalence queries, Fig. 4b shows the
total size of data sent to the SUT during learning and testing. Note, in both
plots the y-axis is log-scaled. The x-axis indicates the models, sorted in increasing
number of states. The bars indicate standard deviation.

We can observe from the learning phase plot (Fig. 4a) that L# expectedly does
not perform better than the TTT and ADT algorithms, while the RS algorithm
performs the worst among all four. However, L#

Ads usually performs better than –
or, at least, is competitive with – ADT and TTT. Furthermore, the error bars in
the learning phase are very small, indicating that the measurements are stable.
Generally, depending on the models a different algorithm is the fastest, but for
every model, L#

Ads is among the fastest, with and without the exclusion of the
testing phase.

Fig. 4b presents the total number of input symbols and resets sent to the SUT.
All algorithms seem to be very close in performance, which may be explained by
the testing phase dominating the process. Indeed, Aslam et al. [8] experimentally
demonstrated that it is largely the testing phase which influences learning effort.

The complete benchmark results (in the appendix of [65]) show more detailed
information of the learned models, and highlights the smallest number per column
and model. We can see that the number of equivalence queries are roughly similar
for almost all the algorithms, while L# seems to perform better for some models
in the learning phase.

A New Approach for Active Automata Learning 237

5 Conclusions and Future Work

We presented L#, a new algorithm for the classical problem of active automata
learning. The key idea behind the approach is to focus on establishing apartness,
or inequivalence of states, instead of approximating equivalence as in L∗ and its
descendants. Concretely, the table/discrimination tree in L∗-like algorithms is
replaced in L# by an observation tree, together with an apartness relation. This
change in perspective leads to a simple but effective algorithm, which reduces the
total number of symbols required for learning when compared to state-of-the-art
algorithms. In particular, the use of observation trees, which are essentially
tree-shaped Mealy machines, enables a modular integration of testing techniques,
such as the ADS method, to identify states. Although the asymptotic output
query complexity of L# is O(kn2 + n logm), in our experiments L# only needs
in between kn and 4kn output queries (resets) to learn the benchmark models
(with n ≤ 66), which means that on average L# needs in between 1 and 4 output
queries to identify a frontier state.

Of course there are also similarities between L# and L∗. The basis of L# is
comparable to the top half of the L∗ table: both in L# and in ([53]’s version of)
L∗ these prefixes induce a spanning tree. The frontier of L# is comparable to
the bottom half of the L∗ table. But whereas L∗ constructs residual classes of
the language, L# builds an automaton directly from the observation tree. As a
consequence, L∗ asks redundant queries, and optimizations of L∗ try to avoid
this redundancy. In contrast, L# does not even think about asking redundant
queries since it operates directly on the observation tree and only poses queries
that increase the norm.

There is still much work to do to improve our prototype implementation, to
include additional conformance testing algorithms, and to extend the experimental
evaluation to a richer set of benchmarks and algorithms. One issue that we need
to address is scaling of L# to bigger models. Our prototype implementation
easily learns Mealy machines with hundreds of states, but fails to learn larger
models such as the ESM benchmark of [57] (3410 states, 78 inputs) because the
observation tree becomes too big (≈25 million nodes will be required for the
ESM). We see several ways to address this issue, e.g., pruning the observation
tree, only keeping short ADSs to separate the basis states, storing parts of the
tree on disk, distributing the tree over multiple processors (parallelizing the
learning process), and using existing platforms for big graph processing [54].

Aslam et al. [9] report on experiments in which active learning techniques
are applied to 202 industrial software components from ASML. Out of these,
interface protocols could be successfully derived for 134 components (within a
give time bound). One of the main conclusions of the study is that the equivalence
checking phase (i.e. conformance testing of hypothesis models) is the bottleneck
for scalability in industry. We believe that a tighter integration of learning and
testing, as enabled by L#, will be key to address this challenging problem.

It will be interesting to extend L# to richer frameworks such as register
automata, symbolic automata and weighted automata. In fact, we discovered L#

while working on a grey-box learning algorithm for symbolic automata.

F. Vaandrager et al.238

References

1. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning
through counterexample-guided abstraction refinement. In: Giannakopoulou, D.,
Méry, D. (eds.) Proceedings of 18th International Symposium on Formal Methods
(FM 2012). Lecture Notes in Computer Science, vol. 7436, pp. 10–27. Springer (Aug
2012). https://doi.org/10.1007/978-3-642-32759-9_4

2. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) 21st International Conference on Concurrency Theory (CONCUR), 2010,
Proceedings. Lecture Notes in Computer Science, vol. 6269, pp. 71–85. Springer
(2010)

3. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

4. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:
Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits
- International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27,
2016, Revised Papers. Lecture Notes in Computer Science, vol. 11026, pp. 74–100.
Springer (2018)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

6. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating
automata. In: IJCAI. pp. 3308–3314. AAAI Press (2015)

7. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Chockler,
H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th International
Conference, CAV 2018. Proceedings, Part I. Lecture Notes in Computer Science, vol.
10981, pp. 427–445. Springer (2018). https://doi.org/10.1007/978-3-319-96145-3\
_23

8. Aslam, K., Cleophas, L., Schiffelers, R.R.H., van den Brand, M.: Interface protocol
inference to aid understanding legacy software components. Softw. Syst. Model.
19(6), 1519–1540 (2020). https://doi.org/10.1007/s10270-020-00809-2

9. Aslam, K., Luo, Y., Schiffelers, R.R.H., van den Brand, M.: Interface protocol
inference to aid understanding legacy software components. In: Hebig, R., Berger,
T. (eds.) Proceedings of MODELS 2018 Workshops. CEUR Workshop Proceedings,
vol. 2245, pp. 6–11. CEUR-WS.org (2018)

10. Balcázar, J.L., Díaz, J., Gavaldà, R.: Algorithms for learning finite automata from
queries: A unified view. In: Du, D., Ko, K. (eds.) Advances in Algorithms, Languages,
and Complexity - In Honor of Ronald V. Book. pp. 53–72. Kluwer (1997)

11. Balle, B., Mohri, M.: Learning weighted automata. In: CAI. Lecture Notes in
Computer Science, vol. 9270, pp. 1–21. Springer (2015)

12. Barlocco, S., Kupke, C., Rot, J.: Coalgebra learning via duality. In: FoSSaCS.
Lecture Notes in Computer Science, vol. 11425, pp. 62–79. Springer (2019)

13. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the
correspondence between conformance testing and regular inference. In: Cerioli, M.
(ed.) Proceedings, Fundamental Approaches to Software Engineering, 8th Interna-
tional Conference, FASE 2005. Lecture Notes in Computer Science, vol. 3442, pp.
175–189. Springer (2005)

14. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity
and equivalence queries. SIAM J. Comput. 25(6), 1268–1280 (Dec 1996). https:
//doi.org/10.1137/S009753979326091X

A New Approach for Active Automata Learning 239

https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-642-32759-9_4
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/978-3-319-96145-3_23
https://doi.org/10.1007/s10270-020-00809-2
https://doi.org/10.1007/s10270-020-00809-2
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X

15. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Computers 21(6), 592–597 (1972). https:
//doi.org/10.1109/TC.1972.5009015

16. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI. pp. 1004–1009 (2009)

17. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

18. Colcombet, T., Petrisan, D., Stabile, R.: Learning automata and transducers: A
categorical approach. In: CSL. LIPIcs, vol. 183, pp. 15:1–15:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

19. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (Dec 1959). https://doi.org/10.1007/BF01386390

20. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8), 453–457 (Aug 1975). https://doi.org/10.1145/
360933.360975

21. Fiterău-Broştean, P., Howar, F.: Learning-based testing the sliding window behavior
of TCP implementations. in FMICS, LNCS 10471, 185–200 (2017)

22. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. in CAV, LNCS 9780, 454–471
(2016)

23. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F., Verleg,
P.: Model learning and model checking of SSH implementations. In: Proceedings of
the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software. pp. 142–151. SPIN 2017, ACM, New York, NY, USA (2017)

24. Florêncio, C.C., Verwer, S.: Regular inference as vertex coloring. Theor. Comput.
Sci. 558, 18–34 (2014). https://doi.org/10.1016/j.tcs.2014.09.023

25. Frohme, M.T.: Active automata learning with adaptive distinguishing sequences.
CoRR abs/1902.01139 (2019), http://arxiv.org/abs/1902.01139

26. Geuvers, H., Jacobs, B.: Relating apartness and bisimulation. Logical Methods
in Computer Science Volume 17, Issue 3 (Jul 2021). https://doi.org/10.46298/
lmcs-17(3:15)2021

27. Groz, R., Brémond, N., da Silva Simão, A., Oriat, C.: hW -inference: A heuristic
approach to retrieve models through black box testing. J. Syst. Softw. 159 (2020).
https://doi.org/10.1016/j.jss.2019.110426

28. Hagerer, A., Margaria, T., Niese, O., Steffen, B., Brune, G., Ide, H.D.: Efficient
regression testing of CTI-systems: Testing a complex call-center solution. Annual
review of communication, Int.Engineering Consortium (IEC) 55, 1033–1040 (2001)

29. Heerdt, G.v.: CALF: Categorical Automata Learning Framework. Phd thesis,
University College London (Oct 2020)

30. Heerdt, G.v., Kupke, C., Rot, J., Silva, A.: Learning weighted automata over
principal ideal domains. In: Goubault-Larrecq, J., König, B. (eds.) Foundations
of Software Science and Computation Structures - 23rd International Conference,
FOSSACS 2020. vol. 12077, pp. 602–621. Springer (2020). https://doi.org/10.1007/
978-3-030-45231-5_31

31. Heyting, A.: Zur intuitionistischen Axiomatik der projektiven Geometrie. Mathe-
matische Annalen 98, 491–538 (1927)

32. Howar, F.: Active learning of interface programs. Ph.D. thesis, University of Dort-
mund (Jun 2012)

33. Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic
interfaces of data structures. In: ISoLA (1): Leveraging Applications of Formal

F. Vaandrager et al.240

https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://doi.org/10.1016/j.tcs.2014.09.023
https://doi.org/10.1016/j.tcs.2014.09.023
http://arxiv.org/abs/1902.01139
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.46298/lmcs-17(3:15)2021
https://doi.org/10.1016/j.jss.2019.110426
https://doi.org/10.1016/j.jss.2019.110426
https://doi.org/10.1007/978-3-030-45231-5_31
https://doi.org/10.1007/978-3-030-45231-5_31
https://doi.org/10.1007/978-3-030-45231-5_31
https://doi.org/10.1007/978-3-030-45231-5_31

Methods, Verification and Validation. Technologies for Mastering Change - 5th
International Symposium, ISoLA 2012, 2012, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 7609, pp. 554–571. Springer (2012)

34. Howar, F., Steffen, B.: Active automata learning in practice. In: Bennaceur, A.,
Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis:
Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle,
Germany, April 24-27, 2016, Revised Papers. pp. 123–148. Springer International
Publishing (2018)

35. Irfan, M.N., Oriat, C., Groz, R.: Angluin style finite state machine inference with
non-optimal counterexamples. In: Proceedings of the First International Workshop
on Model Inference In Testing. p. 11–19. MIIT ’10, Association for Computing
Machinery, New York, NY, USA (2010)

36. Isberner, M.: Foundations of active automata learning: an algorithmic perspective.
Ph.D. thesis, Technical University Dortmund, Germany (2015), http://hdl.handle.
net/2003/34282

37. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free
approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.)
Runtime Verification: 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings. pp. 307–322. Springer International Publishing,
Cham (2014)

38. Kearns, M.J., Vazirani, U.V.: An introduction to computational learning theory.
MIT Press (1994)

39. Lee, D., Yannakakis, M.: Testing finite-state machines: State identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

40. Maler, O., Mens, I.: A generic algorithm for learning symbolic automata from
membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay,
A., Mardare, R. (eds.) Models, Algorithms, Logics and Tools - Essays Dedicated to
Kim Guldstrand Larsen on the Occasion of His 60th Birthday. Lecture Notes in
Computer Science, vol. 10460, pp. 146–169. Springer (2017)

41. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995). https://doi.org/10.1006/inco.1995.1070

42. Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for efficient
system-level test-based model generation. Innov. Syst. Softw. Eng. 1(2), 147–156
(2005). https://doi.org/10.1007/s11334-005-0016-y

43. Meinke, K.: CGE: A sequential learning algorithm for Mealy automata. In: Sempere,
J., García, P. (eds.) Grammatical Inference: Theoretical Results and Applications,
10th International Colloquium, ICGI 2010, Valencia, Spain, September 13-16, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6339, pp. 148–162. Springer
(2010)

44. Meinke, K., Niu, F., Sindhu, M.A.: Learning-based software testing: A tutorial. In:
Hähnle, R., Knoop, J., Margaria, T., Schreiner, D., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification, and Validation - International Work-
shops, SARS 2011 and MLSC 2011. Revised Selected Papers. Communications in
Computer and Information Science, vol. 336, pp. 200–219. Springer (2011)

45. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learning with on-the-fly
direct hypothesis construction. In: Hähnle, R., Knoop, J., Margaria, T., Schreiner,
D., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification,
and Validation - International Workshops, SARS 2011 and MLSC 2011. Revised
Selected Papers. Communications in Computer and Information Science, vol. 336,
pp. 248–260. Springer (2011)

A New Approach for Active Automata Learning 241

http://hdl.handle.net/2003/34282
http://hdl.handle.net/2003/34282
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1007/s11334-005-0016-y
https://doi.org/10.1007/s11334-005-0016-y

46. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nominal
automata. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017. pp. 613–625. ACM (2017). https://doi.org/10.1145/
3009837.3009879

47. Neider, D., Smetsers, R., Vaandrager, F.W., Kuppens, H.: Benchmarks for automata
learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? - Essays Dedicated
to Bernhard Steffen on the Occasion of His 60th Birthday. Lecture Notes in
Computer Science, vol. 11200, pp. 390–416. Springer (2018)

48. Niese, O.: An Integrated Approach to Testing Complex Systems. Ph.D. thesis,
University of Dortmund (2003)

49. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C.: From passive to active FSM
inference via checking sequence construction. In: Yevtushenko, N., Cavalli, A.R.,
Yenigün, H. (eds.) Testing Software and Systems - 29th IFIP WG 6.1 International
Conference, ICTSS 2017, St. Petersburg, Russia, October 9-11, 2017, Proceedings.
Lecture Notes in Computer Science, vol. 10533, pp. 126–141. Springer (2017)

50. Petrenko, A., Li, K., Groz, R., Hossen, K., Oriat, C.: Inferring approximated models
for systems engineering. In: 15th International IEEE Symposium on High-Assurance
Systems Engineering, HASE 2014, Miami Beach, FL, USA, January 9-11, 2014. pp.
249–253. IEEE Computer Society (2014). https://doi.org/10.1109/HASE.2014.46

51. Raffelt, H., Steffen, B., Berg, T., Margaria, T.: LearnLib: a framework for extrapo-
lating behavioral models. STTT 11(5), 393–407 (2009)

52. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences
(extended abstract). In: Proceedings of the Twenty-First Annual ACM Symposium
on Theory of Computing, 15-17 May 1989, Seattle, Washington, USA. pp. 411–420.
ACM (1989)

53. Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. Inf.
Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

54. Sakr, S., Bonifati, A., Voigt, H., Iosup, A., Ammar, K., Angles, R., Aref, W., Arenas,
M., Besta, M., Boncz, P.A., Daudjee, K., Valle, E.D., Dumbrava, S., Hartig, O.,
Haslhofer, B., Hegeman, T., Hidders, J., Hose, K., Iamnitchi, A., Kalavri, V., Kapp,
H., Martens, W., Özsu, M.T., Peukert, E., Plantikow, S., Ragab, M., Ripeanu, M.R.,
Salihoglu, S., Schulz, C., Selmer, P., Sequeda, J.F., Shinavier, J., Szárnyas, G.,
Tommasini, R., Tumeo, A., Uta, A., Varbanescu, A.L., Wu, H.Y., Yakovets, N., Yan,
D., Yoneki, E.: The future is big graphs: A community view on graph processing
systems. Commun. ACM 64(9), 62–71 (Aug 2021). https://doi.org/10.1145/3434642

55. Schuts, M., Hooman, J., Vaandrager, F.: Refactoring of legacy software using model
learning and equivalence checking: an industrial experience report. In: Ábrahám,
E., Huisman, M. (eds.) Proceedings 12th International Conference on integrated
Formal Methods (iFM). LNCS, vol. 9681, pp. 311–325 (2016)

56. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams, D. (eds.)
FM 2009: Formal Methods, Second World Congress, Eindhoven, The Netherlands,
November 2-6, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5850,
pp. 207–222. Springer (2009)

57. Smeenk, W., Moerman, J., Vaandrager, F.W., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M.J., Conchon, S., Zaïdi, F.
(eds.) Formal Methods and Software Engineering - 17th International Conference
on Formal Engineering Methods, ICFEM 2015, France, 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9407, pp. 67–83. Springer (2015). https://doi.org/
10.1007/978-3-319-25423-4_5

F. Vaandrager et al.242

https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1109/HASE.2014.46
https://doi.org/10.1109/HASE.2014.46
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1145/3434642
https://doi.org/10.1145/3434642
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5
https://doi.org/10.1007/978-3-319-25423-4_5

58. Smetsers, R., Fiterau-Brostean, P., Vaandrager, F.W.: Model learning as a satisfia-
bility modulo theories problem. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.)
Language and Automata Theory and Applications - 12th International Conference,
LATA 2018, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10792, pp.
182–194. Springer (2018)

59. Smetsers, R., Moerman, J., Jansen, D.N.: Minimal separating sequences for all pairs
of states. In: Dediu, A., Janousek, J., Martín-Vide, C., Truthe, B. (eds.) Language
and Automata Theory and Applications - 10th International Conference, LATA
2016, Proceedings. Lecture Notes in Computer Science, vol. 9618, pp. 181–193.
Springer (2016). https://doi.org/10.1007/978-3-319-30000-9_14

60. Soucha, M., Bogdanov, K.: Observation tree approach: Active learning relying
on testing. Comput. J. 63(9), 1298–1310 (2020). https://doi.org/10.1093/comjnl/
bxz056

61. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2 edn. (2000). https:
//doi.org/10.1017/CBO9781139168717

62. Urbat, H., Schröder, L.: Automata learning: An algebraic approach. In: LICS. pp.
900–914. ACM (2020)

63. Vaandrager, F.: Model learning. Communications of the ACM 60(2), 86–95 (Feb
2017). https://doi.org/10.1145/2967606

64. Vaandrager, F., Bloem, R., Ebrahimi, M.: Learning Mealy machines with one timer.
In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) Language and
Automata Theory and Applications - 15th International Conference, LATA 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12638, pp. 157–170. Springer
(2021)

65. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A new approach for active
automata learning based on apartness (2022), https://arxiv.org/abs/2107.05419

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

A New Approach for Active Automata Learning 243

https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1007/978-3-319-30000-9_14
https://doi.org/10.1093/comjnl/bxz056
https://doi.org/10.1093/comjnl/bxz056
https://doi.org/10.1093/comjnl/bxz056
https://doi.org/10.1093/comjnl/bxz056
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1017/CBO9781139168717
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://arxiv.org/abs/2107.05419
http://creativecommons.org/licenses/by/4.0/

Learning Realtime One-Counter Automata⋆

Véronique Bruyère1 , Guillermo A. Pérez2 , and Gaëtan Staquet1,2(�)

1 University of Mons, Mons, Belgium
{veronique.bruyere,gaetan.staquet}@umons.ac.be

2 University of Antwerp – Flanders Make, Antwerp, Belgium
guillermoalberto.perez@uantwerpen.be

Abstract. We present a new learning algorithm for realtime one-counter
automata. Our algorithm uses membership and equivalence queries as
in Angluin’s L∗ algorithm, as well as counter value queries and partial
equivalence queries. In a partial equivalence query, we ask the teacher
whether the language of a given finite-state automaton coincides with a
counter-bounded subset of the target language. We evaluate an imple-
mentation of our algorithm on a number of random benchmarks and on
a use case regarding efficient JSON-stream validation.

Keywords: Realtime one-counter automata · Active learning

1 Introduction

In active learning, a learner has to infer a model of an unknown machine by in-
teracting with a teacher. Angluin’s seminal L∗ algorithm does precisely this for
finite-state automata while using only membership and equivalence queries [4].
An important application of active learning is to learn black-box models from
(legacy) software and hardware systems [17,28]. Though recent works have greatly
advanced the state of the art in finite-state automata learning, handling real-
world applications usually involves tailor-made abstractions to circumvent ele-
ments of the system which result in an infinite state space [1]. This highlights
the need for learning algorithms that focus on more expressive models.

One-counter automata (OCAs) are obtained by extending finite-state au-
tomata with an integer-valued variable that can be increased, decreased, and
tested for equality against zero. The counter allows OCAs to capture the be-
havior of some infinite-state systems. Additionally, their expressiveness has been
shown sufficient to verify programs with lists [10] and validate XML streams [13].
To the best of our knowledge, there is no learning algorithm for general OCAs.

For visibly OCAs (that is, when the alphabet is such that letters determine
whether the counter is decreased, increased, or not affected), Neider and Löding
describe an algorithm in [27]. Besides the usual membership and equivalence
queries, they use partial equivalence queries : given a finite-state automaton A
⋆ This work was partially supported by the FWO “SAILor” project (G030020N).
Gaëtan Staquet is a research fellow (Aspirant) of the F.R.S– FNRS.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 244–262, 2022.
https://doi.org/10.1007/978-3-030-99524-9_13

http://orcid.org/0000-0002-9680-9140
http://orcid.org/0000-0002-1200-4952
http://orcid.org/0000-0001-5795-3265
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_13

and a bound k, does the language of A correspond to the k-bounded subset of
the target language? Additionally, Fahmy and Roos [15] claim to have solved the
case of realtime OCA (i.e., when the automaton is assumed to be configuration-
deterministic and no ε-transitions are allowed). However, we were unable to
understand the algorithm and proofs in that paper due to lack of precise for-
malization and detailed proofs. We also found an example where the provided
algorithm did not produce the expected results. It is noteworthy that Böhm et
al. [8] made similar remarks about related works of Roos [6,30].

Our contribution. We present a new learning algorithm for realtime one-counter
automata (ROCAs). Our algorithm uses membership, equivalence and partial
equivalence queries. It also makes use of counter value queries. That is, we make
the assumption that we have an executable black box with observable counter
values. We prove that our algorithm runs in exponential time and space and that
it uses at most an exponential number of queries. Due to lack of space, some
proofs have been omitted. We refer the interested reader to the full technical
report of this work [12].

In [9], Bollig establishes a connection between OCAs with counter-value ob-
servability and visibly OCAs. We expose a similar connection and are thus able
to leverage Neider and Löding’s learning algorithm for visibly one-counter lan-
guages [27] as a sort of sub-routine for ours. Nevertheless, our learning algorithm
is more sophisticated due to the fact that the counter values cannot be inferred
from a given word. Technically, the latter required us to extend the classical def-
inition of observation tables as used in, e.g., [4,27]. Entries in our tables are com-
posed of Boolean language information as well as a counter value or a wildcard
encoding the fact that we do not (yet) care about the value of the corresponding
word. (Our use of wildcards is reminiscent of the work [25] on learning a regular
language from an “inexperienced” teacher.) Moreover our tables need two sets
of suffixes while only one is necessary in classical tables. Indeed we provide an
example showing that making a table closed and consistent leads to an infinite
loop when it has only one set of suffixes. Due to these extensions, much work is
required to prove that it is always possible to make a table closed and consis-
tent in finite time. Finally, we formulate queries for the teacher in a way which
ensures the observation table eventually induces a right congruence refining the
classical Myhill-Nerode congruence with counter-value information. Our com-
putations and experiments show that the second set of suffixes is exponential
leading to an exponential algorithm (instead of polynomial as in [27]).

We evaluate an implementation of our algorithm on random benchmarks and
a use case inspired by [13]. Namely, we learn an ROCA model for a simple JSON
schema validator — i.e., a program that verifies whether a JSON document
satisfies a given JSON schema. The advantage of having a finite-state model of
such a validator is that JSON-stream validation becomes trivially efficient (cf.
automata-based parsing [3]).

Related work. Our assumption about counter-value observability means that
the system with which we interact is a gray box. Several recent works make

Learning Realtime One-Counter Automata 245

such assumptions to learn complex languages or ameliorate query-usage bounds.
For instance, in [7], the authors assume they have information about the target
language L in the form of a superset of it. Similarly, in [2], the authors assume
L is obtained as the composition of two languages, one of which they know
in advance. In [26], the teacher is assumed to have an executable automaton
representation of the (infinite-word) target language and that some properties
of this automaton are visible to the learner. Finally, in [16] it is assumed that
constraints satisfied along the run of a system can be made visible.

2 Preliminaries

In this section we recall all necessary notions. We give a definition of realtime
one-counter automaton adapted from [15,34]. We present the concept of behavior
graph of such automata, inspired by the one given in [27] for visibly one-counter
automata (VCAs), and state some important properties for our learning task.

An alphabet Σ is a non-empty finite set of symbols. A word is a finite sequence
of symbols from Σ, and the empty word is denoted by ε. The set of all words
over Σ is denoted by Σ∗. The concatenation of two words u, v ∈ Σ∗ is denoted
by uv. A language L is a subset of Σ∗. Given a word w ∈ Σ∗ and a language
L ⊆ Σ∗, the set of prefixes of w is Pref (w) = {u ∈ Σ∗ | ∃v ∈ Σ∗, w = uv} and
the set of prefixes of L is Pref (L) =

⋃
w∈L Pref (w). Similarly, we have the sets of

suffixes Suff (w) = {u ∈ Σ∗ | ∃v ∈ Σ∗, w = vu} and Suff (L) =
⋃

w∈L Suff (w).
Moreover, L is said to be prefix-closed (resp. suffix-closed) if L = Pref (L) (resp.
L = Suff (L)). In this paper, we always work with non-empty languages L to
avoid having to treat particular cases.

Definition 1. A realtime one-counter automaton (ROCA) A is a tuple A =
(Q,Σ, δ=0, δ>0, q0, F) where: (1) Σ is an alphabet, (2) Q is a non-empty finite
set of states, (3) q0 ∈ Q is the initial state, (4) F ⊆ Q is the set of final states,
and (5) δ=0 and δ>0 are two (total) transition functions defined as δ=0 : Q×Σ →
Q× {0,+1} and δ>0 : Q×Σ → Q× {−1, 0,+1}.

The second component of the output of δ=0 and δ>0 gives the counter operation
to apply when taking the transition. Notice that it is impossible to decrement
the counter when it is already equal to zero.

A configuration is a pair (q, n) ∈ Q×N, that is, it contains the current state
and the current counter value. The transition relation −→

A
⊆ (Q×N)×Σ×(Q×N)

contains (q, n)
a−→
A

(p,m) if and only

{
δ=0(q, a) = (p, c) ∧m = n+ c if n = 0,

δ>0(q, a) = (p, c) ∧m = n+ c if n > 0.

When the context is clear, we omit A to simply write
a−→. We lift the relation to

words in the natural way. Notice that this relation is deterministic in the sense
that given a configuration (q, n) and a word w, there exists a unique configuration

(p,m) such that (q, n)
w−→(p,m).

Given a word w, let (q0, 0)
w−→(q, n) be the run on w. When n = 0 and

q ∈ F , we say that this run is accepting. The language accepted by A is the set

246 V. Bruyère et al.

L(A) = {w ∈ Σ∗ | (q0, 0)
w−→(q, 0) with q ∈ F}. If a language L is accepted by

some ROCA, we say that L is a realtime one-counter language (ROCL).

Given w ∈ Σ∗, we define the counter value of w according to A, noted cA(w),

as the counter value n of the configuration (q, n) such that (q0, 0)
w−→(q, n). We

define the height of w according to A, noted hA(w), as the maximal counter
value among the prefixes of w, i.e., hA(w) = maxx∈Pref (w) cA(x).

We now introduce the concept of behavior graph of an ROCA A, inspired
from the one given for VCAs in [27]. It is a (possibly infinite) automaton based on
the congruence relation ≡ over Σ∗ such that u ≡ v if and only if for all w ∈ Σ∗,
we have (1) uw ∈ L ⇔ vw ∈ L and (2) uw, vw ∈ Pref (L) ⇒ cA(uw) = cA(vw).
The equivalence class of u is denoted by JuK≡. This relation ≡ is a refinement
of the Myhill-Nerode relation [18]. Its second condition depends on A and is
limited to Pref (L) because even if A has different counter values for words not
in Pref (L), we still require all those words to be equivalent.

Definition 2. Let A = (Q,Σ, δ=0, δ>0, q0, F) be an ROCA accepting L ⊆ Σ∗.
The behavior graph of A is the automaton BG(A) = (Q≡, Σ, δ≡, q

0
≡, F≡) where:

(1) Q≡ = {JuK≡ | u ∈ Pref (L)} is the set of states, (2) q0≡ = JεK≡ is the initial
state, (3) F≡ = {JuK≡ | u ∈ L} is the set of final states, (4) δ≡ : Q≡ ×Σ → Q≡
is the transition function defined by: δ≡(JuK≡, a) = JuaK≡, ∀JuK≡, JuaK≡ ∈ Q≡,
∀a ∈ Σ.

Note that Q≡ ̸= ∅ since L ̸= ∅ by assumption. A straightforward induction
shows that BG(A) accepts L = L(A). By definition, BGL is trim (each state is
reachable and co-reachable) which implies that the transition function is partial.

q0

q1

q2

a,= 0,+1

b,= 0, 0

a,= 0, 0
b,= 0, 0

a,= 0, 0
b,= 0, 0

a, ̸= 0,+1

b, ̸= 0, 0

a, ̸= 0,−1
b, ̸= 0, 0

a, ̸= 0, 0
b, ̸= 0, 0

Fig. 1: An ROCA

ε a aa . . .

b ab aab . . .

a

b

a

b

a

b

a a a

a, b b b

Initial part Repeating part

Fig. 2: Behavior graph of the left ROCA

Learning Realtime One-Counter Automata 247

Example 1. A 3-state ROCA A over Σ = {a, b} is given in Figure 1. The initial
state q0 is marked by a small arrow and the two final states q1 and q2 are double-
circled. The transitions give the input symbol, the condition on the counter
value, and the counter operation, in this order (δ=0 is indicated in blue while
δ>0 is indicated in green). The run on w = aababaa is accepting since it ends
with the configuration (q2, 0). Moreover, cA(w) = 0 and hA(w) = 2. One can
verify that L(A) = {w ∈ {a, b}∗ | ∃n ≥ 0, ∃k1, . . . , kn ≥ 0, ∃u ∈ {a, b}∗, w =
anb(bk1a · · · bkna)u}. The behavior graph BG(A) of A is given in Figure 2. One
can check that b ≡ abba. Indeed ∀w ∈ Σ∗, bw ∈ L ⇔ abbaw ∈ L. Moreover, ∀w ∈
Σ∗ such that bw, abbaw ∈ Pref (L), we have cA(bw) = cA(abbaw). However,
ab ̸≡ aab since ab, aab ∈ Pref (L) but cA(ab) = 1 ̸= cA(aab) = 2. ⊓⊔

We finally state two important properties of the behavior graph, useful for
the learning of ROCAs. We first establish that BG(A) has a finite representation
that relies on the fact that it has an ultimately periodic structure (see Figure 2).
Let us introduce some notations. By definition of the states of BG(A), all words
in the same class JuK≡ have the same counter value. We thus define the level ℓ of
BG(A) as the set of states with counter value ℓ. One can easily check that each
level has a number of states bounded by |Q|. The minimal such bound is called
the width of BGL and is denoted by K. This observation allows to enumerate the
states in level ℓ using a mapping νℓ : {JwK≡ ∈ Q≡ | cA(w) = ℓ} → {1, . . . ,K}.
Using these enumerations νℓ, ℓ ∈ N, we can encode the transitions of BG(A) as
a sequence of mappings τℓ : {1, . . . ,K} × Σ → {1, . . . ,K} × {−1, 0,+1}, with
ℓ ∈ N, as follows. For all i ∈ {1, . . . ,K}, a ∈ Σ, the mapping τℓ is defined as:

τℓ(i, a) =

(j, c) if ∃JuK≡, JuaK≡ ∈ Q≡ such that cA(u) = ℓ,
cA(ua) = ℓ+ c, νℓ(JuK≡) = i, νℓ+c(JuaK≡) = j,

undefined otherwise.

In this way, the behavior graph can be encoded as the sequence α = τ0τ1τ2 . . .,
called a description of BG(A). The following theorem states that there always
exists such a description which is periodic (see again Figure 2).

Theorem 1. Let A be an ROCA, BG(A) = (Q≡, Σ, δ≡, q
0
≡, F≡) be the behav-

ior graph of A, and K be the width of BG(A). Then, there exists a sequence
of enumerations νℓ : {JuK≡ ∈ Q≡ | cA(u) = ℓ} → {1, . . . ,K} such that the
corresponding description α of BG(A) is an ultimately periodic word with offset
m > 0 and period k ≥ 0, i..e, α = τ0 . . . τm−1(τm . . . τm+k−1)

ω
.

This theorem is the counterpart of a similar theorem given in [27] for VCAs.
We get this theorem thanks to an isomorphism between the behavior graph of
an ROCA A and that of a suitable VCA constructed from A.

The second major property states that from a periodic description of a behav-
ior graph BG(A), one can construct an ROCA that accepts the same language.

Proposition 1. Let A be an ROCA accepting a language L ⊆ Σ∗, BG(A) be
its behavior graph of width K, α = τ0 . . . τm−1(τm . . . τm+k−1)

ω
be a periodic de-

scription of BG(A) with offset m and period k. Then, from α, one can construct
an ROCA Aα accepting L such that the size of Aα is polynomial in m, k and K.

248 V. Bruyère et al.

3 Learning ROCAs

The aim of this paper is to design an ROCA-learning algorithm. We suppose that
the reader is familiar with the concept of active learning, and in particular with
Angluin’s seminal L∗ algorithm for learning finite-state automata (DFAs) [4]. In
this section, let us fix a language L ⊆ Σ∗ and an ROCA A such that L(A) = L.
We here explain how a learner will learn L by querying a teacher. Our learning
algorithm is inspired by the one designed in [27] for VCAs. The idea is to learn
an initial fragment of the behavior graph BG(A) up to a fixed counter limit ℓ, to
extract every possible periodic description from the fragment, and to construct
an ROCA from each of these descriptions. If we find one ROCA accepting L, we
are done. Otherwise, we increase ℓ and repeat the process.

Formally, the initial fragment up to ℓ is called the limited behavior graph
BGℓ(A). This is the subgraph of BG(A) whose set of states is {JwK≡ ∈ Q≡ |
hA(w) ≤ ℓ}. This DFA accepts the language Lℓ = {w ∈ L | ∀x ∈ Pref (w), 0 ≤
cA(x) ≤ ℓ}. Notice that BGℓ(A) is composed of the first ℓ+ 1 levels of BG(A)
(from 0 to ℓ) such that each level is restricted to states JwK≡ with hA(w) ≤ ℓ.

During the learning process, the teacher has to answer four different types of
queries asked by the learner: (1) membership query (does w ∈ Σ∗ belong to L?),
(2) counter value query (given w ∈ Pref (L), what is cA(w)?), (3) partial equiv-
alence query (does the DFA B accept Lℓ?), and (4) equivalence query (does the
ROCA B accept L?). In case of negative answer to a (partial) equivalence query,
the teacher provides a counterexample w ∈ Σ∗ witness of this non-equivalence.

Recall that membership and equivalence queries are used in the L∗ algo-
rithm [4]. Additionally, partial equivalence queries are required in the VCA-
learning algorithm of [27] to find the basis of a periodic description for the target
automaton. However counter-value queries are not necessary because VCAs use
a pushdown alphabet and the counter value can be directly inferred from the
word. For general alphabets, this is no longer possible and the learner has to ask
the teacher for this information. Our main result is the following theorem.

Theorem 2. Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L, which answers membership, counter value, and (partial) equivalence queries,
an ROCA accepting L can be computed in time and space exponential in |Q|, |Σ|
and t, with Q the set of states of A and t the length of the longest counterex-
ample returned by the teacher on (partial) equivalence queries. The learner asks
O(t3) partial equivalence queries, O(|Q|t2) equivalence queries and a number of
membership and counter value queries exponential in |Q|, |Σ| and t.

In what follows we describe the main steps of our learning algorithm. Given a
counter limit ℓ, we first introduce the kind of observation table Oℓ we use to store
the learned information about Lℓ. Secondly, we explain what are the constraints
imposed to Oℓ to derive a DFA AOℓ

, candidate for accepting Lℓ. Thirdly, when
a counterexample is returned by the teacher to a partial equivalence query with
this DFA, we explain how to update the table. Fourthly, we give the whole
learning algorithm such that when AOℓ

accepts Lℓ with ℓ big enough, a periodic
description α is finally extracted from AOℓ

such that the ROCA Aα accepts L.

Learning Realtime One-Counter Automata 249

Observation Table and Approximation Sets. As for learning DFAs and
VCAs, we use an observation table to store the data gathered during the learn-
ing process. This table aims at approximating the equivalence classes of ≡ and
therefore stores information about both membership to L and counter values for
words known to be in Pref (L). It depends on a counter limit ℓ ∈ N since we
first want to learn BGℓ(A). We highlight the fact that our table uses two sets of

suffixes: Ŝ and S (contrarily to the algorithms of [4,27] that use only one set S).

Intuitively, we use the set Ŝ to store membership information and the set S for
counter value information. In [27], the set S is not needed as the counter value
of a word can be immediately derived from the word. This is not the case for
us, as the teacher’s ROCA is required to compute the counter value of a word.
Therefore, we need to explicitly store that information.

Definition 3. Let ℓ ∈ N be a counter limit and Lℓ be the language accepted by
the limited behavior graph BGℓ(A) of an ROCA A. An observation table Oℓ

up to ℓ is a tuple (R,S, Ŝ,Lℓ, Cℓ) with: (1) a finite prefix-closed set R ⊆ Σ∗

of representatives, (2) two finite suffix-closed sets S, Ŝ of separators such that

S ⊆ Ŝ ⊆ Σ∗, (3) a function Lℓ : (R ∪ RΣ)Ŝ → {0, 1}, (4) a function Cℓ :
(R ∪RΣ)S → {⊥, 0, . . . , ℓ}.

Let Pref (Oℓ) be the set {w ∈ Pref (us) | u ∈ R ∪ RΣ, s ∈ Ŝ,Lℓ(us) = 1}.
Then for all u ∈ R ∪RΣ the following holds:

– for all s ∈ Ŝ, Lℓ(us) is 1 if us ∈ Lℓ and 0 otherwise,
– for all s ∈ S, Cℓ(us) is cA(us) if us ∈ Pref (Oℓ) and ⊥ otherwise.

In this definition, the domains of Lℓ and Cℓ are different as already mentioned.
Notice that Pref (Oℓ) ⊆ Pref (Lℓ). To compute the values of the table Oℓ, the
learner proceeds by asking membership and counter value queries to the teacher.

ε a ba

ε 0, 0 0 1
a 0, 1 0 1
ab 0, 1 1 1
aba 1, 0 1 1
aa 0,⊥ 0 0

b 1, 0 1 1
abb 0, 1 1 1
abaa 1, 0 1 1
abab 1, 0 1 1
aaa 0,⊥ 0 0
aab 0,⊥ 0 0

Fig. 3: An observa-
tion table.

ε

ε 0, 0
a 0, 1
ab 0, 1
aba 1, 0

b 1, 0
aa 0,⊥
abb 0,⊥
abaa 1, 0
abab 1, 0

ε

ε 0, 0
a 0, 1
ab 0, 1
aba 1, 0
abb 0, 1

b 1, 0
aa 0,⊥
abaa 1, 0
abab 1, 0
abba 1, 0
abbb 0,⊥

ε

ε 0, 0
a 0, 1
ab 0, 1
aba 1, 0
abb 0, 1
abbb 0, 1

b 1, 0
aa 0,⊥
abaa 1, 0
abab 1, 0
abba 1, 0
abbba 1, 0
abbbb 0,⊥

Fig. 4: Observation tables exposing an infinite loop when
using the L∗ algorithm.

250 V. Bruyère et al.

Example 2. In this example, we give an observation table Oℓ for the ROCA A
from Figure 1 and the counter limit ℓ = 1, see Figure 3. Hence we want to learn
BGℓ(A) whose set of states is given by the first two levels from Figure 2.

The first column of Oℓ contains the elements of R∪RΣ such that the upper
part is constituted by R = {ε, a, ab, aba, aa} and the lower part by RΣ \R. The

first row contains the elements of Ŝ such that the left part is constituted by
S = {ε} and the right part by Ŝ \S. For each element us ∈ (R∪RΣ)S, we store
the two values Lℓ(us) and Cℓ(us) in the intersection of row u and column s. For
instance, these values are equal to 0,⊥ for u = aa and s = ε. For each element
us ∈ (R∪RΣ)(Ŝ\S), we have only one value Lℓ(us) to store. Note that Pref (Oℓ)
is a proper subset of Pref (Lℓ). For instance, aababaa ∈ Pref (Lℓ) \ Pref (Oℓ).

Let us now explain why it is necessary to use the additional set Ŝ in Defi-
nition 3. Assume that we only use the set S and that the current observation
table is the leftmost table Oℓ, with ℓ = 1, given in Figure 4 for the ROCA from
Figure 1. On top of that, assume we are using the classical L∗ algorithm [4]. As
we can see, the table is not closed since the stored information for abb, that is,
0,⊥, does not appear in the upper part of the table for any u ∈ R. So, we add
abb in this upper part and abba and abbb in the lower part, to obtain the second
table of Figure 4. Notice that this shift of abb has changed its stored information,
which is now equal to 0, 1. Indeed the set Pref (Oℓ) now contains abb as a prefix
of abba ∈ Lℓ. Again, the new table is not closed because of abbb. After shifting
this word in the upper part of the table, we obtain the third table of Figure 4.
It is still not closed due to abbbb. This process will continue ad infinitum. ⊓⊔

To avoid an infinite loop when making the table closed, as described in the
previous example, we modify both the concept of table and how to derive an
equivalence relation from that table. Our solution is to introduce the set Ŝ, as
already explained, but also the concept of approximation set to approximate ≡.

Definition 4. Let Oℓ = (R,S, Ŝ,Lℓ, Cℓ) be an observation table up to ℓ. Let
u, v ∈ R ∪ RΣ. Then, u ∈ Approx (v) if and only if for all s ∈ S, we have
Lℓ(us) = Lℓ(vs) and Cℓ(us) ̸= ⊥ ∧ Cℓ(vs) ̸= ⊥ ⇒ Cℓ(us) = Cℓ(vs). The set
Approx (v) is called an approximation set.

In this definition, note that we consider ⊥ values as wildcards and we focus on
words with suffixes from S only (and not from Ŝ\S). Interestingly, such wildcard
entries in observation tables also feature in learning from an “inexperienced”
teacher [25]. Just like in that work, a crucial part of our learning algorithm
concerns how to obtain an equivalence relation from such an observation table
(note that Approx does not define an equivalence relation as it is not transitive).

Example 3. Let Oℓ be the table from Figure 3. Let us compute Approx (ε) (recall

that we only consider S = {ε} and not Ŝ = {a, ba}). We can see that aba /∈
Approx (ε) as Lℓ(aba) = 1 and Lℓ(ε) = 0. Moreover, a /∈ Approx (ε) since Cℓ(a) ̸=
⊥, Cℓ(ε) ̸= ⊥, and Cℓ(a) ̸= Cℓ(ε). With the same arguments, we also discard
ab, b, abb, abaa, abab. Thus, Approx (ε) = {ε, aa, aaa, aab}. On the other hand,
Approx (aa) = {ε, a, ab, aa, abb, aaa, aab} knowing that Cℓ(aa) = ⊥. ⊓⊔

Learning Realtime One-Counter Automata 251

The following notation will be convenient later. Let Oℓ be an observation
table and u ∈ R ∪RΣ. If Cℓ(u) = ⊥ (which means that u ̸∈ Pref (Oℓ)), then we
say that u is a ⊥-word. Let us denote by R the set R from which the ⊥-words
have been removed. We define R ∪RΣ in a similar way. We can now formalize
the relation between ≡ and Approx .

Proposition 2. Let Oℓ be an observation table up to ℓ ∈ N. Then for all u, v ∈
R ∪RΣ, we have u ≡ v ⇒ u ∈ Approx (v).

Closed and Consistent Observation Table. As for the L∗ algorithm [4],
we need to define the constraints a table Oℓ must respect in order to obtain a
congruence relation from Approx and then to construct a DFA. This is more
complex than for L∗. Namely, the table must be closed, Σ-consistent, and ⊥-
consistent. The first two constraints are close to the ones already imposed by
L∗. The last one is new. Crucially, it implies that Approx is transitive.

Definition 5. Let Oℓ be an observation table up to ℓ ∈ N. We say the table is:

– closed if ∀u ∈ RΣ,Approx (u) ∩R ̸= ∅,
– Σ-consistent if ∀u ∈ R, ∀a ∈ Σ,

ua ∈
⋂

v∈Approx(u)∩R

Approx (va),

– ⊥-consistent if ∀u, v ∈ R ∪RΣ such that u ∈ Approx (v),

∀s ∈ S, Cℓ(us) ̸= ⊥ ⇔ Cℓ(vs) ̸= ⊥.

Example 4. Let Oℓ be the table from Figure 3. We have Approx (b) ∩ R ̸= ∅
because aba ∈ Approx (b). More generally one can check that Oℓ is closed.
However, Oℓ is not Σ-consistent. Indeed, εb /∈

⋂
v∈Approx(ε)∩R Approx (vb) since

Approx (ε) ∩ R = {ε, aa} and εb /∈ Approx (aab). Finally, Oℓ is also not ⊥-
consistent since aa ∈ Approx (ε) but Cℓ(aa) = ⊥ and Cℓ(ε) = 0. ⊓⊔

When Oℓ is closed and consistent, we define the following relation ≡Oℓ
:

∀u, v ∈ R ∪ RΣ, u ≡Oℓ
v ⇔ u ∈ Approx (v). This relation is a congruence

over R from which we can construct a DFA AOℓ
.

Definition 6. Let Oℓ be a closed, Σ- and ⊥-consistent observation table up
to ℓ. From ≡Oℓ

, we define the DFA AOℓ
= (QOℓ

, Σ, δOℓ
, q0Oℓ

, FOℓ
) with: (1)

QOℓ
= {JuK≡Oℓ

| u ∈ R}, (2) q0Oℓ
= JεK≡Oℓ

, (3) FOℓ
= {JuK≡Oℓ

| Lℓ(u) = 1},
and (4) the (total) transition function δOℓ

is defined by δOℓ
(JuK≡Oℓ

, a) = JuaK≡Oℓ
,

for all JuK≡Oℓ
∈ QOℓ

and a ∈ Σ.

Note that AOℓ
is consistent with the information stored in Oℓ.

Lemma 1. For all u ∈ R ∪RΣ, we have u ∈ L(AOℓ
) ⇔ u ∈ Lℓ.

252 V. Bruyère et al.

Making a Table Closed and Consistent. Suppose we have an observation
table Oℓ up to ℓ and we want to make it closed, Σ- and ⊥-consistent. We here
give some intuition on how to proceed.

If the table Oℓ is not closed or not Σ-consistent, we proceed as in the L∗

algorithm [4]. In the first case, this means that ∃u ∈ RΣ, Approx (u) ∩ R = ∅.
It follows that u ̸∈ R and we thus add u to R and update the table. In the
second case, this means that ∃ua ∈ RΣ, ∃v ∈ Approx (u) ∩R, ua /∈ Approx (va).
We have two cases: there exists s ∈ S such that either Lℓ(uas) ̸= Lℓ(vas), or
Cℓ(uas) ̸= ⊥ ∧ Cℓ(vas) ̸= ⊥ ∧ Cℓ(uas) ̸= Cℓ(vas). In both cases, we add as to S

and to Ŝ and we update the table.
Suppose that Oℓ is not ⊥-consistent, i.e., ∃u, v ∈ R ∪ RΣ, ∃s ∈ S, u ∈

Approx (v) and Cℓ(us) ̸= ⊥ ⇔ Cℓ(vs) = ⊥. We call mismatch the latter disequal-
ity. Let us assume, without loss of generality, that Cℓ(us) ̸= ⊥ and Cℓ(vs) = ⊥.

So, us ∈ Pref (Oℓ), i.e., there exist u′ ∈ R ∪ RΣ and s′ ∈ Ŝ such that us ∈
Pref (u′s′) and Lℓ(u

′s′) = 1. We denote by s′′ the word such that us′′ = u′s′.

The idea is to add Suff (s′′) to one or both sets S, Ŝ. We have two cases:

– Suppose u′ is a prefix of u. We have s′′ ∈ Ŝ \ S and add Suff (s′′) to S.

– Suppose u is a proper prefix of u′. If vs′′ ∈ Lℓ then we add Suff (s′′) to Ŝ,

otherwise we add Suff (s′′) to both S and Ŝ.

The difficult task is to prove that it is always possible to make a table closed
and consistent in finite time.

Proposition 3. Given an observation table Oℓ up to ℓ ∈ N, there exists an
algorithm that makes it closed, Σ- and ⊥-consistent in a finite amount of time.

Let us give some rough intuition. Notice that R increases only when the table
is not closed, and that S, Ŝ may increase only when the table is not consistent.
Firstly, the number of times the table is not closed is bounded by the number of
classes of ≡ up to counter limit ℓ, by Proposition 2. Indeed, when u ∈ RΣ \ R,
witness that Oℓ is not closed, is added to R, then it becomes the only represen-
tative in its new approximation set. Secondly, one can prove that after resolving
a case where the table is not consistent, then either the size of an approximation
set decreases or a mismatch is eliminated. The number of times an approxima-
tion set may decrease is bounded, because there are at most |R ∪ RΣ| distinct
such sets whose size is bounded by |R∪RΣ|. Finally, the number of mismatches
to eliminate is also bounded. Hard work was necessary to get this result as, when
one mismatch is eliminated when solving a case where the table is not consistent,
S may increase, inducing the creation of new mismatches.

Handling Counterexamples to Partial Equivalence Queries. Let AOℓ
be

the DFA constructed from a closed, Σ- and ⊥-consistent observation table Oℓ.
If the teacher’s answer to a partial equivalence query over AOℓ

is positive, then
AOℓ

exactly accepts Lℓ. Otherwise, the teacher returns a counterexample, that
is, a word w ∈ Σ∗ such that w ∈ Lℓ ⇔ w /∈ L(AOℓ

). In the latter case, we add

Learning Realtime One-Counter Automata 253

Pref (w) to R and update the table. We finally make the new table O ′
ℓ closed,

Σ- and ⊥-consistent. We have that ≡O′
ℓ
is a strict refinement of ≡Oℓ

.

Proposition 4. For all u, v ∈ R ∪ RΣ, we have u ≡O′
ℓ
v ⇒ u ≡Oℓ

v. Further-
more, the index of ≡O′

ℓ
is strictly greater than the index of ≡Oℓ

.

Since the number of classes of ≡ up to counter limit ℓ is bounded by the
width K and the ℓ + 1 levels of BGℓ(A), by Propositions 2 to 4, we deduce
that after a finite number of steps, we obtain an observation table Oℓ and its
corresponding DFA AOℓ

such that L(AOℓ
) = Lℓ.

Algorithm 1 Learning an ROCA

Require: A teacher knowing an ROCA A
Ensure: An ROCA accepting the same language is returned
1: Initialize the observation table Oℓ with ℓ = 0, R = S = Ŝ = {ε}
2: while true do
3: Make Oℓ closed, Σ-, and ⊥-consistent
4: Construct the DFA AOℓ

from Oℓ

5: Ask a partial equivalence query over AOℓ

6: if the answer is negative then
7: Update Oℓ with the provided counterexample ▷ ℓ is not modified
8: else
9: Identify all periodic descriptions α1, . . . , αn of AOℓ

10: Construct an ROCA Aαi for each αi

11: Ask an equivalence query over each Aαi

12: if the answer is true for an Aαi then return Aαi

13: else Select one counterexample and update Oℓ ▷ ℓ is increased

Learning Algorithm. We have every piece needed to give the learning algo-
rithm for ROCAs, as presented in Algorithm 1. We initialize the observation
table Oℓ with ℓ = 0, R = S = Ŝ = {ε}. Then, we make the table closed, Σ-, and
⊥-consistent, construct the DFA AOℓ

, and ask for a partial equivalence query
with AOℓ

. If the teacher answers positively, we have learned a DFA accepting
Lℓ. Otherwise, we use the provided counterexample to update the table with-
out increasing ℓ. Once the learned DFA AOℓ

accepts the language Lℓ, the next
proposition states that the initial fragments (up to a certain counter limit) of
both AOℓ

and BG(A) are isomorphic. This means that, once we have learned
a long enough initial fragment, we can extract a periodic description from AOℓ

that is valid for BG(A).

Proposition 5. Let BG(A) be the behavior graph of an ROCA A, K be its
width, and m, k be the offset and the period of a periodic description of BG(A).

Let s = m+ (K · k)4. Let Oℓ be a closed, Σ- and ⊥-consistent observation table
up to ℓ > s such that L(AOℓ

) = Lℓ. Then, the trim parts of the subautomata of
BG(A) and AOℓ

restricted to the levels in {0, . . . , ℓ− s} are isomorphic.

254 V. Bruyère et al.

Hence we extract all possible periodic descriptions α from AOℓ
. By Proposi-

tion 1, each description α yields an ROCA Aα on which we ask for an equivalence
query. If the teacher answers positively, we have learned an ROCA accepting L
and we are done. Otherwise, we need to increase the counter limit and update
the table using some of the counterexamples provided by the teacher.

Extracting every possible periodic description of AOℓ
can be performed by

identifying an isomorphism between two consecutive subgraphs of AOℓ
. That is,

we fix values for the offset m and period k and see if the subgraphs induced by
the levels m to m+ k− 1, and by the levels m+ k to m+2k− 1 are isomorphic
(this means considering all pairs (m, k) such that m+ 2k − 1 ≤ ℓ). This can be
done by executing two depth-first searches in parallel [27]. Note that multiple
periodic descriptions may be found, due to the finite knowledge of the learner.

In case all ROCAs constructed from AOℓ
do not accept L, we handle the

counterexamples returned by the teacher as follows. If among them, there is one
counterexample, say w, such that the height hA(w) exceeds ℓ, we add Pref (w)
to R (as in the case of a negative partial equivalence query) and the new counter
limit is updated to hA(w). If none of the counterexamples have an height exceed-
ing ℓ (this may happen due to the limited knowledge of the learner), we instead
use AOℓ

directly as an ROCA and ask an equivalence query. Since L(AOℓ
) = Lℓ

(as the last partial equivalence query was true), the counterexample returned by
the teacher necessarily has a high enough height and we proceed as above.

Complexity of the Algorithm. Let us briefly explain the complexity an-
nounced in Theorem 2 for Algorithm 1 in terms of |Q| the number of states of
the given ROCA and t the length of the longest counterexample returned by
the teacher. The given bound on the number of (partial) equivalence queries is
obtained by arguments similar to those of [27]. The number of steps in the main
loop of Algorithm 1 is the (polynomial) number of partial equivalence queries.
During one step in this loop, by carefully studying how we make the table closed
and consistent and handle a counterexample, we get that R∪RΣ (resp. Ŝ) grows
linearly (resp. exponentially) in |Q|, |Σ|, and t. We also get an exponential num-
ber of membership and equivalence queries for the whole algorithm.

4 Experiments

We evaluated our algorithm on two types of benchmarks. The first uses randomly
generated ROCAs, while the second focuses on a new approach to learn an
ROCA that can efficiently check if a JSON document is valid against a given
JSON schema. Notice that while there exist several algorithms that infer a JSON
schema from a collection of JSON documents (see survey [5]), none are based on
learning techniques nor do they yield an automaton-based validation algorithm.

The ROCAs and the learning algorithm were implemented by extending the
well-known Java libraries AutomataLib and LearnLib [20]. These modifica-
tions can be consulted on [31,33], while the code for the benchmarks is available

Learning Realtime One-Counter Automata 255

on [32]. Implementation specific details (such as the libraries) are given along-
side the code. The server used for the computations ran Debian 10 over Linux
5.4.73-1-pve with a 4-core Intel® Xeon® Silver 4214R Processor with 16.5M
cache, and 64GB of RAM. Moreover, we used OpenJDK version 11.0.12.

4.1 Random ROCAs

We first discuss our benchmarks based on randomly generated ROCAs.

Random Generation of ROCAs. An ROCA with given size n = |Q| is
randomly generated such that (1) ∀q ∈ Q, q has a probability 0.5 of being final,
and (2) ∀q ∈ Q, ∀a ∈ Σ, δ>0(q, a) = (p, c) with p a random state in Q and c
a random counter operation in {−1, 0,+1}. We define δ=0(q, a) = (p, c) in a
similar way except that c ∈ {0,+1}. All random draws are assumed to come
from a uniform distribution. Since this generation does not guarantee an ROCA
with n reachable states, we generate 100 ROCAs and select the ROCA with a
maximal number of reachable states. However, it is still possible the resulting
ROCA does not have n (co)-reachable states.

Equivalence of Two ROCAs. The language equivalence problem of ROCAs
is known to be decidable and NL-complete [8]. Unfortunately, the algorithm de-
scribed in [8] is difficult to implement. Instead, we use an “approximate” equiva-
lence oracle for our experiments.3 Let A and B be two ROCAs such that B is the
learned ROCA from a periodic description with period k. The algorithm explores
the configuration space of both ROCAs in parallel. If, at some point, it reaches
a pair of configurations such that one is accepting and the other not, then we
have a counterexample. However, to have an algorithm that eventually stops, we
need to bound the counter value of the configurations to explore. Our approach
is to first explore up to counter value |A × B|2 (in view of [8, Proposition 18]
about shortest accepting runs in an ROCA). If no counterexample is found, we
add k to the bound and, with probability 0.5, a new exploration is done up to
the new bound. We repeat this whole process until we find a counterexample or
until the random draw forces us to stop.

Results. For our random benchmarks, we let the size |Q| of the ROCA vary
between one and five, and the size of |Σ| of the alphabet between one and four.
For each pair (|Q|, |Σ|) of sizes, we execute the learning algorithm on 100 ROCAs
(generated as explained above). We set a timeout of 20 minutes and a memory
limit of 16GB. The number of executions with a timeout is given in Table 1 (we
do not give the pairs (|Q|, |Σ|) where every execution could finish).

The mean of the total time taken by the algorithm is given in Figure 5a. One
can see that it has an exponential growth in both sizes |Q| and |Σ|. Note that

3 The teacher might, with some small probability, answer with false positives but never
with false negatives.

256 V. Bruyère et al.

Table 1: Number (over 100) of executions with a timeout (TO). The executions
for the missing pairs (|Q|, |Σ|) could all finish.

|Q| |Σ| TO (20 min)

4 1 0
4 2 5
4 3 16
4 4 41
5 1 0
5 2 23
5 3 55
5 4 83

executions with a timeout had their execution time set to 20 minutes, in order
to highlight the curve. Let us now drop all the executions with a timeout. The
mean length of the longest counterexample provided by the teacher for (partial)
equivalence queries is presented in Figure 5b and the final size of the sets R and
Ŝ is presented in Figures 5c and 5d. Note that the curves go down due to the
limited number of remaining executions (for instance, the ones that could finish

did not require long counterexamples). We can see that Ŝ grows larger than R,
which is coherent with the theoretical results stated at the end of Section 3.

Fig. 5: Results for the benchmarks based on random ROCAs.

Learning Realtime One-Counter Automata 257

4.2 JSON Documents and JSON Schemas

Let us now discuss the second set of benchmarks, which constitutes a proof-of-
concept for an efficient validator of JSON-document [11] streams and is inspired
by [13]. This format is currently the most popular one for exchanging information
on the web. Constraints over documents can be described by a JSON schema [22]
(like DTDs do for XML documents). See [22,21] for a brief overview of JSON
documents and schemas.

In our learning process, the learner aims to construct an ROCA that can
validate a JSON document, according to the schema. We assume the teacher
knows the target schema and the queries are specialized as follows: (1) Mem-
bership queries: the learner provides a JSON document and the teacher answers
true if the document is valid for the schema. (2) Counter value queries: the
learner provides a JSON document and the teacher returns the number of un-
matched { and [. Adding the two values is a heuristic abstraction that allows us
to summarize two-counter information into a single counter value. Importantly,
the abstraction is a design choice regarding our implementation of a teacher
for these experiments and not an assumption made by our learning algorithm.
(3) Partial equivalence query: the learner provides a DFA and a counter limit ℓ.
The teacher randomly generates an a-priori fixed number of documents with a
height not exceeding the counter limit ℓ and checks whether the DFA and the
schema both agree on the documents’ validity. If a disagreement is noticed, the
incorrectly classified document is returned. (4) Equivalence query: the learner
provides an ROCA. It is very similar to partial equivalence queries, except that
documents are generated without a bound on the height. Note that the random-
ness of the (partial) equivalence queries implies that the learned ROCA may not
completely recognize the same set of documents as for the schema.

In order for an ROCA to be learned in a reasonable time, some abstractions
are made mainly to reduce the alphabet size: (1) If an object has a key named
key, we consider the sequence of characters "key" as a single alphabet symbol.
(2) Strings, integers, and numbers are abstracted as "\S", "\I", and "\D" re-
spectively. Booleans are left unmodified. (3) The symbols ,, {, }, [,], : are
all considered as different alphabet symbols. (4) We assume each object is com-
posed of an ordered (instead of unordered) collection of pairs key-value. Note
that the learning algorithm can learn without these restrictions but it requires
substantially more time, due to a blowup in the state space or in the alphabet.

Moreover, notice that the alphabet is not known at the start of the learning
process (due to the fact that keys can be any strings). Therefore we slightly
modify the learning algorithm to support growing alphabets. More precisely, the
learner’s alphabet starts with the symbols { and } (to guarantee we can at least
produce a syntactically valid JSON document for the first partial equivalence
query) and is augmented each time a new symbol is seen.

Results. We considered three JSON schemas. The first is a simple document
listing all possible values (i.e., it contains an integer, a double, and so on). The

258 V. Bruyère et al.

Table 2: Results for JSON benchmarks.

Schema TO (1h) Time (s) t |R| |Ŝ| |A| |Σ|

1 0 16.39 31.00 55.55 32.00 33.00 19.00
2 27 1045.64 12.99 57.84 33.74 44.29 14.70
3 19 922.19 49.49 171.94 50.49 51.16 9.00

second is a real-world JSON schema4 used by a code coverage tool called Code-
cov [14]. Finally, the third schema encodes a recursive list, i.e., an object con-
taining a list with at most one object defined recursively. This last example is
used to force the behavior graph to be infinite.

Table 2 gives the results of the benchmarks, obtained by fixing the num-
ber of random documents by (partial) equivalence query to be 1000. For each
schema, 100 executions were ran with a time limit of one hour and a mem-
ory limit of 16GB by execution. We can see that real-world JSON schemas and
recursively-defined schemas can be both learned by our approach. One last inter-
esting statistics is that |R| is larger than |Ŝ|, unlike for the random benchmarks.

5 Future Work

As future work, we believe one might be able to remove the use of partial equiva-
lence queries. In this direction, perhaps replacing our use of Neider and Löding’s
VCA algorithm by Isberner’s TTT algorithm [19] for visibly pushdown automata
might help. Indeed, the TTT algorithm does not need partial equivalence queries.

Another interesting direction concerns lowering the (query) complexity of
our algorithm. In [29], it is proved that L∗ algorithm [4] can be modified so that
adding a single separator after a failed equivalence query is enough to update the
observation table. This would remove the suffix-closedness requirements on the
separator sets S and Ŝ. It is not immediately clear to us whether the definition
of ⊥-consistency presented here holds in that context. Further optimizations,
such as discrimination tree-based algorithms (see e.g. Kearns and Vazirani’s
algorithm [24]), also do not need the separator set to be suffix-closed.

It would also be interesting to directly learn the one-counter language instead
of an ROCA. Indeed, our algorithm learns some ROCA that accepts the target
language. It would be desirable to learn some canonical representation of the
language (e.g. a minimal automaton, for some notion of minimality).

Finally, as far as we know, there currently is no active learning algorithm for
deterministic one-counter automata (such that ε-transitions are allowed). We
want to study how we can adapt our learning algorithm in this context.

4 We downloaded the schema from the JSON Schema Store [23]. We modified the file
to remove all constraints of type “enum”.

Learning Realtime One-Counter Automata 259

References

1. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-
state communication protocols using regular inference with abstraction. Formal
Methods Syst. Des. 46(1), 1–41 (2015). https://doi.org/10.1007/s10703-014-0216-
x, https://doi.org/10.1007/s10703-014-0216-x

2. Abel, A., Reineke, J.: Gray-box learning of serial compositions of mealy ma-
chines. In: Rayadurgam, S., Tkachuk, O. (eds.) NASA Formal Methods -
8th International Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9,
2016, Proceedings. Lecture Notes in Computer Science, vol. 9690, pp. 272–287.
Springer (2016). https://doi.org/10.1007/978-3-319-40648-0 21, https://doi.org/
10.1007/978-3-319-40648-0 21

3. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World student series edition, Addison-
Wesley (1986), https://www.worldcat.org/oclc/12285707

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6, https://doi.
org/10.1016/0890-5401(87)90052-6

5. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C.: Schemas and types
for JSON data. In: Herschel, M., Galhardas, H., Reinwald, B., Fundu-
laki, I., Binnig, C., Kaoudi, Z. (eds.) Advances in Database Technology
- 22nd International Conference on Extending Database Technology, EDBT
2019, Lisbon, Portugal, March 26-29, 2019. pp. 437–439. OpenProceedings.org
(2019). https://doi.org/10.5441/002/edbt.2019.39, https://doi.org/10.5441/002/
edbt.2019.39

6. Berman, P., Roos, R.: Learning one-counter languages in polynomial time (ex-
tended abstract). In: 28th Annual Symposium on Foundations of Computer Sci-
ence, Los Angeles, California, USA, 27-29 October 1987. pp. 61–67. IEEE Com-
puter Society (1987). https://doi.org/10.1109/SFCS.1987.36, https://doi.org/10.
1109/SFCS.1987.36

7. Berthon, R., Boiret, A., Pérez, G.A., Raskin, J.: Active learning of sequential
transducers with side information about the domain. In: Moreira, N., Reis, R. (eds.)
Developments in Language Theory - 25th International Conference, DLT 2021,
Porto, Portugal, August 16-20, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12811, pp. 54–65. Springer (2021). https://doi.org/10.1007/978-3-030-
81508-0 5, https://doi.org/10.1007/978-3-030-81508-0 5

8. Böhm, S., Göller, S., Jancar, P.: Bisimulation equivalence and regularity for
real-time one-counter automata. J. Comput. Syst. Sci. 80(4), 720–743 (2014).
https://doi.org/10.1016/j.jcss.2013.11.003, https://doi.org/10.1016/j.jcss.2013.11.
003

9. Bollig, B.: One-counter automata with counter observability. In: Lal, A.,
Akshay, S., Saurabh, S., Sen, S. (eds.) 36th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2016, December 13-15, 2016, Chennai, India. LIPIcs,
vol. 65, pp. 20:1–20:14. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.20, https://doi.org/
10.4230/LIPIcs.FSTTCS.2016.20

10. Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.: Pro-
grams with lists are counter automata. Formal Methods Syst. Des. 38(2), 158–
192 (2011). https://doi.org/10.1007/s10703-011-0111-7, https://doi.org/10.1007/
s10703-011-0111-7

260 V. Bruyère et al.

https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/978-3-319-40648-0_21
https://doi.org/10.1007/978-3-319-40648-0_21
https://doi.org/10.1007/978-3-319-40648-0_21
https://www.worldcat.org/oclc/12285707
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.5441/002/edbt.2019.39
https://doi.org/10.5441/002/edbt.2019.39
https://doi.org/10.5441/002/edbt.2019.39
https://doi.org/10.1109/SFCS.1987.36
https://doi.org/10.1109/SFCS.1987.36
https://doi.org/10.1109/SFCS.1987.36
https://doi.org/10.1007/978-3-030-81508-0_5
https://doi.org/10.1007/978-3-030-81508-0_5
https://doi.org/10.1007/978-3-030-81508-0_5
https://doi.org/10.1016/j.jcss.2013.11.003
https://doi.org/10.1016/j.jcss.2013.11.003
https://doi.org/10.1016/j.jcss.2013.11.003
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.20
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.20
https://doi.org/10.1007/s10703-011-0111-7
https://doi.org/10.1007/s10703-011-0111-7
https://doi.org/10.1007/s10703-011-0111-7

11. Bray, T.: The javascript object notation (JSON) data interchange format. RFC
8259, 1–16 (2017). https://doi.org/10.17487/RFC8259, https://doi.org/10.17487/
RFC8259

12. Bruyère, V., Pérez, G.A., Staquet, G.: Learning realtime one-counter automata.
CoRR abs/2110.09434 (2021), https://arxiv.org/abs/2110.09434

13. Chitic, C., Rosu, D.: On validation of XML streams using finite state machines.
In: Amer-Yahia, S., Gravano, L. (eds.) Proceedings of the Seventh International
Workshop on the Web and Databases, WebDB 2004, June 17-18, 2004, Maison de
la Chimie, Paris, France, Colocated with ACM SIGMOD/PODS 2004. pp. 85–90.
ACM (2004). https://doi.org/10.1145/1017074.1017096, https://doi.org/10.1145/
1017074.1017096

14. Codecov, https://about.codecov.io/
15. Fahmy, A.F., Roos, R.S.: Efficient learning of real time one-counter automata.

In: Jantke, K.P., Shinohara, T., Zeugmann, T. (eds.) Algorithmic Learning
Theory, 6th International Conference, ALT ’95, Fukuoka, Japan, October 18-
20, 1995, Proceedings. Lecture Notes in Computer Science, vol. 997, pp. 25–
40. Springer (1995). https://doi.org/10.1007/3-540-60454-5 26, https://doi.org/10.
1007/3-540-60454-5 26

16. Garhewal, B., Vaandrager, F.W., Howar, F., Schrijvers, T., Lenaerts, T., Smits,
R.: Grey-box learning of register automata. In: Dongol, B., Troubitsyna, E. (eds.)
Integrated Formal Methods - 16th International Conference, IFM 2020, Lugano,
Switzerland, November 16-20, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12546, pp. 22–40. Springer (2020). https://doi.org/10.1007/978-3-030-
63461-2 2, https://doi.org/10.1007/978-3-030-63461-2 2

17. Groce, A., Peled, D.A., Yannakakis, M.: Adaptive model checking. Log. J. IGPL
14(5), 729–744 (2006). https://doi.org/10.1093/jigpal/jzl007, https://doi.org/10.
1093/jigpal/jzl007

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation, Second Edition. Addison-Wesley (2000)

19. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free ap-
proach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.)
Runtime Verification - 5th International Conference, RV 2014, Toronto, ON,
Canada, September 22-25, 2014. Proceedings. Lecture Notes in Computer Science,
vol. 8734, pp. 307–322. Springer (2014). https://doi.org/10.1007/978-3-319-11164-
3 26, https://doi.org/10.1007/978-3-319-11164-3 26

20. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib - A framework
for active automata learning. In: Kroening, D., Pasareanu, C.S. (eds.) Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 9206, pp. 487–495. Springer (2015). https://doi.org/10.1007/978-3-319-21690-
4 32, https://doi.org/10.1007/978-3-319-21690-4 32

21. Json.org, https://www.json.org
22. Json schema, https://json-schema.org
23. Json schema store, https://www.schemastore.org/json/
24. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational

Learning Theory. MIT Press (1994), https://mitpress.mit.edu/books/
introduction-computational-learning-theory

25. Leucker, M., Neider, D.: Learning minimal deterministic automata from in-
experienced teachers. In: Margaria, T., Steffen, B. (eds.) Leveraging Applica-
tions of Formal Methods, Verification and Validation. Technologies for Mastering

Learning Realtime One-Counter Automata 261

https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
https://arxiv.org/abs/2110.09434
https://doi.org/10.1145/1017074.1017096
https://doi.org/10.1145/1017074.1017096
https://doi.org/10.1145/1017074.1017096
https://about.codecov.io/
https://doi.org/10.1007/3-540-60454-5_26
https://doi.org/10.1007/3-540-60454-5_26
https://doi.org/10.1007/3-540-60454-5_26
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1093/jigpal/jzl007
https://doi.org/10.1093/jigpal/jzl007
https://doi.org/10.1093/jigpal/jzl007
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://www.json.org
https://json-schema.org
https://www.schemastore.org/json/
https://mitpress.mit.edu/books/introduction-computational-learning-theory
https://mitpress.mit.edu/books/introduction-computational-learning-theory

Change - 5th International Symposium, ISoLA 2012, Heraklion, Crete, Greece,
October 15-18, 2012, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 7609, pp. 524–538. Springer (2012). https://doi.org/10.1007/978-3-642-34026-
0 39, https://doi.org/10.1007/978-3-642-34026-0 39

26. Michaliszyn, J., Otop, J.: Learning deterministic automata on infinite words. In:
Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugaŕın, A., Lang, J.
(eds.) ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-
8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020
- Including 10th Conference on Prestigious Applications of Artificial Intelligence
(PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp.
2370–2377. IOS Press (2020). https://doi.org/10.3233/FAIA200367, https://doi.
org/10.3233/FAIA200367

27. Neider, D., Löding, C.: Learning visibly one-counter automata in polynomial time.
Tech. rep., Technical Report AIB-2010-02, RWTH Aachen (January 2010) (2010)

28. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002). https://doi.org/10.25596/jalc-2002-225, https://doi.
org/10.25596/jalc-2002-225

29. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021,
https://doi.org/10.1006/inco.1993.1021

30. Roos, R.S.: Deciding equivalence of deterministic one-counter automata in poly-
nomial time with applications to learning (1988)

31. Staquet, G.: Automatalib fork for rocas, https://github.com/DocSkellington/
automatalib

32. Staquet, G.: Code for the benchmarks for roca learning, https://github.com/
DocSkellington/LStar-ROCA-Benchmarks

33. Staquet, G.: Learnlib fork for rocas, https://github.com/DocSkellington/Learnlib
34. Valiant, L.G., Paterson, M.: Deterministic one-counter automata. J. Comput. Syst.

Sci. 10(3), 340–350 (1975). https://doi.org/10.1016/S0022-0000(75)80005-5, https:
//doi.org/10.1016/S0022-0000(75)80005-5

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

262 V. Bruyère et al.

https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.1007/978-3-642-34026-0_39
https://doi.org/10.3233/FAIA200367
https://doi.org/10.3233/FAIA200367
https://doi.org/10.3233/FAIA200367
https://doi.org/10.25596/jalc-2002-225
https://doi.org/10.25596/jalc-2002-225
https://doi.org/10.25596/jalc-2002-225
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1006/inco.1993.1021
https://github.com/DocSkellington/automatalib
https://github.com/DocSkellington/automatalib
https://github.com/DocSkellington/LStar-ROCA-Benchmarks
https://github.com/DocSkellington/LStar-ROCA-Benchmarks
https://github.com/DocSkellington/Learnlib
https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/10.1016/S0022-0000(75)80005-5
http://creativecommons.org/licenses/by/4.0/

Scalable Anytime Algorithms for
Learning Fragments of Linear Temporal Logic?

Ritam Raha1,2(�) , Rajarshi Roy3 , Nathanaël Fijalkow2,4 , and Daniel
Neider3

1 University of Antwerp, Antwerp, Belgium
ritam.raha@uantwerpen.be

2 CNRS, LaBRI and Université de Bordeaux, France
nathanael.fijalkow@labri.fr

3 Max Planck Institute for Software Systems, Kaiserslautern, Germany
{rajarshi,neider}@mpi-sws.org

4 The Alan Turing Institute of data science, United Kingdom

Abstract. Linear temporal logic (LTL) is a specification language for
finite sequences (called traces) widely used in program verification, mo-
tion planning in robotics, process mining, and many other areas. We
consider the problem of learning formulas in fragments of LTL without
the U-operator for classifying traces; despite a growing interest of the re-
search community, existing solutions suffer from two limitations: they do
not scale beyond small formulas, and they may exhaust computational
resources without returning any result. We introduce a new algorithm ad-
dressing both issues: our algorithm is able to construct formulas an order
of magnitude larger than previous methods, and it is anytime, meaning
that it in most cases successfully outputs a formula, albeit possibly not
of minimal size. We evaluate the performances of our algorithm using an
open source implementation against publicly available benchmarks.

Keywords: Linear Temporal Logic · Artificial Intelligence · Specifica-
tion Mining

1 Introduction

Linear Temporal Logic (LTL) is a prominent logic for specifying temporal prop-
erties [20] over infinite traces, and recently introduced over finite traces [6]. In
this paper, we consider finite traces but, in a small abuse of notations, call this
logic LTL as well. It has become a de facto standard in many fields such as model
checking, program analysis, and motion planning for robotics. Over the past five
to ten years learning temporal logics (of which LTL is the core) has become an
active research area and identified as an important goal in artificial intelligence:

? The first two authors contributed equally, the remaining authors are ordered alpha-
betically. This research was funded by the FWO G030020N project “SAILor” and
Deutsche Forschungsgemeinschaft (DFG) grant no. 434592664.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 263–280, 2022.
https://doi.org/10.1007/978-3-030-99524-9_14

http://orcid.org/0000-0003-1467-1182
http://orcid.org/0000-0002-0202-1169
http://orcid.org/0000-0002-6576-4680
http://orcid.org/0000-0001-9276-6342
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_14

Raha et al.

it formalises the difficult task of building explainable models from data. Indeed,
as we will see in the examples below and as argued in the literature, e.g., by
[4] and [24], LTL formulas are typically easy to interpret by human users and
therefore useful as explanations. The variable free syntax of LTL and its natural
inductive semantics make LTL a natural target for building classifiers separating
positive from negative traces.

The fundamental problem we study here, established in [25], is to build an
explainable model in the form of an LTL formula from a set of positive and neg-
ative traces. More formally (we refer to the next section for formal definitions),
given a set u1, . . . , un of positive traces and a set v1, . . . , vn of negative traces,
the goal is to construct a formula ϕ of LTL which satisfies all ui’s and none of
the vi’s. In that case, we say that ϕ is a separating formula or—using machine
learning terminology—a classifier.

To make things concrete let us introduce our running example, a classic mo-
tion planning problem in robotics and inspired by [15]. A robot collects wastebin
contents in an office-like environment and empties them in a trash container. Let
us assume that there is an office o, a hallway h, a container c and a wet area
w. The following are possible traces obtained in experimentation with the robot
(for instance, through simulation):

u1 = h · h · h · h · o · h · c · h
v1 = h · h · h · h · h · c · h · o · h · h

In LTL learning we start from these labelled data: given u1 as positive and v1
as negative, what is a possible classifier including u1 but not v1? Informally, v1
being negative implies that the order is fixed: o must be visited before c. We
look for classifiers in the form of separating formulas, for instance

F(o ∧ FX c),

where the F-operator stands for “finally” and X for “next”. Note that this
formula requires to visit the office first and only then visit the container.

Assume now that two more negative traces were added:

v2 = h · h · h · h · h · o · w · c · h · h · h
v3 = h · h · h · h · h · w · o · w · c · w · w

Then the previous separating formula is no longer correct, and a possible sepa-
rating formula is

F(o ∧ FX c) ∧G(¬w),

which additionally requires the robot to never visit the wet area. Here the G-
operator stands for “globally”.

Let us emphasise at this point that for the sake of presentation, we con-
sider only exact classifiers: a separating formula must satisfy all positive traces
and none of the negative traces. However, our algorithm naturally extends to
the noisy data setting where the goal is to construct an approximate classifier,
replacing ‘all’ and ‘none’ by ‘almost all’ and ‘almost none’.

264

Scalable Algorithms for Learning LTL Formulas

State of the art. A number of different approaches have been proposed, lever-
aging SAT solvers [19], automata [4], and Bayesian inference [16], and extended
to more expressive logics such as Property Specification Language (PSL) [24]
and Computational Tree Logic (CTL) [9].

Applications include program specification [17], anomaly and fault detec-
tion [3], robotics [5], and many more: we refer to [4], Section 7, for a list of
practical applications. An equivalent point of view on LTL learning is as a speci-
fication mining question. The ARSENAL [13] and FRET [14] projects construct
LTL specifications from natural language, we refer to [18] for an overview.

Existing methods do not scale beyond formulas of small size, making them
hard to deploy for industrial cases. A second serious limitation is that they often
exhaust computational resources without returning any result. Indeed theoretical
studies [11] have shown that constructing the minimal LTL formula is NP-hard
already for very small fragments of LTL, explaining the difficulties found in
practice.

Our approach. To address both issues, we turn to approximation and any-
time algorithms. Here approximation means that the algorithm does not ensure
minimality of the constructed formula: it does ensure that the output formula
separates positive from negative traces, but it may not be the smallest one. On
the other hand, an algorithm solving an optimisation problem is called anytime
if it finds better and better solutions the longer it keeps running. In other words,
anytime algorithms work by refining solutions. As we will see in the experiments,
this implies that even if our algorithm timeouts it may yield some good albeit
non-optimal formula.

Our algorithm targets a strict fragment of LTL, which does not contain the
Until operator (nor its dual Release operator). It combines two ingredients:

– Searching for directed formulas : we define a space efficient dynamic program-
ming algorithm for enumerating formulas from a fragment of LTL that we
call Directed LTL.

– Combining directed formulas : we construct two algorithms for combining
formulas using Boolean operators. The first is an off-the-shelf decision tree
algorithm, and the second is a new greedy algorithm called Boolean subset
cover.

The two ingredients yield two subprocedures: the first one finds directed for-
mulas of increasing size, which are then fed to the second procedure in charge
of combining them into a separating formula. This yields an anytime algorithm
as both subprocedures can output separating formulas even with a low compu-
tational budget and refine them over time.

Let us illustrate the two subprocedures in our running example. The first
procedure enumerates so-called directed formulas in increasing size; we refer to
the corresponding section for a formal definition. The directed formulas F(o ∧
FX c) and G(¬w) have small size hence will be generated early on. The second

265

procedure constructs formulas as Boolean combinations of directed formulas.
Without getting into the details of the algorithms, let us note that both F(o ∧
FX c) and G(¬w) satisfy u1. The first does not satisfy v1 and the second does
not satisfy v2 and v3. Hence their conjunction F(o∧FX c)∧G(¬w) is separating,
meaning it satisfies u1 but none of v1, v2, v3.

Outline. The mandatory definitions and the problem statement we deal with
are described in Section 2. Section 3 shows a high-level overview of our main idea
in the algorithm. The next two sections, Section 4 and Section 5 describe the
two phases of our algorithm in details, in one section each. We discuss the theo-
retical guarantees of our algorithm in Section 6. We conclude with an empirical
evaluation in Section 7.

2 Preliminaries

Traces. Let P be a finite set of atomic propositions. An alphabet is a finite
non-empty set Σ = 2P , whose elements are called symbols. A finite trace over Σ
is a finite sequence t = a1a2 . . . an such that for every 1 ≤ i ≤ n, ai ∈ Σ. We say
that t has length n and write |t| = n. For example, let P = {p, q}, in the trace
t = {p, q} · {p} · {q} both p and q hold at the first position, only p holds in the
second position, and q in the third position. Note that, throughout the paper,
we only consider finite traces.

A trace is a word if exactly one atomic proposition holds at each position:
we used words in the introduction example for simplicity, writing h · o · c instead
of {h} · {o} · {c}.

Given a trace t = a1a2 . . . an and 1 ≤ i ≤ j ≤ n, let t[i, j] = ai . . . aj be the
infix of t from position i up to and including position j. Moreover, t[i] = ai is
the symbol at the ith position.

Linear Temporal Logic. The syntax of Linear Temporal Logic (LTL, in short)
is defined by the following grammar

ϕ := p ∈ P | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | Xϕ | Fϕ | Gϕ | ϕUψ

We use the standard formulas: true = p ∨ ¬p, false = p ∧ ¬p and last =
¬X true, which denotes the last position of the trace. As a shorthand, we use
Xn ϕ for X . . .X︸ ︷︷ ︸

n times

ϕ.

The size of a formula is the size of its underlying syntax tree.
Formulas in LTL are evaluated over finite traces. To define the semantics of

LTL we introduce the notation t, i |= ϕ, which reads ‘the LTL formula ϕ holds
over trace t from position i’. We say that t satisfies ϕ and we write t |= ϕ when
t, 1 |= ϕ. The definition of |= is inductive on the formula ϕ:

– t, i |= p ∈ P if p ∈ t[i].

Raha et al.266

– t, i |= Xϕ if i < |t| and t, i+ 1 |= ϕ. It is called the neXt operator.
– t, i |= Fϕ if t, i′ |= ϕ for some i′ ∈ [i, |t|]. It is called the eventually operator

(F comes from Finally).
– t, i |= Gϕ if t, i′ |= ϕ for all i′ ∈ [i, |t|]. It is called the Globally operator.
– t, i |= ϕUψ if t, j |= ψ for some i ≤ j ≤ |t| and t, i′ |= ϕ for all i ≤ i′ < j. It

is called the Until operator.

The LTL Learning Problem. The LTL exact learning problem studied in this
paper is the following: given a set P of positive traces and a set N of negative
traces, construct a minimal LTL separating formula ϕ, meaning such that t |= ϕ
for all t ∈ P and t 6|= ϕ for all t ∈ N .

There are two relevant parameters for a sample: its size, which is the number
of traces, and its length, which is the maximum length of all traces.

The problem is naturally extended to the LTL noisy learning problem where
the goal is to construct an ε-separating formula, meaning such that ϕ satisfies
all but an ε proportion of the traces in P and none but an ε proportion of
the traces in N . For the sake of simplicity we present an algorithm for solving
the LTL exact learning problem, and later sketch how to extend it to the noisy
setting.

3 High-level view of the algorithm

Let us start with a naive algorithm for the LTL Learning Problem. We can search
through all LTL formulas in some order and check whether they are separating
for our sample or not. Checking whether an LTL formula is separating can be
done using standard methods (for e.g. using bit vector operations [2]). However,
the major drawback of this idea is that we have to search through all LTL
formulas, which is hard as the number of LTL formulas grows very quickly5.

To tackle this issue, instead of the entire LTL fragment, our algorithm (as
outlined in Algorithm 1) performs an iterative search through a fragment of LTL,
which we call Directed LTL (Line 4). We expand upon this in Section 4. In that
section, we also describe how we can iteratively generate these Directed LTL
formulas in a particular “size order” (not the usual size of an LTL formula) and
evaluate these formulas over the traces in the sample efficiently using dynamic
programming techniques.

To include more formulas in our search space, we generate and search through
Boolean combinations of the most promising formulas of Directed LTL formulas
(Line 11), which we describe in detail in Section 5. Note that, the fragment of
LTL that our algorithm searches through ultimately does not include formulas
with U operator. Thus, for readability, we use LTL to refer to the fragment
LTL \U in the rest of the paper.

During the search of formulas, our algorithm searches for smaller separating
formulas at each iteration than the previously found ones, if any. In fact, as a

5 The number of LTL formulas of size k is asymptotically equivalent to
√
14·7k

2
√
πk3

[12]

Scalable Algorithms for Learning LTL Formulas 267

Algorithm 1 Overview of our algorithm

1: B ← ∅
2: ψ ← ∅: best formula found
3: for all s in “size order” do
4: D ← all Directed LTL formulas of parameter s
5: for all ϕ ∈ D do
6: if ϕ is separating and smaller than ψ then
7: ψ ← ϕ
8: end if
9: end for

10: B ← B ∪D
11: B ← Boolean combinations of the promising formulas in B
12: for all ϕ ∈ B do
13: if ϕ is separating and smaller than ψ then
14: ψ ← ϕ
15: end if
16: end for
17: end for
18: Return ψ

heuristic, once a separating formula is found, we only search through formulas
that are smaller than the found separating formula. Such a heuristic, along with
aiding the search for minimal formulas, also reduces the search space signifi-
cantly.

Anytime property. The anytime property of our algorithm is also consequence
of storing the smallest formula seen so far ((Line 7 and 14)). Once we find a sep-
arating formula, we can output it and continue the search for smaller separating
formulas.

Extension to the noisy setting. The algorithm is seamlessly extended to the
noisy setting by rewriting lines 6 and 13: instead of outputting only separating
formulas, we output ε-separating formulas.

4 Searching for directed formulas

The first insight of our approach is the definition of a fragment of LTL that we
call directed LTL.

A partial symbol is a conjunction of positive or negative atomic propositions.
We write s = p0 ∧ p2 ∧ ¬p1 for the partial symbol specifying that p0 and p2
hold and p1 does not. The definition of a symbol satisfying a partial symbol is
natural: for instance the symbol {p0, p2, p4} satisfies s. The width of a partial
symbol is the number of atomic propositions it uses.

Raha et al.268

Directed LTL is defined by the following grammar:

ϕ = Xn s | FXn s | Xn(s ∧ ϕ) | FXn(s ∧ ϕ),

where s is a partial symbol and n ∈ {0, 1, · · · }. As an example, the directed
formula

F((p ∧ q) ∧ FX2 ¬p)
reads: there exists a position satisfying p ∧ q, and at least two positions later,
there exists a position satisfying ¬p. The intuition behind the term “directed”
is that a directed formula fixes the order in which the partial symbols occur.
A non-directed formula is F p ∧ F q: there is no order between p and q. Note
that Directed LTL only uses the X and F operators as well as conjunctions and
atomic propositions.

Generating directed formulas. Let us consider the following problem: given
the sample S = P ∪N , we want to generate all directed formulas together with
a list of traces in S, they satisfy. Our first technical contribution and key to
the scalability of our approach is an efficient solution to this problem based on
dynamic programming.

Let us define a natural order in which we want to generate directed formulas.
They have two parameters: length, which is the number of partial symbols in the
directed formula, and width, which is the maximum of the widths of the partial
symbols in the directed formula. We consider the order based on summing these
two parameters:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . .

(We note that in practice, slightly more complicated orders on pairs are useful
since we want to increase the length more often than the width.) Our enumer-
ation algorithm works by generating all directed formulas of a given pair of
parameters in a recursive fashion. Assuming that we already generated all di-
rected formulas for the pair of parameters (`, w), we define two procedures, one
for generating the directed formulas for the parameters (`+ 1, w), and the other
one for (`, w + 1).

When we generate the directed formulas, we also keep track of which traces
in the sample they satisfy by exploiting a dynamic programming table called
LastPos. We define it is as follows, where ϕ is a directed formula and t a trace
in S:

LastPos(ϕ, t) = {i ∈ [1, |t|] : t[1, i] |= ϕ} .
The main benefit of LastPos is that it meshes well with directed formulas: it
is algorithmically easy to compute them recursively on the structure of directed
formulas.

A useful idea is to change the representation of the set of traces S, by pre-
computing the lookup table Index defined as follows, where t is a trace in S, s
a partial symbol, and i in [1, |t|]:

Index(t, s, i) = {j ∈ [i+ 1, |t|] : t[j] |= s} .

Scalable Algorithms for Learning LTL Formulas 269

The table Index can be precomputed in linear time from S, and makes the
dynamic programming algorithm easier to formulate.

Having defined the important ingredients, we now present the pseudocode 2
for both increasing the length and width of a formula. For the length increase
algorithm, we define two extension operators ∧=k and ∧≥k that “extend” the
length of a directed formula ϕ by including a partial symbol s in the formula.
Precisely, the operator s ∧=k ϕ replaces the rightmost partial symbol s′ in ϕ
with (s′ ∧ Xk s), while s ∧≥k ϕ replaces s′ with (s′ ∧ FXk s). For instance,
c ∧=2 X(a ∧ X b) = X(a ∧ X(b ∧ X2 c)). For the width increase algorithm, we
say that two directed formulas are compatible if they are equal except for partial
symbols. For two compatible formulas, we define a pointwise-and (∧·) operator
that takes the conjunction of the corresponding partial symbols at the same
positions. For instance, X(a ∧X b) ∧· X(b ∧X c) = X((a ∧ b) ∧X(b ∧ c)). The
actual implementation of the algorithm refines the algorithms in certain places.
For instance:

– Line 3: instead of considering all partial symbols, we restrict to those ap-
pearing in at least one positive trace.

– Line 13: some computations for ϕ≥j can be made redundant; a finer data
structure factorises the computations.

– Line 25: using a refined data structure, we only enumerate compatible di-
rected formulas.

Lemma 1. Algorithm 2 generates all directed formulas and correctly computes
the tables LastPos.

The dual point of view. We use the same algorithm to produce formulas in
a dual fragment to directed LTL, which uses the X and G operators, the last
predicate, as well as disjunctions and atomic propositions. The only difference is
that we swap positive and negative traces in the sample. We obtain a directed
formula from such a sample and apply its negation as shown below:

¬Xϕ = last∨X¬ϕ ; ¬Fϕ = G¬ϕ ; ¬(ϕ1∧ϕ2) = ¬ϕ1∨¬ϕ2.

5 Boolean combinations of formulas

As explained in the previous section, we can efficiently generate directed formulas
and dual directed formulas. Now we explain how to form a Boolean combination
of these formulas in order to construct separating formulas, as illustrated in the
introduction.

Boolean combination of formulas. Let us consider the following subproblem:
given a set of formulas, does there exist a Boolean combination of some of the
formulas that is a separating formula? We call this problem the Boolean subset

Raha et al.270

Algorithm 2 Generation of directed formulas for the set of traces S

1: procedure Search directed formulas – length increase(`, w)
2: for all directed formulas ϕ of length ` and width w do
3: for all partial symbols s of width at most w do
4: for all t ∈ S do
5: I = LastPos(ϕ, t)
6: for all i ∈ I do
7: J = Index(t, s, i)
8: for all j ∈ J do
9: ϕ=j ← s ∧=(j−i) ϕ

10: add j to LastPos(ϕ=j , t)
11: end for
12: for all j′ ≤ max(J) do
13: ϕ≥j′ ← s ∧≥(j−i) ϕ
14: add J ∩ [j′, |t|] to LastPos(ϕ≥j′ , t)
15: end for
16: end for
17: end for
18: end for
19: end for
20: end procedure
21:
22: procedure Search directed formulas – width increase(`, w)
23: for all directed formulas ϕ of length ` and width w do
24: for all directed formulas ϕ′ of length ` and width 1 do
25: if ϕ and ϕ′ are compatible then
26: ϕ′′ ← ϕ ∧· ϕ′
27: for all t ∈ S do
28: LastPos(ϕ′′, t)← LastPos(ϕ, t) ∩ LastPos(ϕ′, t)
29: end for
30: end if
31: end for
32: end for
33: end procedure

cover, which is illustrated in Figure 1. In this example we have three formulas
ϕ1, ϕ2, and ϕ3, each satisfying subsets of u1, u2, u3, v1, v2, v3 as represented in the
drawing. Inspecting the three subsets reveals that (ϕ1 ∧ϕ2)∨ϕ3 is a separating
formula.

The Boolean subset cover problem is a generalization of the well known and
extensively studied subset cover problem, where we are given S1, . . . , Sm subsets
of [1, n], and the goal is to find a subset I of [1,m] such that

⋃
i∈I Si covers

all of [1, n] – such a set I is called a cover. Indeed, it corresponds to the case
where all formulas satisfy none of the negative traces: in that case, conjunc-
tions are not useful, and we can ignore the negative traces. The subset cover
problem is known to be NP-complete. However, there exists a polynomial-time
log(n)-approximation algorithm called the greedy algorithm: it is guaranteed to

Scalable Algorithms for Learning LTL Formulas 271

Fig. 1: The Boolean subset cover problem: the formulas ϕ1, ϕ2, and ϕ3 satisfy
the words encircled in the corresponding area; in this instance (ϕ1 ∧ ϕ2) ∨ ϕ3 is
a separating formula.

construct a cover that is at most log(n) times larger than the minimum cover.
This approximation ratio is optimal in the following sense [7]: there is no poly-
nomial time (1 − o(1)) log(n)-approximation algorithm for subset cover unless
P = NP. Informally, the greedy algorithm for the subset cover problem does
the following: it iteratively constructs a cover I by sequentially adding the most
‘promising subset’ to I, which is the subset Si maximising how many more ele-
ments of [1, n] are covered by adding i to I.

We introduce an extension of the greedy algorithm to the Boolean subset
cover problem. The first ingredient is a scoring function, which takes into account
both how close the formula is to being separating, and how large it is. We use
the following score:

Score(ϕ) =
Card({t ∈ P : t |= ϕ}) + Card({t ∈ N : t 6|= ϕ})√

|ϕ|+ 1
,

where |ϕ| is the size of ϕ. The use of
√
· is empirical, it is used to mitigate the

importance of size over being separating.
The algorithm maintains a set of formulas B, which is initially the set of

formulas given as input, and add new formulas to B until finding a separating
formula. Let us fix a constant K, which in the implementation is set to 5. At
each point in time, the algorithm chooses the K formulas ϕ1, . . . , ϕK with the
highest score in B and constructs all disjunctions and conjunctions of ϕi with
formulas in B. For each i, we keep the disjunction or conjunction with a maximal
score, and add this formula to B if it has higher score than ϕi. We repeat this
procedure until we find a separating formula or no formula is added to B.

Another natural approach to the Boolean subset cover problem is to use deci-
sion trees: we use one variable for each trace and one atomic proposition for each
formula to denote whether the trace satisfies the formula. We then construct a
decision tree classifying all traces. We experimented with both approaches and
found that the greedy algorithm is both faster and yields smaller formulas. We do
not report on these experiments because the formulas output using the decision
tree approach are prohibitively larger and therefore not useful for explanations.
Let us, however, remark that using decision trees we get a theoretical guaran-

Raha et al.272

tee that if there exists a separating formula as a Boolean combination of the
formulas, then the algorithm will find it.

6 Theoretical guarantees

The following result shows the relevance of our approach using directed LTL and
Boolean combinations.

Theorem 1. Every formula of LTL(F,X,∧,∨) is equivalent to a Boolean com-
bination of directed formulas. Equivalently, every formula of LTL(G,X,∧,∨) is
equivalent to a Boolean combination of dual directed formulas.

The proof of Theorem 1 can be found in the extended version of the pa-
per [21]. To get an intuition, let us consider the formula F p ∧ F q, which is not
directed, but equivalent to F(p ∧ F q) ∨ F(q ∧ F p). In the second formulation,
there is a disjunction over the possible orderings of p and q. The formal proof
generalises this rewriting idea.

This implies the following properties for our algorithm:

– terminating : given a bound on the size of formulas, the algorithm eventually
generates all formulas of bounded size,

– correctness : if the algorithm outputs a formula, then it is separating,
– completeness : if there exists a separating formula in LTL(F,G,X,∧,∨) with

no nesting of F and G, then the algorithm finds a separating formula.

7 Experimental evaluation

In this section, we answer the following research questions to assess the perfor-
mance of our LTL learning algorithm.

RQ1: How effective are we in learning concise LTL formulas from samples?
RQ2: How much scalability do we achieve through our algorithm?
RQ3: What do we gain from the anytime property of our algorithm?

Experimental Setup. To answer the questions above, we have implemented
a prototype of our algorithm in Python 3 in a tool named SCARLET6 (SCalable
Anytime algoRithm for LEarning lTl). We run SCARLET on several benchmarks
generated synthetically from LTL formulas used in practice. To answer each
research question precisely, we choose different sets of LTL formulas. We discuss
them in detail in the corresponding sections. Note that, however, we did not
consider any formulas with U-operator, since SCARLET is not designed to find
such formulas.

To assess the performance of SCARLET, we compare it against two state-of-
the-art tools for learning logic formulas from examples:

6 https://github.com/rajarshi008/Scarlet

Scalable Algorithms for Learning LTL Formulas 273

https://github.com/rajarshi008/Scarlet

1. FLIE7, developed by [19], infers minimal LTL formulas using a learning al-
gorithm that is based on constraint solving (SAT solving).

2. SYSLITE8, developed by [1], originally infers minimal past-time LTL formulas
using an enumerative algorithm implemented in a tool called CVC4SY [23].
For our comparisons, we use a version of SYSLITE that we modified (which
we refer to as SYSLITEL) to infer LTL formulas rather than past-time LTL
formulas. Our modifications include changes to the syntactic constraints gen-
erated by SYSLITEL as well as changing the semantics from past-time LTL
to ordinary LTL.

To obtain a fair comparison against SCARLET, in both the tools, we disabled the
U-operator. This is because if we allow U-operator this will only make the tools
slower since they will have to search through all formulas containing U.

All the experiments are conducted on a single core of a Debian machine
with Intel Xeon E7-8857 CPU (at 3 GHz) using up to 6 GB of RAM. We set
the timeout to be 900 s for all experiments. We include scripts to reproduce all
experimental results in a publicly available artifact [22].

Table 1: Common LTL formulas used in practice

Absence: G(¬p), G(q→G(¬p))

Existence: F(p), G(¬p) ∨ F(p ∧ F(q))

Universality: G(p), G(q→G(p))

Disjunction of
patterns:

G(¬p) ∨ F(p ∧ F(q)
∨G(¬s) ∨ F(r ∧ F(s)),

F(r) ∨ F(p) ∨ F(q)

Sample generation. To provide a comparison among the learning tools, we
follow the literature [19,24] and use synthetic benchmarks generated from real-
world LTL formulas. For benchmark generation, earlier works rely on a fairly
naive generation method. In this method, starting from a formula ϕ, a sample
is generated by randomly drawing traces and categorizing them into positive
and negative examples depending on the satisfaction with respect to ϕ. This
method, however, often results in samples that can be separated by formulas
much smaller than ϕ. Moreover, it often requires a prohibitively large amount of
time to generate samples (for instance, for G p, where almost all traces satisfy a
formula) and, hence, often does not terminate in a reasonable time.

To alleviate the issues in the existing method, we have designed a novel
generation method for the quick generation of large samples. In our method,
we first convert the starting formula into an equivalent DFA and then extract
accepted and rejected words to obtain a sample of the desired size. We provide
more details on this new generation method used in the extended version [21].

7 https://github.com/ivan-gavran/samples2LTL
8 https://github.com/CLC-UIowa/SySLite

Raha et al.274

https://github.com/ivan-gavran/samples2LTL
https://github.com/CLC-UIowa/SySLite

10−1100 101 102

10−1

100

101

102

TO

TO

FLIE time

S
C
A
R
L
E
T

ti
m

e

10−1100 101 102 TO

SYSLITEL time

(a) Runtime comparison

0 171 256

FLIE

SYSLITEL

SCARLET

No. of samples

Successful Timed out

(b) Timeouts

2 4 6 8

2

4

6

8

FLIE size

S
C
A
R
L
E
T

si
ze

2 4 6 8

SYSLITEL size

(c) Size comparison

Fig. 2: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks.
In Figure 2a, all times are in seconds and ‘TO’ indicates timeouts. The size of
bubbles in the figure indicate the number of samples for each datapoint.

7.1 RQ1: Performance Comparison

To address our first research question, we have compared all three tools on a
synthetic benchmark suite generated from eight LTL formulas. These formulas
originate from a study by Dwyer et al. [8], who have collected a comprehensive
set of LTL formulas arising in real-world applications (see Table 1 for an excerpt).
The selected LTL formulas have, in fact, also been used by FLIE for generating
its benchmarks. While FLIE also considered formulas with U-operator, we did
not consider them for generating our benchmarks due to reasons mentioned in
the experimental setup.

Our benchmark suite consists of a total of 256 samples (32 for each of the
eight LTL formulas) generated using our generation method. The number of
traces in the samples ranges from 50 to 2 000, while the length of traces ranges
from 8 to 15.

Figure 2a presents the runtime comparison of FLIE, SYSLITEL and SCARLET

on all 256 samples. From the scatter plots, we observe that SCARLET ran faster
than FLIE on all samples. Likewise, SCARLET was faster than SYSLITEL on all
but eight (out of 256) samples. SCARLET timed out on only 13 samples, while
FLIE and SYSLITEL timed out on 85 and 36, respectively (see Figure 2b).

The good performance of SCARLET can be attributed to its efficient formula
search technique. In particular, SCARLET only considers formulas that have a high

Scalable Algorithms for Learning LTL Formulas 275

potential of being a separating formula since it extracts Directed LTL formulas
from the sample itself. FLIE and SYSLITEL, on the other hand, search through
arbitrary formulas (in order of increasing size), each time checking if the current
one separates the sample.

Figure 2c presents the comparison of the size of the formulas inferred by
each tool. On 170 out of the 256 samples, all tools terminated and returned an
LTL formula with size at most 7. In 150 out of this 170 samples, SCARLET, FLIE,
and SYSLITEL inferred formulas of equal size, while on the remaining 20 samples
SCARLET inferred formulas that were larger. The latter observation indicates that
SCARLET misses certain small, separating formulas, in particular, the ones which
are not a Boolean combination of directed formulas.

However, it is important to highlight that the formulas learned by SCARLET

are in most cases not significantly larger than those learned by FLIE and SYSLITEL.
This can be seen from the fact that the average size of formulas inferred by
SCARLET (on benchmarks in which none of the tools timed out) is 3.21, while the
average size of formulas inferred by FLIE and SYSLITEL is 3.07.

Overall, SCARLET displayed significant speed-up over both FLIE and SYSLITEL
while learning a formula similar in size, answering question RQ1 in the positive.

7.2 RQ2: Scalability

To address the second research question, we investigate the scalability of SCARLET
in two dimensions: the size of the sample and the size of the formula from which
the samples are generated.

Scalability with respect to the size of the samples. For demonstrating
the scalability with respect to the size of the samples, we consider two formulas
ϕcov = F(a1) ∧ F(a2) ∧ F(a3) and ϕseq = F(a1 ∧ F(a2 ∧ F a3)), both of which
appear commonly in robotic motion planning [10]. While the formula ϕcov de-
scribes the property that a robot eventually visits (or covers) three regions a1,
a2, and a3 in arbitrary order, the formula ϕseq describes that the robot has to
visit the regions in the specific order a1a2a3.

We have generated two sets of benchmarks for both formulas for which we
varied the number of traces and their length, respectively. More precisely, the
first benchmark set contains 90 samples of an increasing number of traces (5
samples for each number), ranging from 200 to 100 000, each consisting of traces
of fixed length 10. On the other hand, the second benchmark set contains 90
samples of 200 traces, containing traces from length 10 to length 50. As the
results on both benchmark sets are similar, we here discuss the results on the
first set and refer the readers to the extended version [21] for the second set.

Figure 3a shows the average runtime results of SCARLET, FLIE, and SYSLITEL
on the first benchmark set. We observe that SCARLET substantially outperformed
the other two tools on all samples. This is because both ϕcov and ϕseq are of
size eight and inferring formulas of such size is computationally challenging for
FLIE and SYSLITEL. In particular, FLIE and SYSLITEL need to search through

Raha et al.276

102 103 104 105

100

101

102

TO

Num of traces

A
v
er

a
g
e

T
im

e

Formula ϕcov

SCARLET SYSLITEL FLIE

102 103 104

101

102

TO

Num of traces

Formula ϕseq

(a) Scalability in sample size

2 3 4 5

10−1

100

101

102

TO

Formula size param (n)

A
v
er

a
g
e

T
im

e

Formula family ϕncov

2 3 4 5

10−1

100

101

102

TO

Formula size param (n)

Formula family ϕnseq

(b) Scalability in formula size

Fig. 3: Comparison of SCARLET, FLIE and SYSLITEL on synthetic benchmarks.
In Figure 3a, all times are in seconds and ‘TO’ indicates timeouts.

all formulas of size upto eight to infer the formulas, while, SCARLET, due to its
efficient search order (using length and width of a formula), infers them faster.

From Figure 3a, we further observe a significant difference between the run
times of SCARLET on samples generated from formula ϕcov and from formula ϕseq .
This is evident from the fact that SCARLET failed to infer formulas for samples
of ϕseq starting at a size of 6 000, while it could infer formulas for samples of
ϕcov up to a size of 50 000. Such a result is again due to the search order used
by SCARLET: while ϕcov is a Boolean combination of directed formulas of length
1 and width 1, ϕseq is a directed formula of length 3 and width 1.

Scalability with respect to the size of the formula. To demonstrate the
scalability with respect to the size of the formula used to generate samples, we
have extended ϕcov and ϕseq to families of formulas (ϕn

cov)n∈N\{0} with ϕn
cov =

F(a1)∧F(a2)∧ . . .∧F(an) and (ϕn
seq)n∈N\{0} with ϕn

seq = F(a1 ∧F(a2 ∧F(. . .∧
F an))), respectively. These family of formulas describe properties similar to that
of ϕcov and ϕseq , but the number of regions is parameterized by n ∈ N\{0}. We
consider formulas from the two families by varying n from 2 to 5 to generate a
benchmark suite consisting of samples (5 samples for each formula) having 200
traces of length 10.

Figure 3b shows the average run time comparison of the tools for samples
from increasing formula sizes. We observe a trend similar to Figure 3a: SCARLET

Scalable Algorithms for Learning LTL Formulas 277

performs better than the other two tools and infers formulas of family ϕn
cov

faster than that of ϕn
seq . However, contrary to the near linear increase of the

runtime with the number of traces, we notice an almost exponential increase of
the runtime with the formula size.

Overall, our experiments show better scalability with respect to sample and
formula size compared against the other tools, answering RQ2 in the positive.

7.3 RQ3: Anytime Property

To answer RQ3, we list two advantages of the anytime property of our algorithm.
We demonstrate these advantages by showing evidence from the runs of SCARLET
on benchmarks used in RQ1 and RQ2.

First, in the instance of a time out, our algorithm may find a “concise”
separating formula while the other tools will not. In our experiments, we observed
that for all benchmarks used in RQ1 and RQ2, SCARLET obtained a formula even
when it timed out. In fact, in the samples from ϕ5

cov used in RQ2, SCARLET (see
Figure 3b) obtained the exact original formula, that too within one second (0.7
seconds in average), although timed out later. The time out was because SCARLET
continued to search for smaller formulas even after finding the original formula.

Second, our algorithm can actually output the final formula earlier than its
termination. This is evident from the fact that, for the 243 samples in RQ1 where
SCARLET does not time out, the average time required to find the final formula
is 10.8 seconds, while the average termination time is 25.17 seconds. Thus, there
is a chance that even if one stops the algorithm earlier than its termination, one
can still obtain the final formula.

Our observations from the experiments clearly indicate the advantages of
anytime property to obtain a concise separating formula and thus, answering
RQ3 in the positive.

8 Conclusion

We have proposed a new approach for learning temporal properties from exam-
ples, fleshing it out in an approximation anytime algorithm. We have shown in
experiments that our algorithm outperforms existing tools in two ways: it scales
to larger formulas and input samples, and even when it timeouts it often outputs
a separating formula.

Our algorithm targets a strict fragment of LTL, restricting its expressivity
in two aspects: it does not include the U (“until”) operator, and we cannot nest
the eventually and globally operators. We leave for future work to extend our
algorithm to full LTL.

An important open question concerns the theoretical guarantees offered by
the greedy algorithm for the Boolean subset cover problem. It extends a well
known algorithm for the classic subset cover problem and this restriction has
been proved to yield an optimal log(n)-approximation. Do we have similar guar-
antees in our more general setting?

Raha et al.278

References

1. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli, C.:
SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In: Formal
Methods in Computer Aided Design, FMCAD (2020)

2. Baresi, L., Kallehbasti, M.M.P., Rossi, M.: Efficient scalable verification of LTL
specifications. In: ICSE (1). pp. 711–721. IEEE Computer Society (2015)

3. Bombara, G., Vasile, C.I., Penedo Alvarez, F., Yasuoka, H., Belta, C.:
A Decision Tree Approach to Data Classification using Signal Tempo-
ral Logic. In: Hybrid Systems: Computation and Control, HSCC (2016).
https://doi.org/10.1145/2883817.2883843

4. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. International Conference on Automated Planning and Scheduling,
ICAPS (2019), https://ojs.aaai.org/index.php/ICAPS/article/view/3529

5. Chou, G., Ozay, N., Berenson, D.: Explaining multi-stage tasks by learning tem-
poral logic formulas from suboptimal demonstrations. In: Robotics: Science and
Systems (2020). https://doi.org/10.15607/RSS.2020.XVI.097

6. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence. p. 854–860. IJCAI ’13, AAAI Press (2013)

7. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In:
Symposium on Theory of Computing, STOC. pp. 624–633 (2014).
https://doi.org/10.1145/2591796.2591884

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering,
ICSE (1999). https://doi.org/10.1145/302405.302672

9. Ehlers, R., Gavran, I., Neider, D.: Learning properties in LTL ∩ ACTL from posi-
tive examples only. In: Formal Methods in Computer Aided Design, FMCAD. pp.
104–112 (2020). https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 17

10. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for
mobile robots. In: International Conference on Robotics and Automation, ICRA
(2005). https://doi.org/10.1109/ROBOT.2005.1570410

11. Fijalkow, N., Lagarde, G.: The complexity of learning linear temporal formu-
las from examples. In: International Conference on Grammatical Inference, ICGI
(2021), https://proceedings.mlr.press/v153/fijalkow21a.html

12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

13. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL:
automatic requirements specification extraction from natural language. In: NASA
Formal Methods, NFM (2016). https://doi.org/10.1007/978-3-319-40648-0 4

14. Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein, J., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Conference on
Requirements Engineering: Foundation for Software Quality, REFSQ (2020), http:
//ceur-ws.org/Vol-2584/PT-paper4.pdf

15. Grover, K., Barbosa, F.S., Tumova, J., Kret́ınský, J.: Semantic abstraction-guided
motion planning for scltl missions in unknown environments. In: Robotics: Science
and Systems XVII (2021). https://doi.org/10.15607/RSS.2021.XVII.090

16. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian infer-
ence of linear temporal logic specifications for contrastive explanations.
In: International Joint Conference on Artificial Intelligence, IJCAI (2019).
https://doi.org/10.24963/ijcai.2019/776

Scalable Algorithms for Learning LTL Formulas 279

https://doi.org/10.1145/2883817.2883843
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.15607/RSS.2020.XVI.097
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/302405.302672
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_17
https://doi.org/10.1109/ROBOT.2005.1570410
https://proceedings.mlr.press/v153/fijalkow21a.html
https://doi.org/10.1007/978-3-319-40648-0_4
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://doi.org/10.15607/RSS.2021.XVII.090
https://doi.org/10.24963/ijcai.2019/776

17. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining.
In: International Conference on Automated Software Engineering, ASE (2015).
https://doi.org/10.1109/ASE.2015.71

18. Li, W.: Specification Mining: New Formalisms, Algorithms and Applications. Ph.D.
thesis, University of California, Berkeley, USA (2013), http://www.escholarship.
org/uc/item/4027r49r

19. Neider, D., Gavran, I.: Learning linear temporal properties. In:
Formal Methods in Computer Aided Design, FMCAD (2018).
https://doi.org/10.23919/FMCAD.2018.8603016

20. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science, SFCS (1977). https://doi.org/10.1109/SFCS.1977.32

21. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for
learning formulas in linear temporal logic. CoRR abs/2110.06726 (2021), https:
//arxiv.org/abs/2110.06726

22. Raha, R., Roy, R., Fijalkow, N., Neider, D.: SCARLET: Scalable Anytime Al-
gorithm for Learning LTL (Jan 2022). https://doi.org/10.5281/zenodo.5890149,
https://doi.org/10.5281/zenodo.5890149

23. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart
and fast term enumeration for syntax-guided synthesis. In: Computer-Aided Veri-
fication, CAV (2019). https://doi.org/10.1007/978-3-030-25543-5 5

24. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: International Joint Conference on Artificial Intelligence,
IJCAI. pp. 2213–2219 (2020). https://doi.org/10.24963/ijcai.2020/306

25. Rozier, K.Y.: Specification: The biggest bottleneck in formal methods and au-
tonomy. In: Verified Software. Theories, Tools, and Experiments, VSTTE (2016).
https://doi.org/10.1007/978-3-319-48869-1 2

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Raha et al.280

https://doi.org/10.1109/ASE.2015.71
http://www.escholarship.org/uc/item/4027r49r
http://www.escholarship.org/uc/item/4027r49r
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1109/SFCS.1977.32
https://arxiv.org/abs/2110.06726
https://arxiv.org/abs/2110.06726
https://doi.org/10.5281/zenodo.5890149
https://doi.org/10.5281/zenodo.5890149
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.24963/ijcai.2020/306
https://doi.org/10.1007/978-3-319-48869-1_2
http://creativecommons.org/licenses/by/4.0/

Learning Model Checking and the Kernel Trick
for Signal Temporal Logic on Stochastic Processes?

Luca Bortolussi1,2(�) , Giuseppe Maria Gallo1, Jan Křet́ınský(�)3 , and

Laura Nenzi1,4(�)

1 University of Trieste, Italy
2 Modelling and Simulation Group, Saarland University, Germany

3 Technical University of Munich, Germany
4 University of Technology, Vienna, Austria

Abstract. We introduce a similarity function on formulae of signal tem-
poral logic (STL). It comes in the form of a kernel function, well known
in machine learning as a conceptually and computationally efficient tool.
The corresponding kernel trick allows us to circumvent the complicated
process of feature extraction, i.e. the (typically manual) effort to identify
the decisive properties of formulae so that learning can be applied. We
demonstrate this consequence and its advantages on the task of predict-
ing (quantitative) satisfaction of STL formulae on stochastic processes:
Using our kernel and the kernel trick, we learn (i) computationally effi-
ciently (ii) a practically precise predictor of satisfaction, (iii) avoiding the
difficult task of finding a way to explicitly turn formulae into vectors of
numbers in a sensible way. We back the high precision we have achieved
in the experiments by a theoretically sound PAC guarantee, ensuring our
procedure efficiently delivers a close-to-optimal predictor.

1 Introduction

Is it possible to predict the probability that a system satisfies a property without
knowing or executing the system, solely based on previous experience with the
system behaviour w.r.t. some other properties? More precisely, let PM [ϕ] denote
the probability that a (linear-time) property ϕ holds on a run of a stochastic
process M . Is it possible to predict PM [ϕ] knowing only PM [ψi] for properties
ψ1, . . . , ψk, which were randomly chosen (a-priori, not knowing ϕ) and thus do
not necessarily have any logical relationship, e.g. implication, to ϕ?

While this question cannot be in general answered with complete reliability,
we show that in the setting of signal temporal logic, under very mild assumptions,
it can be answered with high accuracy and low computational costs.

? This research was funded in part by the German Research Foundation (DFG) project
No. 383882557 “Statistical Unbounded Verification” (KR 4890/2-1), by the Austrian
FWF projects ZK-35 and by the Italian PRIN project “SEDUCE” n. 2017TWR-
CNB. Corresponding authors: lbortolussi@units.it, jan.kretinsky@tum.de,
lnenzi@units.it

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 281–300, 2022.
https://doi.org/10.1007/978-3-030-99524-9_15

http://orcid.org/0000-0001-8874-4001
http://orcid.org/0000-0002-8122-2881
http://orcid.org/0000-0003-2263-9342
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_15

L. Bortolussi et al.

Probabilistic verification and its limits. Stochastic processes form a natural
way of capturing systems whose future behaviour is determined at each moment
by a unique (but possibly unknown) probability measure over the successor
states. The vast range of applications includes not only engineered systems such
as software with probabilistic instructions or cyber-physical systems with failures
but also naturally occurring systems such as biological systems. In all these cases,
predictions of the system behaviour may be required even in cases the system is
not (fully) known or is too large. For example, consider a safety-critical cyber-
physical system with a third-party component, or a complex signalling pathway
to be understood and medically exploited.

Probabilistic model checking, e.g. [4], provides a wide repertoire of analysis
techniques, in particular to determine the probability PM [ϕ] that the system
M satisfies the logical formula ϕ. However, there are two caveats. Firstly, de-
spite recent advances, [12] the scalability is still quite limited, compared to e.g.
hardware or software verification. Moreover, this is still the case even if we only
require approximate answers, i.e., for a given precision ε, to determine v such
that PM [ϕ] ∈ [v − ε, v + ε]. Secondly, knowledge of the model M is required to
perform the analysis.

Statistical model checking [33] fights these two issues at an often acceptable
cost of relaxing the guarantee to probably approximately correct (PAC), requiring
that the approximate answer of the analysis may be incorrect with probability at
most δ. This allows for a statistical evaluation: Instead of analyzing the model,
we evaluate the satisfaction of the given formula on a number of observed runs
of the system and derive a statistical prediction, which is valid only with some
confidence. Nevertheless, although M may be unknown, it is still necessary to
execute the system in order to obtain its runs.

“Learning” model checking is a new paradigm we propose, in order to fill in
a hole in the model-checking landscape where very little access to the system
is possible. We are given a set of input-output pairs for model checking, i.e.,
a collection {(ψi, pi)}i of formulae and their satisfaction values on a given model
M , where pi can be the probability PM [ψi] of satisfying ψi, or its robustness
(in case of real-valued logics), or any other quantity. From the data, we learn a
predictor for the model checking problem: a classifier for Boolean satisfaction,
or a regressor for quantitative domains of pi. Note that apart from the results
on the a-priori given formulae, no knowledge of the system is required; also, no
runs are generated and none have to be known. As an example consequence, a
user can investigate properties of a system even before buying it, solely based
on producer’s guarantees on the standardized formulae ψi.

Advantages of our approach can be highlighted as follows, not intending to
replace standard model checking in standard situations but focusing on the case
of extremely limited (i) information and (ii) online resources. Probabilistic model
checking re-analyzes the system for every new property on the input; statistical
model checking can generate runs and then, for every new property, analyzes
these runs; learning model checking performs one analysis with complexity de-
pendent only on the size of the data set (a-priori formulae) and then, for every

282

Learning Model Checking

new formula on input, only evaluates a simple function (whose size is again in-
dependent of the system and the property, and depends only on the data set
size). Consequently, it has the least access to information and the least compu-
tational demands. While lack of any guarantees is typical for machine-learning
techniques and, in this context with the lowest resources required, expectable,
yet we provide PAC guarantees.

Technique and our approach. To this end, we show how to efficiently learn
on the space of temporal formulae via the so-called kernel trick, e.g. [32]. This in
turn requires to introduce a mapping of formulae to vectors (in a Hilbert space)
that preserves the information on the formulae. How to transform a formula
into a vector of numbers (of always the same length)? While this is not clear
at all for finite vectors, we take the dual perspective on formulae, namely as
functionals mapping trajectories to values. This point of view provides us with
a large bag of functional analysis tools [11] and allows us to define the needed
semantic similarity of two formulae (the inner product on the Hilbert space).

Application examples. Having discussed the possibility of learning model
checking, the main potential of our kernel (and generally introducing kernels for
any further temporal logics) is that it opens the door to efficient learning on
formulae via kernel-based machine-learning techniques [27,31]. Let us sketch a
few further applications that immediately suggest themselves:
Game-based synthesis Synthesis with temporal-logic specifications can often

be solved via games on graphs [25,19]. However, exploration of the game
graph and finding a winning strategy is done by graph algorithms ignoring
the logical information. For instance, choosing between a and ¬a is tried
out blindly even for specifications that require us to visit as. Approaches
such as [21] demonstrate how to tackle this but hit the barrier of inefficient
learning of formulae. Our kernel will allow for learning reasonable choices
from previously solved games.

Translating, sanitizing and simplifying specifications A formal specifica-
tion given by engineers might be somewhat different from their actual inten-
tion. Using the kernel, we can, for instance, find the closest simple formula
to their inadequate translation from English to logic, which is then likely
to match better. (Moreover, the translation would be easier to automate by
natural language processing since learning from previous cases is easy once
the kernel gives us an efficient representation for formulae learning.)

Requirement mining A topic which received a lot of attention recently is that
of identifying specifications from observed data, i.e. to tightly characterize a
set of observed behaviours or anomalies [7]. Typical methods are using either
formulae templates [6] or methods based e.g. on decision trees [9] or genetic
algorithms [28]. Our kernel opens a different strategy to tackle this problem:
lifting the search problem from the discrete combinatorial space of syntactic
structures of formulae to a continuous space in which distances preserve
semantic similarity (using e.g. kernel PCA [27] to build finite-dimensional
embeddings of formulae into Rm).

283

Our main contributions are the following:
– From the technical perspective, we define a kernel function for temporal

formulae (of signal temporal logic, see below) and design an efficient way
to learn it. This includes several non-standard design choices, improving the
quality of the predictor (see Conclusions).

– Thereby we open the door to various learning-based approaches for analysis
and synthesis and further applications, in particular also to what we call the
learning model checking.

– We demonstrate the efficiency practically on predicting the expected satis-
faction of formulae on stochastic systems. We complement the experimental
results with a theoretical analysis and provide a PAC bound.

1.1 Related Work

Signal temporal logic (STL) [24] is gaining momentum as a requirement
specification language for complex systems and, in particular, cyber-physical sys-
tems [7]. STL has been applied in several flavours, from runtime-monitoring [7],
falsification problems [17] to control synthesis [18], and recently also within learn-
ing algorithms, trying to find a maximally discriminating formula between sets
of trajectories [9,6]. In these applications, a central role is played by the real-
valued quantitative semantics [15], measuring robustness of satisfaction. Most of
the applications of STL have been directed to deterministic (hybrid) systems,
with less emphasis on non-deterministic or stochastic ones [5].

Metrics and distances form another area in which formal methods are pro-
viding interesting tools, in particular logic-based distances between models, like
bisimulation metrics for Markov models [2,3,1], which are typically based on a
branching logic. In fact, extending these ideas to linear time logic is hard [14],
and typically requires statistical approximations. Finally, another relevant prob-
lem is how to measure the distance between two logic formulae, thus giving a
metric structure to the formula space, a task relevant for learning which received
little attention for STL, with the notable exception of [23].

Kernels make it possible to work in a feature space of a higher dimension
without increasing the computational cost. Feature space, as used in machine
learning [31,13], refers to an n-dimensional real space that is the co-domain
of a mapping from the original space of data. The idea is to map the original
space in a new one that is easier to work with. The so-called kernel trick, e.g. [32]
allows us to efficiently perform approximation and learning tasks over the feature
space without explicitly constructing it. We provide the necessary background
information in Section 2.2.

Overview of the paper: Section 2 recalls STL and the classic kernel trick. Sec-
tion 3 provides an overview of our technique and results. Section 4 then discusses
all the technical development in detail. In Section 5, we experimentally evaluate
the accuracy of our learning method. In Section 6, we conclude with future work.

L. Bortolussi et al.284

2 Background

Let R,R≥0,Q,N denote the sets of non-negative real, rational, and (positive)
natural numbers, respectively. For vectors x,y ∈ Rn (with n ∈ N), we write
x = (x1, . . . , xn) to access the components of the vectors, in contrast to sequences
of vectors x1,x2, . . . ∈ Rn. Further, we write 〈x,y〉 =

∑n
i=1 xiyi for the scalar

product of vectors.

2.1 Signal Temporal Logic

Signal Temporal Logic (STL) [24] is a linear-time temporal logic suitable
to monitor properties of trajectories. A trajectory is a function ξ : I → D with a
time domain I ⊆ R≥0, and a state space D ⊆ Rn for some n ∈ N. We define the
trajectory space T as the set of all possible continuous functions5 over D. An
atomic predicate of STL is a continuous computable predicate6 on x ∈ Rn of the
form of f(x1, ..., xn) ≥ 0, typically linear, i.e.

∑n
i=1 qixi ≥ 0 for q1, . . . , qn ∈ Q.

Syntax. The set P of STL formulae is given by the following syntax:

ϕ := tt | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b]ϕ2

where tt is the Boolean true constant, π ranges over atomic predicates, negation
¬ and conjunction ∧ are the standard Boolean connectives and U[a,b] is the
until operator, with a, b ∈ Q and a < b. As customary, we can derive the
disjunction operator ∨ by De Morgan’s law and the eventually (a.k.a. future)
operator F[t1,t2] and the always (a.k.a. globally) operator G[t1,t2] operators from
the until operator.

Semantics. STL can be given not only the classic Boolean notion of satisfaction,
denoted by s(ϕ, ξ, t) = 1 if ξ at time t satisfies ϕ, and 0 otherwise, but also a
quantitative one, denoted by ρ(ϕ, ξ, t). This measures the quantitative level of
satisfaction of a formula for a given trajectory, evaluating how “robust” is the
satisfaction of ϕ with respect to perturbations in the signal [15]. The quantitative
semantics is defined recursively as follows:

ρ(π, ξ, t) =fπ(ξ(t)) for π(x1, ..., xn) =
(
fπ(x1, ..., xn) ≥ 0

)
ρ(¬ϕ, ξ, t) =− ρ(ϕ, ξ, t)

ρ(ϕ1 ∧ ϕ2, ξ, t) = min
(
ρ(ϕ1, ξ, t), ρ(ϕ2, ξ, t)

)
ρ(ϕ1U[a,b]ϕ2, ξ, t) = max

t′∈[a+t,b+t]

(
min

(
ρ(ϕ2, ξ, t

′), min
t′′∈[t,t′]

ρ(ϕ1, ξ, t
′′)
))

Soundness and Completeness Robustness is compatible with satisfaction in
that it complies with the following soundness property: if ρ(ϕ, ξ, t) > 0 then
s(ϕ, ξ, t) = 1; and if ρ(ϕ, ξ, t) < 0 then s(ϕ, ξ, t) = 0. If the robustness is 0, both

5 The whole framework can be easily relaxed to piecewise continuous càdlàg trajecto-
ries endowed with the Skorokhod topology and metric [8].

6 Results are easily generalizable to predicates defined by piecewise continuous càdlàg
functions.

Learning Model Checking 285

satisfaction and the opposite may happen, but either way only non-robustly:
there are arbitrarily small perturbations of the signal so that the satisfaction
changes7. In fact, it complies also with a completeness property that ρ measures
how robust the satisfaction of a trajectory is with respect to perturbations,
see [15] for more detail.

Stochastic process in this context is a probability spaceM = (T ,A, µ), where
T is a trajectory space and µ is a probability measure on a σ-algebra A over
T . Note that the definition is essentially equivalent to the standard definition of
a stochastic process as a collection {Dt}t∈I of random variables, where Dt(ξ) ∈ D
is the signal ξ(t) at time t on ξ [8]. The only difference is that we require, for
simplicity8, the signal be continuous.

Expected robustness and satisfaction probability. Given a stochastic pro-
cess M = (T ,A, µ), we define the expected robustness RM : P × I → R as

RM(ϕ, t) := EM[ρ(ϕ, ξ, t)] =

∫
ξ∈T

ρ(ϕ, ξ, t)dµ(ξ) .

The qualitative counterpart of the expected robustness is the satisfaction proba-
bility S(ϕ), i.e. the probability that a trajectory generated by the stochastic pro-
cessM satisfies the formula ϕ: SM(ϕ, t) := EM[s(ϕ, ξ, t)] =

∫
ξ∈T s(ϕ, ξ, t)dµ(ξ).9

Finally, when t = 0 we often drop the parameter t from all these functions.

2.2 Kernel Crash Course

We recall the needed background for readers less familiar with machine learning.

Learning linear models. Linear predictors take the form of a vector of weights,
intuitively giving positive and negative importance to features. A predictor
given by a vector w = (w1, . . . , wd) evaluates a data point x = (x1, . . . , xd)
to w1x1 + · · ·+wdxd = 〈w,x〉. To use it as a classifier, we can, for instance, take
the sign of the result and output yes iff it is positive; to use it as a regressor, we
can simply output the value. During learning, we are trying to separate, respec-
tively approximate, the training data x1, . . .xN with a linear predictor, which
corresponds to solving an optimization problem of the form (f is a suitable loss)

arg min
w∈Rd

f(〈w,x1〉, . . . , 〈w,xN 〉, 〈w,w〉)

where the possible, additional last term comes from regularization (preference
of simpler weights, with lots of zeros in w).

7 The satisfaction of subformulae changes and, provided the predicates are “indepen-
dent” of each other, the satisfaction of the whole formula, too.

8 Again, this assumption can be relaxed since continuous functions are dense in the
Skorokhod space of càdlàg functions.

9 As argued above, this is essentially equivalent to integrating the indicator function
of robustness being positive since a formula has robustness exactly zero only with
probability zero as we sample all values from continuous distributions.

L. Bortolussi et al.286

Need for a feature map Φ : Input → Rn. In order to learn, the input object
first needs to be transformed to a vector of numbers. For instance, consider
learning the logical exclusive-or function (summation in Z2) y = x1⊕x2. Seeing
true as 1 and false as 0 already transforms the input into elements of R2. However,
observe that there is no linear function separating sets of points {(0, 0), (1, 1)}
(where xor returns true) and {(0, 1), (1, 0)} (where xor returns false). In order to
facilitate learning by linear classifiers, richer feature space may be needed than
what comes directly with the data. In our example, we can design a feature map
to a higher-dimensional space using Φ : (x1, x2) 7→ (x1, x2, x1 · x2). Then e.g.
x3 ≤ x1+x2−1

2 holds in the new space iff x1 ⊕ x2 and we can learn this linear
classifier.

Fig. 1. An example illustrating the need for
feature maps in linear classification [20].

Another example can be seen in
Fig. 1. The inner circle around zero
cannot be linearly separated from
the outer ring. However, considering
x3 := x21 +x22 as an additional feature
turns them into easily separable lower
and higher parts of a paraboloid.

In both examples, a feature map
Φ mapping the input to a space with
higher dimension (R3), was used. Nev-
ertheless, two issues arise:

1. What should be the features? Where do we get good candidates?
2. How to make learning efficient if there are too many features?

On the one hand, identifying the right features is hard, so we want to consider
as many as possible. On the other hand, their number increases the dimension
and thus decreases the efficiency both computationally and w.r.t. the number of
samples required.

Kernel trick. Fortunately, there is a way to consider a huge amount of features,
but with efficiency independent of their number (and dependent only on the
amount of training data)! This is called the kernel trick. It relies on two properties
of linear classifiers:

– The optimization problem above, after the feature map is applied, takes the
form

arg min
w∈Rn

f
(
〈w, Φ(x1)〉, . . . , 〈w, Φ(xN)〉, 〈w,w〉

)
– Representer theorem: The optimum of the above can be written in the form

w∗ =

N∑
i=1

αiΦ(xi)

Intuitively, anything orthogonal to training data cannot improve precision
of the classification on the training data, and only increases ||w||, which we
try to minimize (regularization).

Learning Model Checking 287

Consequently, plugging the latter form into the former optimization problem
yields an optimization problem of the form (g is a suitable loss derived from f):

arg min
α∈RN

g
(
α, 〈Φ(xi), Φ(xj)〉1≤i,j≤N

)
In other words, optimizing weights α of expressions where data only appear in
the form 〈Φ(xi), Φ(xj)〉. Therefore, we can take all features in Φ(xi) into account
if, at the same time, we can efficiently evaluate the kernel function

k : (x,y) 7→ 〈Φ(x), Φ(y)〉

i.e. without explicitly constructing Φ(x) and Φ(y). Then we can efficiently learn
the predictor on the rich set of features. Finally, when the predictor is applied
to a new point x, we only need to evaluate the expression

〈w, Φ(x)〉 =

N∑
i=1

αi〈Φ(xi), Φ(x)〉 =

N∑
i=1

αik(xi,x)

3 Overview of Our Approach and Results

In this section, we describe what our tasks are if we want to apply the kernel
trick in the setting of temporal formulae, what our solution ideas are, and where
in the paper they are fully worked out.

1. Design the kernel function: define a similarity measure for STL formulae and
prove it takes the form 〈Φ(·), Φ(·)〉
(a) Design an embedding of formulae into a Hilbert space (vector space with

possibly infinite dimension) ([10], Thm.3 in App.B proves this is well
defined): Although learning can be applied also to data with complex
structures such as graphs, the underlying techniques typically work on
vectors. How do we turn a formula into a vector?
Instead of looking at the syntax of the formula, we can look at its seman-
tics. Similarly to Boolean satisfaction, where a formula can be identified
with its language, i.e., the set T → 2 ∼= 2T of trajectories that satisfy
it, we can regard an STL formula ϕ as a map ρ(ϕ, ·) : T → R ∼= RT
of trajectories to their robustness. Observe that this is a real function,
i.e., an infinite-dimensional vector of reals. Although explicit computa-
tions with such objects are problematic, kernels circumvent the issue. In
summary, we have the implicit features given by the map:

ϕ
Φ7→ ρ(ϕ, ·)

(b) Design similarity on the feature representation (in Sec. 4.1): Vectors’
similarity is typically captured by their scalar product 〈x,y〉 =

∑
i xiyi

since it gets larger whenever the two vectors “agree” on a component.
In complete analogy, we can define for infinite-dimensional vectors (i.e.

L. Bortolussi et al.288

functions) f, g their “scalar product” 〈f, g〉 =
∫
f(x)g(x) dx. Hence we

want the kernel to be defined as

k(ϕ,ψ) = 〈ρ(ϕ, ·), ρ(ψ, ·)〉 =

∫
ξ∈T

ρ(ϕ, ξ)ρ(ψ, ξ) dξ

(c) Design a measure on trajectories (Sec. 4.2): Compared to finite-dimen-
sional vectors, where in the scalar product each component is taken with
equal weight, integrating over uncountably many trajectories requires us
to put a finite measure on them, according to which we integrate. Since,
as a side effect, it necessarily expresses their importance, we define a
probability measure µ0 preferring “simple” trajectories, where the signals
do not change too dramatically (the so-called total variation is low). This
finally yields the definition of the kernel as10

k(ϕ,ψ) =

∫
ξ∈T

ρ(ϕ, ξ)ρ(ψ, ξ) dµ0(ξ) (1)

2. Learn the kernel (Sec. 5.1):
(a) Get training data xi: The formulae for training should be chosen ac-

cording to the same distribution as they are coming in the final task
of prediction. Since that distribution is unknown, we assume at least
a general preference of simple formulae and thus design a probability
distribution F0, preferring formulae with simple syntax trees (see Sec-
tion 5.1). We also show that several hundred formulae are sufficient for
practically precise predictions.

(b) Compute the “correlation” of the data 〈φ(xi), φ(xj)〉 by kernel k(xi,xj):
Now we evaluate (1) for all the data pairs. Since this involves an inte-
gral over all trajectories, we simply approximate it by Monte Carlo: We
choose a number of trajectories according to µ0 and sum the values for
those. In our case, 10 000 provide a very precise approximation.

(c) Optimize the weights α (using values from (b)): Thus we get the most
precise linear classifier given the data, but penalizing too “complicated”
ones since they tend to overfit and not generalize well (so-called regular-
ization). Recall that the dimension of α is the size of the training data
set, not the infinity of the Hilbert space.

3. Evaluate the predictive power of the kernel and thus implicitly the kernel
function design:
– We evaluate the accuracy of predictions of robustness for single trajec-

tories (Sec. 5.2), the expected robustness on a stochastic system and
the corresponding Boolean notion of satisfaction probability (Sec. 5.3).
Moreover, we show that there is no need to derive kernel for each stochas-
tic process separately depending on their probability spaces, but the one

10 On the conceptual level; technically, additional normalization and Gaussian trans-
formation are performed to ensure usual desirable properties, see Cor. 1 in Sec. 4.1.

Learning Model Checking 289

derived from the generic µ0 is sufficient and, surprisingly, even more
accurate (Sec. 5.4).

– Besides the experimental evaluation, we provide a PAC bound on our
methods in terms of Rademacher complexity [26] (Sec. 4.4).

4 A Kernel for Signal Temporal Logic

In this section, we sketch the technical details of the construction of the STL
kernel, of the correctness proof, and of PAC learning bounds. More details on
the definition, including proofs, are provided in [10], Appendix B.

4.1 Definition of STL Kernel

Let us fix a formula ϕ ∈ P in the STL formulae space and consider the robustness
ρ(ϕ, · , ·) : T × I → R, seen as a real-valued function on the domain T × I,
where I ⊂ R is a bounded interval, and T is the trajectory space of continuous
functions. The STL kernel is defined as follows.

Definition 1. Fixing a probability measure µ0 on T , we define the STL-kernel

k′(ϕ,ψ) =
∫
ξ∈T

∫
t∈I ρ(ϕ, ξ, t)ρ(ψ, ξ, t)dtdµ0

The integral is well defined as it corresponds to a scalar product in a suitable
Hilbert space of functions. Formally proving this, and leveraging foundational
results on kernel functions [26], in [10], Appendix B, we prove the following:

Theorem 1. The function k′ is a proper kernel function.

In the previous definition, we can fix time to t = 0 and remove the integration
w.r.t. time. This simplified version of the kernel is called untimed, to distinguish
it from the timed one introduced above.

In the rest of the paper, we mostly work with two derived kernels, k0 and k:

k0(ϕ,ψ) =
k′(ϕ,ψ)√

k′(ϕ,ϕ)k′(ψ,ψ)
k(x, y) = exp

(
−1− 2k0(x, y)

σ2

)
. (2)

The normalized kernel k0 rescales k′ to guarantee that k(ϕ,ϕ) ≥ k(ϕ,ψ) , ∀ϕ,ψ ∈
P. The Gaussian kernel k, additionally, allows us to introduce a soft threshold σ2

to fine tune the identification of significant similar formulae in order to improve
learning. The following proposition is straightforward in virtue of the closure
properties of kernel functions [26]:

Corollary 1. The functions k0 and k are proper kernel functions.

L. Bortolussi et al.290

4.2 The Base Measure µ0

In order to make our kernel meaningful and not too expensive to compute, we
endow the trajectory space T with a probability distribution such that more
complex trajectories are less probable. We use the total variation [29] of a tra-
jectory11 and the number of changes in its monotonicity as indicators of its
“complexity”.

Because later we use the probability measure µ0 for Monte Carlo approxima-
tion of the kernel k, it is advantageous to define µ0 algorithmically, by providing
a sampling algorithm. The algorithm samples from continuous piece-wise linear
functions, a dense subset of T , and is described in detail in [10], Appendix A.
Essentially, we simulate the value of a trajectory at discrete steps ∆, for a total
of N steps (equal to 100 in the experiments) by first sampling its total varia-
tion distance from a squared Gaussian distribution, and then splitting such total
variation into the single steps, changing sign of the derivative at each step with
small probability q. We then interpolate linearly between consecutive points of
the discretization and make the trajectory continuous piece-wise linear.

In Section 5.4, we show that using this simple measure still allows us to make
predictions with remarkable accuracy even for other stochastic processes on T .

4.3 Normalized Robustness

Consider the predicates x1 − 10 ≥ 0 and x1 − 107 ≥ 0. Given that we train and
evaluate on µ0, whose trajectories typically take values in the interval [−3, 3] (see
also [10], Appendix A), both predicates are essentially equivalent for satisfiability.
However, their robustness on the same trajectory differs by orders of magnitude.
This very same effect, on a smaller scale, happens also when comparing x1 ≥ 10
with x1 ≥ 20. In order to ameliorate this issue and make the learning less
sensitive to outliers, we also consider a normalized robustness, where we rescale
the value of the secondary (output) signal to (−1, 1) using a sigmoid function.
More precisely, given an atomic predicate π(x1, ..., xn) = (fπ(x1, ..., xn) ≥ 0), we
define ρ̂(π, ξ, t) = tanh (fπ(x1, ..., xn)). The other operators of the logic follow
the same rules of the standard robustness described in Section 2.1. Consequently,
both x1 − 10 ≥ 0 and x1 − 107 ≥ 0 are mapped to very similar robustness for
typical trajectories w.r.t. µ0, thus reducing the impact of outliers.

4.4 PAC Bounds for the STL Kernel

Probably Approximately Correct (PAC) bounds [26] for learning provide a bound
on the generalization error on unseen data (known as risk) in terms of the training
loss plus additional terms which shrink to zero as the number of samples grows.
These additional terms typically depend also on some measure of the complexity
of the class of models we consider for learning (the so-called hypothesis space),

11 The total variation of function f defined on [a, b] is V b
a (f) =

supP∈P
∑nP−1

i=0 |f(xi+1) − f(xi)|, where P = {P = {x0, . . . , xnP } |
P is a partition of [a, b]}.

Learning Model Checking 291

which ought to be finite. The bound holds with probability 1 − δ, where δ > 0
can be set arbitrarily small at the price of the bound getting looser.

In the following, we will state a PAC bound for learning with STL kernels
for classification. A bound for regression, and more details on the classification
bound, can be found in [10], Appendix C. We first recall the definition of the
risk L and the empirical risk L̂ for classification. The former is an average of
the zero-one loss over the data generating distribution pdata, while the latter
averages over a finite sample D of size m of pdata. Formally,

L(h) = Eϕ∼pdata

[
I
(
h(ϕ) 6= y(ϕ)

)]
and L̂D(h) =

1

m

m∑
i=1

I
(
h(ϕi) 6= y(ϕi)

)
,

where y(ϕ) is the actual class (truth value) associated with ϕ, in contrast to the
predicted class h(ϕ), and I is the indicator function.

The major issue with PAC bounds for kernels is that we need to constrain in
some way the model complexity. This is achieved by requesting the functions that
can be learned have a bounded norm. We recall that the norm ‖h‖H of a function

h obtainable by kernel methods, i.e. h(ϕ) =
∑N
i=1 αik(ϕi, ϕ), is ‖h‖H = αTKα,

where K is the Gram matrix (kernel evaluated between all pairs of input points,
Kij = k(ϕi, ϕj)). The following theorem, stating the bounds, can be proved by
combining bounds on the Rademacher complexity for kernels with Rademacher
complexity based PAC bounds, as we show in [10], Appendix C.

Theorem 2 (PAC bounds for Kernel Learning in Formula Space). Let
k be a kernel (e.g. normalized, exponential) for STL formulae P, and fix Λ > 0.
Let y : P → {−1, 1} be a target function to learn as a classification task. Then
for any δ > 0 and hypothesis function h with ‖h‖H ≤ Λ, with probability at least
1− δ it holds that

L(h) ≤ L̂D(h) +
Λ√
m

+ 3

√
log 2

δ

2m
. (3)

The previous theorem gives us a way to control the learning error, provided
we restrict the full hypothesis space. Choosing a value of Λ equal to 40 (the
typical value we found in experiments) and confidence 95%, the bound predicts
around 650 000 samples to obtain an accuracy bounded by the accuracy on the
training set plus 0.05. This theoretical a-priori bound is much larger than the
training set sizes in the order of hundreds, for which we observe good performance
in practice.

5 Experiments

We test the performance of the STL kernel in predicting (a) robustness and
satisfaction on single trajectories, and (b) expected robustness and satisfaction
probability estimated statistically from K trajectories. Besides, we test the kernel
on trajectories sampled according to the a-priori base measure µ0 and according
to the respective stochastic models to check the generalization power of the
generic µ0-based kernel. Here we report the main results; for additional details

L. Bortolussi et al.292

as well as plots and tables for further ways of measuring the error, we refer the
interested reader to [10], Appendix D.

Computation of the STL robustness and of the kernel was implemented in
Python exploiting PyTorch [30] for parallel computation on GPUs. All the exper-
iments were run on a AMD Ryzen 5000 with 16 GB of RAM and on a consumer
NVidia GTX 1660Ti with 6 GB of DDR6 RAM. We run each experiment 1000
times for single trajectories and 500 for expected robustness and satisfaction
probability where we use 5000 trajectories for each run. Where not indicated
differently, each result is the mean over all experiments. Computational time is
fast: the whole process of sampling from µ0, computing the kernel, doing regres-
sion for training, test set of size 1000 and validation set of size 200, takes about
10 seconds on GPU. We use the following acronyms: RE = relative error, AE=
absolute error, MRE = mean relative error, MAE = mean absolute error, MSE
= mean square error.

5.1 Setting

To compute the kernel itself, we sampled 10 000 trajectories from µ0, using the
sampling method described in Section 4.2. As regression algorithm (for optimiz-
ing α of Sections 2.2 and 3) we use the Kernel Ridge Regression (KRR) [27].
KRR was as good as, or superior, to other regression techniques (a comparison
can be found in [10], Appendix D.1).

Training and test set are composed of M formulae sampled randomly accord-
ing to the measure F0 given by a syntax-tree random recursive growing scheme
(reported in detail in [10], Appendix D.1), where the root is always an operator
node and each node is an atomic predicate with probability pleaf (fixed in this
experiments to 0.5), or, otherwise, another operator node (sampling the type
using a uniform distribution). In these experiments, we fixed M = 1000.

Hyperparameters We vary several hyperparameters, testing their impact on
errors and accuracy. Here we briefly summarize the results.
- The impact of formula complexity : We vary the parameter pleaf in the formula
generating algorithm in the range [0.2, 0.3, 0.4, 0.5] (average formula size around
[100, 25, 10, 6] nodes in the syntax tree), but only a slight increase in the median
relative error is observed for more complex formulae: [0.045, 0.037, 0.031, 0.028].
- The addition of time bounds in the formulae has essentially no impact on the
performance in terms of errors.
- There is a very small improvement (< 10%) using integrating signals w.r.t.
time (timed kernel) vs using only robustness at time zero (untimed kernel), but
at the cost of a 5-fold increase in computational training time.

Fig. 2. MRE of predicted average ro-
bustness vs the size of the training set.

- Size of training set : The error in es-
timating robustness decreases as we in-
crease the amount of training formulae,
see Fig. 2. However, already for a few hun-
dred formulae, the predictions are quite
accurate.

Learning Model Checking 293

- Exponential kernel k gives a 3-fold improvement in accuracy w.r.t. normalized
kernel k0.
- Dimensionality of signals : Error tends to increase linearly with dimensionality.
For 1000 formulae in the training set, from dimension 1 to 5, MRE is [0.187,
0.248, 0.359, 0.396, 0.488] and MAE is [0.0537, 0.0735, 0.0886, 0.098, 0.112].

5.2 Robustness and Satisfaction on Single Trajectories

In this experiment, we predict the Boolean satisfiability of a formula using as
a discriminator the sign of the robustness. We generate the training and test
set of formulae using F0, and the function sampling trajectories from µ0 with
dimension n = 1, 2, 3, using an independent sample than the one for evaluating
the kernel. We evaluate the standard robustness ρ and the normalized one ρ̂ of
each trajectory for each formula in the training and test sets. We then predict ρ
and ρ̂ for the test set and check if the sign of the predicted robustness agrees with
that of the true one, which is a proxy for satisfiability, as discussed previously.
Accuracy and distribution of the log10 MRE over all experiments are reported
in Fig. 3. Results are good for both but the normalized robustness performs
always better. Accuracy is always greater than 0.96 and gets slightly worse when
increasing the dimension. We report the mean of quantiles of ρ and ρ̂ for RE
and AE for n=3 (the toughest case) in Table 1 (top two rows). Errors for the
normalized one are also always lower and slightly worsen when increasing the
dimension.

In Fig. 4 (left), we plot the true standard robustness for random test formulae
in contrast to their predicted values and the corresponding log RE. Here we

Fig. 3. Accuracy of satisfiability prediction (left) and log10 of the MRE (right) over
all 1000 experiments for standard and normalized robustness for samples from µ0 with
dimensionality of signals n = 1, 2, 3. (Note the logarithmic scale, with log value of -1
corresponding to 0.1 of the standard non-logarithmic scale.)

L. Bortolussi et al.294

Table 1. Mean of quantiles for RE and AE over all experiments for prediction of the
standard and normalized robustness (ρ, ρ̂), expected robustness (R, R̂), the satisfaction
probability (S) with trajectories sampled from µ0 and signals with dimensionality n=3,
and of the normalized expected robustness on trajectories sampled from Immigration
(1 dim), Isomerization (2 dim), and Transcription (3 dim)

relative error (RE) absolute error (AE)

5perc 1quart median 3quart 95perc 99perc 1quart median 3quart 99perc

ρ 0.0035 0.018 0.045 0.141 0.870 4.28 0.016 0.039 0.105 0.689
ρ̂ 0.0008 0.001 0.006 0.019 0.564 2.86 0.004 0.012 0.039 0.286

R 0.0045 0.021 0.044 0.103 0.548 2.41 0.013 0.029 0.070 0.527

R̂ 0.0006 0.003 0.007 0.020 0.133 0.55 0.001 0.003 0.007 0.065

S 0.0005 0.003 0.008 0.030 0.586 81.8 0.001 0.003 0.007 0.072

R̂ imm 0.0053 0.0067 0.016 0.049 0.360 1.83 0.0037 0.008 0.019 0.151

R̂ iso 0.0030 0.0092 0.026 0.091 0.569 2.74 0.0081 0.021 0.057 0.460

R̂ trancr 0.0072 0.0229 0.071 0.240 1.490 7.55 0.018 0.049 0.12 0.680

Fig. 4. (left) True standard robustness vs predicted values and RE on single trajecto-
ries sampled from µ0. The misclassified formulae are the red crosses. (right) Satisfaction
probability vs predicted values and RE (again for a single experiment).

can clearly observe that the misclassified formulae (red crosses) tend to have a
robustness close to zero, where even tiny absolute errors unavoidably produce
large relative errors and frequent misclassification.

We test our method also on three specifications of the ARCH-COMP 2020
[16], to show that it works well even on real formulae. We obtain still good results,
with an accuracy equal to 1, median AE = 0.0229, and median RE = 0.0316 in
the worst case (the AT1 of the Automatic Transmission (AT) Benchmark, see
[10], Appendix D.2).

5.3 Expected Robustness and Satisfaction Probability

In these experiments, we approximate the expected standard R(ϕ) and normal-
ized R̂(ϕ) and the satisfaction probability S(φ) using a fixed set of 5000 tra-

Learning Model Checking 295

jectories sampled according to µ0, independent of the one used to compute the
kernel, evaluating it for each formula in the training and test sets, and predicting
R(ϕ), R̂(ϕ) and S(φ) for the test set.

For the robustness, the mean of quantiles of RE and AE shows good results
as can be seen in Table 1, rows 3–4. Values of MSE, MAE and MRE are smaller
than those achieved on single trajectories with medians for n=3 equal to 0.0015,
0.064, and 0.2 for R(ϕ) and 0.00021, 0.0067, and 0.048 for the R̂(ϕ). Normalized
robustness continues to outperform the standard one.

For the satisfaction probability, values of MSE and MAE errors are very low,
with a median for n=3 equal to 0.000247 for MSE and 0.0759 for MAE. MRE
instead is higher and equal to 3.21. The reason can be seen in Fig. 4 (right),
where we plot the satisfaction probability vs the relative error for a random ex-
periment. We can see that all large relative errors are concentrated on formulae
with satisfaction probability close to zero, for which even a small absolute devi-
ation can cause large errors. Indeed the 95th percentile of RE is still pretty low,
namely 0.586 (cf. Table 1, row 5), while we observe the 99th percentile of RE
blowing up to 81.8 (at points of near zero true probability). This heavy tailed
behaviour suggests to rely on median for a proper descriptor of typical errors,
which is 0.008 (hence the typical relative error is less than 1%).

5.4 Kernel Regression on Other Stochastic Processes

The last aspect that we investigate is whether the definition of our kernel w.r.t.
the fixed measure µ0 can be used for making predictions also for other stochastic
processes, i.e. without redefining and recomputing the kernel every time that we
change the distribution of interest on the trajectory space.

0.01 0.1 1
σ

1

10

M
SE

base kernel
custom kerenel

Immigration
Isomerization
Polymerase

Immigration
Isomerization
Polymerase

Fig. 5. Expected robustness prediction using the
kernel evaluated according to the base kernel, and
a custom kernel. We depict MSE as a function
of the bandwidth σ of the Gaussian kernel (with
both axes in logarithmic scale).

Standardization. To use the
same kernel of µ0 we need to
standardize the trajectories so
that they have the same scale
as our base measure. Standard-
ization, by subtracting to each
variable its sample mean and di-
viding by its sample standard
deviation, will result in a sim-
ilar range of values as that of
trajectories sampled from µ0,
thus removing distortions due to
the presence of different scales
and allowing us to reason on
the trajectories using thresholds
like those generated by the STL
sampling algorithm.
Performance of base and custom kernel. We consider three different stochas-
tic models: Immigration (1 dim), Isomerization (2 dim) and Polymerise (2 dim),
simulated using the Python library StochPy [22] (see also [10], Appendix D.5).

L. Bortolussi et al.296

We compare the performance using the kernel evaluated according to the base
measure µ0 (base kernel), and a custom kernel computed replacing µ0 with the
measure on trajectories given by the stochastic model itself. Results show that
the base kernel is still the best performing one, see Fig. 5. This can be explained
by the fact that the measure µ0 is broad in terms of coverage of the trajectory
space, so even if two formulae are very similar, there will be, with a high prob-
ability, a set of trajectories for which the robustnesses of the two formulae are
very different. This allows us to better distinguish among STL formulae, com-
pared to models that tend to focus the probability mass on narrower regions of
T as, for example, the Isomerization model, which is the model with the most
homogeneous trajectory space and has indeed the worst performance.
Expected Robustness Setting is the same as for the corresponding experi-
ment on µ0. Instead of the Polymerase model, we consider here a Transcription
model [22] (see also [10], Appendix D.5), to have also a 3-dimensional model.
Results of quantile for RE and AE for the normalized robustness are reported
in Table 1, bottom three rows. The results on the different models are remark-
ably promising, with the Transcription model (median RE 7%) performing a bit
worse than Immigration and Isomerization (1.6% and 2.6% median RE). Similar
experiments have been done also on single trajectories, where we obtain similar
results as for the Expected Robustness [10], Appendix D.5.

6 Conclusions

To enable any learning over formulae, their features must be defined. We circum-
vented the typically manual and dubious process by adopting a more canonic,
infinite-dimensional feature space, relying on the quantitative semantics of STL.
To effectively work with such a space, we defined a kernel for STL. To further
overcome artefacts of the quantitative semantics, we proposed several normaliza-
tions of the kernel. Interestingly, we can use exactly the same kernel with a fixed
base measure over trajectories across different stochastic models, not requiring
any access to the model. We evaluated the approach on realistic biological mod-
els from the stochpy library as well as on realistic formulae from Arch-Comp
and concluded a good accuracy already with a few hundred training formulae.

Yet smaller training sets are possible through a wiser choice of the training
formulae: one can incrementally pick formulae significantly different (now that
we have a similarity measure on formulae) from those already added. Such active
learning results in a better coverage of the formula space, allowing for a more
parsimonious training set. Besides estimating robustness of concrete formulae,
one can lift the technique to computing STL-based distances between stochastic
models, given by differences of robustness over all formulae, similarly to [14]. To
this end, it suffices to resort to a dual kernel construction, and build non-linear
embeddings of formulae into finite-dimensional real spaces using the kernel-PCA
techniques [27]. Our STL kernel, however, can be used for many other tasks, some
of which we sketched in Introduction. Finally, to further improve its properties,
another direction for future work is to refine the quantitative semantics so that
equivalent formulae have the same robustness, e.g. using ideas like in [23].

Learning Model Checking 297

References

1. Amortila, P., Bellemare, M.G., Panangaden, P., Precup, D.: Temporally extended
metrics for markov decision processes. In: SafeAI@AAAI. CEUR Workshop Pro-
ceedings, vol. 2301. CEUR-WS.org (2019)

2. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: A complete quantitative deduction
system for the bisimilarity distance on markov chains. Log. Methods Comput. Sci.
14(4) (2018)

3. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R., Tang, Q., van Breugel, F.: Com-
puting probabilistic bisimilarity distances for probabilistic automata. In: CON-
CUR. LIPIcs, vol. 140, pp. 9:1–9:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2019)

4. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

5. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochas-
tic models using robustness of temporal properties. Theor. Comput. Sci. 587,
3–25 (2015). https://doi.org/10.1016/j.tcs.2015.02.046, https://doi.org/10.1016/j.
tcs.2015.02.046

6. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of
temporal logic properties. In: Proc. of FORMATS. pp. 23–37 (2014)

7. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Lectures on Runtime Verification, pp.
135–175. Springer (2018)

8. Billingsley, P.: Probability and measure. John Wiley & Sons (2008)

9. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A Deci-
sion Tree Approach to Data Classification using Signal Temporal Logic. In:
Hybrid Systems: Computation and Control. pp. 1–10. ACM Press (2016).
https://doi.org/10.1145/2883817.2883843

10. Bortolussi, L., Gallo, G.M., Křet́ınský, J., Nenzi, L.: Learning model checking
and the kernel trick for signal temporal logic on stochastic processes. Tech. Rep.
2201.09928, arXiv (2022), https://arxiv.org/abs/2201.09928

11. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations.
Springer Science & Business Media (2010)

12. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018)

13. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space
analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence 24(5),
603–619 (2002)

14. Daca, P., Henzinger, T.A., Kret́ınský, J., Petrov, T.: Linear distances be-
tween markov chains. In: Desharnais, J., Jagadeesan, R. (eds.) CONCUR.
LIPIcs, vol. 59, pp. 20:1–20:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.20, https://doi.org/
10.4230/LIPIcs.CONCUR.2016.20

15. Donzé, A., Ferrere, T., Maler, O.: Efficient robust monitoring for stl. In: Interna-
tional Conference on Computer Aided Verification. pp. 264–279. Springer (2013)

16. Ernst, G., Arcaini, P., Bennani, I., Donze, A., Fainekos, G., Frehse, G., Mathesen,
L., Menghi, C., Pedrielli, G., Pouzet, M., Yaghoubi, S., Yamagata, Y., Zhang, Z.:
Arch-comp 2020 category report: Falsification. In: Frehse, G., Althoff, M. (eds.)
ARCH20. 7th International Workshop on Applied Verification of Continuous and

L. Bortolussi et al.298

https://doi.org/10.1016/j.tcs.2015.02.046
https://doi.org/10.1016/j.tcs.2015.02.046
https://doi.org/10.1016/j.tcs.2015.02.046
https://doi.org/10.1145/2883817.2883843
https://arxiv.org/abs/2201.09928
https://doi.org/10.4230/LIPIcs.CONCUR.2016.20
https://doi.org/10.4230/LIPIcs.CONCUR.2016.20
https://doi.org/10.4230/LIPIcs.CONCUR.2016.20

Hybrid Systems (ARCH20). EPiC Series in Computing, vol. 74, pp. 140–152. Easy-
Chair (2020). https://doi.org/10.29007/trr1, https://easychair.org/publications/
paper/ps5t

17. Fainekos, G., Hoxha, B., Sankaranarayanan, S.: Robustness of specifications
and its applications to falsification, parameter mining, and runtime moni-
toring with s-taliro. In: Finkbeiner, B., Mariani, L. (eds.) Runtime Veri-
fication (RV). Lecture Notes in Computer Science, vol. 11757, pp. 27–47.
Springer (2019). https://doi.org/10.1007/978-3-030-32079-9 3, https://doi.org/10.
1007/978-3-030-32079-9 3

18. Haghighi, I., Mehdipour, N., Bartocci, E., Belta, C.: Control from sig-
nal temporal logic specifications with smooth cumulative quantitative
semantics. In: 58th IEEE Conference on Decision and Control, CDC
2019, Nice, France, December 11-13, 2019. pp. 4361–4366. IEEE (2019).
https://doi.org/10.1109/CDC40024.2019.9029429, https://doi.org/10.1109/
CDC40024.2019.9029429

19. Jacobs, S., Bloem, R., Colange, M., Faymonville, P., Finkbeiner, B., Khalimov,
A., Klein, F., Luttenberger, M., Meyer, P.J., Michaud, T., Sakr, M., Sickert, S.,
Tentrup, L., Walker, A.: The 5th reactive synthesis competition (SYNTCOMP
2018): Benchmarks, participants & results. CoRR abs/1904.07736 (2019)

20. Kim, E.: Everything you wanted to know about the kernel trick (but were too
afraid to ask). https://www.eric-kim.net/eric-kim-net/posts/1/kernel trick.html,
accessed on Jan 20, 2021

21. Kret́ınský, J., Manta, A., Meggendorfer, T.: Semantic labelling and learning for
parity game solving in LTL synthesis. In: ATVA. Lecture Notes in Computer Sci-
ence, vol. 11781, pp. 404–422. Springer (2019)

22. Maarleveld, T.R., Olivier, B.G., Bruggeman, F.J.: Stochpy: a comprehensive, user-
friendly tool for simulating stochastic biological processes. PloS one 8(11), e79345
(2013)

23. Madsen, C., Vaidyanathan, P., Sadraddini, S., Vasile, C.I., DeLateur, N.A., Weiss,
R., Densmore, D., Belta, C.: Metrics for signal temporal logic formulae. In: 2018
IEEE Conference on Decision and Control (CDC). pp. 1542–1547. IEEE (2018)

24. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Proc. FORMATS (2004)

25. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: CAV (1). Lecture Notes in Computer Science, vol. 10981, pp. 578–586.
Springer (2018)

26. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning. The
MIT Press, Cambridge, Massachusetts, second edition edn. (2018)

27. Murphy, K.P.: Machine learning: a probabilistic perspective. MIT press (2012)
28. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm

for learning temporal specifications from data. In: McIver, A., Horváth, A.
(eds.) QEST. Lecture Notes in Computer Science, vol. 11024, pp. 323–338.
Springer (2018). https://doi.org/10.1007/978-3-319-99154-2 20, https://doi.org/
10.1007/978-3-319-99154-2 20

29. Pallara, D Ambrosio, L., Fusco, N.: Functions of bounded variation and free dis-
continuity problems. Oxford University Press, Oxford (2000)

30. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: NIPS
2017 Workshop on Autodiff (2017), https://openreview.net/forum?id=BJJsrmfCZ

31. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT
Press (2006)

Learning Model Checking 299

https://doi.org/10.29007/trr1
https://easychair.org/publications/paper/ps5t
https://easychair.org/publications/paper/ps5t
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1007/978-3-030-32079-9_3
https://doi.org/10.1109/CDC40024.2019.9029429
https://doi.org/10.1109/CDC40024.2019.9029429
https://doi.org/10.1109/CDC40024.2019.9029429
https://www.eric-kim.net/eric-kim-net/posts/1/kernel_trick.html
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://openreview.net/forum?id=BJJsrmfCZ

32. Shawe-Taylor, J., Cristianini, N.: Kernel methods for pattern analysis. Cambridge
Univ Pr (2004)

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: CAV. Lecture Notes in Computer Science, vol. 2404,
pp. 223–235. Springer (2002)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

L. Bortolussi et al.300

http://creativecommons.org/licenses/by/4.0/

Verification Inference

Inferring Interval-Valued
Floating-Point Preconditions?

Jonas Krämer1, Lionel Blatter2, Eva Darulova3(�) , and Mattias Ulbrich2

1 itemis AG, Stuttgart, Germany §, jonas.kraemer@itemis.com
2 KIT, Karlsruhe, Germany {lionel.blatter,ulbrich}@kit.edu
3 Uppsala University, Uppsala, Sweden†, eva.darulova@it.uu.se

Abstract. Aggregated roundoff errors caused by floating-point arith-
metic can make numerical code highly unreliable. Verified postconditions
for floating-point functions can guarantee the accuracy of their results
under specific preconditions on the function inputs, but how to systemati-
cally find an adequate precondition for a desired error bound has not been
explored so far. We present two novel techniques for automatically syn-
thesizing preconditions for floating-point functions that guarantee that
user-provided accuracy requirements are satisfied. Our evaluation on a
standard benchmark set shows that our approaches are complementary
and able to find accurate preconditions in reasonable time.

1 Introduction

Floating-point arithmetic as defined by the IEEE 754 standard [18] is widely used
to approximate real arithmetic in embedded or scientific computing applications.
While allowing highly efficient computations, the limited precision of floating-
point numbers introduces roundoff errors in every single operation [24]. The
aggregated errors in computations where such rounding happens repeatedly are
challenging to understand and predict intuitively, so that a variety of techniques
and tools [10,14,11,29,21,22] have been developed that bound worst-case roundoff
errors. These techniques assume a given floating-point precision, e.g. uniform
double precision and a precondition ψ(x̄) that bounds a function’s possibly multi-
variate parameters (x̄), and automatically compute an upper-bound ε on the
function result’s absolute roundoff error (ferr (x̄))4:

∀x̄. ψ(x̄)→ ferr (x̄) ≤ ε (1)

Answering the inverse question can be equally useful: given a desired round-
off error bound and precision, for which inputs will the computation’s result be

§ Part of this work was done while the author was at KIT, Germany.
† Part of this work was done while the author was at MPI-SWS, Germany.
? Part of this work was funded by the AESC project supported by the Ministry of

Science, Research and Arts Baden-Württemberg (Ref: 33-7533.-9-10/20/1).
4 We provide more formalization details in the next section.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 303–321, 2022.
https://doi.org/10.1007/978-3-030-99524-9_16

http://orcid.org/0000-0002-6848-3163
http://orcid.org/0000-0002-2350-1831
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_16

J. Krämer et al.

at least this accurate? That is, given a postcondition specifying the error bound
for a floating-point function’s result, we want to infer a suitable precondition ψ.
Such preconditions can be useful for modular verification of larger floating-point
programs, or for efficient implementations: for inputs that satisfy the generated
precondition, the function can be evaluated using e.g. efficient double-precision
floating-point arithmetic, instead of a more accurate but significantly more ex-
pensive arbitrary-precision arithmetic [2] that would have to be used for the
remaining input space.

Outside the analysis of floating-point software, the automatic synthesis of
preconditions for software components is not a new field of study. Dijkstra’s
weakest precondition calculus [12], while not originally intended to be used for
specification inference, can generate weakest preconditions. However, when ap-
plied to a floating-point function, it creates a precondition that still contains the
floating-point arithmetic of the analyzed program and is, thus, not simpler than
the program itself. Recent approaches (targeting non-floating-point programs)
for specification inference [23,28,7,13] similarly do not attempt to abstract from
arithmetic operations and their inaccuracies.

This paper introduces two novel techniques for synthesizing sound and ab-
stract preconditions for floating-point functions. The inferred preconditions ψ(x̄)
are sound, by which we mean that they are guaranteed to satisfy Eq. (1) for a
user-specified error bound ε. The preconditions are abstract in the sense that
they do not contain any floating-point arithmetic operations.

We choose to synthesize interval-valued preconditions that bound each func-
tion parameter by a lower and an upper bound, i.e. x ∈ [a, b]. Such preconditions
avoid floating-point arithmetic, and thus roundoff errors, as evaluating them re-
quires only comparisons with constants. Our preconditions are relatively simple
on purpose to ensure compatibility with current sound roundoff verification tech-
niques that internally rely on interval-based abstractions. While more complex,
e.g. nonlinear, constraints may be more precise, they are not well-supported by
state-of-the-art verifiers and thus their benefit would be (currently) lost.

While we aim to synthesize weak preconditions that cover much of the in-
put space, weakest preconditions are not necessarily helpful in the context of
floating-point computations. The reason is that the space of inputs satisfying a
postcondition—especially one bounding the roundoff error—is in general highly
discontinuous due to the discrete nature of floating-point arithmetic. A weakest
precondition would thus consist of a large conjunction, with individual terms
often covering only a few values, and would hence not be practically useful.
Instead, we aim to find preconditions that balance precision (are as weak as
possible) and complexity (are simple and can be evaluated efficiently).

We are not aware of an existing approach for generating such sound floating-
point preconditions; we thus choose to introduce and explore two quite different
techniques that build on existing dynamic and static floating-point analyses in
a novel way. Both approaches start by dynamically sampling the analyzed func-
tion in order to find likely precondition candidates and then use a verification
backend to refine them until their soundness can be guaranteed. The first recur-

304

Inferring Interval-Valued Floating-Point Preconditions

sive subdivision approach does this by recursively subdividing the input space
into increasingly smaller cells, discarding those where sampling shows that the
postcondition is not satisfied for the contained inputs, and attempting to verify
the rest. Since such generated preconditions may still contain a large number
of discontinuous subdomains, we further present an optimization algorithm that
soundly approximates the preconditions with significantly simpler expressions
that can be evaluated more efficiently. The second classification tree approach
learns areas of inputs for which the postcondition holds based on a classification
tree learned from the dynamic samples, and iteratively refines verified precon-
ditions in these areas.

Our approaches guarantee soundness of the generated preconditions by veri-
fying each individual interval domain in the preconditions using a sound floating-
point roundoff error analyzer. Our approach is generic in the choice of this tool;
we integrate the floating-point verification framework Daisy [10].

We evaluate and compare our proposed approaches on benchmarks from
the standard floating-point benchmark suite FPBench [8] and show that the ap-
proaches are able to find adequate preconditions that (1) are syntactically simple
and cheap to evaluate and (2) are relatively weak, i.e. good approximations of
the weakest preconditions covering large areas of the input space, thus balancing
complexity and permissiveness. For most benchmarks, our approaches find pre-
conditions in under 20 minutes (and often significantly faster). We demonstrate
a possible application of our inferred preconditions for performance improve-
ments on a case study using a kernel from a real-world material sciences code
that inspired this work.

Contributions In summary, this paper makes the following contributions:

– Two independent novel inference algorithms that generate interval-valued
preconditions for floating-point functions. They are the first of their kind.

– An open-source implementation of both approaches as part of the Daisy
floating-point analysis framework.

– An extensive evaluation on 99 benchmarks and a case study showing the
effectiveness of our precondition inference.

2 Overview

Before explaining our approaches in detail, we provide a high-level overview
using an example. Consider the two-dimensional function himmilbeau from the
floating-point benchmark suite FPBench [8], introduced to evaluate optimization
algorithms [16], and defined as

f̂(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 .

We denote by f̂ : Rn → R the ideal, real-valued specification of the func-
tion that a developer may want to compute (where n is the number of function

305

arguments, n = 2 for our example). While such a function can in principle be im-
plemented exactly, e.g. using rational arithmetic, such an evaluation is generally
slow. Hence, in practice, the function would be implemented in finite precision.
In this paper, we consider double-precision (64 bit) IEEE 754 [18] floating-point
arithmetic, which is one of the most commonly used finite precisions (though
our approach generalizes to other floating-point precisions as well). We denote
this finite-precision implementation by f : Fn → F.

When evaluating f , each computed intermediate value has to be potentially
rounded to a value that is representable in finite precision, introducing a roundoff
error. While each roundoff error individually is (usually) small, the errors propa-
gate and accumulate during the computation, resulting in potentially large errors
on a function’s result [20]. It is thus important to be able to make statements

about this error, for instance as an absolute error: ferr (x̄) = |f̂(x̄)−f(x̄)|, x̄ ∈ Fn,
where we assume that x̄ are ‘finite’ values and not one of the Not-a-Number or
Infinity special floating-point values. Our approach assumes and proves that
all computations remain within the number ranges of the chosen floating-point
precision and that special values never occur during expression evaluation.

In this paper, we aim to synthesize an interval-valued precondition ψ(x̄) that
satisfies Eq. (1) (∀x̄. ψ(x̄)→ ferr (x̄) ≤ ε) where ψ is of the form:

m∨
k=1

n∧
i=1

xi ∈ [ak,i, bk,i]

I.e. such a precondition represents the (set-theoretic) union of m domains of
dimension n. To obtain a precondition that can be efficiently checked, we aim
to keep m small (< 10), while the precondition should nonetheless be as weak
as possible, i.e. cover as much of the input space as possible.

Our precondition inference starts from an initial search area which may be
either specified by the user, be defined, for example, by an embedded sensor
output domain, or be computed by a static analysis on the call site(s) of f . For
our himmilbeau example, we assume x1, x2 ∈ [−20, 20] as the search area, and
ε = 1.4211e-12 as the target error bound.

In the first step, our approach samples inputs from the initial search area at
random, and evaluates the function f on each input in double precision arith-
metic and approximates its corresponding specification f̂ using 128 bit arbitrary-
precision arithmetic [2]. Comparing the results from the double- and higher-
precision evaluations gives us an estimate of the roundoff error. We use this
estimate to mark each input as valid or invalid, i.e. as satisfying or violating
the postcondition, respectively. Fig. 1 shows the valid and invalid samples for
our running example in blue and red, respectively. Note that the error bounds
obtained from these samples do not have to be sound, as they are used only for
guiding the precondition search; our technique will use static analysis to verify
each precondition candidate soundly. Furthermore, the sampling also does not
need to identify the exact bounds between valid and invalid samples. As Fig. 1
indicates, such bounds would lead to highly discontinuous preconditions that
would be of limited practical use.

J. Krämer et al.306

(a) Precondition with subdivision (b) Optimized precondition

Fig. 1: The sampled himmilbeau function. Blue and red points indicate valid and
invalid input values, respectively. The rectangles show the inferred preconditions.

Starting from these samples, we explore two techniques. First, we use inter-
val subdivision to subdivide the initial search area into equal interval regions
(domains such that every dimension is bounded by an interval), and then check
each region individually using sound static analysis for whether it is a valid part
of the precondition. Fig. 1a shows the generated precondition in green. To reduce
the number of regions in the precondition for a simpler and more efficient pre-
condition, we propose an optimization algorithm that approximates the initial
verified precondition with fewer, larger regions; the result of this optimization is
shown in Fig. 1b.

Subdivision may be inefficient when only a small part of the initial search
area constitutes a valid precondition. We thus further explore an approach based
on classification tree learning that starts from the valid and invalid samples and
learns an initial candidate precondition, or a set of candidates if the space of
valid samples is disjoint. Then, we again use static error verification to search
for sound preconditions. Fig. 2a shows the generated precondition in green.

Ultimately, an inferred precondition allows us to refactor floating-point pro-
grams such that they use computations in floats if the result is known to be
accurate, and resort to high-precision libraries otherwise. For example, a C-
implementation of the himmilbeau example using the precondition from Fig. 1b,
achieves a 8.6% speed-up against a pure high-precision implementation (on ran-
domly chosen inputs from the range [−20, 20]). The precondition that triggers
the optimization covers 11.5% of the input domain, hence the size of a precon-
dition nearly directly translates to performance improvements.

The inferred precondition will in general be stronger than the weakest pos-
sible precondition, i.e. our inferred preconditions do not cover all of the blue
points in Fig. 1 and Fig. 2. There are several reasons: The verification backend

Inferring Interval-Valued Floating-Point Preconditions 307

(a) Precondition with classification tree (b) Precondition for range postcondition

Fig. 2: Inferred preconditions for himmilbeau using the classification tree ap-
proach for the error postcondition, and subdivision for the range postcondition.

has to rely on abstractions and can thus not always verify a valid precondition
candidate. Furthermore, due to runtime considerations of our algorithm, the
approaches cannot operate on arbitrarily detailed intervals.

Finally, while we discussed our precondition inference for postconditions that
target an error bound, our approach equally works for postconditions that specify
a target range, e.g. that require that the value of the result of our himmilbeau

function is within given bounds (f(x̄) ∈ [−100, 100]). We show the precondition
inferred for this case using subdivision and subsequent optimization in Fig. 2b.

3 Precondition Inference by Subdivision

The first approach that we propose finds preconditions by recursively splitting
the initial search area along the parameter axes until it finds interval domains
for which the verification backend is able to prove that the target postcondition
holds for all inputs. This approach is inspired by interval subdivision that is
being used, for example, in roundoff error bound analysis to reduce the amount
of over-approximations due to abstractions.

However, a naive application of subdivision for precondition inference is not
practical. Each parameter’s interval has to be subdivided several times in order
to find verifiable preconditions, leading to a large number of regions especially
for multi-variate functions. If we then run the relatively expensive verification
procedure on each of these regions, the overall running time quickly becomes
unreasonable. Furthermore, a precondition consisting of a large number of small
interval regions is inefficient to evaluate and unwieldy. We thus combine static
and dynamic verification (Sec. 3.1), and optimize the generated preconditions to
yield more compact representations (Sec. 3.2).

J. Krämer et al.308

Fig. 3: Illustration of recursive subdivision in two dimensions.

Algorithm 1 Recursive Subdivision

1: given arithmetic expression expr , postcondition post
2: procedure extractPre(node)
3: if node ∈ valid then
4: if verify(node.region, expr, post) then
5: return node.region

6: if node is a leaf then return ∅
7: else return extractPre(n.left) ∪ extractPre(n.right)

3.1 Extracting a Verified Precondition from Subdivisions

Our approach starts by building a binary tree, where each node represents an
interval region in the search area. The tree is generated by recursively splitting
intervals along one parameter axis into two equally sized intervals (called left
and right), splitting along each parameter axis in turn. The top part of Fig. 3
illustrates this subdivision for a two-dimensional example and with a maximum
subdivision depth of 4. From left to right, the nodes are repeatedly subdivided
until there are 16 leaf nodes.

Our algorithm then runs dynamic sampling (as described in Sec. 2) for each
leaf node l. A node l is marked as valid (blue check marks in Fig. 3) if the post-
condition is satisfied for all samples, and as invalid (red cross marks) otherwise.
The middle part of Fig. 3 shows how these markers ascend to the root of the
tree: An inner node i is marked valid if and only if both of its children are valid:
i ∈ valid ↔ (i .left ∈ valid ∧ i .right ∈ valid).

Next, our approach performs a recursive descent (shown in Algorithm 1) from
the root node to extract the precondition. The verification backend is queried
(verify in the algorithm) to verify that intervals are valid (sound) preconditions
for all inputs in a given region. As a heurisitic, verification is attempted as close
to the root of the tree as possible, as thus a single verification attempt can verify

Inferring Interval-Valued Floating-Point Preconditions 309

Fig. 4: Approximating generated preconditions.

a larger volume. On the other hand, the verification is more likely to fail, which
may increase running time of the algorithm. Verification is futile and thus not
attempted for an invalid node (node 6∈ valid). In this case, or if the verification
back-end fails to verify, the procedure descends further down the tree.

The bottom part of Fig. 3 illustrates this procedure. No verification is at-
tempted on the root node and its first degree children as they are invalid. Ver-
ification is attempted for the two valid grandchild nodes of the root that were
marked with a blue check mark. For the lower right node verification is success-
ful, so there is no need to further descend to its child nodes. Verification fails for
the left one, which means it has to be subdivided again, like its two remaining
sibling nodes. Sometimes subdivision is needed to verify a region even if all of it
is ultimately verifiable, such as the lower left region in the last subdivision step.
The reason for this is that subdivision generally reduces over-approximations
due to the abstractions that the sound verification procedure relies on, and thus
often allows to compute tighter error bounds [10].

The maximum subdivision depth controls the precision of the approach.
With larger depth, the generated preconditions can have a larger volume, i.e. be
weaker, but this comes at the cost of a longer running time of the algorithm.

The union of all valid regions extracted from the tree is returned as a pre-
condition. This precondition is sound, since each region has been verified by a
sound roundoff error analysis.

3.2 Precondition Optimization

Depending on the subdivision depth, the number of individual regions in a gen-
erated precondition can easily reach into the thousands. We observed that one
can often approximate the result with significantly fewer regions, while only
marginally reducing their volume. Fig. 4 shows an example precondition gen-
erated by subdivision on the left, and the optimized precondition on the right.
The precondition on the right needs only two regions instead of 8, and covers
most of the originally generated precondition and is thus only slightly stronger.

Note that simply picking the largest individual interval regions from the gen-
erated precondition is in general insufficient: larger regions may be found within
the verified area by composing parts of different intervals into larger ones. While
one could in principle use simplification algorithms inside constraint solvers for

J. Krämer et al.310

x2 ≤ 4. 3

x2 ≤ - 4. 0

x2 ≤ - 4. 6 x1 ≤ 4. 7

x1 ≤ - 2. 9 x1 ≤ - 4. 3

x2 ≤ 1. 2x1 ≤ - 4. 8

(a) Positive/negative decisions have solid/dashed
lines. Leaves can be valid (3) or invalid (7).

(x1 ∈ [−4.8,−2.9] ∧
x2 ∈ [−4.6,−4.0])

∨
(x1 ∈ [−4.2, 4.7] ∧
x2 ∈ [1.2, 4.3])

(b) Precondition candidate.

Fig. 5: A sample classification tree and the extracted precondition candidate

this task, such algorithms are not targeting our use-case, i.e the smallest formula
that covers the biggest valid region.

Thus, we propose an optimization that starts by identifying the interval re-
gion that covers the largest verified area and that possibly (partially) covers
several interval regions from the originally generated precondition. It then it-
eratively repeats this process and keeps adding regions that provide the most
additional coverage. Since our algorithm is greedy, it is not guaranteed to find
an optimal solution, but our experiments have shown that the approximation is
very decent even for small numbers of representing regions. Since only regions
covering verified areas are added, the optimized precondition is sound. This op-
timization is also fast compared to the rest of the procedure, since it does not
run roundoff verification.

This precondition optimization step can be applied on preconditions obtained
from both inferences approaches (recursive subdivision and the refinement ap-
proach from the upcoming section), but the effects are more pronounced for the
subdivision approach as it usually produces results with more individual regions.

4 Precondition Inference by Decision Tree Learning

Our second precondition inference technique leverages the dynamic samples in
a different way: it uses them to generate initial precondition candidates using
decision tree learning [4], a well-known algorithm in supervised machine learning.
These candidates are subsequently refined to obtain sound preconditions. We
consider two such refinements in Sec. 4.2 and Sec. 4.3.

4.1 Extracting Candidates from a Classification Tree

First, our algorithm samples the search area as described in Sec. 2, and marks
each sample as valid or invalid depending on whether or not it satisfies the
postcondition. The marked or ‘classified’ samples serve as the training data to
train a classification tree (CT) using decision tree learning. A CT is a binary

Inferring Interval-Valued Floating-Point Preconditions 311

(a) (b) (c)

Fig. 6: Illustration of a single candidate (blue rectangle) refinement

tree in which the inner nodes are tests on the data and each leaf is labeled with
a category. To classify an individual input, one follows the path given by the
tests in the CT and obtains the label of the reached leaf as an answer.

We use CTs to find a simple classification that separates the valid from the
invalid samples. Fig. 5a shows such a CT for our example himmilbeau function.
Note that all tests in the CT are comparisons between a variable and a con-
stant. From this CT, we can extract representations for the category valid by
enumerating all paths from the root to valid leaves and collect (i.e. conjoin) all
conditions (resp. their negation for negative edges). Due to the choice of simple
comparisons with constants for tests, the result can be expressed as bounds on
the input variables, which describes a set of interval regions. Fig. 5b shows the
(simplified) precondition candidates extracted from Fig. 5a.

4.2 Refining Candidates by Growing Regions

Heuristics are applied when training CTs, and the classification has only been
obtained from a set of few random samples. It is hence very likely that the
candidates still contain inputs for which the desired postcondition does not hold.
They need to be processed to obtain valid preconditions.

Fig. 6 illustrates our first candidate refinement process. The outer blue square
represents the initial candidate. The verification backend is used to identify
regions within it that verifiably are preconditions, shown as filled green rectangles
in the figure. First, a small initial region in the center of the candidate is grown as
much as possible without losing verifiability (Fig. 6a). When the maximal region
has been found, additional precondition regions are inferred along the boundary
of the region (Fig. 6b). To this end, extension candidates (two examples are
shown as red rectangles) are identified as the largest possible regions to add
in particular directions. The mentioned growing mechanism infers maximum
regions within the extension candidates. For every added region, the extension
process is repeated (Fig. 6c) until a maximum refinement depth has been reached.

Algorithm 2 shows the pseudocode procedure refineCandidate returning
a verified precondition for a candidate region. The algorithm keeps a set M of
extension candidates and searches for the largest verifiable region inside each
extension candidate using binScaleSearch (binary search on interval regions)

J. Krämer et al.312

Algorithm 2 Candidate Refinement

1: given arithmetic expression expr , postcondition post , binary search depth d
2: procedure refineCandidate(region)
3: result ← ∅
4: M ← {(center(region), region)}
5: while M 6= ∅ do
6: choose (min,max) ∈M and remove
7: verified ← binScaleSearch(min,max)
8: if verified 6= ∅ then
9: result ← result ∪ {verified}

10: M ←M ∪ genExtensionCandidates(verified ,max)

11: return result

which invokes the verification backend. The procedure center computes the
center of a region used as the starting point for growing an initial solution, and
genExtensionCandidates produces new extensions candidates (in form of
min/max pairs of regions) to be explored.

In the implementation, the set M is realized as a priority queue favoring
potential additions far from the original candidate’s border that can thus grow
easily, and the number of iterations is bounded by a configurable parameter.

4.3 Refining Candidates by Recursive Subdivision

Instead of this refinement approach for precondition candidates, the subdivision
technique from Sec. 3 can alternatively also be applied to obtain valid precondi-
tions from candidates. The candidate production using a CT then serves as a first
step narrowing an initial search region to a smaller region in which subdivision
can operate productively, in particular because a finer mesh can be applied on
the interesting regions, which is better for verification with the backend verifier.

5 Evaluation

Implementation We implemented both precondition inference approaches in the
open-source tool Daisy [10], building on the static range and error analyses that
Daisy provides. In particular, we use Daisy’s interval analysis for computing real-
valued ranges and affine arithmetic for computing roundoff error bounds. We use
the DecisionTree class from the Smile library [1] for classification tree learning.
Empirically, we have identified the following default parameters that produce
good results on the benchmarks on average, while not being prohibitive for larger
benchmarks: we limit the maximum depth for classification tree learning to 8 and
the depth for binary search during refinement in the classification tree approach
to 10. When combining classification tree learning with subdivision, we limit the
decision tree depth at 12. We use 8192 samples for classification tree learning
and 16 samples per subdivided region for our subdivision approach.

Inferring Interval-Valued Floating-Point Preconditions 313

Benchmarks We evaluate our precondition inference approaches on benchmarks
from the benchmark suite FPBench [8] that is widely used in the floating-point
research community. Each benchmark consists of an arithmetic expression and
typically comes with a precondition specifying the input domain of the expres-
sion. For a few benchmarks where no input domain is given, we add one manually.
For our evaluation, we require a postcondition to be given that specifies a target
error bound or a range. Since these are not provided by FPBench as-is, we gen-
erate them for our experiments as follows. We compute error bounds and result
ranges based on the existing original input domains as specified in FPBench,
and use these as two separate target postconditions. We exclude benchmarks for
which Daisy is not able to compute errors or ranges, e.g. because they contain
conditional statements. In total, we generate a set of 99 benchmarks with post-
conditions specifying an error bound, and a separate set of 99 benchmarks with
postconditions specifying a target range, with the following dimensionalities:

dimension 1 2 3 4 6 8 9

benchmarks 33 29 16 4 12 1 4

Baseline In the absence of existing tools for floating-point precondition inference
or the ground truth5, we compare the preconditions inferred by our approaches
against the original preconditions specified in FPBench. Indeed, the original
precondition from FPBench is—by construction—a valid precondition.

We measure the quality of an inferred precondition as a relative volume, i.e.
the ratio of the volume of the generated precondition over the volume of the orig-
inal precondition. A relative volume greater than one is obtained if the original
domain specification is strong and the approaches discover valid preconditions
beyond the original specification. For many benchmarks, however, obtaining a
relative volume close to one is close to the optimal result. (Measuring the abso-
lute volumes is not meaningful as they are highly benchmark dependent.)

Setup Our techniques rely on an initial search area provided by the user. While
it may be convenient if our algorithms considered an unbounded initial space,
i.e. all possible floating-point values, this is practically infeasible. The valid pre-
condition typically covers only a very small part of this ‘unbounded’ domain,
and it would thus be computationally very expensive to search for.

For our evaluation, we consider two sets of initial search areas: We use the
original domain specified in FPBench scaled uniformly around their centers to
contain 100 times the original volume, and we use a large fixed initial domain
for all benchmarks bounding all input arguments in [−108, 108]. For both initial
search areas, it is unlikely that the entire area would be a valid precondition.

Comparison of Approaches Simply comparing the relative volume of the precon-
ditions does not consider that each approach would be able to produce bigger
preconditions by investing more computational effort. Conversely, the running

5 The exact ground truth would be highly discontinuous, and would require sampling
of all floating-point inputs, which is infeasible for double precision.

J. Krämer et al.314

precondition: error range

TO fail best TO fail best

scaled search area

subdivision 14 2 67 10 2 56

tree refinem. 6 3 22 9 3 24

hybrid 6 2 11 5 9 23

fixed search area

subdivision 333 57 22 312 80 8

tree refinem. 344 73 4 319 81 4

hybrid 344 56 8 320 79 3

Fig. 7: Summary statistics
Fig. 8: Cactus plot evaluating the
precondition optimization

times cannot be compared in isolation. Thus, we compare the relative volumes
of generated preconditions per invested time6. We use a timeout of 20 minutes
for each benchmark and parameter setting.

We consider our effectively three approaches: subdivision, tree refinement
(with growing candidates), and tree refinement with subdivision, that we call
hybrid for the sake of this evaluation. For this comparison, we initially do not
use the precondition optimization from Sec. 3.2, and evaluate it separately. We
observe that for the subdivision and the hybrid approach, the maximum depth
of the subdivision tree significantly affects the running time of the algorithm. For
the tree refinement, the most relevant parameter is the number of refinement can-
didates considered for the growing-based refinement. We thus vary these parame-
ters and keep all others to the default values given in Sec. 5. In total, we run 3762
experiments using the scaled and 1782 experiments using the fixed search area.

Fig. 7 summarizes our results. ‘TO’ counts the number of times an individual
run timed out. ‘Fail’ means that no precondition was found by a search strategy
for any of the tested parameters. ‘Best’ counts the number of benchmarks for
which an approach was able to find the best (weakest) precondition (with any
parameter setting); when the numbers do not add up to 99, it is due to ties.

Clearly, our precondition inference is more effective for the scaled search area
benchmarks; it is able to find preconditions in nearly all runs. However, it is
able to find some preconditions even for the very large area, where the verifiable
regions are often vanishingly small. Also, we observe that no one approach is
universally better than the others, as each is best on some set of benchmarks.

Fig. 9 visualizes the relative volumes of generated preconditions by the dif-
ferent approaches per running time of the algorithm, for benchmarks where the
postconditions bound the roundoff error and for the scaled input search ar-
eas. Each point corresponds to one parameter setting. Fig. 9a averages over all
benchmarks, whereas Fig. 9b averages only over benchmarks where the gener-

6 We ran all experiments on a Mac mini with an 6-core Intel i5 processor at 3 GHz
with 16 GB RAM running macOS Catalina.

Inferring Interval-Valued Floating-Point Preconditions 315

0 100 200 300 400 500 600
time (s)

10

15

20

25

30

35

40

45

50

vo
lu

m
e

pe
r o

rig
in

al
 p

re
co

nd
iti

on
 v

ol
um

e

subdivision
tree refinement
hybrid

(a) Average over all benchmarks

0 50 100 150 200 250 300 350
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

vo
lu

m
e

pe
r o

rig
in

al
 p

re
co

nd
iti

on
 v

ol
um

e

subdivision
tree refinement
hybrid

(b) Average for small preconditions

Fig. 9: Comparison of approaches without optimization: average relative volume
per time (seconds) for error postconditions and 100x search area.

0 100 200 300 400
time (s)

5

10

15

20

25

vo
lu

m
e

pe
r o

rig
in

al
 p

re
co

nd
iti

on
 v

ol
um

e

subdivision
tree refinement
hybrid

(a) Average over all benchmarks

0 5 10 15 20
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

vo
lu

m
e

pe
r o

rig
in

al
 p

re
co

nd
iti

on
 v

ol
um

e

subdivision
tree refinement
hybrid

(b) Average for small preconditions

Fig. 10: Comparison of approaches without optimization: average relative volume
per time (seconds) for range postconditions and 100x search area.

ated precondition was small, i.e. at most 1.2 times the original precondition. We
show the analogous plots for the range postconditions in Fig. 10.

We observe that averaged over all benchmarks, the subdivision and hybrid
approaches perform significantly better than the tree refinement approach. In
fact, our techniques are able to identify preconditions that are, on average, sig-
nificantly larger than the original precondition. If we consider only those 33
benchmarks, where only a relative small precondition was generated, we see
that tree refinement shows the, on average, best benefit. For our range bench-
marks (Fig. 10), we observed on average a slight benefit of the hybrid approach
for small preconditions. Note that even when ‘small’ preconditions are generated,
they nearly cover the entire input search area, i.e. our precondition inference is
able to recover most of the original preconditions.

J. Krämer et al.316

Precondition Optimization Finally, we evaluate the effectiveness of the precondi-
tion optimization on the subdivision and hybrid approach (we have not observed
the optimization to be particularly useful for tree refinement). For this evalua-
tion, we fix a particular parameter setting that achieves a good trade-off between
relative volume of inferred preconditions and running time of inference. Then
we vary the number of target regions that the optimization should produce. On
average, the preconditions generated for this experiment consisted of 120 dis-
tinct regions before optimization. For each run, we compute the coverage of the
optimized precondition, i.e. the ratio of the optimized over the non-optimized
inferred precondition. Fig. 8 visualizes the results of this experiment as a cactus
plot where we sort the runs by coverage. For example, the value 0.27 for 1 re-
gion at the 20th percentile means that in 80% of the runs, the coverage of the
optimized precondition was at least 0.27. As expected, the more regions are al-
lowed, the better the coverage of the optimized preconditions becomes. Overall,
we see that our inference with optimization is able to generate relatively simple
preconditions (i.e. with just a few regions) in reasonable time that nonetheless
cover large parts of the verifiable area for many of the benchmarks.

Case Study We demonstrate the benefits of our precondition inference on a prac-
tical problem that inspired this work. We consider the 9-dimensional function
to calculate the scalar triple product α · (β × γ) of three 3-dimensional vectors
α, β, γ ∈ R3, based on the requirements of an assumed use case: each parameter
will be within a range of [−1337, 1337], and we require the error of the result to
be at most 3 · 10−6. This use case arose in a convex hull algorithm for scientific
computing in material sciences.

Running the recursive subdivision approach for this expression with a sub-
division depth of 14 and 262144 samples yields the following results: In roughly
13 minutes, the approach produces a precondition that covers about 67 percent
of the search area and consists of 4608 individual intervals. In another 112 sec-
onds, the optimization algorithm produces a precondition consisting of only two
intervals which together cover 51% of the verified area and 34% of the search
area. Using this optimized precondition, we can create a hybrid implementa-
tion of the original function, which decides whether to use a (exact) rational or
floating-point version dynamically. Even with the added overhead from checking
the precondition, the required runtime reduces from 17.13s for a purely rational
implementation to 10.77s for the hybrid implementation for running the function
100000 times with random inputs from the input space. A similar speedup can
be observed when using a higher precision floating-point implementation instead
of an exact rational implementation in case the precondition does not hold.

6 Related Work

The precondition synthesis approaches presented in this work rely on state-of-
the-art floating-point verification and analysis tools to verify precondition can-
didates and guarantee their soundness. While we have used the Daisy framework

Inferring Interval-Valued Floating-Point Preconditions 317

[10] as a verification backend, any tool able to calculate sound bounds for errors
or result ranges of floating-point functions could be used instead: Fluctuat [14],
Gappa [11], FPTaylor [29], Real2Float [21] and PRECiSA [22].

We are not aware of an existing technique that can generate sound precon-
ditions for floating-point functions. The closest related techniques are optimiza-
tions that identify certain parts of the input domain, for which a rewriting of
the input program results in a smaller roundoff error [26,32,30]. These rewrit-
ings are based on real-valued identities, leveraging the fact that floating-point
arithmetic is e.g. not associative, or polynomial approximations. The split of the
input domain can be viewed as a kind of precondition, however, the goal and
guarantees provided are very different. The aim is to identify and repair large
roundoff errors, whereas our approach tries to identify the input domain with
reasonable errors. Furthermore, all of the techniques rely on dynamic analysis
and thus do not provide soundness guarantees.

Dynamic analysis is frequently being used to estimate the magnitude of
roundoff errors [3], and several works have developed a targeted search towards
inputs that cause particularly large errors [31,6,33], in order to identify worst-
case errors. Our precondition inference combines dynamic and static analysis in
a novel way in that the dynamic analysis serves a pre-processing step to explore
the input domain. As such, the goal of our dynamic analysis is different from ex-
isting ones, as we want it to explore the input domain evenly, instead of focusing
on a (possibly small) part of the input domain with large errors.

One possible use of our inferred preconditions is to be able to generate im-
plementations that choose an efficient floating-point precision whenever possi-
ble, and otherwise use some ‘safe’ higher precision. In that, our approach is
related to mixed-precision tuning techniques that mostly focus on implementa-
tions that mix single, double and quad floating-point precision. Some of these
use dynamic analysis to estimate errors and thus do not provide sound guar-
antees [25,19,17,15], and others use static analysis with accuracy guarantees,
but less scalability [5,9]. Mixed-precision tuning generally works well when the
target error bounds are close to the error bounds of uniform-precision imple-
mentations [9,27]. We consider mixed-precision tuning complementary to our
precondition inference; for instance, preconditions generated by our approaches
could be used as a starting-point for mixed-precision tuning.

7 Conclusion

We have presented the first precondition inference techniques from floating-point
accuracy and range postconditions, using a combination of dynamic and static
analysis. Each of the three approaches that we explored generate good results
from reasonably sized initial search areas with acceptable computational effort
and have different strengths and weaknesses; neither approach is universally
better than the others. One of the main challenges for future work is to improve
the identification of preconditions when the initial search areas are very large,
which we have identified as a particular challenge.

J. Krämer et al.318

References

1. Smile - Statistical Machine Intelligence and Learning Engine, https://haifengl.
github.io/

2. The GNU MPFR Library (2020), https://www.mpfr.org/
3. Benz, F., Hildebrandt, A., Hack, S.: A Dynamic Program Analysis to Find

Floating-Point Accuracy Problems. In: Programming Language Design and Im-
plementation (PLDI) (2012). https://doi.org/10.1145/2254064.2254118

4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC press (1984)

5. Chiang, W.F., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
marić, Z.: Rigorous Floating-Point Mixed-Precision Tuning. In: Principles of Pro-
gramming Languages (POPL) (2017). https://doi.org/10.1145/3009837.3009846

6. Chiang, W., Gopalakrishnan, G., Rakamaric, Z., Solovyev, A.: Efficient Search for
Inputs Causing High Floating-Point Errors. In: Principles and Practice of Parallel
Programming (PPoPP) (2014). https://doi.org/10.1145/2555243.2555265

7. Claessen, K., Smallbone, N., Hughes, J.: QuickSpec: Guessing Formal Specifica-
tions Using Testing. In: Tests and Proofs (2010). https://doi.org/10.1007/978-3-
642-13977-2 3

8. Damouche, N., Martel, M., Panchekha, P., Qiu, C., Sanchez-Stern, A., Tatlock, Z.:
Toward a Standard Benchmark Format and Suite for Floating-Point Analysis. In:
Numerical Software Verification (2017). https://doi.org/10.1007/978-3-319-54292-
8 6

9. Darulova, E., Horn, E., Sharma, S.: Sound Mixed-Precision Optimization with
Rewriting. In: International Conference on Cyber-Physical Systems (ICCPS)
(2018). https://doi.org/10.1109/ICCPS.2018.00028

10. Darulova, E., Izycheva, A., Nasir, F., Ritter, F., Becker, H., Bastian, R.: Daisy -
Framework for Analysis and Optimization of Numerical Programs (Tool Paper).
In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(2018). https://doi.org/10.1007/978-3-319-89960-2 15

11. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving
rounded operators. ACM Transactions on Mathematical Software 37(1) (2010).
https://doi.org/10.1145/1644001.1644003

12. Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal
Derivation of Programs. Communications of the ACM 18(8) (1975).
https://doi.org/10.1145/360933.360975

13. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C.,
Tschantz, M.S., Xiao, C.: The Daikon System for Dynamic Detection
of Likely Invariants. Science of Computer Programming 69(1-3) (2007).
https://doi.org/10.1016/j.scico.2007.01.015

14. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Verification, Model Checking, and Abstract Interpretation (VMCAI) (2011).
https://doi.org/10.1007/978-3-642-18275-4 17

15. Guo, H., Rubio-González, C.: Exploiting Community Structure for Floating-Point
Precision Tuning. In: International Symposium on Software Testing and Analysis
(ISSTA) (2018). https://doi.org/10.1145/3213846.3213862

16. Himmelblau, D.M., Clark, B.J., Eichberg, M.: Applied Nonlinear Programming.
McGraw-Hill (1972)

17. Ho, N., Manogaran, E., Wong, W., Anoosheh, A.: Efficient Float-
ing Point Precision Tuning for Approximate Computing. In: Asia

Inferring Interval-Valued Floating-Point Preconditions 319

https://haifengl.github.io/
https://haifengl.github.io/
https://www.mpfr.org/
https://doi.org/10.1145/2254064.2254118
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1145/2555243.2555265
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-642-13977-2_3
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/1644001.1644003
https://doi.org/10.1145/360933.360975
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1145/3213846.3213862

and South Pacific Design Automation Conference (ASP-DAC) (2017).
https://doi.org/10.1109/ASPDAC.2017.7858297

18. IEEE Computer Society: IEEE Standard for Floating-Point Arith-
metic. IEEE Std 754-2019 (Revision of IEEE 754-2008) (2019).
https://doi.org/10.1109/IEEESTD.2019.8766229

19. Lam, M.O., Vanderbruggen, T., Menon, H., Schordan, M.: Tool
Integration for Source-Level Mixed Precision. In: Workshop on
Software Correctness for HPC Applications (Correctness) (2019).
https://doi.org/10.1109/Correctness49594.2019.00009

20. Loh, E., Walster, G.W.: Rump’s Example Revisited. Reliable Computing 8(3)
(2002). https://doi.org/10.1023/A:1015569431383

21. Magron, V., Constantinides, G., Donaldson, A.: Certified Roundoff Error Bounds
Using Semidefinite Programming. ACM Transactions on Mathematical Software
43(4) (2017). https://doi.org/10.1145/3015465

22. Moscato, M., Titolo, L., Dutle, A., Muñoz, C.A.: Automatic Estimation of Verified
Floating-Point Round-Off Errors via Static Analysis. In: Computer Safety, Re-
liability, and Security (SAFECOMP) (2017). https://doi.org/10.1007/978-3-319-
66266-4 14

23. Moy, Y.: Sufficient Preconditions for Modular Assertion Checking. In: Ver-
ification, Model Checking, and Abstract Interpretation (VMCAI) (2008).
https://doi.org/10.1007/978-3-540-78163-9 18

24. Muller, J.M., Brunie, N., de Dinechin, F., Jeannerod, C.P., Joldes, M., Lefèvre,
V., Melquiond, G., Revol, N., Torres, S.: Handbook of Floating-Point Arith-
metic. Springer International Publishing (2018). https://doi.org/10.1007/978-3-
319-76526-6

25. Nathan, R., Naeimi, H., Sorin, D.J., Sun, X.: Profile-Driven Automated Mixed
Precision. CoRR abs/1606.00251 (2016), http://arxiv.org/abs/1606.00251

26. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically Improv-
ing Accuracy for Floating Point Expressions. In: Programming Language Design
and Implementation (PLDI) (2015). https://doi.org/10.1145/2737924.2737959

27. Rabe, R., Izycheva, A., Darulova, E.: Regime Inference for Sound Floating-Point
Optimizations. ACM Trans. Embed. Comput. Syst. (EMSOFT) 20(5s) (2021).
https://doi.org/10.1145/3477012

28. Seghir, M.N., Kroening, D.: Counterexample-Guided Precondition In-
ference. In: Programming Languages and Systems (ESOP) (2013).
https://doi.org/10.1007/978-3-642-37036-6 25

29. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakr-
ishnan, G.: Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic
Taylor Expansions. ACM Transactions on Programming Languages and Systems
41(1) (2018). https://doi.org/10.1145/3230733

30. Wang, X., Wang, H., Su, Z., Tang, E., Chen, X., Shen, W., Chen, Z., Wang, L.,
Zhang, X., Li, X.: Global Optimization of Numerical Programs via Prioritized
Stochastic Algebraic Transformations. In: International Conference on Software
Engineering (ICSE) (2019). https://doi.org/10.1109/ICSE.2019.00116

31. Xia, Y., Guo, S., Hao, J., Liu, D., Xu, J.: Error Detection of Arithmetic Expres-
sions. The Journal of Supercomputing (2020). https://doi.org/10.1007/s11227-020-
03469-7

32. Yi, X., Chen, L., Mao, X., Ji, T.: Efficient Automated Repair of High Floating-
Point Errors in Numerical Libraries. Proceedings of the ACM on Programming
Languages 3(POPL) (2019). https://doi.org/10.1145/3290369

J. Krämer et al.320

https://doi.org/10.1109/ASPDAC.2017.7858297
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/Correctness49594.2019.00009
https://doi.org/10.1023/A:1015569431383
https://doi.org/10.1145/3015465
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-319-66266-4_14
https://doi.org/10.1007/978-3-540-78163-9_18
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1007/978-3-319-76526-6
http://arxiv.org/abs/1606.00251
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/3477012
https://doi.org/10.1007/978-3-642-37036-6_25
https://doi.org/10.1145/3230733
https://doi.org/10.1109/ICSE.2019.00116
https://doi.org/10.1007/s11227-020-03469-7
https://doi.org/10.1007/s11227-020-03469-7
https://doi.org/10.1145/3290369

33. Zou, D., Wang, R., Xiong, Y., Zhang, L., Su, Z., Mei, H.: A Genetic Algorithm for
Detecting Significant Floating-Point Inaccuracies. In: International Conference on
Software Engineering (ICSE) (2015). https://doi.org/10.1109/ICSE.2015.70

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

Inferring Interval-Valued Floating-Point Preconditions 321

https://doi.org/10.1109/ICSE.2015.70
http://creativecommons.org/licenses/by/4.0/

NeuReach: Learning Reachability Functions
from Simulations?

Dawei Sun(�) and Sayan Mitra

University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
{daweis2,mitras}@illinois.edu

Abstract. We present NeuReach, a tool that uses neural networks for
predicting reachable sets from executions of a dynamical system. Unlike
existing reachability tools, NeuReach computes a reachability function
that outputs an accurate over-approximation of the reachable set for any
initial set in a parameterized family. Such reachability functions are use-
ful for online monitoring, verification, and safe planning. NeuReach imple-
ments empirical risk minimization for learning reachability functions. We
discuss the design rationale behind the optimization problem and estab-
lish that the computed output is probably approximately correct. Our ex-
perimental evaluations over a variety of systems show promise. NeuReach
can learn accurate reachability functions for complex nonlinear systems,
including some that are beyond existing methods. From a learned reach-
ability function, arbitrary reachtubes can be computed in milliseconds.
NeuReach is available at https://github.com/sundw2014/NeuReach.

Keywords: Reachability analysis · Data-driven methods · Machine learn-
ing

1 Introduction

Reachability has traditionally been a fundamental building block for verification,
monitoring, and prediction, and it is finding ever-expanding set of applications
in control of cyber-physical and autonomous systems [19,23]. Reachtubes cannot
be computed exactly for general hybrid models, but remarkable progress over the
past two decades have led to approximation algorithms for nonlinear and very
high-dimensional linear models (See, for example, [11,18,5,3,25,12,1,26,34]). All
of these algorithms and tools compute the reachtube from scratch, every time
the algorithm is invoked for a new initial set X0, even if the system model does
not change. This is a missed opportunity in amortizing the cost of reachability
over multiple invocations. All the applications mentioned above, like verification,
monitoring, and prediction, indeed use multiple reachtubes of the same system,
but from different initial sets.

? The authors were supported by research grants from the National Security Agency’s
Science of Security (SoS) program and National Science Foundation’s Formal Meth-
ods in the Field (FMITF) program.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 322–337, 2022.
https://doi.org/10.1007/978-3-030-99524-9_17

http://orcid.org/0000-0002-5166-6350
http://orcid.org/0000-0001-7082-5516
https://github.com/sundw2014/NeuReach
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_17&domain=pdf

In this paper, we present NeuReach, a tool that learns a reachability function
from executions of dynamical systems. With the learned reachability function,
for every new initial set a corresponding reachtube can be computed quickly. To
use NeuReach, the user has to implement a simulator function of the underly-
ing dynamical (or hybrid) system for generating trajectories, and several other
functions for sampling initial sets. As output, the tool will generate a function
which can be serialized and stored for repeated use. This function takes as input
a query which is an initial set X0 and a time instant t, and outputs an ellip-
soid, which is guaranteed to be an accurate over-approximation of the actual
reachable set.

Formally, NeuReach solves a probabilistic variant of the well-studied reach-
ability problem: the problem is to compute a reachability function R(·, ·) for
a given model (or simulator), such that for any initial set X0 and time t, the
output of the function R(X0, t) is an over-approximation of the actual reachset
from X0 at time t. That is, R is computed once and for all—possibly with an
expensive algorithm—and thereafter, for every new initial set X0 and time t, the
reachset over-approximation R(X0, t) is computed simply by calling R. Thus, it
enables online and even real-time applications of reachset approximations.

NeuReach computes reachability functions using machine learning. We view
this as a statistical learning problem where samples of the system’s trajectories
have to be used to learn a parameterized reachability function Rθ(·, ·). Because
the trajectory samples are the only requirements from the underlying dynamical
system to run NeuReach, it can be applied to systems with or without analyt-
ical models. In this paper, we discuss how the above problem can be cast as
an optimization problem. This involves carefully designing a loss function that
penalizes error and conservatism of the reachability function. With this loss func-
tion, it becomes possible to solve the problem using empirical risk minimization
and stochastic gradient descent. For the sake of justifying our design, we de-
rive a theoretical guarantee on the sample complexity using standard statistical
learning theory tools.

We evaluate NeuReach on several benchmark systems and compare it with
DryVR [21] which also uses machine learning for single-shot reachset computa-
tions. Results show that, with the same training data, NeuReach generates more
accurate and tighter reachsets. Using NeuReach we are able to check the key
safety properties of the challenging F-16 benchmark presented in [28]. To our
knowledge, this is the first successful verification of at least some scenarios in
this benchmark. Furthermore, as expected, once R(·, ·) is computed, it can be
invoked to rapidly compute reachsets for arbitrary X0 and t. For example, esti-
mating a reachset for an 8-dimensional dynamical system with an NN-controller
only takes ∼ 0.3 milliseconds. This makes NeuReach attractive for online and
real-time applications.

Contributions. (1) We present a simple but effective and useful machine-
learning algorithm for learning reachability functions from simulations. With
the learned reachability function, accurate over-approximation of the reachable
set for any initial set in a parameterized family can be quickly computed, which

NeuReach: Learning Reachability Functions from Simulations 323

enables real-time safety check and online planning; (2) We derive a probably
approximately correct (PAC) bound on the error of the learned reachability
function (Theorem 1) using techniques in statistical learning theory; (3) We eval-
uate the proposed tool on several benchmark dynamical systems and compare
it with another data-driven reachability tool. Experiments show that NeuReach
can learn more accurate and tighter reachability functions for complex nonlinear
and hybrid systems, including some that are beyond existing methods.

2 Related work

Reachability analysis for models with known dynamics. This category
of approaches consider the reachability analysis of models with known dynamics
(i.e., white-box models). This is an active research area, and there is an ex-
tensive body of theory and tools on this topic [11,2,15,5,25,33,27,16,38,10,39].
Reachability analysis is hard in general. Exact reachability is undecidable even
for deterministic linear and rectangular models [29,24]. For dynamical models de-
scribed with ordinary differential equations (ODE), Hamilton–Jacobi–Bellman
(HJB) equations can be used to derive the exact reachable sets [30,6,7]. An
HJB equation is a partial differential equation (PDE). Solutions of this PDE
defines the reachabiltiy of the underlying dynamical system. However, solving
HJB equations is difficult, and such approaches do not scale to high-dimensional
systems. In practice, the exact reachable set might be unnecessary. For example,
over-approximations of the reachable sets could suffice for safety check purpose.
To this end, many approaches and tools have been developed. For example,
Flow∗ [11] uses the technique of Taylor model integration to compute over-
approximations of the solution of an ODE.

Another series of work [22,20] leverage the sensitivity analysis of ODE to
bound the discrepancy of solutions starting from a small initial set, and thus can
compute an over-approximation of the exact reachable set. In [12], a Lagrangian-
based algorithm is proposed, which makes use of the Cauchy-Green stretching
factor derived from an over-approximation of the gradient of the solution-flows
of an ODE. All of the above approaches consider set-based reachability analysis.

Data-driven reachability analysis. In the cases where the exact dynamics
of the systems is unknown or partially known, the above approaches cannot be
applied. One straight-forward direction is to learn the reachability from behav-
iors [42] of the dynamical system. Several approaches have been proposed for
reachability only using simulations of the underlying system. These approaches
include scenario optimization [14,44], sensitivity analysis [21], Gaussian pro-
cesses [13], adversarial sampling [32,9], etc.

NeuReach falls in the category of approaches that use randomized algorithms
for reachability analysis of deterministic (and not stochastic) systems. Another
member in this category is the scenario optimization approach presented in [14].
Different from NeuReach, this method learns a single reachset for a fixed initial
set and time interval instead of a mapping from arbitrary initial sets and time

324 D. Sun and S. Mitra

to the reachsets. Another approach based on scenario optimization is presented
in [44]. This method computes a fixed-width reachtube by learning a function
of time to represent the central axis of the reachtube. Moreover, it uses polyno-
mials with handcrafted feature vectors for learning, which requires case-by-case
design and fine-tuning. In contrast, our method learns a more flexible reacha-
bility function using neural networks and avoids the use of handcrafted feature
vectors. DryVR [21] computes the reachtubes based on sensitivity analysis. It
first learns a sensitivity function with theoretical guarantees, and then uses it to
compute the reachset. Among all these tools or methods, we found that DryVR
is the only one that has a publicly available implementation. Thus, we compared
NeuReach with DryVR.

Neural networks for reachability analysis. Applications of machine learn-
ing with neural networks for reachability and monitoring has become an active
research area. The approach in [23] aims to learn the reachtube from data using
neural networks, with a focus in motion planning. Unlike NeuReach, this ap-
proach learns the dynamics of the reachtube, and the reachtube can be obtained
by integrating that dynamics. In [30,7], neural networks are used as a PDE solver
to approximate the solution of HJB equations. The approach in [36] makes use
of neural networks to approximate the reachability of dynamical systems with
control input. In [38,10], the authors develop a framework for runtime predictive
monitoring of hybrid automata using neural networks and conformal prediction.

3 Problem setup and an overview of the tool

NeuReach works with deterministic dynamical systems. The state of the system
is denoted by x ∈ X ⊆ Rn. We assume that we have access to a simulator
function ξ : X ×R≥0 7→ X that generates trajectories of the system up to a time
bound T . That is, given an initial state x0 ∈ X and a time instant t ∈ [0, T],
ξ(x0, t) is the state at time t.1

Consider the evolution of the system from a set of initial states (initial set)
X0 ⊂ X . Lifting the notation of ξ to sets, we write the reachset from X0 as
ξ(X0, t) := ∪x0∈X0

ξ(x0, t). In general, ξ(X0, t) cannot be computed precisely, and
thus, we resort to over-approximations of ξ(X0, t) which are usually sufficient for
verification and monitoring of safety and general temporal logic requirements,
and also for planning. Beyond computing over-approximations of ξ(X0, t) for
a single X0 and t, we are interested in finding a reachability function R : 2X ×
[0, T] 7→ 2X such that, ideally, ξ(X0, t) ⊆ R(X0, t) for all valid X0 and t. NeuReach
implements a solution to this problem which provides a probabilistic version of
the above guarantee with some restrictions on the shape of the initial set X0.

In order to discuss the error of a reachability function R, we have to assume
that its arguments X0 and t are independently chosen according to some dis-

1 For the sake of simplicity, here we ignore issues arising from quantization and numer-
ical errors in simulators. Such issues have been extensively studied in the numerical
analysis and we refer the reader to [17] for a discussion related to verification.

NeuReach: Learning Reachability Functions from Simulations 325

tributions P1 and P2, i.e. X0 ∼ P1 and t ∼ P2. Also, we need a distribution
function D(·) such that D(X0) is distribution over X0. For example, D(X0) could
be the uniform distribution over X0. Given these distributions, the error of a
reachability function is defined as:

Pr
X0∼P1,t∼P2,x0∼D(X0)

[ξ(x0, t) /∈ R(X0, t)] . (1)

Here, we assume that the joint distribution of (X0, t, x0) is defined on the
Borel σ−algebra such that any Borel set is measurable. Given the fact that R is
continuous2 and ξ as the trajectory of a dynamical system is at least piece-wise
continuous, the set of all tuples (X0, t, x0) that satisfy ξ(x0, t) /∈ R(X0, t) must
be a Borel set, and thus is measurable. Therefore, the above probability is well
defined.

User interface and data representation. P1, P2 and D are specified by the
user as functions generating samples (explained below). The input and output of
the reachability function R(X0, t) involve infinite objects, and in order to learn
R, first, we need some finite representations of these objects. In NeuReach, X0 is
picked from a user-specified family of sets where each set can be represented by
a finite number of parameters. For example, X0 could be a ball and represented
by two parameters — center and radius. From here on, we will not distinguish
between X0 and its parameterized representation. Similarly, the reachset R(X0, t)
also needs a representation. NeuReach represents the reachsets with ellipsoids.
Given a vector x0 ∈ Rn and a matrix C ∈ Rn×n, the set E(x0, C) := {x ∈ Rn :
‖C · (x − x0)‖2 ≤ 1} is an ellipsoid . Thus, given the center, an ellipsoid can be
represented by an n× n matrix.

In order to use NeuReach, the user has to implement the following functions.

(i) sample X0(): Produces a random initial set X0 from a distribution P1.
Specifically, the parameterized representation of X0 is returned.

(ii) sample t(): Produces a random sample of t from a distribution P2.
(iii) sample x0(X0): Takes an initial set X0, and produces a random sample of

x0 ∈ X0 according to a distribution D(X0).
(iv) simulate(x0): Takes an initial state x0 and generates a finite trajectory

ξ(x0, ·) which is a sequence of states at some time instants. The user should
make sure that for every time instant returned by sample t(), a state
corresponding to it can be found in the simulated trajectory.

(v) get init center(X0): Takes an initial set X0 and returns E [D(X0)] :=

Ex∼D(X0) [x], which is the mean value of x over the initial states.

Given these functions, NeuReach computes a reachability function R with an
error guarantee (Theorem 1). The reachset R(X0, t) is an ellipsoid centered at
ξ(E [D(X0)] , t). As the output, NeuReach will generate a Python function R(X0,

t). This function can be serialized and stored on disk for future use. When
calling this function, the user provides the initial set X0 and t, and then an n×n
matrix representing the shape of the ellipsoid will be returned.

2 As will be stated later, R is a neural network, which is indeed continuous.

326 D. Sun and S. Mitra

4 Design of NeuReach: Learning reachability functions

We present the design rationale behind NeuReach and discuss the learning algo-
rithm it implements. We show that standard results in statistical learning theory
give a probabilistic guarantee on the error of the learned reachability function.

4.1 Reachability with Empirical Risk Minimization

The basic idea is to model the reachset R(X0, t) as an ellipsoid around
ξ(E [D(X0)] , t). As stated earlier, given the center, an n-dimensional ellipsoid
can be represented by an n × n matrix. Thus, learning the set-valued reacha-
bility function R(X0, t) becomes the problem of learning a matrix-valued func-
tion C(X0, t) that describes the shape of the set. We represent function C us-
ing parametric models, such as neural networks. Let us denote this parametric,
matrix-valued function by Cθ, where θ ∈ W ⊆ Rp is the vector of parameters.
The parameter θ could be, for example, a scalar representing a coefficient of a
polynomial, a vector representing weights of a neural network, etc. Thus, the
parametric reachability function is:

Rθ(X0, t) := E(ξ(E [D(X0)] , t), Cθ(X0, t)). (2)

To simplify the notations, for X = (X0, t, x0) and parameter θ, we define
a function gθ(X) := ‖Cθ(X0, t) (ξ(x0, t)− ξ(E [D(X0)] , t))‖2. For a particular
sample X and a parameter θ, if gθ(X) ≤ 1, then ξ(x0, t) ∈ Rθ(X0, t), otherwise
it is outside and contributes to the error. The goal of our learning algorithm is
to find a θ to minimize the error of the resulting reachability function Rθ, which
gives the following optimization problem:

θ∗ = arg min
θ

Pr
X0∼P1,t∼P2,x0∼D(X0)

[ξ(x0, t) /∈ Rθ(X0, t)]

= arg min
θ

E
X0,t,x0

[
I
(∥∥∥∥Cθ(X0, t) ·

(
ξ(x0, t)− ξ(E [D(X0)] , t)

)∥∥∥∥
2

> 1

)]
= arg min

θ
E

X:=(X0,t,x0)
[I (gθ(X)− 1 > 0)] ,

where I (·) is the indicator function.
In order to solve the above optimization problem using empirical risk min-

imization, we consider the following setup. First, a training set is constructed.
We denote a training set with N samples by S = {Xi}Ni=1, where the samples

Xi = (X (i)
0 , t(i), x

(i)
0) are independently drawn from the data distribution defined

by X0 ∼ P1, t ∼ P2, x0 ∼ D(X0). The empirical loss on S for a parameter θ is

LERM (θ) =
1

N

N∑
i=1

` (gθ(Xi)− 1) , (3)

where `(x) := max{0, xα +1} is the hinge loss function with the hyper-parameter
α > 0, which is a soft proxy for the indicator function. Therefore, the empirical
loss LERM is a soft, empirical proxy of the actual error as defined in Equation (1).

NeuReach: Learning Reachability Functions from Simulations 327

Arguments Default Value Description

system - Name of the Python file containing the model.
lambda 0.03 λ in Eq. (4).
alpha 0.001 α in Eq. (3).
N X0 100 NX0 : Number of initial sets.
N x0 10 Nx0 : Number of initial states.
N t 100 Nt: Number of time instants.

layer1 64 L1: Number of neurons in the first layer of the NN.
layer2 64 L2: Number of neurons in the second layer of the NN.
epochs 30 Number of epochs for training.
lr 0.01 Learning rate.

Table 1: Command-line arguments passed to the tool.

In addition to minimizing the empirical loss, we would also like the over-
approximation of the reachset to be as tight as possible. Thus, the volume of
the ellipsoid should be penalized. Inspired by [14], we use − log(det(CᵀC)) as
a proxy of the volume of an ellipsoid E(x0, C), and the following regularization
term is added to penalize large ellipsoids.

LREG(θ) = − 1

N

N∑
i=1

log
(

det
(
Cθ(X (i)

0 , t(i))ᵀCθ(X (i)
0 , t(i))

))
.

Combining the two terms, we define the overall optimization problem:

θ̂ = arg min
θ
LERM (θ) + λLREG(θ), (4)

where λ is a hyper-parameter balancing two loss terms.

Machine learning setup. The training set is constructed as follows. First,
we sample NX0 initial sets by calling sample X0(). Then, for each initial set,
we sample Nx0

initial states from it using sample x0(X0) and then get Nx0

trajectories by calling simulate(x0). Finally, for each trajectory, we sample Nt
time instants by calling sample t(). Thus, the resulting training set contains
N := NX0

×Nx0
×Nt samples, but generating such a training set only needs NX0

×
Nx0 trajectory simulations. NeuReach implements the optimization problem of
Equation (4) in Pytorch [37] and solves it with stochastic gradient descent. By
default, a three-layer neural network is used to represent Cθ. For n-dimensional
reachsets, the number of neurons in each layer are L1, L2, and n2, where L1 and
L2 can be specified by the user. The output vector of the neural network is then
reshaped to be an n × n matrix. By default, we set α = 0.001 and λ = 0.03.
The neural network is trained for 30 epochs with a learning rate of 0.01. Hyper-
parameters including learning rate, α, λ, and size of the training set can be easily
changed via the user interface as shown in Table 1.

328 D. Sun and S. Mitra

4.2 Probabilistic Correctness of NeuReach

The following theorem shows that the error of the learned reachability func-
tion Rθ̂ can be bounded. Specifically, the difference between the error and the

empirical loss is O(
√

1
N), where N is the size of the training set.

Theorem 1. For any ε > 0, and a random training set S with N i.i.d. samples,
with probability at least 1− 2 exp(−2Nε2), the following inequality holds,

EX
[
I
(
gθ̂(X)− 1 > 0

)]
≤ 1

N

N∑
i−1

˜̀(gθ̂(Xi)− 1) +
12

α
Lg

√
p

N
+ ε, (5)

where p is the number of parameters, i.e. θ ∈ Rp, and ˜̀(·) = min{1, `(·)} is the
truncated hinge loss, and Lg is the Lipschitz constant of gθ w.r.t. θ.

Theorem 1 shows that by controlling ε and N , the actual error

EX
[
I
(
gθ̂(X)− 1 > 0

)]
can be made arbitrarily close to the empirical loss

1
N

∑N
i−1

˜̀(gθ̂(Xi)−1), with arbitrarily high probability. The empirical loss on the
training set S can be made very small in practice due to the high capacity of the
neural network. Of course, there is no free lunch, in general. In order to drive
the empirical loss to 0, we might have to increase the number of parameters,
which in turn increases the term 12

α Lg
√

p
N . Furthermore, the hyper-parameter

λ also affects the empirical loss. A smaller λ results in lower empirical loss but
more conservative reachsets. Actually, conservatism and accuracy are conflicting
requirements. As shown in [21], when using reachability to verify safety, accuracy
determines the soundness of the verification, while conservatism influences the
sample efficiency. We wanted to focus more on soundness than on efficiency.
Thus, a theoretical guarantee is derived for accuracy but not for conservatism.

Proof. Starting from the left hand side and using the definition of hinge loss,

we get EX
[
I
(
gθ̂(X)− 1 > 0

)]
≤ EX

[
˜̀(gθ̂(X)− 1)

]
. By adding and subtracting

the empirical loss term, we get:

EX
[
˜̀(gθ̂(X)− 1)

]
− 1

N

N∑
i=1

˜̀(gθ̂(Xi)− 1) +
1

N

N∑
i=1

˜̀(gθ̂(Xi)− 1)

≤ sup
θ∈W

(
EX

[
˜̀(gθ(X)− 1)

]
− 1

N

N∑
i=1

˜̀(gθ(Xi)− 1)

)
+

1

N

N∑
i=1

˜̀(gθ̂(Xi)− 1),

where the inequality follows from the definition of supremum.

Let V = supθ∈W

(
EX

[
˜̀(gθ(X)− 1)

]
− 1

N

∑N
i=1

˜̀(gθ(Xi)− 1)
)

, i.e. the worst-

case difference between the empirical average and the expectation of the loss.
Note that V is a random quantity since S = {Xi}Ni=1 is random. Next, we derive
an upper bound on V that holds with high probability.

First, we derive an upper bound on ES [V]. Let G be the function class con-
taining gθ parameterized by θ, i.e. G := {gθ(·) | θ ∈ W}. Similally, F := {˜̀(gθ(·)−

NeuReach: Learning Reachability Functions from Simulations 329

1) | θ ∈ W}. Applying G to the set of inputs S generates a new set G(S) :=
{(g(X1), g(X2), · · · , g(XN)) : g ∈ G}. Define F(S) := {(f(X1), · · · , f(XN)) :
f ∈ F} in the same way.

Notice that V is the worst-case (among all fθ ∈ F) gap between the ex-
pectation and the empirical average of fθ(X). A fundamental result in PAC
learning (Theorem 3.3 in [35]) shows that this gap can be bounded as ES [V] ≤
2ES [Rad(F(S))], where Rad(F(S)) is the Rademacher complexity [35] of F(S).
Furthermore, notice that F(S) can be generated from G(S) by shifting it and
composing it with ˜̀. It follows from Talagrand’s contraction lemma [31] that
ES [Rad(F(S))] ≤ 2L˜̀ES [Rad(G(S))], where L˜̀ = 1

α is the Lipschitz constant.

Finally, following from a conclusion on Rademacher complexity of Lipschitz
parameterized function classes (See page 13 in [8]), we get ES [Rad(G(S))] ≤
3Lg

√
p
N . Therefore, we get

ES [V] ≤ 12

α
Lg

√
p

N
. (6)

Then, applying McDiarmid’s inequality [35] gives a high-probability bound
on V. That is,

Pr
S

(∣∣∣∣V − E [V]

∣∣∣∣ ≥ ε) ≤ 2 exp(−2Nε2).

Together with Eq. (6), we have V ≤ E [V] + ε ≤ 12
α Lg

√
p
N + ε with probability

at least 1− 2 exp(−2Nε2). This implies

EX
[
I
(
gθ̂(X)− 1 > 0

)]
≤ 1

N

N∑
i−1

˜̀(gθ̂(Xi)− 1) +
12

α
Lg

√
p

N
+ ε,

with probability at least 1 − 2 exp(−2Nε2), which completes the proof.

5 Experimental evaluation

We evaluated NeuReach on several benchmark systems including the Van der Pol
oscillator, the Moore-Greitzer model of a jet engine, an 8-dimensional quadrotor
controlled by a neural network [40], and an F-16 Ground Collision Avoidance
system [28]. We also compare our method with DryVR [21]. Since NeuReach is
fully data-driven and does not rely on the analytical model of the system, it
would not make sense to compare against model-based methods like Hamilton-
Jacobi reachability analysis [6], Flow∗ [11], C2E2 [18], or SReach [41]. Some of
our benchmarks cannot be handled by these tools. Also, once the reachability
function is learned, many reachsets can be computed very quickly by our method.
Given that other tools need to compute the reachset from scratch for each new
query, comparisons based on running times, would not make sense either.

330 D. Sun and S. Mitra

5.1 Benchmark systems

The simulators available for the benchmark systems allow us to specify fixed
time-steps ∆t and a time bound T . As for the distribution P2, we adopt the uni-
form distribution, i.e. P2 = Unif({∆t, 2∆t, · · · , b T∆tc∆t}) (Recall, the definition
of this distribution in Section 3). For a given initial set X0, D(X0) is defined as
the uniform distribution on the boundary of X0. As shown in Corollary 1 of [43],
the boundary of the reachable set of an initial set is equal to the reachable set
of the initial set’s boundary for ODEs. That is, if the estimated reachable set
contains the reachable set of the initial set’s boundary, it automatically contains
that of the interior. Thus, we only sample points on the boundary of X0 to im-
prove sample efficiency. As for the distribution P1, we will give details for each
benchmark below.

Van der Pol oscillator is a widely used 2-dimensional nonlinear model. An
initial set X0 is a ball centered at c with radius r. The distribution P1 for choos-
ing X0 is specified by the distributions for choosing these parameters. In our
experiments, we use c ∼ Unif([1, 2] × [2, 3]) and r ∼ Unif([0, 0.5]). The time
bound is set to T = 4, and time step is ∆t = 0.05.

JetEngine model from [4] is also 2-dimensional and commonly used as a verifi-
cation benchmark. Again, we use balls for the initial sets with c ∼ Unif([0.3, 1.3]×
[0.3, 1.3]) and r ∼ Unif([0, 0.5]). The time bound is set to T = 10, and time step
is ∆t = 0.05.

F-16 Ground Collision Avoidance System [28] is a challenging benchmark
for formal analysis tools. This system consists of 16 state variables (See Table 1
in [28]) among which Vt and alt are air speed and altitude. The key safety
property of interest is ground collision avoidance, and therefore, in our exper-
iments we focus on estimating the reachset only for Vt and alt. We consider
initial uncertainty in up to 6 state variables, [Vt, α, φ, ψ, Q, alt]. The function
simulate(x0) is designed to return projections of trajectories to Vt and alt,
while sample X0() returns 6-dimensional initial sets. We restrict the initial set
to be hyper-rectangles as in [28]. An initial set X0 is determined by a center
c ∈ R6 and a radius r ∈ R6 with X0 = {x ∈ R6 : c − r ≤ x ≤ c + r}. As for
the distribution, we choose c ∼ Unif([560, 600]× [−0.1, 0.1]× [0, π4]× [−π4 ,

π
4]×

[−0.1, 0.1]×[70, 80]) and r ∼ Unif([0, 10]×[0, 0.1]×[0, π16]×[0, π8]×[0, 0.1]×[0, 1]).
The time bound is set to T = 20, and time step is ∆t = 1

30 . However, DryVR
does not support hyper-rectangles as initial sets. Thus, we also use another set-
ting for comparison where the initial sets are balls. To do this, we sample balls
from a cube with c ∼ Unif([−1, 1]×· · ·× [−1, 1]) and r ∼ Unif([0, 0.5]). Then, we
transform this ball to the original coordinate system by scaling each dimension.
This setting is shown in Fig. 2 (Left) as F-16 (Spherical).

Quadrotor controlled by a neural controller is based on [40]. The state of
the quadrotor system is x = [px, py, pz, vx, vy, vz, θx, θy], and the control input

NeuReach: Learning Reachability Functions from Simulations 331

Fig. 1: Left: Some reachsets of JetEngine. Red curve is ξ(E [D(X0)] , ·). We randomly
sample 100 trajectories starting from X0. Points on sampled trajectories are shown
as black dots. Boundaries of the estimated reachsets at some selected time instants
are shown. Clearly, ellipsoids can approximate the actual reachsets better; Right: A
sample reachtube of F-16. Green region is the reachtube estimated by NeuReach, which
is the union of all reachsets. Blue curves are sampled trajectories from the initial set.
The blue region can be viewed as the actual reachtube. The estimated reachtube verifies
the safety, i.e. alt > 0 always holds.

is u := [az, ωx, ωy]. We are only interested in estimating the reachability of the
position variables, i.e., the first 3 dimensions of the state vector. We use balls
for the initial sets with c ∼ Unif([−1, 1] × · · · × [−1, 1]) and r ∼ Unif([0,

√
8]).

The time bound is set to T = 10, and time step is ∆t = 0.05.

5.2 Experimental results

Evaluation metrics. In order to evaluate the learned reachability function,
we randomly sample 10 initial sets for testing. For each initial set X0, we then
sample 100 trajectories starting from it. For every sampled time instant on the
sampled trajectories, we check whether the state is contained in the estimated
reachset and compute the empirical error (i.e., the frequency that a sample is
not in the estimated reachset). In order to evaluate the conservatism of the
over-approximations, we also compare the size of the over-approximations. For
each initial set X0, we compute the total volume of the over-approximations
R(X0, ti) where ti = ∆t, 2∆t, · · · , b T∆tc∆t. Then, the total volume averaged over
10 sampled initial sets are reported. Results are summarized in Figure 2 (Left).
Please note that we use the default settings in Table 1 for all benchmarks.

All experiments were conducted on a Linux workstation with two Xeon Sil-
ver 4110 CPUs and 32 GB RAM. As shown in Figure 2 (Left), NeuReach learns
an accurate reachability function for each benchmark. Please note that due to
the complicated dynamics and the neural controller, the F-16 model and the
quadrotor are beyond the reach of current model-based tools. As shown in Fig-
ure 1 (Right), NeuReach successfully verified the safety of the F-16 model.

332 D. Sun and S. Mitra

Fig. 2: Left: Volume and error of the estimated reachtube. Results are averaged over
10 random choices of X0; Right: Impact of λ. Error bars are the range over 10 runs.

Comparison with DryVR. DryVR [21] computes reachsets for spherical ini-
tial sets by learning a piece-wise exponential discrepancy (PED) function that
bounds the sensitivity of the trajectories to the initial state. This function is of
the form:

β(r, t) = rKe
∑i−1

j=1 γj(ti−ti−1+γi(t−ti−1), ∀t ∈ [ti−1, ti],

where r is the radius of the initial set, [ti−1, ti] is the i-th time interval, and K, γ
are learned parameters. For an spherical initial set X0 = B(c, r), the computed
reachset is R(B(c, r), t) := B(ξ(E [D(B(c, r))] , t), β(r, t)), where B(c, r) is a ball
centered at c with radius r. It is important to recall that, similar to other reacha-
bility tools, for every new initial set X0, DryVR computes the PED function and
the reachset from scratch. For a fair comparison, we compute the parameters K
and γ on the exact same training set as the one used in NeuReach and reuse the
resulting PED for further queries.

Accuracy and conservatism. As shown in Figure 2 (Left), the reachsets
estimated by NeuReach are tighter and more accurate than those computed by
DryVR. There are two reasons for this. First, DryVR uses piece-wise exponential
functions to capture the relationship between the initial radius and the radius at
time t, while NeuReach uses more expressive neural networks. Second, the use of
ellipsoids allows coordinate-specific accuracy. As seen in Figure 1, the reachset
of JetEngine is not a perfect circle even if the initial set is a circle. Ellipsoids
can approximate the actual reachsets better.

Running time. As expected, the training phase of NeuReach takes several
minutes, but once a reachability function has been learned, computation of the
reachset from a new initial set is very fast. For the quadrotor system, for example,
this takes ∼ 0.3 ms on the aforementioned workstation. We believe that this
makes NeuReach suitable for online safety checking and motion planning.

Impact of the hyper-parameter λ. λ influences the error and volume of the
reachsets computed by NeuReach. Figure 2 (Right) shows the result of running
NeuReach on JetEngine with different settings of λ. As expected, larger λ results
in smaller reachsets but hurts the accuracy. On the other hand, we do not need

NeuReach: Learning Reachability Functions from Simulations 333

Benchmark
NeuReach DryVR

Volume Error Volume Error
JetEngine 17.9 0.001 38.3 0.003
VanDerPol 39.2 0.001 76.4 0.002
Quadrotor 373.9 0.019 1025146.2 0.021

F-16 (Spherical) 28153.7 0.004 62651.5 0.004
F-16 31465.9 0.025 - -

to tune λ case by case. Note that we use λ = 0.03 for all the results in Figure 2
(Left), and it works reasonably well for all our benchmarks.

6 Conclusion

In this paper, we presented a tool for computing reachability of systems using
machine learning. NeuReach can learn accurate reachability functions for com-
plex nonlinear systems, including some that are beyond existing methods. From a
learned reachability function, arbitrary reachtubes can be computed in millisec-
onds. There are several limitations in the current implementation of NeuReach.
First, the simulator is assumed to be deterministic—this can be too restrictive
for autonomous systems with complex perception and vehicle models. We plan
to extend the theory and implementation to support more general simulators.
Secondly, the over-approximations are restricted to be represented as ellipsoids.
Other representations will be supported in the future.

References

1. dReach. http://dreal.github.io/dReach/

2. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.
In: Proc. of the 3rd International Workshop on Applied Verification for Continuous
and Hybrid Systems. pp. 91–105 (2016)

3. Althoff, M., Grebenyuk, D., Kochdumper, N.: Implementation of Taylor models in
cora 2018. In: Proc. of the 5th International Workshop on Applied Verification for
Continuous and Hybrid Systems (2018). https://doi.org/10.29007/zzc7

4. Aylward, E.M., Parrilo, P.A., Slotine, J.J.E.: Stability and robustness analysis
of nonlinear systems via contraction metrics and sos programming. Automatica
44(8), 2163–2170 (2008)

5. Bak, S., Duggirala, P.S.: Hylaa: A tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control. pp. 173–178. ACM (2017)

6. Bansal, S., Chen, M., Herbert, S., Tomlin, C.J.: Hamilton-jacobi reachability: A
brief overview and recent advances. In: 2017 IEEE 56th Annual Conference on
Decision and Control (CDC). pp. 2242–2253. IEEE (2017)

7. Bansal, S., Tomlin, C.: Deepreach: A deep learning approach to high-dimensional
reachability. arXiv preprint arXiv:2011.02082 (2020)

8. Bartlett, P.: Lecture notes in theoretical statistics (February 2013), https://www.
stat.berkeley.edu/∼bartlett/courses/2013spring-stat210b/notes/14notes.pdf

9. Berndt, A., Alanwar, A., Johansson, K.H., Sandberg, H.: Data-driven set-based
estimation using matrix zonotopes with set containment guarantees. arXiv preprint
arXiv:2101.10784 (2021)

10. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring. In: International Conference on Runtime Verification. pp. 129–147.
Springer (2019)

11. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: CAV. pp. 258–263. Springer (2013)

334 D. Sun and S. Mitra

http://dreal.github.io/dReach/
https://doi.org/10.29007/zzc7
https://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/14notes.pdf
https://www.stat.berkeley.edu/~bartlett/courses/2013spring-stat210b/notes/14notes.pdf

12. Cyranka, J., Islam, M.A., Byrne, G., Jones, P., Smolka, S.A., Grosu, R.: Lagrangian
reachabililty. In: International Conference on Computer Aided Verification. pp.
379–400. Springer (2017)

13. Devonport, A., Arcak, M.: Data-driven reachable set computation using adaptive
gaussian process classification and monte carlo methods. In: 2020 American Control
Conference (ACC). pp. 2629–2634. IEEE (2020)

14. Devonport, A., Arcak, M.: Estimating reachable sets with scenario optimization.
In: Learning for dynamics and control. pp. 75–84. PMLR (2020)

15. Devonport, A., Khaled, M., Arcak, M., Zamani, M.: PIRK: scalable inter-
val reachability analysis for high-dimensional nonlinear systems. In: Lahiri,
S.K., Wang, C. (eds.) Computer Aided Verification - 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 12224, pp. 556–568. Springer
(2020). https://doi.org/10.1007/978-3-030-53288-8 27, https://doi.org/10.1007/
978-3-030-53288-8 27

16. Donzé, A., Jin, X., Deshmukh, J.V., Seshia, S.A.: Automotive systems
requirement mining using breach. In: American Control Conference,
ACC 2015, Chicago, IL, USA, July 1-3, 2015. p. 4097. IEEE (2015).
https://doi.org/10.1109/ACC.2015.7171970, https://doi.org/10.1109/ACC.
2015.7171970

17. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: EMSOFT (2013)

18. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2e2: A verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 68–82. Springer Berlin Heidelberg,
Berlin, Heidelberg (2015)

19. Everett, M., Habibi, G., Sun, C., How, J.P.: Reachability analysis of neural feed-
back loops. IEEE Access 9, 163938–163953 (2021)

20. Fan, C., Kapinski, J., Jin, X., Mitra, S.: Locally optimal reach set over-
approximation for nonlinear systems. In: EMSOFT. pp. 6:1–6:10. ACM (2016)

21. Fan, C., Qi, B., Mitra, S., Viswanathan, M.: Data-driven verification and compo-
sitional reasoning for automotive systems. In: Computer Aided Verification. pp.
441–461. Springer International Publishing (2017)

22. Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reacha-
bility analysis for nonlinear hybrid models with C2E2. In: Computer Aided Ver-
ification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I. pp. 531–538 (2016). https://doi.org/10.1007/978-
3-319-41528-4 29, https://doi.org/10.1007/978-3-319-41528-4 29

23. Fan, D.D., Agha-mohammadi, A.a., Theodorou, E.A.: Deep learning tubes for tube
mpc. arXiv preprint arXiv:2002.01587 (2020)

24. Fijalkow, N., Ouaknine, J., Pouly, A., Sousa-Pinto, J.a., Worrell, J.: On the de-
cidability of reachability in linear time-invariant systems. In: Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation and Con-
trol. p. 77–86. HSCC ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3302504.3311796, https://doi.org/10.1145/
3302504.3311796

25. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification. Lecture
Notes in Computer Science, vol. 6806, pp. 379–395. Springer (2011)

NeuReach: Learning Reachability Functions from Simulations 335

https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1007/978-3-030-53288-8_27
https://doi.org/10.1109/ACC.2015.7171970
https://doi.org/10.1109/ACC.2015.7171970
https://doi.org/10.1109/ACC.2015.7171970
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1007/978-3-319-41528-4_29
https://doi.org/10.1145/3302504.3311796
https://doi.org/10.1145/3302504.3311796
https://doi.org/10.1145/3302504.3311796

26. Gao, S., Avigad, J., Clarke, E.M.: δ-complete decision procedures for satisfiability
over the reals. In: International Joint Conference on Automated Reasoning. pp.
286–300. Springer (2012)

27. Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachabil-
ity analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf.
21(4), 401–423 (2019). https://doi.org/10.1007/s10009-018-0485-6, https://doi.
org/10.1007/s10009-018-0485-6

28. Heidlauf, P., Collins, A., Bolender, M., Bak, S.: Verification challenges in f-16
ground collision avoidance and other automated maneuvers. In: ARCH@ ADHS.
pp. 208–217 (2018)

29. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? In: ACM Symposium on Theory of Computing. pp. 373–382 (1995),
citeseer.nj.nec.com/henzinger95whats.html

30. Jiang, F., Chou, G., Chen, M., Tomlin, C.J.: Using neural networks to compute
approximate and guaranteed feasible hamilton-jacobi-bellman pde solutions. arXiv
preprint arXiv:1611.03158 (2016)

31. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: isoperimetry and pro-
cesses. Springer Science & Business Media (2013)

32. Lew, T., Pavone, M.: Sampling-based reachability analysis: A random set theory
approach with adversarial sampling. arXiv preprint arXiv:2008.10180 (2020)

33. Maidens, J., Arcak, M.: Reachability analysis of nonlinear systems using matrix
measures. Automatic Control, IEEE Transactions on 60(1), 265–270 (2015)

34. Mitra, S.: Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press
(2021), https://mitpress.mit.edu/contributors/sayan-mitra

35. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of machine learning.
MIT press (2018)

36. Niarchos, K., Lygeros, J.: A neural approximation to continuous time reachabil-
ity computations. In: Proceedings of the 45th IEEE Conference on Decision and
Control. pp. 6313–6318. IEEE (2006)

37. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,
E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

38. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: International Symposium on Automated
Technology for Verification and Analysis. pp. 422–440. Springer (2018)

39. Shmarov, F., Zuliani, P.: Probreach: verified probabilistic delta-reachability for
stochastic hybrid systems. In: Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control. pp. 134–139 (2015)

40. Sun, D., Jha, S., Fan, C.: Learning certified control using contraction metric. arXiv
preprint arXiv:2011.12569 (2020)

41. Wang, Q., Zuliani, P., Kong, S., Gao, S., Clarke, E.M.: Sreach: A bounded model
checker for stochastic hybrid systems. arXiv preprint arXiv:1404.7206 (2014)

42. Willems, J.C.: The behavioral approach to open and intercon-
nected systems. IEEE Control Systems Magazine 27(6), 46–99 (2007).
https://doi.org/10.1109/MCS.2007.906923

336 D. Sun and S. Mitra

https://doi.org/10.1007/s10009-018-0485-6
https://doi.org/10.1007/s10009-018-0485-6
https://doi.org/10.1007/s10009-018-0485-6
citeseer.nj.nec.com/henzinger95whats.html
https://mitpress.mit.edu/contributors/sayan-mitra
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/MCS.2007.906923

43. Xue, B., Easwaran, A., Cho, N.J., Fränzle, M.: Reach-avoid verification for nonlin-
ear systems based on boundary analysis. IEEE Transactions on Automatic Control
62(7), 3518–3523 (2016)

44. Xue, B., Zhang, M., Easwaran, A., Li, Q.: PAC model checking of black-box
continuous-time dynamical systems. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 39(11), 3944–3955 (2020)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

NeuReach: Learning Reachability Functions from Simulations 337

http://creativecommons.org/licenses/by/4.0/

Inferring Invariants with Quantifier Alternations:

Taming the Search Space Explosion⋆

Jason R. Koenig1 (�), Oded Padon2, Sharon Shoham3, and Alex Aiken1

1 Stanford University, Stanford, CA, USA {jrkoenig,aaiken}@stanford.edu
2 VMware Research, Palo Alto, CA, USA oded.padon@gmail.com
3 Tel Aviv University, Tel Aviv, Israel sharon.shoham@gmail.com

Abstract. We present a PDR/IC3 algorithm for finding inductive in-
variants with quantifier alternations. We tackle scalability issues that
arise due to the large search space of quantified invariants by combining
a breadth-first search strategy and a new syntactic form for quantifier-
free bodies. The breadth-first strategy prevents inductive generalization
from getting stuck in regions of the search space that are expensive to
search and focuses instead on lemmas that are easy to discover. The new
syntactic form is well-suited to lemmas with quantifier alternations by
allowing both limited conjunction and disjunction in the quantifier-free
body, while carefully controlling the size of the search space. Combining
the breadth-first strategy with the new syntactic form results in useful
inductive bias by prioritizing lemmas according to: (i) well-defined syn-
tactic metrics for simple quantifier structures and quantifier-free bodies,
and (ii) the empirically useful heuristic of preferring lemmas that are fast
to discover. On a benchmark suite of primarily distributed protocols and
complex Paxos variants, we demonstrate that our algorithm can solve
more of the most complicated examples than state-of-the-art techniques.

Keywords: invariant inference · quantifier alternation · PDR/IC3

1 Introduction

Invariant inference is a long-standing problem in formal methods, due to the
desire for verified systems without the cost of manually writing invariants. For
complex unbounded systems the required invariants often involve quantifiers,
including quantifier alternations. For example, an invariant for a distributed
system may need to quantify over an unbounded number of nodes, messages, etc.
Furthermore, it may need to nest quantifiers in alternation (between ∀ and ∃) to
capture the system’s correctness arguments. For example, one crucial invariant of
the Paxos consensus protocol [22] is “every decision must come from a quorum of
votes”, i.e. ∀decision.∃quorum.∀node. node ∈ quorum ⇒ node voted for decision.

⋆ This research received funding from the European Union’s Horizon 2020 research
and innovation programme grant No. [759102-SVIS], BSF grant No. 2016260, ISF
grant No. 1810/18, and NSF grants CCF-1160904 and CCF-1409813.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 338–356, 2022.
https://doi.org/10.1007/978-3-030-99524-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_18

We show that automatically inferring such invariants is possible for systems
beyond the current state of the art by addressing several scalability issues that
arise as the complexity of systems and their invariants increases.

Many recent successful invariant inference techniques, including ours, are
based on PDR/IC3 [3,5]. PDR/IC3 is an algorithmic framework for finding in-
ductive invariants incrementally, rather than attempting to find the entire induc-
tive invariant at once. PDR/IC3 progresses by building a collection of lemmas,
organized into frames labeled by number of steps from the initial states, until
eventually some of these lemmas form an inductive invariant. New lemmas are
generated by inductive generalization, where a given (often backward reachable)
state is generalized to a formula that excludes it and is inductive relative to a
previous frame. Inductive generalization therefore plays a key role in PDR/IC3
implementations. Specifically, extending PDR/IC3 to a new domain of lemmas
requires a suitable inductive generalization procedure.

Techniques for inductive generalization, and more broadly for generating for-
mulas for inductive invariants, are varied, including interpolation [25], quantifier
elimination [20], model-based techniques [18], and syntax guided synthesis [6,31].
Almost all of these existing techniques target either quantifier-free or universally
quantified invariants. While it is sometimes possible to manually transform a
transition system to eliminate some of the need for quantifiers [8], doing so is
difficult and requires some knowledge of the fully quantified invariant.

We present a system that can infer quantified invariants with alternations
based on quantified separation, which was introduced in [19]. Roughly, a separa-
tion query asks whether there is a quantified formula, a separator, that evaluates
to true on a given set of models and to false on another given set of models. While
[19] used separation (as a black box) to implement inductive generalization and
described the first PDR/IC3 implementation that finds invariants with quan-
tifier alternations, it did not scale to challenging protocols such as Paxos and
its variants. These protocols require invariants with many symbols and quanti-
fiers, and the search space for quantified separators explodes as the number of
symbols in the vocabulary and number of quantifiers increases. In contrast, this
work presents a technique that can automatically find such complex invariants.

When targeting complex invariants, there are two main challenges for induc-
tive generalization: (i) the run time of each individual query; and (ii) overfitting,
i.e., learning a lemma that eliminates the given state but does not advance the
search for an inductive invariant. We tackle both problems via two strategies:
the first integrates inductive generalization with separation in a breadth-first
way, and the second defines a new form, k-term pDNF, for the quantifier-free
Boolean structure of the separators.

Integrating quantified separation with inductive generalization enables us to
effectively use a breadth-first rather than a depth-first search strategy for the
quantifiers of potential separators: we search in multiple parts of the search space
simultaneously rather than exhaustively exploring one region before moving to
the next. Beyond enabling parallelism, and thus faster wall-clock times, this
restructuring can change which solution is found by allowing easy-to-search re-

Inferring Invariants with Quantifier Alternations 339

gions to find a solution first. We find that these easier-to-find formulas generalize
better (i.e., avoid overfitting).

Using k-term pDNF narrows the search space for lemmas with quantifier al-
ternations. Universally quantified invariants can be split into universally quan-
tified clauses by transformation into conjunctive normal form (CNF). Accord-
ingly, most PDR/IC3 based techniques find invariants as conjunctions of possibly
quantified clauses. However, invariants with quantifier alternations may require
conjunction inside quantified lemmas (e.g., consider ∀x.∃y.p(y)∧ r(x, y)). Using
multiple clauses per lemma (k-clause CNF) creates a significantly larger search
space, impeding scalability. Using disjunctive normal form (DNF) suffers from
the same problem. We introduce k-term pDNF, a class of Boolean formulas in-
spired by human-written invariants that allows both limited conjunction and
disjunction while keeping the search space manageable. Many of the lemmas
arising in our evaluation that require many clauses in CNF are only 2-term
pDNF. We modify separation to search for lemmas of this form, leading to a re-
duced search space compared to CNF or DNF, resulting in both faster inductive
generalization and less overfitting.

We evaluate our technique on a benchmark suite that includes challenging dis-
tributed protocols. Inferring invariants with quantifier alternations has recently
drawn significant attention, with recent works, [19,11], presenting techniques
based on PDR/IC3 that find invariants with quantifier alternations but do not
scale to complex protocols such as Paxos. Very recently, [14] and [12] presented
enumeration-based and PDR/IC3-based techniques, respectively, which find the
invariant for simple variants of Paxos, but do not scale to more complex variants.
Our experiments show that our separation-based approach significantly advances
the state-of-the-art, and scales to several Paxos variants which are unsolved by
prior works. We also present an ablation study that investigates the individual
effect of key features of our technique.

This work makes the following contributions:

1. An algorithm for inductive generalization in PDR/IC3 (Section 3) based on
quantified separation that explores the search space in a parallel, breadth-
first way and thus focuses on lemmas that are easy to discover without
requiring a priori knowledge of the search space.

2. A syntactic form of lemmas (k-pDNF, Section 4) that is well-suited for in-
variants with quantifier alternations.

3. A combined system (Section 5) able to infer the invariants of challenging
protocols with quantifier alternations, including complex Paxos variants.

4. A comprehensive evaluation (Section 6) on a large benchmark suite including
complex Paxos variants, comparisons with a variety of state-of-the-art tools,
and an ablation study exploring the effects of key features of our technique.

2 Background

We review first-order logic, quantified separation, the invariant inference prob-
lem, and PDR/IC3.

340 J. R. Koenig et al.

First-Order Logic. We consider formulas in many-sorted first-order logic with
uninterpreted functions and equality. A signature consists of a finite set of sorts
and sorted constant, relation, and function symbols. A first-order structure over
a given signature consists of a universe set of sorted elements along with in-
terpretations for each symbol. A structure is finite when its universe is finite.
We use the standard definitions for term, atomic formula, literal, quantifier-free
formula. Quantified formulas may contain universal (∀) and existential (∃) quan-
tifiers with sorted variables (e.g. ∀x:s1. p). A formula is in prenex normal form if
it consists of a (possibly empty) quantification prefix followed by a quantifier-free
matrix. Any formula can be mechanically transformed into an equivalent prenex
formula. A structure M satisfies a formula p, written M |= p, if the formula
is true when the symbols in p are interpreted according to M under the usual
semantics. If such an M exists, then p is satisfiable and M is a model of p.

Quantified Separation. To generate candidate lemmas, we use quantified sepa-
ration [19]. Given a set of structure constraints and a predetermined space of
formulas, separation produces a separator formula p from the space that satisfies
the constraints, or reports UNSEP if no such p exists. The constraints are either
positive (a structure M where M |= p), negative (a structure M where M 6|= p)
or implication (a pair of structures M,M ′ where M |= p ⇒ M ′ |= p). Separa-
tion producing prenex formulas under some assumptions (satisfied by practical
examples) is NP-complete [19], and can be solved by translation to SAT.

Invariant Inference. The invariant inference problem is to compute an inductive
invariant for a given transition system, which shows that only safe states are
reachable from the initial states. We consider a transition system to be a set
of states as structures over some signature satisfying an axiom Ax, some initial
states satisfying Init, a transition formula Tr which can contain primed symbols
(x′) representing the post-state, and safe states satisfying Safe. We define bad
states as ¬Safe. We define single-state implication, written A ⇒ B, as Unsat(A∧
Ax∧ ¬B) and two-state implication across transitions, written A ⇒ wp(B),4 as
Unsat(A∧Ax∧Tr∧Ax′∧¬B′). An inductive invariant is a formula I satisfying:

Init ⇒ I (1) I ⇒ wp(I) (2) I ⇒ Safe (3)

Together, (1) and (2) mean that I is satisfied by all reachable states, and (3)
ensures the system is safe. We only consider invariant inference for safe systems.

PDR/IC3. PDR/IC3 is an invariant inference algorithm first developed for finite
state model checking [3] and later extended to various classes of infinite-state
systems. We describe PDR/IC3 as in [17]. PDR/IC3 maintains frames Fi as
conjunctions of formulas (lemmas) representing overapproximations of the states
reachable in at most i transitions from Init . Finite frames (i = 0, . . . , n) and the
frame at infinity (i = ∞) satisfy:

4 Our use of wp is inspired by predicate transformers, but we define it via satisfiability.

Inferring Invariants with Quantifier Alternations 341

Init ⇒ F0 (4) Fi ⇒ Fi+1 (5) Fn ⇒ F∞ (6)

Fi ⇒ wp(Fi+1) (7) F∞ ⇒ wp(F∞) (8)

Conditions (4), (5), and (6) mean Init ⇒ Fi for all i, and we ensure this by
restricting frames to subsets of the prior frame, when taken as sets of lemmas.
Conditions (7) and (8) say each frame is relatively inductive to the prior frame,
except F∞ which is relatively inductive to itself and thus inductive for the sys-
tem. To initialize, the algorithm adds the (conjuncts of) Init and Safe as lemmas
to F0. The algorithm then proceeds by adding lemmas to frames using either
pushing or inductive generalization while respecting this meta-invariant, grad-
ually tightening the bounds on reachability until F∞ ⇒ Safe. We can push a
lemma p ∈ Fi to Fi+1, provided Fi ⇒ wp(p). When a formula is pushed, the
stronger Fi+1 may permit us to push one or more other formulas, possibly recur-
sively, and so we always push until a fixpoint is reached. Any mutually relatively
inductive set of lemmas do not have a finite fixpoint, and we detect these sets
(by checking for Fi = Fi+1) and move them to F∞.

If the algorithm cannot push a lemma pa beyond frame i, there is a model of
¬(Fi ⇒ wp(pa)), which is a transition s → t where s ∈ Fi and t 6|= pa. We call
the pre-state s a pushing preventer of pa. To generate new lemmas, we block the
pushing preventer s in Fi by first recursively blocking all predecessors of s that
are still in Fi−1, and then using an inductive generalization (IG) query to learn
a new lemma that eliminates s. An IG query finds a formula p satisfying:

s 6|= p (9) Init ⇒ p (10) Fi−1 ∧ p ⇒ wp(p) (11)

If we can learn such a lemma, it can be added to Fi and all previous frames,
and removes at least the state s stopping pa from being pushed. Classic PDR/IC3
always chooses to block the pushing preventer of a safety property (lemma from
Safe) or a predecessor thereof, but other strategies have been considered [17].
The technique used to solve IG queries controls what kind of invariants we are
able to discover. In this work we use separation to solve for p, which lets us infer
invariants with quantifier alternations.

3 Breadth-First Inductive Generalization with Separation

Inductive generalization is the core of PDR/IC3, and improving it comes in two
flavors: making individual queries faster, and generating better lemmas that are
more general. We address both of these concerns by restructuring the search to
be breadth-first rather than depth-first. We first discuss naively solving an IG
query with separation (as in [19]), then present an algorithm that restructures
the search in a breadth-first manner.

3.1 Naive Inductive Generalization with Separation

An IG query is solved in [19] with separation by a simple refinement loop, which
performs a series of separation queries with an incrementally growing set of

342 J. R. Koenig et al.

structure constraints. Starting with a negative constraint s for the state to block,
we ask for a separator p and check if eqs. (10) and (11) hold for p using a
standard SMT solver. If both hold, p is a solution to the IG query. Otherwise,
the SMT solver produces a model which becomes either a positive constraint
(corresponding to an initial state p violates) or an implication constraint (a
transition edge that shows p is not relatively inductive to Fi−1), respectively.

At a high level, the SAT-based algorithm for separation from [19] uses
Boolean variables to encode the kind (∀/∃) and sort of each quantifier, and addi-
tional variables for the presence of each syntactically valid literal in each clause
in the matrix, which is in CNF. It then translates each structure constraint
into a Boolean formula over these variables such that satisfying assignments en-
code formulas with the correct truth value for each structure. The details of the
translation to SAT are not relevant here, except a few key points: (i) separation
considers each potential quantifier prefix essentially independently, (ii) complex
IG queries can result in hundreds or thousands of constraints, and (iii) prefixes,
as partitions of the space of possible separators, vary greatly in how quickly they
can be explored. Further, with the black box approach where the prefixes are
considered internally by the separation algorithm, even if the separation algo-
rithm uses internal parallelism as suggested in [19], there is still a serialization
step when a new constraint is required. As a consequence of (ii) and (iii), a
significant failure mode of this naive approach is that the search becomes stuck
generating more and more constraints for difficult parts of the search space that
ultimately do not contain an easy-to-discover solution to the IG query.

3.2 Prefix Search at the Inductive Generalization Level

To fix the problems with the naive approach, we propose lifting the choice of
prefix to the IG level, partitioning a single large separation query into a query
for each prefix. Each sub-query can be explored in parallel, and each can pro-
ceed independently by querying for new constraints (using eqs. (10) and (11) as
before) without serializing by waiting for other prefixes. We call this a breadth-
first search, because the algorithm can spend approximately equal time on many
parts of the search space, instead of a depth-first search which exhausts all pos-
sibilities in one region before moving on to the next. When regions have greatly
varying times to search, the breadth-first approach prevents expensive regions
from blocking the search in cheaper regions. This improvement relies on chang-
ing the division between separation and inductive generalization: without the
knowledge of the formulas (eqs. (10) and (11)) that generate constraints, the
separation algorithm cannot generate new constraints on its own.

A complicating factor is that in addition to prefixes varying in difficulty,
sometimes there are entire classes of prefixes that are difficult. For example,
many IG queries have desirable universal-only solutions, but spend a long time
searching for separators with alternations, as there are far more distinct pre-
fixes with alternations than those with only universals. To address this problem,
we define possibly overlapping sets of prefixes, called prefix categories, and en-
sure the algorithm spends approximately equal time searching for solutions in

Inferring Invariants with Quantifier Alternations 343

def IG(s: state, i: frame):
∀P. C(P) = {Negative(s)};
for i = 1 . . . N in parallel:

while true:
P = next-prefix();
while true:

p = separate C(P);
if p is UNSEP:

break
elif any c ∈ RC(P) and p 6|= c:

add c to C(P)
elif (c := SMT check eqs. (10) and (11)) 6= UNSAT:

add c to C(P)
else:

return p as solution

Fig. 1. Pseudocode for our proposed inductive generalization algorithm.

each category (e.g., universally quantified invariants, invariants with at most one
alternation and at most one repeated sort). Within each category, we order pre-
fixes to further bias towards likely solutions: first by smallest quantifier depth,
then fewest alternations, then those that start with a universal, and finally by
smallest number of existentials.

3.3 Algorithm for Inductive Generalization

We present our algorithm for IG using separation in Figure 1. Our algorithm has
a fixed number N of worker threads which take prefixes from a queue subject to
prefix restrictions, and perform a separation query with that prefix. Each worker
thread calls next-prefix() to obtain the next prefix to consider, according to the
order discussed in the previous section. To solve a prefix P , a worker performs
a refinement loop as in the naive algorithm, building a set of constraints C(P)
until a solution to the IG query is discovered or separation reports UNSEP.

While we take steps to make SMT queries for new constraints as fast as pos-
sible (Section 5.4), these queries are still expensive and we thus want to re-use
constraints between prefixes where it is beneficial. Re-using every constraint dis-
covered so far is not a good strategy as the cost of checking upwards of hundreds
of constraints for every candidate separator is not justified by how frequently
they actually constrain the search. Instead, we track a set of related constraints
for a prefix P , RC(P). We define related constraints in terms of immediate sub-
prefixes of P , written S(P), which are prefixes obtained by dropping exactly
one quantifier from P , i.e. the quantifiers of P ′ ∈ S(P) are a subsequence of
those in P with one missing. We then define RC(P) = ∪P ′∈S(P)C(P ′), i.e. the
related constraints of P are all those used by immediate sub-prefixes. While
S(P) considers only immediate sub-prefixes, constraints may propagate from
non-immediate sub-prefixes as the algorithm progresses.

Constraints from sub-prefixes are used because the possible separators for
those queries are also possible separators for the larger prefix. Thus the set of
constraints from sub-prefixes will definitely eliminate some potential separators,
and in the usual case where the sub-prefixes have converged to UNSEP, will rule

344 J. R. Koenig et al.

out an entire section of the search space. We also opportunistically make use of
known constraints for the same prefix generated in prior IG queries, as long as
those constraints still satisfy the current frame.

Overall, the algorithm in Figure 1 uses parallelism across prefixes to gener-
ate independent separation queries in a breadth-first way, while carefully sharing
only useful constraints. From the perspective of the global search for an induc-
tive invariant the algorithm introduces two forms of inductive bias: (i) explicit
bias arising from controlling the order and form of prefixes (Section 3.2), and
(ii) implicit bias towards formulas which are easy to discover.

4 k-Term Pseudo-DNF

We now consider the search space for quantifier-free matrices, and introduce a
syntactic form that shrinks the search space while still allowing common invari-
ants with quantifier alternations to be expressed.

Conjunctive and disjunctive normal forms (CNF and DNF) are formulas that
consist of a conjunction of clauses (CNF) or a disjunction of cubes (DNF), where
clauses and cubes are disjunctions and conjunctions of literals, respectively: For
example, (a ∨ b ∨ ¬c) ∧ (b ∨ c) is in CNF and (a ∧ ¬c) ∨ (¬a ∧ b) is in DNF. We
further define k-clause CNF and k-term DNF as formulas with at most k clauses
and cubes, respectively.

In [19] separation is performed by finding a matrix in k-clause CNF, biasing
the search by minimizing the sum of the number of quantifiers and k. We find
that both CNF and DNF are not good fits for the formulas in human-written
invariants. For example, consider the following formula from Paxos:

∀r1, r2,v1,v2,q.∃n.r1 < r2 ∧ proposal(r2, v2) ∧ v1 6= v2

→ member(n, q) ∧ left-round(n, r1) ∧ ¬vote(n, r1, v1)

To write this in CNF, we need to distribute the antecedent over the conjunction,
obtaining the 3-clause formula:

(r1 < r2 ∧ proposal(r2, v2) ∧ v1 6= v2 → member(n, q)) ∧

(r1 < r2 ∧ proposal(r2, v2) ∧ v1 6= v2 → left-round(n, r1)) ∧

(r1 < r2 ∧ proposal(r2, v2) ∧ v1 6= v2 → ¬vote(n, r1, v1))

When written without →, this matrix has the form ¬a∨¬b∨ c∨ (d∧ e∧¬f),
which is already in DNF. Under the k-term DNF, however, the formula requires a
single-literal cube for each antecedent literal, i.e. k = 4. Because of the quantifier
alternation, we cannot split this formula into cubes or clauses, and so a search
over either CNF or DNF must consider a significantly larger search space.To
solve these issues, we define a variant of DNF, k-term pseudo-DNF (k-pDNF),
where one cube is negated, yielding as many individual literals as needed:

Definition 1 (k-term pseudo-DNF). A quantifier-free formula ϕ is in k-
term pseudo-DNF for k ≥ 1 if ϕ ≡ ¬c1 ∨ c2 ∨ . . . ∨ ck, where c1, . . . , ck are

Inferring Invariants with Quantifier Alternations 345

cubes. Equivalently, ϕ is in k-term pDNF if there exists n ≥ 0 such that ϕ ≡
ℓ1 ∨ . . .∨ ℓn ∨ c2 ∨ . . .∨ ck, where ℓ1, . . . , ℓn are literals and c2, . . . , ck are cubes.

Note that 1-term pDNF is equivalent to 1-clause CNF, i.e. a single clause. 2-
term pDNF correspond to formulas of the form (cube) → (cube). Such formulas
are sufficient for all but a handful of the lemmas required for invariants in our
benchmark suite. An exception is the following, which has one free literal and
two cubes (so it is 3-term pDNF):

∀v1. ∃n1, n2, n3, v2, v3.

(d(v1) → ¬m(n1) ∧ u(n1, v1)) ∨

(¬m(n2) ∧ ¬m(n3) ∧ u(n2, v2) ∧ u(n3, v3) ∧ v2 6= v3)

For a fixed k, k-clause CNF, k-term DNF, and k-term pDNF all have the
same-size search space, as the SAT query inside the separation algorithm will
have one indicator variable for each possible literal in each clause or cube. The
advantage of pDNF is that it can express more invariant lemmas with a small
k, reducing the size of the search space while still being expressive. We can also
see pDNF as a compromise between CNF and DNF, and we find that pDNF is
a better fit to the matrices of invariants with quantifier alternation.

5 An Algorithm for Invariant Inference

We now take a step back to consider the high-level PDR/IC3 structure of our
algorithm. We have described how our algorithm performs inductive generaliza-
tion (Sections 3 and 4), which is the central ingredient. We next discuss blocking
states that are not backward reachable from a bad state as a heuristic for finding
additional useful lemmas. We then discuss how we can search for formulas in the
EPR logic fragment and techniques to increase the robustness of SMT solvers.
Finally, we give a complete description of our proposed algorithm.

5.1 May-proof-obligations

In classic PDR/IC3, the choice of pushing preventer to block is always that of
a safety property. [17] proposed a heuristic that in our terminology is to block
the pushing preventer of other existing lemmas, under the heuristic assumption
that current lemmas in lower frames are part of the final invariant but lack a
supporting lemma to make them inductive. The classic blocked states are known
as must-proof-obligations, as they are states that must be eliminated somehow
to prove the safety property. In contrast, these heuristic states are may-proof-
obligations, as they may or may not be necessary to block. Our algorithm selects
these lemmas at random, biased towards lemmas with smaller matrices.

To block a state, we first recursively block its predecessors in the prior frame,
if they exist. For may-proof-obligations,5 this recursion can potentially reach all

5 For unsafe transition systems, this can also occur for must-proof-obligations.

346 J. R. Koenig et al.

the way to an initial state in F0, and thus proves that the entire chain of states is
reachable— i.e., the states cannot be blocked. This fact shows that the original
lemma is not part of any final invariant and cannot be pushed past its current
frame; it also provides a positive structure constraint useful for future IG queries.

5.2 Multi-block Generalization

After an IG query blocking state s is successful, the resulting lemma p may cause
the original lemma that created s to be pushed to the next frame. If not, there
will be a new pushing preventer s′. If s′ is in the same frame, we can ask whether
there is a single IG solution formula p1 which blocks both s and s′. If we can
find such a p1, it is more likely to generalize past s and s′, and we should prefer
p1. This is straightforward to do with separation: we incrementally add another
negative constraint to the existing separation queries. To implement multi-block
generalization, we continue an IG query if the new pushing preventer is suitable
(i.e. exists and is in the same frame), accumulating as many negative constraints
as we can until we do not have a suitable state or we have spent as much time
as the original query. This timeout guarantees we do not spend more than half
of our time on generalization, and protects us in the case that the new set of
states cannot be blocked together with a simple formula.

5.3 Enforcing EPR

Effectively Propositional Reasoning (EPR, [28]) is a fragment of many-sorted
first-order logic in which satisfiability is decidable and satisfiable formulas always
have a finite model. The essence of EPR is to limit function symbols, both
in the signature and from the Skolemization of existentials, to ensure only a
finite number of ground terms can be formed. EPR ensures this property by
requiring that there be no cycles in the directed graph with an edge from each
domain sort to the codomain sort for every (signature and Skolem) function
symbol. For example, (∀x:S. ϕ1)∨ (∃y:S. ϕ2) is in EPR, but ∀x:S. ∃y:S. ϕ3 is not
in EPR as the Skolem function for y introduces an edge from sort S to itself.
The acyclicity requirement means that EPR is not closed under conjunction,
and so is best thought of as a property of a whole SMT query rather than of
individual lemmas. Despite these restrictions, EPR can be used to verify complex
distributed protocols [28].

For invariant inference with PDR/IC3, the most straightforward way to en-
force acyclicity is to decide a priori which edges are allowed, and to not infer
lemmas with disallowed Skolem edges. In practice, enforcing EPR means simply
skipping prefixes during IG queries that would create disallowed edges. Without
this fixed set of allowed edges, adding a lemma to a frame may prevent a neces-
sary lemma from being added to the frame in a later iteration, as PDR/IC3 lacks
a way to remove lemmas from frames. Requiring the set of allowed edges as input
is a limitation of our technique and other state-of-the-art approaches (e.g. [14]).
We hope that future work expands the scope of decidable logic fragments, so
that systems require less effort to model in such a fragment. It is also possible

Inferring Invariants with Quantifier Alternations 347

that our algorithm could be wrapped in an outer search over the possible acyclic
sets of edges.

Because separation produces prenex formulas, some EPR formulas would be
disallowed without additional effort (e.g. a prenex form of (∀x:S. ϕ1)∨(∃y:S. ϕ2)
is ∀x:S. ∃y:S. (ϕ1) ∨ (ϕ2)). In our implementation, we added an option where
separation produces prenex formulas that may not be in EPR directly, but where
the scope of the quantifiers can be pushed down into the pDNF disjunction to
obtain an EPR formula. Extra SAT variables are introduced that encode whether
a particular quantified variable appears in a given disjunct, and we add the
constraint that the quantifiers are nested consistently and in such a way as to
be free of disallowed edges. Because this makes separation queries more difficult,
we only enable this mode for the single example that requires non-prenex EPR
formulas.

5.4 SMT Robustness

Even with EPR restrictions, some SMT queries we generate are difficult for the
SMT solvers we use (Z3 [4] and CVC56), sometimes taking minutes, hours, or
longer. This wide variation of solving times is significant because separation, and
thus IG queries, cannot make progress without a new structure constraint. We
adopt several strategies to increase robustness: periodic restarts, running multi-
ple instances of both solvers in parallel, and incremental queries. Our incremental
queries send the formulas to the SMT solver one at a time, asserting a subset
of the input. An UNSAT result from a subset can be returned immediately,
and a SAT result can be returned if there is no un-asserted formula violated by
the model. Otherwise, one of the violating formulas is asserted, and the process
repeats. This process usually avoids asserting all the discovered lemmas from a
frame, which significantly speeds up many of the most difficult queries, especially
those with dozens of lemmas in a frame or those not in EPR.

5.5 Complete Algorithm

Figure 2 presents the pseudocode for our algorithm, which consists of two parallel
tasks (learning and heuristic), each using half of the available parallelism to
discharge IG queries, and pushing to fixpoint after adding any lemmas. In this
listing, the to-block(ℓ) function computes the state and frame to perform an IG
query in order to push ℓ (i.e. the pushing preventer of ℓ or a possibly multi-step
predecessor thereof). The heuristic task additionally may find reachable states,
and thus mark lemmas as bad. We cancel an IG query when it is solved by a
lemma learned or pushed by another task. If the algorithm terminates, then the
conjunction of F∞ is inductive according to the underlying SMT solver.

Our algorithm is parameterized by the logic used for inductive generalization,
and thus the form of the invariant. We support universal, EPR, and full first-
order logic (FOL) modes. Universal mode restricts the matrices to clauses, and

6 Successor to CVC4 [1].

348 J. R. Koenig et al.

def P-Fol-Ic3():
F0 = init ∪ safety;
push();
start Learning(), Heuristic();
wait for invariant;

def Multiblock(ℓ: lemma, s: state, i):
S = {s};
while not timed out:

p = IG(S, i);
speculatively add p to frame i;

s′, i′ = to-block(ℓ);
remove p from frame i;

if i = i′:

add s′ to S;
else:

break
add p to frame i;
push();

def Learning():
while true:

s, i = to-block(safety);
Multiblock(safety, s, i);

def Heuristic():
while true:

ℓ = random lemma before
safety;

s, i = to-block(ℓ);
if i = 0:

mark s reachable;
mark bad lemmas;

else:

Multiblock(ℓ, s, i);

Fig. 2. Pseudocode for our proposed inference algorithm, P-Fol-Ic3.

considers predecessors of superstructures when computing to-block() (as in [18]).
EPR mode also takes as input the set of allowed edges. In FOL mode, there are
no restrictions on the prefix.

6 Evaluation

We evaluate our algorithm and compare with prior approaches on a benchmark
of invariant inference problems. We discuss the benchmark, our experimental
setup, and the results.

6.1 Invariant Inference Benchmark

Our benchmark is composed of invariant inference problems from prior work on
distributed protocols [29,28,7,27,30,2,9], written in or translated to the mypyvy
tool’s input language [26]. Our benchmark contains a total of 30 problems (Ta-
ble 1), ranging from simple (toy-consensus, firewall) to complex (stoppable-
paxos-epr, bosco-3t-safety). Some problems admit invariants that are purely uni-
versal, and others use universal and existential quantifiers, with some in EPR. All
our examples are safe transition systems with a known human-written invariant.

6.2 Experimental Setup

We compare our algorithm to the techniques Swiss [14], IC3PO [11,12], fol-ic3
[19], and PDR∀ [18]. We performed our experiments on a 56-thread machine
with 64 GiB of RAM, with each experiment restricted to 16 hardware threads,
20GiB of RAM, and a 6 hour time limit.7 To account for noise caused by ran-
domness in seed selection, we ran each algorithm 5 times and report the number

7 Specifically, an dual-socket Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz.

Inferring Invariants with Quantifier Alternations 349

Table 1. Experimental results, giving both the median wall-clock time (seconds) of run
time and the number of trials successful, out of five. If there were less than 3 successful
trials, we report the slowest successful trial, indicated by (>). A dash (-) indicates all
trials failed or timed out after 6 hours (21600 seconds). A blank indicates no data.

Example EPR Our # Swiss # IC3PO # fol-ic3 # PDR∀ #
lockserv ∀ 19 5 9573 4 5 5 7 5 6 5
toy-consensus-forall ∀ 4 5 22 5 4 5 11 5 4 5
ring-id ∀ 7 5 192 5 81 5 28 5 20 5
sharded-kv ∀ 8 5 17291 5 4 5 19 5 6 5
ticket ∀ 23 5 - 0 - 0 240 5 22 5
learning-switch ∀ 76 5 1744 4 29 5 - 0 94 5
consensus-wo-decide ∀ 50 5 52 5 6 5 33 5 29 5
consensus-forall ∀ 1908 5 80 5 15 5 1125 5 104 5
cache ∀ 2492 4 - 0 3906 5 - 0 2628 5
paxos-forall ∀ 885 5 - 0 - 0 - 0 555 5
flexible-paxos-forall ∀ 1961 5 - 0 1654 5 - 0 423 5
stoppable-paxos-forall ∀ 7779 5 - 0 - 0 - 0 - 0
fast-paxos-forall ∀ - 0 - 0 - 0 - 0 20176 3
vertical-paxos-forall ∀ - 0 - 0 - 0 - 0 - 0
firewall − 4 5 - 0 3 5 9 5
sharded-kv-no-lost-keys X 4 5 9 5 4 5 5 5
toy-consensus-epr X 4 5 10 5 4 5 49 5
ring-id-not-dead − 19 5 - 0 - 0 221 3
consensus-epr X 37 5 57 5 28 5 - 0
client-server-ae X 4 5 11 5 4 5 442 5
client-server-db-ae − 16 5 46 5 37 5 6639 4
hybrid-reliable-broadcast − 178 5 - 0 - 0 937 5
paxos-epr X 920 5 14332 4 - 0 - 0
flexible-paxos-epr X 418 5 4928 5 - 0 - 0
multi-paxos-epr X 4272 4 - 0 - 0 - 0
stoppable-paxos-epr X >18297 2 - 0 - 0 - 0
fast-paxos-epr X 9630 3 - 0 - 0 - 0
vertical-paxos-epr X - 0 - 0 - 0 - 0
block-cache-async − - 0 - 0 - 0 - 0
bosco-3t-safety X >110191 1 - 0 - 0 - 0

1With EPR push down enabled.

of successes and the median time. PDR∀, IC3PO, and fol-ic3 are not designed
to use parallelism, while Swiss and our technique make use of parallelism. For
IC3PO, we use the better result from the two implementations [11] and [12], and
give reported results for those we could not replicate. For our technique, we ran
the tool in universal-only, EPR, or full FOL mode as appropriate. For k-pDNF,
we use k = 1 for universal prefixes and k = 3 otherwise.

6.3 Results and Discussion

We present the results of our experiments in Table 1. In general, for examples
that converge with both prior approaches and our technique, we match or ex-
ceed existing results, with significant performance gains for some problems such
as client-server-db-ae relative to the previous separation-based approach. Along
with other techniques, we solve paxos-epr and flexible-paxos-epr, which are the
simplest variants of Paxos in our benchmark, but nonetheless represents a sig-
nificant jump in complexity over the examples solved by the prior generation of
PDR/IC3 techniques. Paxos and its variants are notable for having invariants

350 J. R. Koenig et al.

Table 2. Ablation study. Columns are interpreted as in Table 1.

Example Our # No pDNF # No EPR # No Inc. SMT # No Gen. #
lockserv 19 5 34 5 13 5
toy-consensus-forall 4 5 5 5 4 5
ring-id 7 5 11 5 13 5
sharded-kv 8 5 11 5 7 5
ticket 23 5 42 5 21 5
learning-switch 76 5 338 5 288 5
consensus-wo-decide 50 5 50 5 51 5
consensus-forall 1908 5 2154 5 558 5
cache 2492 4 >16826 2 13116 5
paxos-forall 885 5 1071 5 10488 4
flexible-paxos-forall 1961 5 1014 5 >4168 2
stoppable-paxos-forall 7779 5 2820 5 >18727 1
fast-paxos-forall - 0 >16573 1 - 0
vertical-paxos-forall - 0 - 0 - 0
firewall 4 5 4 5 4 5 4 5
sharded-kv-no-lost-keys 4 5 4 5 4 5 5 5 4 5
toy-consensus-epr 4 5 5 5 5 5 5 5 5 5
ring-id-not-dead 19 5 37 5 44 5 52 5
consensus-epr 37 5 126 5 724 5 45 5 233 5
client-server-ae 4 5 3 5 4 5 4 5 4 5
client-server-db-ae 16 5 13 5 20 5 10 5
hybrid-reliable-broadcast 178 5 98 5 173 5 629 5
paxos-epr 920 5 10135 4 >2895 1 609 5 3201 5
flexible-paxos-epr 418 5 13742 3 - 0 775 5 799 5
multi-paxos-epr 4272 4 >15176 1 - 0 15854 3 7326 4
stoppable-paxos-epr >18297 2 - 0 - 0 >20659 1 >11946 1
fast-paxos-epr 9630 3 - 0 - 0 8976 3 >20871 2
vertical-paxos-epr - 0 - 0 - 0 - 0 - 0
block-cache-async - 0 - 0 - 0 >20038 2
bosco-3t-safety >11019 1 - 0 - 0 >8581 1 >16689 1

with two quantifier alternations (∀∃∀) and a maximum quantifier depth of 6 or 7.
We uniquely solve multi-, fast-, and stoppable-paxos-epr, which add significant
complexity in the number of sorts, symbols, and quantifier depth required. Due
to variations in seeds and the non-determinism of parallelism, our technique was
only successful in some trials, but these results nevertheless demonstrate that
our technique is capable of solving these examples. Our algorithm is unable to
solve vertical-paxos-epr, as this example requires a 7 quantifier formula that is
very expensive for our IG solver.

For universal-only examples, our algorithm is able to solve all but one of the
examples8 solved by other techniques, and is able to solve one that others cannot.
In some cases (e.g. consensus-forall), our solution is slower than other approaches,
but on the whole our algorithm is competitive in a domain it is not specialized for.
In addition, we significantly outperform the existing separation-based algorithm
(fol-ic3) by solving several difficult examples (cache, paxos-forall).

6.4 Ablation Study

Table 2 presents an ablation study investigating effect of various features of our
technique. The first column of Table 2 repeats the full algorithm results, and
the remaining columns report the performance with various features disabled

8 fast-paxos-forall, which is solved by our technique in the ablation study, albeit rarely.

Inferring Invariants with Quantifier Alternations 351

Table 3. Parallel vs sequential comparison. Each of 5 trials ran with 3 or 48 hour
timeouts, respectively. The number of successes, and the average number of IG queries
in each trial (including failed ones) are given.

Successes IG Queries
Example Par. Seq. Par. Seq.
paxos-epr 5 5 61 76
flexible-paxos-epr 5 5 64 72
multi-paxos-epr 3 1 67 84

individually. The most important individual contributions come from k-pDNF
matrices and EPR. Using a 5-clause CNF instead of pDNF matrix (No pDNF)
causes many difficult examples to fail and some (e.g., flexible-paxos-epr) to take
significantly longer even when they do succeed.9 Similarly, using full FOL mode
instead of EPR (No EPR) leads to timeouts for all but the simplest Paxos
variants. Incremental SMT queries (No Inc. SMT) make the more difficult Paxos
variants, and the universal cache example, succeed much more reliably. Multi-
block generalization (No Gen.) makes many problems faster or more reliable,
but disabling it allows block-cache-async to succeed.

To isolate the benefits of parallelism, we ran several examples in both parallel
and serial mode with a proportionally larger timeout (Table 3). In both modes
we use a single prefix category containing all prefixes, with the same static order
over prefixes.10 Beyond the wall-clock speedup, the parallel IG algorithm affects
the quality of the learned lemmas, that is, how well they generalize and avoid
overfitting. To estimate the quality of generalization, we count the total number
of IG queries performed by each trial and report the average over the five trials. In
all examples, the parallel algorithm learns fewer lemmas overall, which suggests it
generalizes better. We attribute this improved generalization to the implicit bias
towards lemmas that are faster to discover. For the more complicated example
(multi-paxos-epr), this difference has an impact on the success rate.

7 Related Work

Extensions of PDR/IC3. The PDR/IC3 [3,5] algorithm has been very influen-
tial as an invariant inference technique, first for hardware (finite state) systems
and later for software (infinite state). There are multiple extensions of PDR/IC3
to infinite state systems using SMT theories [16,20]. [18] extended PDR/IC3 to
universally quantified first-order formulas using the model-theoretic notion of
diagrams. [13] applies PDR/IC3 to find universally quantified invariants over ar-
rays and also to manage quantifier instantiation. Another extension of PDR/IC3
for universally quantified invariants is [23], where a quantified invariant is gen-
eralized from an invariant of a bounded, finite system. This technique of gener-
alization from a bounded system has also been extended to quantifiers with al-

9 With a single clause, there is no difference between CNF and k-pDNF so results are
only given for existential problems.

10 To make the comparison cleaner, we also disabled multi-block generalization.

352 J. R. Koenig et al.

ternations [11]. Recently, [31] suggested combining synthesis and PDR/IC3, but
they focus on word-level hardware model checking and do not support quan-
tifier alternations. Most of these works focus on quantifier-free or universally
quantified invariants. In contrast, we address unique challenges that arise when
supporting lemmas with quantifier alternations.

The original PDR/IC3 algorithm has also been extended with techniques that
use different heuristic strategies to find more invariants by considering additional
proof goals and collecting reachable states [15,17]. Our implementation benefits
from some of these heuristics, but our contribution is largely orthogonal as our
focus is on inductive generalization of quantified formulas. Generating lemmas
from multiple states, similar to multi-block generalization, was explored in [21].

[24] suggests a way to parallelize PDR/IC3 by combining a portfolio approach
with problem partitioning and lemma sharing. Our parallelism is more tightly
coupled into PDR/IC3, as we parallelize the inductive generalization procedure.

Quantified Separation. Quantified separation [19] was recently introduced as a
way to find quantified invariants with quantifier alternations. While [19] intro-
duced a way to combine separation and PDR/IC3, it has limited scalability
and cannot find the invariants of complex protocols such as Paxos. Our work
here is motivated by these scalability issues. In contrast to [19], our technique
is able to find complex invariants by avoiding expensive but useless areas of
the search space using a breadth-first strategy and a multi-dimensional induc-
tive bias. While [19] searches for quantified lemmas in CNF, we introduce and
use k-term pDNF. k-term pDNF can express the necessary lemmas of many
distributed protocols more succinctly, resulting in better scalability.

Synthesis-Based Approaches to Invariant Inference. Synthesis is a common ap-
proach for automating invariant inference. ICE [10] is a framework for learning
inductive invariants from positive, negative, and implication constraints. Our
use of separation is similar, but it is integrated into PDR/IC3’s inductive gen-
eralization, so unlike ICE we find invariants incrementally.

Enumeration-Based Approaches. Another approach is to use enumerative search,
for example [6], which only supports universal quantification. Enumerative search
has been extended to quantifier alternations in [14], which is able to infer the
invariants of complex protocols such as some Paxos variants.

8 Conclusion

We have presented an algorithm for quantified invariant inference that combines
separation and inductive generalization. Our algorithm uses a breadth-first strat-
egy to avoid regions of the search space that are expensive. We also explore a
new syntactic form that is well-suited for lemmas with alternations. We show
via a large scale experiment that our algorithm advances the state of the art
in quantified invariant inference with alternations, and finds significantly more
invariants on difficult problems than prior approaches.

Inferring Invariants with Quantifier Alternations 353

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) Pro-
ceedings of the 23rd International Conference on Computer Aided Verification
(CAV ’11). Lecture Notes in Computer Science, vol. 6806, pp. 171–177. Springer
(Jul 2011), https://dl.acm.org/doi/10.5555/2032305.2032319, Snowbird, Utah

2. Berkovits, I., Lazic, M., Losa, G., Padon, O., Shoham, S.: Verification of threshold-
based distributed algorithms by decomposition to decidable logics. In: Com-
puter Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part II. pp. 245–266 (2019).
https://doi.org/10.1007/978-3-030-25543-5_15

3. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) Verification, Model Checking, and Abstract Interpre-
tation. pp. 70–87. Springer Berlin Heidelberg, Berlin, Heidelberg (2011),
https://link.springer.com/chapter/10.1007/978-3-642-18275-4_7

4. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceed-
ings of the Theory and Practice of Software, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 337–340. TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008),
https://dl.acm.org/citation.cfm?id=1792734.1792766

5. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property di-
rected reachability. In: International Conference on Formal Methods in Computer-
Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011.
pp. 125–134 (2011), https://dl.acm.org/citation.cfm?id=2157675

6. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verifica-
tion - 31st International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561,
pp. 259–277. Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_14

7. Feldman, Y.M., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded quan-
tifier instantiation for checking inductive invariants. In: Proceedings, Part I, of the
23rd International Conference on Tools and Algorithms for the Construction and
Analysis of Systems - Volume 10205. pp. 76–95. Springer-Verlag, Berlin, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54577-5_5

8. Feldman, Y.M.Y., Padon, O., Immerman, N., Sagiv, M., Shoham, S.: Bounded
quantifier instantiation for checking inductive invariants. Log. Methods Comput.
Sci. 15(3) (2019). https://doi.org/10.23638/LMCS-15(3:18)2019

9. Feldman, Y.M.Y., Wilcox, J.R., Shoham, S., Sagiv, M.: Inferring inductive
invariants from phase structures. In: Dillig, I., Tasiran, S. (eds.) Computer
Aided Verification. pp. 405–425. Springer International Publishing, Cham (2019),
https://link.springer.com/chapter/10.1007/978-3-030-25543-5_23

10. Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A Robust Frame-
work for Learning Invariants. In: Biere, A., Bloem, R. (eds.) Computer
Aided Verification. pp. 69–87. Springer International Publishing, Cham (2014),
https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5

11. Goel, A., Sakallah, K.: On symmetry and quantification: A new approach to verify
distributed protocols. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez,
I. (eds.) NASA Formal Methods. pp. 131–150. Springer International Publishing,
Cham (2021), https://link.springer.com/chapter/10.1007/978-3-030-76384-8_9

354 J. R. Koenig et al.

https://dl.acm.org/doi/10.5555/2032305.2032319
https://doi.org/10.1007/978-3-030-25543-5_15
https://link.springer.com/chapter/10.1007/978-3-642-18275-4_7
https://dl.acm.org/citation.cfm?id=1792734.1792766
https://dl.acm.org/citation.cfm?id=2157675
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/978-3-662-54577-5_5
https://doi.org/10.23638/LMCS-15(3:18)2019
https://link.springer.com/chapter/10.1007/978-3-030-25543-5_23
https://link.springer.com/chapter/10.1007/978-3-319-08867-9_5
https://link.springer.com/chapter/10.1007/978-3-030-76384-8_9

12. Goel, A., Sakallah, K.A.: Towards an automatic proof of Lamport’s Paxos. In:
2021 Formal Methods in Computer Aided Design (FMCAD). pp. 112–122 (2021).
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20

13. Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11138, pp. 248–266. Springer (2018).
https://doi.org/10.1007/978-3-030-01090-4_15

14. Hance, T., Heule, M., Martins, R., Parno, B.: Finding invariants of distributed
systems: It’s a small (enough) world after all. In: Mickens, J., Teixeira, R.
(eds.) 18th USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2021, April 12-14, 2021. pp. 115–131. USENIX Association (2021),
https://www.usenix.org/conference/nsdi21/presentation/hance

15. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In:
2013 Formal Methods in Computer-Aided Design. pp. 157–164 (2013).
https://doi.org/10.1109/FMCAD.2013.6679405

16. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti,
A., Sebastiani, R. (eds.) Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-20, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7317, pp. 157–171. Springer (2012).
https://doi.org/10.1007/978-3-642-31612-8_13

17. Ivrii, A., Gurfinkel, A.: Pushing to the top. In: 2015 Formal
Methods in Computer-Aided Design (FMCAD). pp. 65–72 (2015).
https://doi.org/10.1109/FMCAD.2015.7542254

18. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. J. ACM 64(1),
7:1–7:33 (Mar 2017). https://doi.org/10.1145/3022187

19. Koenig, J.R., Padon, O., Immerman, N., Aiken, A.: First-order quanti-
fied separators. In: Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. pp. 703–717. PLDI
2020, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3385412.3386018

20. Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for
recursive programs. Formal Methods Syst. Des. 48(3), 175–205 (2016).
https://doi.org/10.1007/s10703-016-0249-4

21. Krishnan, H.G.V., Chen, Y., Shoham, S., Gurfinkel, A.: Global guidance for local
generalization in model checking. In: Computer Aided Verification - 32nd Interna-
tional Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceed-
ings, Part II. pp. 101–125 (2020). https://doi.org/10.1007/978-3-030-53291-8_7

22. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(may 1998). https://doi.org/10.1145/279227.279229

23. Ma, H., Goel, A., Jeannin, J., Kapritsos, M., Kasikci, B., Sakallah, K.A.: I4: in-
cremental inference of inductive invariants for verification of distributed protocols.
In: Brecht, T., Williamson, C. (eds.) Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019. pp. 370–384. ACM (2019). https://doi.org/10.1145/3341301.3359651

24. Marescotti, M., Gurfinkel, A., Hyvärinen, A.E.J., Sharygina, N.: Designing parallel
PDR. In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods in Computer
Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017. pp. 156–163.
IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102254

Inferring Invariants with Quantifier Alternations 355

https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_20
https://doi.org/10.1007/978-3-030-01090-4_15
https://www.usenix.org/conference/nsdi21/presentation/hance
https://doi.org/10.1109/FMCAD.2013.6679405
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1109/FMCAD.2015.7542254
https://doi.org/10.1145/3022187
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/978-3-030-53291-8_7
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.23919/FMCAD.2017.8102254

25. McMillan, K.L.: Lazy annotation revisited. In: Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. pp. 243–259 (2014).
https://doi.org/10.1007/978-3-319-08867-9_16

26. mypyvy repository. https://github.com/wilcoxjay/mypyvy
27. Padon, O., Hoenicke, J., Losa, G., Podelski, A., Sagiv, M., Shoham, S.: Reducing

liveness to safety in first-order logic. Proc. ACM Program. Lang. 2(POPL) (Dec
2017). https://doi.org/10.1145/3158114

28. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. Proceedings of the ACM on Programming Languages
1(OOPSLA), 1–31 (Oct 2017). https://doi.org/10.1145/3140568

29. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: Safety verifica-
tion by interactive generalization. In: Proceedings of the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. pp. 614–630. PLDI
’16, ACM, New York, NY, USA (2016). https://doi.org/10.1145/2908080.2908118

30. Taube, M., Losa, G., McMillan, K.L., Padon, O., Sagiv, M., Shoham, S., Wilcox,
J.R., Woos, D.: Modularity for decidability of deductive verification with ap-
plications to distributed systems. In: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation. pp. 662–677.
PLDI 2018, Association for Computing Machinery, New York, NY, USA (2018).
https://doi.org/10.1145/3192366.3192414

31. Zhang, H., Gupta, A., Malik, S.: Syntax-guided synthesis for lemma generation in
hardware model checking. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) Verifica-
tion, Model Checking, and Abstract Interpretation - 22nd International Confer-
ence, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings.
Lecture Notes in Computer Science, vol. 12597, pp. 325–349. Springer (2021).
https://doi.org/10.1007/978-3-030-67067-2_15

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

356 J. R. Koenig et al.

https://doi.org/10.1007/978-3-319-08867-9_16
https://github.com/wilcoxjay/mypyvy
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/3192366.3192414
https://doi.org/10.1007/978-3-030-67067-2_15
http://creativecommons.org/licenses/by/4.0/

LinSyn: Synthesizing Tight Linear Bounds for
Arbitrary Neural Network Activation Functions?

Brandon Paulsen� and Chao Wang

University of Southern California, Los Angeles CA 90089, USA
{bpaulsen,wang626}@usc.edu

Abstract. The most scalable approaches to certifying neural network
robustness depend on computing sound linear lower and upper bounds
for the network’s activation functions. Current approaches are limited
in that the linear bounds must be handcrafted by an expert, and can
be sub-optimal, especially when the network’s architecture composes op-
erations using, for example, multiplication such as in LSTMs and the
recently popular Swish activation. The dependence on an expert pre-
vents the application of robustness certification to developments in the
state-of-the-art of activation functions, and furthermore the lack of tight-
ness guarantees may give a false sense of insecurity about a particular
model. To the best of our knowledge, we are the first to consider the
problem of automatically synthesizing tight linear bounds for arbitrary
n-dimensional activation functions. We propose the first fully automated
method that achieves tight linear bounds while only leveraging the math-
ematical definition of the activation function itself. Our method leverages
an efficient heuristic technique to synthesize bounds that are tight and
usually sound, and then verifies the soundness (and adjusts the bounds
if necessary) using the highly optimized branch-and-bound SMT solver,
dReal. Even though our method depends on an SMT solver, we show
that the runtime is reasonable in practice, and, compared with state of
the art, our method often achieves 2-5X tighter final output bounds and
more than quadruple certified robustness.

1 Introduction

Prior work has shown that neural networks are vulnerable to various types of
(adversarial) perturbations, such as small l-norm bounded perturbations [39], ge-
ometric transformations [13, 22], and word substitutions [2]. Such perturbations
can often cause a misclassification for any given input, which may have serious
consequences, especially in safety critical systems. Certifying robustness to these
perturbations has become an important problem as it can show the network does
not exhibit these misclassifications, and furthermore previous work has shown
that a given input feature’s certified robustness can be a useful indicator to
determine the feature’s importance in the network’s decision [34, 25].

? This work was partially funded by the U.S. National Science Foundation grants
CNS-1813117 and CNS-1722710, and the U.S. Office of Naval Research (ONR) grant
N00014-17-1-2896.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 357–376, 2022.
https://doi.org/10.1007/978-3-030-99524-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_19

Brandon Paulsen� and Chao Wang

Indeed, many approaches have been proposed for certifying the robustness
of inputs to these perturbations. Previous work typically leverages two types of
techniques: (1) fast and scalable, but approximate techniques [36, 15, 45, 34, 25],
and (2) expensive but exact techniques that leverage some type of constraint
solver [23, 24, 40]. Several works have also combined the two [37, 35, 43, 42].
The most successful approaches, in terms of scalability in practice, are built on
top of the approximate techniques, which all depend on computing linear bounds
for the non-linear activation functions.

However, a key limitation is that the linear bounds must be handcrafted and
proven sound by experts. Not only is this process difficult, but also ensuring the
tightness of the crafted bounds presents an additional challenge. Unfortunately,
prior work has only crafted bounds for the most common activation functions
and architectures, namely ReLU [43], sigmoid, tanh [36, 48, 46], the exp func-
tion [34], and some 2-dimensional activations found in LSTM networks [25]. As a
result, existing tools for neural network verification cannot handle a large num-
ber of activation functions that are frequently used in practice. Examples include
the GELU function [18], which is currently the activation function used in Ope-
nAI’s GPT [31], and the Swish function which has been shown to outperform the
standard ReLU function in some applications [32] and, in particular, can reduce
over-fitting in adversarial training [38]. In addition, these recently introduced ac-
tivation functions are often significantly more complex than previous activation
functions, e.g., we have gelu(x) = 0.5x(1 + tanh [

√
2/π(x+ 0.044715x3)]).

In this work, we study the problem of efficiently and automatically syn-
thesizing sound and tight linear bounds for any arbitrary activation function.
By arbitrary activation function, we mean any (non-linear) computable func-
tion z = σ(x1, . . . , xd) used inside a neural network with d input variables. By
sound we mean, given an interval bound on each variable x1 ∈ [l1, u1], x2 ∈
[l2, u2], . . . , xd ∈ [ld, ud], the problem is to efficiently compute lower bound co-
efficients cl1, c

l
2, . . . , c

l
d+1, and upper bound coefficients cu1 , c

u
2 , . . . , c

u
d+1 such that

the following holds:

∀x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

cl1x1 + cl2x2 + · · ·+ cld+1 ≤ σ(x1, . . . , xd) ≤ cu1x1 + cu2x2 + · · ·+ cud+1

(1)

By automatically, we mean that the above is done using only the definition of the
activation function itself. Finally, by tight, we mean that some formal measure,
such as the volume above/below the linear bound, is minimized/maximized.

We have developed a new method, named LinSyn, that can automatically
synthesize tight linear bounds for any arbitrary non-linear activation function
σ(·). We illustrate the flow of our method on the left-hand side of Fig. 1. As
shown, LinSyn takes two inputs: a definition of the activation function, and an
interval for each of its inputs. LinSyn outputs linear coefficients such that Equa-
tion 1 holds. Internally, LinSyn uses sampling and an LP (linear programming)
solver to synthesize candidate lower and upper bound coefficients. Next, it uses
an efficient local minimizer to compute a good estimate of the offset needed to
ensure soundness of the linear bounds. Since the candidate bounding functions
constructed in this manner may still be unsound, finally, we use a highly op-
timized branch-and-bound nonlinear SMT solver, named dReal [14], to verify

358

Input
Region

Analyzer
AutoLiRPA,
ERAN, etc)

Over-approx. of
Output Region

Synthesize Candidate
Coefficients

Verify

Adjust

Fail
Proved

LinSyn LinSyn Inputs

LinSyn Outputs

Bound Mods.

ReLU

Tanh

. . .

Fig. 1. The overall flow of LinSyn.

the soundness of the linear bounds. Even though our new method involves the
use of solvers and optimizers, the entire process typically takes less than 1/100th
of a second per pair of bounds.

Fig. 1 also illustrates how LinSyn fits in with existing neural network verifi-
cation frameworks, such as ERAN [1], and AutoLiRPA [47]. These tools take
as input a neural network, and a region of the neural networks input space, and
compute an over-approximation of the neural network’s outputs. Internally, these
frameworks have modules that compute linear bounds for a specific activation
functions. LinSyn is a one-size-fits-all drop-in replacement for these modules
that are invoked at runtime whenever a linear bound of a non-linear activation
function is needed.

Our method differs from these existing frameworks because a user (usually an
expert in neural network verification) must provide hand-crafted, sound linear
bounds for the activation functions of a neural network. However, to date, they
only support the previously mentioned activation functions. We note however
that the recent framework AutoLiRPA supports binary operations (namely
addition, subtraction, multiplication, and division) as “activation functions”.
Thus, while it’s not explicitly designed to handle complex activations, it has the
ability to by decomposing, e.g., gelu(x) into operations that it supports, and
then combining them. In contrast, LinSyn bounds the activation function as a
whole, which we will show produces much tighter linear bounds.

We have implemented our method in tool called LinSyn, and evaluated it
on benchmarks in computer vision and natural language processing (NLP). Our
evaluation shows that we can obtain final output bounds often 2-5X tighter
than the most general tool [47], thus allowing us to drastically increase certi-
fied robustness. In addition, our tool achieves accuracy equal to or better than
the handcrafted LSTM bounds of Popqorn [25], which is currently the most
accurate tool for analyzing LSTM-based NLP models, at a comparable runtime.

To summarize, this paper makes the following contributions:

– We propose the first method for automatically synthesizing tight linear
bounds for arbitrary activation functions.

359LinSyn: Synthesizing Tight Linear Bounds

– We implement our approach in a tool called LinSyn, and integrate it as a
bounding module into the AutoLiRPA framework, thus producing a neural
network verification tool that can theoretically compute tight linear bounds
for any arbitrary activation function.

– We extensively evaluate our approach and show it outperforms state-of-the-
art tools in terms of accuracy and certified robustness by a large margin.

The rest of this paper is organized as follows. First, we provide the technical
background in Section 2. Then, we present our method for synthesizing the linear
bounds in Section 3 and our method for verifying the linear bounds in Section 4.
Next, we present the experimental results in Section 5. We review the related
work in Section 6 and, finally, give our conclusions in Section 7.

2 Preliminaries

In this section, we define the neural network verification problem, and illustrate
both how state-of-the-art verification techniques work, and their limitations.

2.1 Neural Networks

Following conventional notation, we refer to matrices with capital bold letters
(e.g. W ∈ Rn×m), vectors as lower case bold letters (e.g. x ∈ Rn), and scalars
or variables with lower case letters (e.g. x ∈ R). Slightly deviating from the
convention, we refer to a set of elements with capital letters (e.g. X ⊆ Rn).

We consider two types of networks in our work: feed-forward and recurrent.
We consider a feed-forward neural network to be a (highly) non-linear function
f : X→ Y, where X ⊆ Rn and Y ⊆ Rm. We focus on neural network classifiers.
For an input x ∈ X, each element in the output f(x) represents a score for a
particular class, and the class associated with the largest element is the chosen
class. For example, in image classification, X would be the set of all images, each
element of an input x ∈ X represents a pixel’s value, and each element in Y is
associated with a particular object that the image might contain.

In feed-forward neural networks the output f(x) is computed by performing
a series of affine transformations, i.e., multiplying by a weight matrix, followed
by application of an activation function σ(·). Formally, a neural network with l
layers has l two-dimensional weight matrices and l one-dimensional bias vectors
Wi,bi, where i ∈ 1..l, and thus we have f(x) = Wl · σ(Wl−1 · · · · σ(W1 · x +
b1) · · · + bl−1) + bl, where σ(·) is the activation function applied element-wise
to the input vector. The default choice of activation is typically the sigmoid
σ(x) = 1/(1 + e−x), tanh , or ReLU function σ(x) = max(0, x), however recent
work [18, 32, 31] has shown that functions such as gelu(x) and swish(x) =
x×sigmoid(x) can have better performance and desirable theoretical properties.

Unlike feed-forward neural networks, recurrent neural networks receive a se-
quence of inputs [x(1), . . . ,x(t)], and the final output of f on xt is used to perform
the classification of the whole sequence. Recurrent neural networks are state-ful,
meaning they maintain a state vector that contains information about inputs
previously given to f , which also gets updated on each call to f . In particular,

Brandon Paulsen� and Chao Wang360

we focus on long short-term memory (LSTM) networks, which have seen wide
adoption in natural language processing (NLP) tasks due to their sequential
nature. For LSTMs trained for NLP tasks, the network receives a sequence of
word embeddings. A word embedding is an n-dimensional vector that is associ-
ated with a particular word in a (natural) language. The distance between word
embeddings carries semantic significance – two word embeddings that are close
to each other in Rn typically have similar meanings or carry a semantic relat-
edness (e.g. dog and cat or king and queen), whereas unrelated words typically
are farther apart.

LSTM networks further differ from feed-forward networks in that their inter-
nal activation functions are two-dimensional. Specifically, we have the following
two activation patterns: σ1(x) × σ2(y) and x × σ1(y). The default choices are
σ1(x) = sigmoid(x), and σ2(x) = tanh(x). However, we can swap σ1 with any
function with output range bounded by [0, 1], and swap σ2 with any function
with output range bounded by [−1, 1]. Indeed, prior work [16] has shown that

σ1(x) = 1− ee−x

can achieve better results in some applications.

2.2 Neural Network Verification

A large number of problems in neural network verification can be phrased as the
following: given an input region X ⊆ X, compute an over-approximation Y , such
that {f(x) | x ∈ X} ⊆ Y ⊆ Y. Typically X and Y are hyper-boxes represented
by an interval for each of their elements. A common problem is to prove that
a point x ∈ X is robust, meaning that small perturbations will not cause an
incorrect classification. In this case, X is the set of all perturbed versions of x,
and to prove robustness, we check that the element of the correct class in Y has
a lower bound that is greater than the upper bound of all other elements.

We illustrate a simple verification problem on the neural network shown in
Fig. 2. The network has two inputs, x1, x2, and two outputs x7, x8 which repre-
sent scores for two different classes. We refer to the remaining hidden neurons
as xi, i ∈ 3..6. Following prior work [36], we break the affine transformation and
application of the activation function into two separate neurons, and the neurons
are assumed to be ordered such that, if xi is in a layer before xj , then i < j.
For simplicity, in this motivating example, we let σ(x) = max(0, x) (the ReLU
function). We are interested in proving that the region x1 ∈ [−1, 1], x2 ∈ [−1, 1]
always maps to the first class, or in other words, we want to show that the lower
bound of x7 is greater than the upper bound x8.

2.3 Existing Methods

The most scalable approaches (to date) for neural network verification are based
on linear bounding and back-substitution [47], also referred to as abstract inter-
pretation in the polyhedral abstract domain [36] or symbolic interval analysis [43]
in prior work.

For each neuron xj in the network, these approaches compute a concrete
lower and upper bound lj , uj , and a linear lower and upper bound in terms of
the previous layer’s neurons. The linear bounds (regardless of the choice of σ(·))

361LinSyn: Synthesizing Tight Linear Bounds

Fig. 2. Example of neural network verification.

Fig. 3. Linear bounds
for ReLU activation.

have the following form:
∑j−1
i=0 xi · cli + clj ≤ xj ≤

∑j−1
i=0 xi · cui + cuj . The bounds

are computed in a forward, layer-by-layer fashion which guarantees that any
referenced neurons will already have a bound computed when back-substitution
is performed.

To obtain the concrete bounds lj , uj for a neuron xj , the bounds of any non-
input neurons are recursively substituted into the linear bounds of xj until only
input nodes x1, ..., xn remain. Finally, the concrete input intervals are substituted
into the bound to obtain lj , uj .

Example We illustrate on the two-layer network in Fig. 2 for the previously
defined property. We trivially have l1 = l2 = −1, u1 = u2 = 1, −1 ≤ x1 ≤ 1, and
−1 ≤ x2 ≤ 1. We then compute linear bounds for x3, x4 in terms of previous
layer’s neurons x1, x2. We multiply x1, x2 by the edge weights, obtaining −x1+x2
as the lower and upper bound for both of x3 and x4. Since this bound is already
in terms of the input variables, we substitute the concrete bounds into this
equation and obtain l3 = l4 = −2 and u3 = u4 = 2.

Next, we need to compute the linear bounds for x5 = σ(x3) and x6 = σ(x4)
after applying the activation function. Solving this challenge has been the focus
of many prior works. There are two requirements. First, they need to be sound.
For example, for x5 we need to find coefficients cl1, c

l
2, c

u
1 , c

u
2 such that cl1x3+cl2 ≤

σ(x3) ≤ cu1x3 + cu2 for all x3 ∈ [l3, u3], and similarly for x6. Second, we want
them to be tight. Generally, this means that volume below the upper bound is
minimized, and volume below the lower bound is maximized.

As an example, prior work [36, 48] proposed the following sound and tight
bound for σ(x) = max(0, x):

∀xi ∈ [li, ui] .
ui

ui − li
xi +

−liui
ui − li

≤ σ(xi) ≤

{
0 −li ≥ ui
xi −li < ui

We illustrate the bound for x5 in Fig. 3. After computing this bound, we recur-
sively substitute variables in the bounds of x5 with the appropriate bound, and
compute l5, u5. The process then repeats for x6, followed by x7 and x8. We then
check l7 > u8 to verify the property, which fails in this case.

Brandon Paulsen� and Chao Wang362

2.4 Limitations of Existing Methods

Current approaches only support a limited number of activation functions, and
designing linear bounds for new activation functions often requires a significant
amount of effort even for a domain expert. For example, handcrafted sound
and tight linear bounds for activation functions such as ReLU, sigmoid, and
tanh [36, 45, 48, 46, 44, 43], convolution layers and pooling operations [6], the
two-dimensional activations found in LSTMs [25, 33], and those in transformer
networks [34] are worthy of publication. Furthermore, even bounds that are
hand-crafted by experts are not always tight. For example, a recent work [46]
was able to nearly triple the precision of previous state-of-the-art sigmoid and
tanh linear bounds simply by improving tightness.

To the best of our knowledge, AutoLiRPA [47] is the only tool that has
the ability to handle more complex activation functions, though it was not origi-
nally designed for this. It can do so by decomposing them into simpler operations,
and then composing the bounds together. We illustrate with swish(x) = x ×
sigmoid(x), where x ∈ [−1.5, 5.5]. AutoLiRPA would first bound sigmoid(x)
over the region [−1.5, 5.5], resulting in the bound .11x + .35 ≤ sigmoid(x) ≤
.22x + .51. For the left-hand side of the function, we trivially have x ≤ x ≤ x.
AutoLiRPA would then bound a multiplication y× z, where in this case y = x
and z = sigmoid(x), resulting in the final bound −.15x−.495 ≤ x×sigmoid(x) ≤
0.825x + .96. We illustrate this bound in Fig. 4, and we provide bounds com-
puted by LinSyn as a comparison point. LinSyn provides a slightly better upper
bound, and a significantly better lower bound. The reason for the looseness is be-
cause when AutoLiRPA bounds sigmoid(x), it necessarily accumulates some
approximation error because it is approximating the behavior of a non-linear
function with linear bounds. The approximation error effectively “loses some
information” about about its input variable x. Then, when bounding the multi-
plication operation, it has partially lost the information that y and z are related
(i.e. they are both derived from x). In contrast, LinSyn overcomes this issue by
considering swish(x) as a whole. We explain how in the following sections.

3 Synthesizing the Candidate Linear Bounds

In this section, we describe our method for synthesizing candidate, possibly
unsound linear bounds.

3.1 Problem Statement and Challenges

We assume we are given a d-dimensional activation function z = σ(x1, ..., xd),
and an input interval xi ∈ [li, ui] for each i ∈ {1..d}. Our goal is to synthesize
linear coefficients cli, c

u
i , where i ∈ {1..d + 1} that are sound, meaning that the

following condition holds:

∀x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

cl1x1 + cl2x2 + · · ·+ cld+1 ≤ σ(x1, x2, . . .) ≤ cu1x1 + cu2x2 + · · ·+ cud+1

(2)

363LinSyn: Synthesizing Tight Linear Bounds

-4 -2 2 4 60

2

4

6

AutoLiRPA
Ours

Fig. 4. Bounds computed by LinSyn
and AutoLiRPA for swish(x), x ∈
[−1.5, 5.5].

min shift

∫ 3.5

−1

cu1x1 + cu2 dx

−4 −2 0 2 4
0

0.5

1

x1

Fig. 5. Candidate plane synthesis.

In addition, we want to ensure that the bounds are tight. The ideal definition
of tightness would choose linear bounds that maximize the precision of the overall
analysis, for example minimizing the width of the output neuron’s intervals.
Unfortunately, such a measure would involve all of the neurons of the network,
and so is impractical to compute. Instead, the common practice is to settle for
tightness that’s local to the specific neuron we are bounding.

Informally, we say a bound is tight if the volume below the upper bound is
minimized, and volume below the lower bound is maximized. Prior work [48,
36, 25] has found this to be a good heuristic1. Formally, volume is defined as

the following integral:
∫ u1

l1
· · ·
∫ ud

ld

∑d
i=1 c

u
i xi + cud+1 dx1 . . . dxd which, for the

upper bound, should be minimized subject to Equation 2. This integral has the
following closed-form solution:

d∑
i=0

1

2
ci ×

d∏
j=0

(
u
1+1i=j

i − l1+1i=j

i

)+ cd+1 ∗
d∏
i=0

(ui − li) (3)

where 1i=j is the (pseudo Boolean) indicator function that returns 1 when its
predicate is true. We omit the proof, but note that the above expression can be
derived inductively on d. Also note that, since each li, ui are concrete, the above
expression is linear in terms of the coefficients, which will be advantageous in
our approach below.

While recent approaches in solving non-linear optimization problems [26, 8]
could directly minimize Equation 3 subject to Equation 2 in one step, we find
the runtime to be very slow. Instead, we adopt a two-step approach that first
uses efficient procedures for computing candidate coefficients that are almost
sound (explained in this section), and second, only calls an SMT solver when
necessary to verify Equation 2 (explained in the next section). We illustrate the
approach on a concrete example.

1 We also experimented with minimizing the volume between the linear bound and
the activation function, which gave almost identical results.

Brandon Paulsen� and Chao Wang364

3.2 Synthesizing Candidate Bounds

The first step in our approach computes candidate coefficients for the linear
bound. In this step we focus on satisfying the tightness requirement, while mak-
ing a best effort for soundness. We draw inspiration from prior work [33, 3]
that leverages sampling to estimate the curvature of a particular function, and
then uses a linear programming (LP) solver to compute a plane that is sound.
However, unlike prior work which targeted a fixed function, we target arbitrary
(activation) functions, and thus these are special cases of our approach.

The constraints of the LP are determined by a set of sample points S ⊂ Rd.
For the upper bound, we minimize Equation 3, subject to the constraint that
the linear bound is above σ(·) at the points in S. Using si to refer to the ith

element of the vector s ∈ S, the linear program we solve is:

minimize Equation (3) subject to
∧
s∈S

c1s1 + c2s2 + · · ·+ cd+1 ≥ σ(s) (4)

We generate S by sampling uniformly-spaced points over the input intervals.

Example We demonstrate our approach on the running example illustrated in
Fig. 5. For the example, let σ(x1) = 1

1+e−x1
(the sigmoid function, shown as the

blue curve), where x1 ∈ [−1, 3.5]. We focus only on the upper bound, but the
lower bound is computed analogously.

Plugging in the variables into Equation 3, the objective of the LP that we

minimize is:

∫ 3.5

−1
cu1x1 + cu2 dx1 = 6.625cu1 + 4.5cu2 which is shown as the shaded

region in Fig. 5.
We sample the points S = {−1, 0.25, 1.5, 2.75}, resulting in the following four

constraints: −c1 + c2 ≥ σ(−1) ∧ 0.25c1 + c2 ≥ σ(0.25) ∧ 1.5c1 + cs ≥ σ(1.5) ∧
2.75c1 + c2 ≥ σ(2.75). Solving the LP program results in c1 = 0.104, c2 = 0.649,
which is illustrated by the green line in Fig. 5.

4 Making the Bound Sound

In this section, we present our method for obtaining soundness because the
candidate bounds synthesized in the previous section may not be sound. Here,
we focus only on making the upper bound sound, but note the procedure for the
lower bound is similar.

4.1 Problem Statement and Challenges

We are given the activation function σ(·), the input intervals xi ∈ [li, ui], and the
candidate coefficients c1, c2, . . . , cd+1. The goal is to compute an upward shift,
if needed, to make the upper bound sound. First, we define the violation of the
upper bound as:

v(x1, x2, . . . , xd) := cu1x1 + cu2x2 + · · ·+ cud+1 − σ(x1, x2, . . . , xd) (5)

365LinSyn: Synthesizing Tight Linear Bounds

A negative value indicates the upper bound is not sound. We then need to
compute a lower bound on v(·), which we term vl. Then the equation we pass to
the verifier is:

∀x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

v(x1, x2, . . . , xd) + (−vl) ≥ 0
(6)

Expanding v(·) with its definition in the above equation results in the soundness
definition of Equation 2. Thus, if the verifier proves Equation 6, then shifting the
upper bound upward by −vl ensures its soundness. For our running example,
the quantity vl is shown by the red line in Fig. 5.

This problem is non-trivial because finding a solution for vl requires a search
for a sound global minimum/maximum of a function involving σ(·), which may
be highly non-linear. State-of-the-art SMT solvers such as Z3 do not support
all non-linear operations, and furthermore, since we assume arbitrary σ(·), the
problem may even be (computationally) undecidable.

4.2 Verifying the Bound

We first assume we have a candidate (possibly unsound) vl, and explain our
verification method. To ensure decidability and tractability, we leverage the δ-
decision procedure implemented by dReal [14]. To the best of our knowledge
this is is the only framework that is decidable for all computable functions.

In this context, instead of verifying Equation 6, the formula is first negated
thus changing it into an existentially quantified one, and then applying a δ-
relaxation. Formally, the formula dReal attempts to solve is:

∃x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , xd ∈ [ld, ud]

v(x1, x2, . . .) + (−vl) ≤ δ
(7)

where δ is a small constant (e.g. 10−5), which we explain in a moment. The
above is formulated such that Equation 6 holds if (but not only if) there does
not exist a solution to Equation 7.

Internally, dReal performs interval constraint propagation (ICP) on the left-
hand side of Equation 7 over the intervals defined by each [li, ui] to compute an
upper bound, and compares this upper bound with δ. If the upper bound is less
than δ, then no solution exists (i.e., Equation 7 is unsatisfiable, and we have
proven the original Equation 6 holds). Otherwise a solution may exist. In this
case, dReal iteratively partitions the input space defined by the [li, ui] and
repeats this process on each partition separately.

dReal stops partitioning either when it proves all partitions do not have
solutions , or when a partition whose intervals all have width less than some ε is
found. Here, ε is proportional to δ (i.e., smaller δ means smaller ε). In the latter
case, dReal returns this partition as a “solution”.

While Equation 6 holds if there does not exist a solution to Equation 7,
the converse does not hold true both because of the error inherent in ICP, and
because we “relaxed” the right-hand side of Equation 7. This means that δ
controls the precision of the analysis. δ controls both the size of the false solution

Brandon Paulsen� and Chao Wang366

space, and determines how many times we will sub-divide the input space before
giving up on proving Equation 7 to be unsatisfiable.

Practically, this has two implications for our approach. The first one is that
our approach naturally inherits a degree of looseness in the linear bounds defined
by δ. Specifically, we must shift our plane upward by δ in addition to the true
vl, so that dReal can verify the bound. The second is that we have to make
a trade-off between computation and precision. While smaller δ will allow us
to verify a tighter bound, it generally will also mean a longer verification time.
In our experiments, we find that δ = 10−7 gives tight bounds at an acceptable
runtime, though we may be able to achieve a shorter runtime with a larger δ.

4.3 Computing vl

Now that we have defined how we can verify a candidate bound, we explain our
approach for computing vl. The implementation is outlined in Algorithm 1. Since
failed calls to the verifier can be expensive, at lines 1-2, we first use a relatively
cheap (and unsound) local optimization procedure to estimate the true vl. While
local optimization may get stuck in local minima, neural network activation
functions typically do not have many local minima, so neither will v(·). We use
L-BFGS-B [7], the bounded version of L-BFGS, to perform the optimization. At
a high-level, L-BFGS-B takes as input v(·), the input bounds xi ∈ [li, ui], and
an initial guess g ∈ Rd at the location of the local minimum. It then uses the
Jacobian matrix (i.e., derivatives) of v(·) to iteratively move towards the local
minimum (the Jacobian can be estimated using the finite differences method
or provided explicitly – we use Mathematica [21] to obtain it). We find that
sampling points uniformly in v(·) can usually find a good g, and thus L-BFGS-B
often converges in a small number of iterations. L-BFGS-B typically produces an
estimate within 10−8 of the true value. To account for estimation error we add
an additional 10−6, plus 2 × δ to account for the δ-relaxation (line 3). Finally,
we iteratively decrease vl by a small amount (10−6) until dReal verifies it (lines
4-9).

Going back to our motivating example, we would estimate vl with a local
minimizer, and then use dReal to verify the following:

∀x1 ∈ [−1, 3.5] . σ(x1) ≤ cu1x1 + cu2 + (−vl) + 2× δ + 10−6

If verification fails, we iteratively decrease the value of vl by 10−6, and call dReal
until the bound is verified. The final value of cu1x1 + cu2 + (−vl) + 2 × δ + 10−6

is the final sound upper bound.

4.4 On the Correctness and Generality of LinSyn

The full LinSyn procedure is shown in Algorithm 2. The correctness (i.e. sound-
ness) of the synthesized bounds is guaranteed if the vl returned by Algorithm 1
is a true lower bound on v(·). Since Algorithm 1 does not return until dReal
verifies vl at line 6, the correctness is guaranteed.

Both our procedure in Section 3 and L-BFGS-B require only black-box access
to σ(·), so the only potential limit to the arbitrariness of our approach lies in

367LinSyn: Synthesizing Tight Linear Bounds

Algorithm 1: BoundViolation

Input: Activation σ(x1, x2, . . .), Candidate Coefficients cu1 , c
u
2 , . . . , c

u
d+1,

Input Bounds x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . , Jacobian ∇v (optional)
Output: Lower Bound on Violation vl

1 g← sample points on v(x1, x2, . . .) and take minimum;
2 vl ← L-BFGS-B(v(x1, x2, . . .), x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . ,g,∇v) ;

3 vl ← vl − 10−6 − 2δ;
4 while True do
5 // Call dReal
6 if Equation 2 holds then
7 return vl;
8 end

9 vl ← vl − 10−6;

10 end

Algorithm 2: SynthesizeUpperBoundCoefficients

Input: Activation σ(x1, x2, . . .), Input Bounds x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . ,
Jacobian ∇v (optional)

Output: Sound Coefficients cu1 , c
u
2 , . . . , c

u
d+1

1 cu1 , c
u
2 , . . . , c

u
d+1 ← Sampling and LP procedure on σ(x) over Input Bounds;

2 vl ← BoundViolation(cu1 , c
u
2 , . . . , c

u
d+1, x1 ∈ [l1, u1], x2 ∈ [l2, u2], . . . ,∇v);

3 cud+1 ← cud+1 + (−vl);
4 return cu1 , c

u
2 , . . . , c

u
d+1;

what elementary operations are supported by dReal. During our investigation,
we did not find activations that use operations unsupported by dReal, however
if an unsupported operation is encountered, one would only need to define an
interval extension [28] for the operation, which can be done for any computable
function.

5 Evaluation

We have implemented our method in a module called LinSyn, and integrated
it into the AutoLiRPA neural network verification framework [47]. A user in-
stantiates LinSyn with a definition of an activation function, which results in
an executable software module capable of computing the sound linear lower and
upper bounds for the activation function over a given input region. LinSyn uses
Gurobi [17] to solve the LP problem described in Section 3, and dReal [14] as
the verifier described in 4. In total, LinSyn is implemented in about 1200 lines
of Python code.

5.1 Benchmarks

Neural Networks Our benchmarks are nine deep neural networks trained on the
three different datasets shown below. In the following, a neuron is a node in the

Brandon Paulsen� and Chao Wang368

neural network where a linear bound must be computed, and thus the neuron
counts indicate the number of calls to LinSyn that must be made.

– MNIST: MNIST is a dataset of hand-written integers labeled with the
corresponding integer in the image. The images have 28x28 pixels, with each
pixel taking a gray-scale value between 0 to 255. We trained three variants of
a 4-layer CNN (convolutional neural network). Each takes as input a 28x28
= 784-dimensional input vector and outputs 10 scores, one for each class.
In total, each network has 2,608 neurons – 1568, 784, and 256 in the first,
second, and third layers, respectively.

– CIFAR: CIFAR is a dataset of RGB images from 10 different classes. The
images have 32x32 pixels, with each pixel having an R, G, and B value in
the range 0 to 255. We trained three variants of a 5-layer CNN. Each takes
a 32x32x3 = 3072-dimensional input vector and outputs 10 scores, one for
each class. In total, each network has 5376 neurons, 2048, 2048, 1024, and
256 neurons in the first, second, third, and fourth layers, respectively.

– SST-2: The Stanford Sentiment Treebank (SST) dataset consists of sen-
tences taken from movie reviews that are human annotated with either pos-
itive or negative, indicating the sentiment expressed in the sentence. We
trained three different variants of the standard LSTM architecture. These
networks take as input a sequence 64-dimensional word embeddings and out-
put 2 scores, one for positive and one for negative. Each network has a hidden
size of 64, which works out to 384 neurons per input in the input sequence.

0.5x(1 + tanh (
√

2/π(x+ 0.044715x3)))
(GeLU)

min(1,max(x,−1)) (Hard Tanh)

1− e−ex (Log-Log)

x ∗ σ(x) (Swish)

Fig. 6. Nonlinear activation functions.

Activation Functions We experi-
mented with the four activation
functions as shown in Fig. 6.
GELU and Swish were recently
proposed alternatives to the stan-
dard ReLU function due to
their desirable theoretical proper-
ties [18] such as reduced overfit-
ting [38], and they have seen use
in OpenAI’s GPT [31] and very
deep feed forward networks [32].
Similarly, Hard-Tanh is an op-
timized version of the common
tanh function, while the Log-
Log function [16] is a sigmoid-like
function used in forecasting.

The Verification Problem The verification problem we consider is to certify that
an input is robust to bounded perturbations of magnitude ε, where ε is a small
number. Certifying means proving that the classification result of the neural
network does not change in the presence of perturbations. We focus on l∞ ro-
bustness, where we take an input x ∈ Rn and allow a bounded perturbation of
+/− ε to each element in x. For each network, we take 100 random test inputs,
filter out those that are incorrectly classified, apply an ε bounded perturbation

369LinSyn: Synthesizing Tight Linear Bounds

Table 1. Comparing certified accuracy and run time of LinSyn and AutoLiRPA.

Network Architecture
AutoLiRPA [47] Our Method (new)
% certified time (s) % certified time(s)

MNIST 4-Layer CNN with Swish 0.34 15 0.76 796
4-Layer CNN with Gelu 0.01 359 0.72 814
4-Layer CNN with Log Log 0.00 38 0.24 867

CIFAR 5-Layer CNN with Swish 0.03 69 0.35 1,077
5-Layer CNN with Gelu 0.00 1,217 0.31 1,163
5-Layer CNN with Log Log 0.59 98 0.69 717

SST-2 LSTM with sig tanh 0.93 37 0.91 1,074
LSTM with hard tanh - - 0.64 2300
LSTM with log log 0.16 1,072 0.82 2,859

Table 2. Comparing certified accuracy and run time of LinSyn and POPQORN.

Network Architecture
POPQORN [25] Our Method (new)
% certified time (s) % certified time(s)

SST-2 LSTM with sig tanh 0.93 1517 0.90 1,074

to the correctly classified inputs, and then attempt to prove the classification re-
mains correct. We choose ε values common in prior work. For MNIST networks,
in particular, we choose ε = 8/255. For CIFAR networks, we choose ε = 1/255.
For SST-2 networks, we choose ε = 0.04, and we only apply it to the first word
embedding in the input sequence.

5.2 Experimental Results

Our experiments were designed to answer the following two questions: (1) How
do LinSyn’s linear bounds compare with handcrafted bounds? (2) How does
the runtime of LinSyn compare to state-of-the-art linear bounding techniques?
To answer these questions, we compare the effectiveness of LinSyn’s linear
bounds with the state-of-the-art linear bounding technique implemented in Au-
toLiRPA. To the best of our knowledge this is the only tool that can handle the
activation functions we use in our benchmarks. As another comparison point,
we also compare with POPQORN, a state-of-the-art linear bounding technique
for LSTM networks. POPQORN tackles the challenge of computing tight linear
bounds for sigmoid(x)×tanh(y) and x×sigmoid(y) using an expensive gradient
descent based approach, and thus makes a good comparison point for runtime
and accuracy. Our experiments were conducted on a computer with an Intel 2.6
GHz i7-6700 8-core CPU and 32GB RAM. Both AutoLiRPA and LinSyn are
engineered to bound individual neurons in parallel. We configure each method
to use up to 6 threads.

Overall Comparison First, we compare the overall performance of our new
method and the default linear bounding technique in AutoLiRPA. The re-
sults are shown in Table 1. Here, Columns 1-2 show the name of the dataset and
the type of neural networks. Columns 3-4 show the results of the default Au-
toLiRPA, including the percentage of inputs certified and the analysis time in
seconds. Similarly, Columns 5-6 show the results of our new method.

Brandon Paulsen� and Chao Wang370

10 2 100 102 104

LinSyn
10 2

100

102

104
Au

to
LiR

PA

Fig. 7. Scatter plot comparing the
final output interval width of Lin-
Syn and AutoLiRPA.

0.
5

1.
0

2.
0

5.
0

10
.0

Ratio

0

200

400

600

800

Fig. 8. Histogram of width ratios between
AutoLiRPA and LinSyn. Ratio reported
as AutoLiRPA

LinSyn
.

The results in Table 1 show that, in terms of the analysis time, our method is
slower, primarily due to the use of constraint solvers (namely dReal and the LP
solver) but overall, the analysis speed is comparable to AutoLiRPA. However,
in terms of accuracy, our method significantly outperforms AutoLiRPA. In
almost all cases, our method was able to certify a much higher percentage of the
inputs. For example, LinSyn more than quadruples the certified robustness of
the LSTM with log log benchmark, and handles very well the relatively complex
GeLU function. As for SST-2: LSTM with hard tanh, AutoLiRPA does not
support the general max(x, y) operation, so a comparison is not possible without
significant engineering work.

The only exception to the improvement is SST-2: LSTM with sig tanh, for
which the results are similar (.93 versus .91). In this case, there is likely little
to be gained over the default, decomposition-based approach of AutoLiRPA in
terms of tightness because the inputs to sigmoid(x)×tanh(y) and x×sigmoid(y)
are not related, i.e., x and y are two separate variables. This is in contrast to,
e.g., swish(x) = x × sigmoid(x), where the left-hand side and right-hand side
of the multiplication are related.

In Table 2, we show a comparison between LinSyn and POPQORN. The
result shows that our approach achieves similar certified robustness and runtime,
even though POPQORN was designed to specifically target this particular type
of LSTM architecture, while LinSyn is entirely generic.

Detailed Comparison Next, we perform a more in depth comparison of accuracy
by comparing the widths of the final output neuron’s intervals that are computed
by AutoLiRPA and LinSyn. The results are shown in the scatter plot in Fig. 7
and the histogram in Fig. 8. Each point in the scatter plot represents a single
output neuron xi for a single verification problem. The x-axis is the width of
the interval of the output neuron xi (i.e. ui − li) computed by LinSyn, and
the y-axis is the width computed by AutoLiRPA. A point above the diagonal

371LinSyn: Synthesizing Tight Linear Bounds

line indicates that LinSyn computed a tighter (smaller) final output interval.
In the histogram, we further illustrate the accuracy gain as the width ratio,
measured as AutoLiRPA

LinSyn . Overall, the results show that LinSyn is more accurate
in nearly all cases, and LinSyn often produces final output bounds 2-5X tighter
than AutoLiRPA.

6 Related Work

Linear Bound-based Neural Network Verification There is a large body of work
on using linear-bounding techniques [36, 48, 34, 6, 45, 29, 30, 46, 27] and
other abstract domains such as concrete intervals, symbolic intervals [44], and
Zonotopes [15], for the purpose of neural network verification. All of these can
be thought of as leveraging restricted versions of the polyhedral abstract do-
main [10, 9]. To the best of our knowledge, these approaches are the most scal-
able (in terms of network size) due to the use of approximations, but this also
means they are less accurate than exact approaches. In addition, all these ap-
proaches have the limitation that they depend on bounds that are hand-crafted
by an expert.

SMT solver-based Neural Network Verification There is also a large body
of work on using exact constraint solving for neural network verification. Early
works include solvers specifically designed for neural networks, such as Reluplex
and Marabou [23, 24] and others [11], and leveraging existing solvers [12, 20,
5, 20, 4, 40, 19]. While more accurate, the reliance on an SMT solver typically
limits their scalability. More recent work often uses solvers to refine the bounds
computed by linear bounding [35, 37, 43, 42, 41]. Since the solvers leveraged in
these approaches usually involve linear constraint solving techniques, they are
usually only applicable to piece-wise linear activation functions such as ReLU
and Max/Min-pooling.

7 Conclusions

We have presented LinSyn, a method for synthesizing linear bounds for arbi-
trary activation functions. The key advantage of LinSyn is that it can handle
complex activation functions, such as Swish, GELU, and Log Log as a whole,
allowing it to synthesize much tighter linear bounds than existing tools. Our
experimental results show this increased tightness leads to drastically increased
certified robustness, and tighter final output bounds.

Brandon Paulsen� and Chao Wang372

References

1. Eran. https://github.com/eth-sri/eran (2021)
2. Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.J., Srivastava, M., Chang,

K.W.: Generating natural language adversarial examples. arXiv preprint
arXiv:1804.07998 (2018)

3. Balunović, M., Baader, M., Singh, G., Gehr, T., Vechev, M.: Certifying geometric
robustness of neural networks. Advances in Neural Information Processing Systems
32 (2019)

4. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative verification
of neural networks and its security applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1249–1264
(2019)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Annual Conference on
Neural Information Processing Systems. pp. 2613–2621 (2016)

6. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: Cnn-cert: An efficient
framework for certifying robustness of convolutional neural networks. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 3240–3247 (2019)

7. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM Journal on scientific computing 16(5), 1190–1208
(1995)

8. Chabert, G., Jaulin, L.: Contractor programming. Artificial Intelligence 173(11),
1079–1100 (2009)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. pp.
238–252 (1977)

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. pp. 84–96 (1978)

11. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to
scalable verification of deep networks. In: International Conference on Uncertainty
in Artificial Intelligence. pp. 550–559 (2018)

12. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Automated Technology for Verification and Analysis - 15th International Sym-
posium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings. pp. 269–286
(2017)

13. Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., Madry, A.: Exploring the land-
scape of spatial robustness. In: International Conference on Machine Learning. pp.
1802–1811. PMLR (2019)

14. Gao, S., Kong, S., Clarke, E.M.: dreal: An smt solver for nonlinear theories over the
reals. In: International conference on automated deduction. pp. 208–214. Springer
(2013)

15. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: IEEE Symposium on Security and Privacy. pp. 3–18 (2018)

16. Gomes, G.S.d.S., Ludermir, T.B.: Complementary log-log and probit: activation
functions implemented in artificial neural networks. In: 2008 Eighth International
Conference on Hybrid Intelligent Systems. pp. 939–942. IEEE (2008)

17. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021), https:
//www.gurobi.com

373LinSyn: Synthesizing Tight Linear Bounds

https://github.com/eth-sri/eran
https://www.gurobi.com
https://www.gurobi.com

18. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

19. Hu, H., Fazlyab, M., Morari, M., Pappas, G.J.: Reach-sdp: Reachability analysis of
closed-loop systems with neural network controllers via semidefinite programming.
In: 2020 59th IEEE Conference on Decision and Control (CDC). pp. 5929–5934.
IEEE (2020)

20. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification. pp. 3–29
(2017)

21. Inc., W.R.: Mathematica, Version 12.3.1, https://www.wolfram.com/mathematica,
champaign, IL, 2021

22. Kanbak, C., Moosavi-Dezfooli, S.M., Frossard, P.: Geometric robustness of deep
networks: analysis and improvement. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 4441–4449 (2018)

23. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: International Confer-
ence on Computer Aided Verification. pp. 97–117 (2017)

24. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.:
The Marabou framework for verification and analysis of deep neural networks. In:
International Conference on Computer Aided Verification. pp. 443–452 (2019)

25. Ko, C.Y., Lyu, Z., Weng, L., Daniel, L., Wong, N., Lin, D.: Popqorn: Quantifying
robustness of recurrent neural networks. In: International Conference on Machine
Learning. pp. 3468–3477. PMLR (2019)

26. Kong, S., Solar-Lezama, A., Gao, S.: Delta-decision procedures for exists-forall
problems over the reals. In: International Conference on Computer Aided Verifica-
tion. pp. 219–235. Springer (2018)

27. Mohammadinejad, S., Paulsen, B., Wang, C., Deshmukh, J.V.: Diffrnn: Differential
verification of recurrent neural networks. arXiv preprint arXiv:2007.10135 (2020)

28. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis,
vol. 110. Siam (2009)

29. Paulsen, B., Wang, J., Wang, C.: Reludiff: Differential verification of deep neural
networks. In: 2020 IEEE/ACM 42nd International Conference on Software Engi-
neering (ICSE). pp. 714–726. IEEE (2020)

30. Paulsen, B., Wang, J., Wang, J., Wang, C.: Neurodiff: scalable differential ver-
ification of neural networks using fine-grained approximation. In: 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
pp. 784–796. IEEE (2020)

31. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language un-
derstanding by generative pre-training (2018)

32. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv
preprint arXiv:1710.05941 (2017)

33. Ryou, W., Chen, J., Balunovic, M., Singh, G., Dan, A., Vechev, M.: Scalable poly-
hedral verification of recurrent neural networks. In: International Conference on
Computer Aided Verification. pp. 225–248. Springer (2021)

34. Shi, Z., Zhang, H., Chang, K.W., Huang, M., Hsieh, C.J.: Robustness verification
for transformers. International Conference on Learning Representations (2020)

35. Singh, G., Ganvir, R., Pschel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS) (2019)

36. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages pp. 41:1–41:30 (2019)

Brandon Paulsen� and Chao Wang374

https://www.wolfram.com/mathematica

37. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certification of
neural networks. In: International Conference on Learning Representations (2019)

38. Singla, V., Singla, S., Feizi, S., Jacobs, D.: Low curvature activations reduce over-
fitting in adversarial training. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 16423–16433 (2021)

39. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fer-
gus, R.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199
(2013)

40. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. International Conference on Learning Representations
(2019)

41. Tran, H.D., Bak, S., Xiang, W., Johnson, T.T.: Verification of deep convolutional
neural networks using imagestars. In: International Conference on Computer Aided
Verification. pp. 18–42. Springer (2020)

42. Tran, H.D., Lopez, D.M., Musau, P., Yang, X., Nguyen, L.V., Xiang, W., Johnson,
T.T.: Star-based reachability analysis of deep neural networks. In: International
Symposium on Formal Methods. pp. 670–686. Springer (2019)

43. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety anal-
ysis of neural networks. In: Annual Conference on Neural Information Processing
Systems. pp. 6369–6379 (2018)

44. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: USENIX Security Symposium. pp.
1599–1614 (2018)

45. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S.,
Dhillon, I.S.: Towards fast computation of certified robustness for relu networks.
In: International Conference on Machine Learning. pp. 5273–5282 (2018)

46. Wu, Y., Zhang, M.: Tightening robustness verification of convolutional neural net-
works with fine-grained linear approximation. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. vol. 35, pp. 11674–11681 (2021)

47. Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K.W., Huang, M., Kailkhura, B.,
Lin, X., Hsieh, C.J.: Automatic perturbation analysis for scalable certified robust-
ness and beyond. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin,
H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 1129–
1141. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/
file/0cbc5671ae26f67871cb914d81ef8fc1-Paper.pdf

48. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Advances in
neural information processing systems. pp. 4939–4948 (2018)

375LinSyn: Synthesizing Tight Linear Bounds

https://proceedings.neurips.cc/paper/2020/file/0cbc5671ae26f67871cb914d81ef8fc1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0cbc5671ae26f67871cb914d81ef8fc1-Paper.pdf

Brandon Paulsen� and Chao Wang376

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Short papers

Kmclib: Automated Inference and Verification of
Session Types from OCaml Programs

Keigo Imai1 �, Julien Lange2 , and Rumyana Neykova3

1 Gifu University, Gifu, Japan, keigoi@gifu-u.ac.jp
2 Royal Holloway, University of London, UK, julien.lange@rhul.ac.uk

3 Brunel University London, UK, rumyana.neykova@brunel.ac.uk

Abstract. Theories and tools based on multiparty session types offer
correctness guarantees for concurrent programs that communicate using
message-passing. These guarantees usually come at the cost of an intrin-
sically top-down approach, which requires the communication behaviour
of the entire program to be specified as a global type.
This paper introduces kmclib: an OCaml library that supports the de-
velopment of correct message-passing programs without having to write
any types. The library utilises the meta-programming facilities of OCaml
to automatically infer the session types of concurrent programs and ver-
ify their compatibility (k-MC [15]). Well-typed programs, written with
kmclib, do not lead to communication errors and cannot get stuck.

Keywords: Multiparty Session Types · Concurrent Programming · OCaml

1 Introduction

Multiparty session types (MPST) [5] are a popular type-driven technique to
ensure the correctness of concurrent programs that communicate using message-
passing. The key benefit of MPST is to guarantee statically that the components
of a program have compatible behaviours, and thus no components can get per-
manently stuck. Many implementations of MPST in different programming lan-
guages have been proposed in the last decade [2,4,6,10,12,16–18,20,23], however,
all suffer from a notable shortcoming: they require programmers to adopt a top-
down approach that does not fit well in modern development practices. When
changes are frequent and continual (e.g., continuous delivery), re-designing the
program and its specification at every change is not feasible.

Most MPST theories and tools advocate an intrinsically top-down approach.
They require programmers to specify the communication (often in the form of
a global type) of their programs before they can be type-checked. In practice,
type-checking programs against session types is very difficult. To circumvent the
problem, most implementations of MPST rely on external toolings that generate
code from a global type, see e.g., all works based on the Scribble toolchain [22].

In this paper, we present an OCaml library, called kmclib [8, 9], which sup-
ports the development of programs that enjoy all the benefits of MPST while
avoiding their main drawbacks. The kmclib library guarantees that threads in

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 379–386, 2022.
https://doi.org/10.1007/978-3-030-99524-9_20

http://orcid.org/0000-0003-1602-8473
http://orcid.org/0000-0001-9697-1378
http://orcid.org/0000-0002-2755-7728
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_20

K. Imai et al.

OCaml
code

Typed
PPX

OCaml
Compiler

Session typed
executable

k-MC
checker [15]

Session
types

OCaml channel
vector types [10]

Infer

Translate

ok: bound ko: counterexamples

Fig. 1: Workflow of the kmclib library (the PPX plugin is the shaded box).

well-typed programs will not get stuck. The library also enables bottom-up devel-
opment : programmers write message-passing programs in a natural way, without
having to write session types. Our library is built on top of Multicore OCaml [21]
that offers highly scalable and efficient concurrent programming, but does not
provide any static guarantees wrt. concurrency.

Figure 1 gives an overview of kmclib. Its implementation combines the power
of the type-aware macro system of OCaml (Typed PPX) with two recent ad-
vances in the session types area: an encoding of MPST in OCaml (channel vector
types [10]) and a session type compatibility checker (k-MC checker [15]). To our
knowledge, this is the first implementation of type inference for MPST and the
first integration of compatibility checking in a programming language.

The kmclib library [8,9] offers several advantages compared to earlier MPST
implementations. (1) It is flexible: programmers can implement communica-
tion patterns (e.g., fire-and-forget patterns [15]) that are not expressible in the
synchrony-oriented syntax of global types. (2) It is lightweight as it piggybacks
on OCaml’s type system to check and infer session types, hence lifting the burden
of writing session types off the programmers. (3) It is user-friendly thanks to its
integration in Visual Studio Code, where compatibility violations are mapped
to precise locations in the code. (4) It is well-integrated into the natural edit-
compile-run cycle. Although compatibility is checked by an external tool, this
step is embedded as a compilation step and thus hidden from the user.

2 Safe Concurrent Programming in Multicore OCaml

We give an overview of the features and usage of kmclib using the program
in Figure 2 (top) which calculates Fibonacci numbers. The program consists of
three concurrent threads (user, master, and worker) that interact using point-
to-point message-passing. Initially, the user thread sends a request to the master
to start the calculation, then waits for the master to return a work-in-progress
message, or the final result. After receiving the result, the user sends back a stop
message. Upon receiving a new request, the master splits the initial computation
in two and sends two tasks to a worker. For each task that the worker receives, it
replies with a result. The master and worker threads are recursive and terminate
only upon receiving a stop message.

380

Kmclib: Automated Inference and Verification of Session Types

1 let KMC (uch,mch,wch) = [%kmc.gen (u,m,w)]
2
3 let user () =
4 let uch = send uch#m#compute 42 in
5 let rec loop uch : unit =
6 match receive uch#m with
7 | `wip(res, uch) ->
8 printf "in progress: %d\n" res;
9 loop uch

10 | `result(res, uch) ->
11 printf "result: %d\n" res;
12 send uch#m#stop ()
13 in loop uch
14
15 let worker () =
16 let rec loop wch : unit =
17 match receive wch#m with
18 | `task(num, wch) ->
19 loop (send wch#m#result (fib num))
20 | `stop((), wch) -> wch
21 in loop wch

22 let master () =
23 let rec loop (mch : [%kmc.check u]) : unit =
24 match receive mch#u with
25 | `compute(x, mch) ->
26 let mch = send mch#w#task (x - 2) in
27 let mch = send mch#w#task (x - 1) in
28 let `result(r1, mch) = receive mch#w in
29 let mch = send mch#u#wip r1 in
30 let `result(r2, mch) = receive mch#w in
31 loop (send mch#u#result (r1 + r2))
32 | `stop((), mch) ->
33 send mch#w#stop ()
34 in loop mch
35
36 let () =
37 let ut = Thread.create user () in
38 let mt = Thread.create master () in
39 let wt = Thread.create worker () in
40 List.iter Thread.join [ut;mt;wt]

u: um!compute

mu?result

um!stop

mu?wip m: um?compute

mw!t
ask

mw!taskwm?result

mu!wip

wm?result

mu!result um?stop

mw!stop
w:

mw?task
mw?stop

wm!result

Fig. 2: Example of kmclib program (top) and inferred session types (bottom).

Figure 2 (bottom) gives a session type for each thread, i.e., the behaviour
of each thread wrt. communication. For clarity we represent session types as
a communicating finite state machines (CFSM [1]), where ! (resp. ?) denotes
sending (resp. receiving). For example, um!compute means that the user is sending
to the master a message compute, while um?compute says that the master receives
compute from the user. Our library infers these CFSM representations from the
OCaml code, in Figure 2 (top), and verifies statically that the three threads
are compatible, hence no thread can get stuck due to communication errors. If
compatibility cannot be guaranteed, the compiler reports the kind of violations
(i.e., progress or eventual reception error) and their locations in the code. Figure 3
shows how such semantic errors are reported visually in Visual Studio Code.

Albeit simple, the common communication pattern used in Figure 2 can-
not be expressed as a global type, and thus cannot be implemented in previous
MPST implementations. Concretely, global types cannot express the intrinsi-
cally asynchronous interactions between the master and worker threads (i.e., the
master may send a second task message, while the worker sends a result).

Programming with kmclib. To enable safe message-passing programs, kmclib
provides two communication primitives, send and receive, and two primitives
for channel creation (KMC and %kmc.gen). Our library supports all the features of
traditional MPST implementations and have similar limitations (fixed number
of participant, no delegation, etc). We only give a user-oriented description of
these primitives here (see [7, §A] for an overview of their implementations).

381

Fig. 3: Examples of type errors: progress (left) and eventual reception (right).

The crux of kmclib is the session channel creation: [%kmc.gen (u,m,w)] at
Line 1. This primitive takes a tuple of role names as argument (i.e., (u,m,w)) and
returns a tuple of communication channels, which are bound to (uch,mch,wch).
These channels will be used by the threads implementing roles user (Lines 3-
13), worker (Lines 15-21), and master (Lines 22-34). Channels are implemented
using concurrent queues from Multicore OCaml (Domainslib.Chan.t) but other
underlying transports can easily be provided.

Threads send and receive messages over these channels using the commu-
nication primitives provided by kmclib. The send primitive requires three ar-
guments : a channel, a destination role, and a message. For instance, the user
sends a request to the master with send uch#m#compute 20 where uch is the user’s
communication channel, m indicates the destination, and compute 20 is the mes-
sage (consisting of a label and a payload). Observe that a sending operation
returns a new channel which is to be used in the continuation of the interac-
tions, e.g., uch bound at Line 4, which must be used linearly (see [7] for details).
Receiving messages works in a similar way to sending messages, e.g., see Line 6
where the user waits for a message from the master with receive uch#m. We use
OCaml’s pattern matching to match messages against their labels and bind the
payload and continuation channel. See, e.g., Lines 7-10 where the user expects
either a wip or result message. The receive primitive returns the payload res
and a new communication channel uch.

New thread instances are spawned in the usual way; see Lines 36-39. The
code at Line 40 waits for them to terminate.

Compatibility and error reporting. While the code in Figure 2 may ap-
pear unremarkable, it hides a substantial machinery that guarantees that, if a
program type-checks, then its constituent threads are safe, i.e., no thread gets
permanently stuck and all messages that are sent are eventually received. This
property is ensured by kmclib using OCaml’s type inference and PPX plugins
to infer a session type from each thread then check whether these session types
are k-multiparty compatible (k-MC) [15].

If a system of session types is k-MC, then it is safe [15, Theorem 1], i.e., it
has the progress property (no role gets permanently stuck in a receiving state)
and the eventual reception property (all sent messages are eventually received).
Checking k-MC notably involves checking that all their executions (where each
channel contains at most k messages) satisfy progress and eventual reception.

The k-MC-checker [15] performs a bounded verification to discover the least
k for which a system is k-MC, up-to a specified upper bound N . In the kmclib

K. Imai et al.382

let (uch,mch,wch) = [%kmc.gen fib (u,m,w)]

…

send uch#m#compute …

match receive mch#u with `compute …

match receive wch#m with `task …

u: m!compute<int>;…

m: u?compute<int>;…

w: m?task<int>;…

<m: <compute: …> >

* <u: [`compute of …] >

* <m: [`task of …] >
(Type inference propagates)

(2) Call the typechecker & Extract the type

(3) Translate & Invoke verifier

(4, 5)

Instrumentation

(1) Read the AST

Fig. 4: Inference of session types from OCaml code.

API, this bound can be optionally specified with [%kmclib.gen roles ~bound:N].
The k-MC-checker emits an error if the bound is insufficient to guarantee safety.

The [%kmc.gen (u,m,w)] primitive also feeds the results of k-MC checking
back to the code. If the inferred session types are k-MC, then channels for roles
u, m and w can be generated, otherwise a type error is raised. We have modified the
k-MC-checker to return counterexample traces when the verification fails. This
helps give actionable feedback to the programmer, as counterexample traces are
translated to OCaml types and inserted at the hole corresponding to [%kmc.gen].
This has the effect of reporting the precise location of the errors.

To report errors in a function parameter, we provide an optional macro for
types: [%kmc.check rolename] (see faded code in Line 23). Figure 3 shows ex-
amples of such error reports. The left-hand-side shows the reported error when
Line 26 is commented out, i.e., the master sends one task, but expects two result
messages; hence progress is violated since the master gets stuck at Line 30. The
right-hand-side shows the reported error when Line 30 is commented out. In this
case, variable mch in Line 31 (master) is highlighted because the master fails to
consume a message from channel mch.

3 Inference of Session Types in kmclib

The kmclib API. The kmclib primitives allow the vanilla OCaml typechecker
to infer the session structure of a program, while simultaneously providing a user-
friendly communication API for the programmer. To enable inference of session
types from concurrent programs, we leverage OCaml’s structural typing and row
polymorphism. In particular, we reuse the encoding from [10] where input and
output session types are encoded as polymorphic variants and objects in OCaml.
In contrast to [10] which relies on programmers writing global types prior to type-
checking, kmclib infers and verifies local session types automatically, without
requiring any additional type or annotation.
Typed PPX Rewriter. To extract and verify session types from a piece of
OCaml code, the kmclib library makes use of OCaml PreProcessor eXtensions
(PPX) plugins which provide a powerful meta-programming facility. PPX plu-
gins are invoked during the compilation process to manipulate or translate the

Kmclib: Automated Inference and Verification of Session Types 383

abstract syntax tree (AST) of the program. This is often used to insert additional
definitions, e.g., pretty-printers, at compile-time.

A key novelty of kmclib is the combination of PPX with a form of type-
aware translation, whereas most PPX plugins typically perform purely syntactic
(type-unaware) translations. Figure 4 shows the workflow of the PPX rewriter,
overlayed on code snippets from Figure 2. The inference works as follows.

(1) The plugin reads the AST of the program code to replace the [%kmc.gen]
primitive with a hole, which can have any type.
(2) The plugin invokes the typechecker to get the typed AST of the program. In
this way, the type of the hole is inferred to be a tuple of channel object types
whose structure is derived from their usages (i.e., mch#u#compute).
To enable this propagation, we introduce the idiom “let (KMC . . .) = . . .” which
enforces the type of the hole to be monomorphic. Otherwise, the type would be
too general and this would spoil the type propagation, see [7, § B].
(3) The inferred type is translated to a system of (local) session types, which
are passed to the k-MC-checker.
(4) If the system is k-MC, then it is safe and the plugin instruments the code
to allocate a fresh channel tuple (i.e., concurrent queues) at the hole.
(5) Otherwise, the k-MC-checker returns a violation trace which is translated
back to an OCaml type and inserted at the hole, to report a more precise error.

The translation is limited inside the [%kmc.gen] expression, retaining a clear
correspondence between the original and translated code. It can be understood
as a form of ad hoc polymorphism reminiscent of type classes in Haskell. Like the
Haskell typechecker verifies whether a type belongs to a class or not, the kmclib
verifies whether the set of session types belongs to the class of k-MC systems.

4 Conclusion

We have developed a practical library for safe message-passing programming.
The library enables developers to program and verify arbitrary communication
patterns without the need for type annotations or user-operated external tools.
Our automated verification approach can be applied to other general-purpose
programming languages. Indeed it mainly relies on two ingredients: static struc-
tural typing and metaprogramming facilities. Both are available, with a varying
degree of support, in, e.g., Scala, Haskell, TypeScript, and F#.

Our work is reminiscent of automated software model checking which has
a long history (see [11] for a survey). There are few works on inference and
verification of behavioural types, i.e., [3, 13, 14, 19]. However, Perera et al. [19]
only present a prototype research language, while Lange et al. [3,13,14] propose
verification procedures for Go programs that rely on external tools which are
not integrated with the language nor its type system. To our knowledge, ours is
the first implementation of type inference for MPST and the first integration of
session types compatibility checking within a programming language.
Acknowledgements. This work is partially supported by KAKENHI 17K12662,
21K11827, 21H03415, and EPSRC EP/W007762/1.

K. Imai et al.384

References

1. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983). https://doi.org/10.1145/322374.322380

2. Castro, D., Hu, R., Jongmans, S., Ng, N., Yoshida, N.: Distributed program-
ming using role-parametric session types in Go: statically-typed endpoint apis
for dynamically-instantiated communication structures. PACMPL 3(POPL), 29:1–
29:30 (2019), https://dl.acm.org/citation.cfm?id=3290342

3. Dilley, N., Lange, J.: Automated Verification of Go Programs via Bounded Model
Checking. In: 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021. pp. 1016–
1027. IEEE (2021). https://doi.org/10.1109/ASE51524.2021.9678571

4. Harvey, P., Fowler, S., Dardha, O., J. Gay, S.: Multiparty Session Types for
Safe Runtime Adaptation in an Actor Language. In: Møller, A., Sridharan, M.
(eds.) 35th European Conference on Object-Oriented Programming (ECOOP
2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 194, p. 30.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021).
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12

5. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008. pp. 273–284 (2008). https://doi.org/10.1145/1328438.1328472

6. Hu, R., Yoshida, N.: Hybrid session verification through endpoint API generation.
In: FASE 2016. pp. 401–418 (2016). https://doi.org/10.1007/978-3-662-49665-7_
24

7. Imai, K., Lange, J., Neykova, R.: kmclib: Automated inference and verification of
session types (extended version). CoRR abs/2111.12147 (2021), https://arxiv.
org/abs/2111.12147

8. Imai, K., Lange, J., Neykova, R.: kmclib: A communication library with static
guarantee on concurrency (2022), https://github.com/keigoi/kmclib

9. Imai, K., Lange, J., Neykova, R.: Kmclib: Artifact for the TACAS 2022 paper
(2022). https://doi.org/10.5281/zenodo.5887544

10. Imai, K., Neykova, R., Yoshida, N., Yuen, S.: Multiparty session programming
with global protocol combinators. In: Hirschfeld, R., Pape, T. (eds.) 34th Eu-
ropean Conference on Object-Oriented Programming, ECOOP 2020, November
15-17, 2020, Berlin, Germany (Virtual Conference). LIPIcs, vol. 166, pp. 9:1–
9:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.ECOOP.2020.9

11. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4)
(Oct 2009). https://doi.org/10.1145/1592434.1592438

12. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo. In: PPDP 2016. pp. 146–159 (2016). https://doi.org/10.
1145/2967973.2968595

13. Lange, J., Ng, N., Toninho, B., Yoshida, N.: Fencing off Go: liveness and safety for
channel-based programming. In: Castagna, G., Gordon, A.D. (eds.) Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017. pp. 748–761. ACM (2017). https:
//doi.org/10.1145/3009837.3009847

14. Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification framework for
message passing in Go using behavioural types. In: Chaudron, M., Crnkovic, I.,
Chechik, M., Harman, M. (eds.) Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018.
pp. 1137–1148. ACM (2018). https://doi.org/10.1145/3180155.3180157

Kmclib: Automated Inference and Verification of Session Types 385

https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/322374.322380
https://dl.acm.org/citation.cfm?id=3290342
https://doi.org/10.1109/ASE51524.2021.9678571
https://doi.org/10.1109/ASE51524.2021.9678571
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-49665-7_24
https://arxiv.org/abs/2111.12147
https://arxiv.org/abs/2111.12147
https://github.com/keigoi/kmclib
https://doi.org/10.5281/zenodo.5887544
https://doi.org/10.5281/zenodo.5887544
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3009837.3009847
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/3180155.3180157

15. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification -
31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561, pp.
97–117. Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_6

16. Miu, A., Ferreira, F., Yoshida, N., Zhou, F.: Generating Interactive WebSocket Ap-
plications in TypeScript. Electronic Proceedings in Theoretical Computer Science
314, 12–22 (Apr 2020). https://doi.org/10.4204/EPTCS.314.2

17. Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A Session Type Provider:
Compile-time API Generation for Distributed Protocols with Interaction Refine-
ments in F♯. In: Dubach, C., Xue, J. (eds.) Proceedings of the 27th International
Conference on Compiler Construction, CC 2018, February 24-25, 2018, Vienna,
Austria. pp. 128–138. ACM (2018). https://doi.org/10.1145/3178372.3179495

18. Ng, N., de Figueiredo Coutinho, J.G., Yoshida, N.: Protocols by default - safe
MPI code generation based on session types. In: CC 2015. pp. 212–232 (2015).
https://doi.org/10.1007/978-3-662-46663-6_11

19. Perera, R., Lange, J., Gay, S.J.: Multiparty compatibility for concurrent objects.
In: PLACES 2016. pp. 73–82 (2016). https://doi.org/10.4204/EPTCS.211.8

20. Scalas, A., Dardha, O., Hu, R., Yoshida, N.: A linear decomposition of multiparty
sessions for safe distributed programming. In: ECOOP 2017. pp. 24:1–24:31 (2017).
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

21. Sivaramakrishnan, K.C., Dolan, S., White, L., Jaffer, S., Kelly, T., Sahoo, A.,
Parimala, S., Dhiman, A., Madhavapeddy, A.: Retrofitting parallelism onto ocaml.
Proc. ACM Program. Lang. 4(ICFP), 113:1–113:30 (2020). https://doi.org/10.
1145/3408995

22. Yoshida, N., Hu, R., Neykova, R., Ng, N.: The Scribble protocol language. In:
Abadi, M., Lluch-Lafuente, A. (eds.) Trustworthy Global Computing - 8th Inter-
national Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8358, pp. 22–41.
Springer (2013). https://doi.org/10.1007/978-3-319-05119-2_3

23. Zhou, F., Ferreira, F., Hu, R., Neykova, R., Yoshida, N.: Statically verified refine-
ments for multiparty protocols. Proc. ACM Program. Lang. 4(OOPSLA), 148:1–
148:30 (2020). https://doi.org/10.1145/3428216

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

K. Imai et al.386

https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.4204/EPTCS.314.2
https://doi.org/10.4204/EPTCS.314.2
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.4204/EPTCS.211.8
https://doi.org/10.4204/EPTCS.211.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3408995
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
http://creativecommons.org/licenses/by/4.0/

Automated Translation of Natural Language
Requirements to Runtime Monitors

Ivan Perez1(�), Anastasia Mavridou2(�), Tom Pressburger3, Alwyn Goodloe4,
and Dimitra Giannakopoulou3?

1 National Institute of Aerospace, Hampton, Virginia
2 KBR Inc., NASA Ames Research Center, Moffett Field, California

3 NASA Ames Research Center, Moffett Field, California
4 NASA Langley Research Center, Hampton, Virginia

{ivan.perezdominguez,anastasia.mavridou}@nasa.gov

Abstract. Runtime verification (RV) enables monitoring systems at
runtime, to detect property violations early and limit their potential
consequences. This paper presents an end-to-end framework to capture
requirements in structured natural language and generate monitors that
capture their semantics faithfully. We leverage NASA’s Formal Require-
ment Elicitation Tool (fret), and the RV system Copilot. We extend
fret with mechanisms to capture additional information needed to gener-
ate monitors, and introduce Ogma, a new tool to bridge the gap between
fret and Copilot. With this framework, users can write requirements
in an intuitive format and obtain real-time C monitors suitable for use in
embedded systems. Our toolchain is available as open source.

1 Introduction

Safety-critical systems, such as aircraft, automobiles, and power systems, where
failure can result in injury or death of a human [23], must undergo extensive
assurance. The verification process must ensure that the system satisfies its
requirements under realistic operating conditions and that there is no unintended
behavior. Verification rests on possessing a precise statement of requirements,
arguably one of the most difficult tasks in engineering reliable software.

Runtime verification (RV) [21, 19, 5] has the potential to enable the safe
operation of complex safety-critical systems. RV monitors can be used to detect
and respond to property violations during missions, as well as to verify implemen-
tations and simulations at design time. For monitors to be effective, they must
faithfully reflect the mission requirements, which is difficult for non-trivial sys-
tems because correctness properties must be expressed in a precise mathematical
formalism while requirements are generally written in natural language.

The focus of this paper is to provide an end-to-end framework that takes
as input requirements and other necessary data and provides mechanisms to
1) help the user deeply understand the semantics of these requirements, 2) au-
tomatically generate formalizations and 3) produce RV monitors that faithfully

? Author contributed to this work prior to joining AWS.
This is a U.S. government work and not under copyright protection in the U.S.;
foreign copyright protection may apply 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 387–395, 2022.
https://doi.org/10.1007/978-3-030-99524-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_21

I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, D. Giannakopoulou

Fig. 1: Step-by-step workflow

capture the semantics of the requirements. We leverage NASA’s Formal Re-
quirement Elicitation Tool (fret) [17, 18] and the runtime monitoring system
Copilot [29, 36, 35]. fret allows users to express and understand requirements
through its intuitive structured natural language (named fretish) and elicitation
mechanisms, and generates formalizations in temporal logic. Copilot allows
users to specify monitors and compile them to hard real-time C code.

The contribution of this paper is the tight integration of the fret-Copilot
tools to support the automated synthesis of executable RV monitors directly
from requirement specifications. In particular, we present:
– A new tool, named Ogma, that receives requirement formalizations and

variable data from fret and compiles these into Copilot monitors.
– An extension of the fret analysis portal to support the generation and

export of specifications that can be directly digested by Ogma.
– Preliminary experimental results that evaluate the proposed workflow.

All tools needed by our workflow are available as open source [2, 1, 4].

Related Work. A number of runtime verification languages and systems have
been applied in resource-constrained environments [39, 13, 6, 7, 37, 28]. In
contrast to our work, these systems do not provide a direct translation from
natural language. Several tools [25, 14, 16, 24, 8] formalize natural-language
like requirements, but not for the purpose of generating runtime monitors. The
STIMULUS tool [22] allows users to express requirements in an extensible,
natural-like language that is syntactic sugar for hierarchical state machines.
The machines then act as monitors that can be used to validate requirements
during the design and testing phases, but are not intended to be used at runtime.
FLEA [10] is a formal language for expressing requirements that compiles to
runtime monitors in a garbage collected language, making it harder to use in
embedded systems; in contrast, our approach generates hard real-time code.

2 Step-by-step Framework Workflow

To integrate fret and Copilot, we extended the fret analysis portal and
created the Ogma tool. Figure 1 shows the step-by-step workflow of the complete
framework - dashed lines represent the newly added steps (2, 3, and 4). Once
requirements are written in fretish, fret helps users understand and refine
their requirements through various explanations and simulation (step 0). Next,

388

Automated Translation of NL Requirements to Runtime Monitors

NL: “While flying, if the airspeed is below 100 m/s, the autopilot shall increase
the airspeed to at least 100 m/s within 10 seconds.”

FRETish: in flight mode if airspeed < 100 the aircraft shall within

10 seconds satisfy (airspeed >= 100)

pmLTL: H (Lin flight→(Y (((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) |

Fin flight)) & (!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) S

(((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) & (!(airspeed ≥
100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) & Fin flight)))) & ((!Lin flight)

S ((!Lin flight) & Fin flight)) → (((O[=10](((airspeed < 100) & ((Y (!(airspeed <

100))) | Fin flight)) & (!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥
100)))) S (((O[=10](((airspeed < 100) & ((Y (!(airspeed < 100))) | Fin flight)) &

(!(airspeed ≥ 100)))) → (O[<10](Fin flight | (airspeed ≥ 100)))) & Fin flight)),

where Fin flight (First timepoint in flight mode) is flight & (FTP | Y !flight), Lin flight

(Last timepoint in flight mode) is !flight & Y flight, FTP (First Time Point) is ! Y true.

Fig. 2: Running example in Natural Language (NL), fretish, and pmLTL forms.

fret automatically translates requirements (step 1) into pure Past-time Metric
Linear Temporal Logic (pmLTL) formulas. Next, information about the variables
referenced in the requirements must be provided by the user (step 2). The
formulas, as well as the provided variables’ data, are then combined to generate
the Component Specification (step 3). Based on this specification, Ogma creates
a complete Copilot monitor specification (step 4). Copilot then generates
the C Monitor (step 5), which is given along with other C code (step 6) to a C
Compiler for the generation (step 7) of the final object code.

Running Example. The next sections illustrate each workflow step using a
flight-critical system requirement: airplanes should always avoid stalling (a stall
is a sudden loss of lift, which may lead to a loss of control). To avoid stalls, they
should fly above a certain speed, known as stall speed (as well as stay below a
critical angle of attack). Our running requirement example is captured in natural
language in Figure 2. For the purposes of this example, we consider the airspeed
threshold to be 100 m/s and the correction time to be 10 seconds.

3 FRET Steps

Next we discuss fret, the requirements tool that constitutes our frontend.

Step 0: fretish and semantic nuances. A fretish requirement (see running
example in Figure 2) contains up to six fields: scope, condition, component*,
shall*, timing, and response*. Fields marked with * are mandatory.

component specifies the component that the requirement refers to (e.g., air-
craft). shall expresses that the component’s behavior must conform to the
requirement. response is of the form satisfy R, where R is a Boolean condition
(e.g., satisfy airspeed ≥ 100). scope specifies the period when the requirement
holds during the execution of the system, e.g., when “in flight mode”. condition

389

is a Boolean expression that further constrains when the response shall occur
(e.g., the requirement becomes relevant only upon airspeed ≤ 100 becoming true).
timing specifies when the response must occur (e.g., within 10 seconds).

Fig. 3: fret explanations

Getting a temporal require-
ment right is usually a tricky task
since such requirements are of-
ten riddled with semantic sub-
tleties. To help the user, fret
provides a simulator and seman-
tic explanations [17]. For exam-
ple, the diagram in Figure 3 ex-
plains that the requirement is
only relevant within the grayed
box M (while in flight mode). TC
represents the triggering condi-
tion (airspeed < 100) and the
orange band, with a duration of n=10 seconds, states that the response
(airspeed >= 100) is required to hold at least once within the 10 sec-
onds duration, assuming that flight mode holds for at least 10 seconds.

Fig. 4: fret variable editor

Step 1: fretish to pmLTL. For
each fretish requirement, fret
generates formulas in a variety of
formalisms. For the Copilot in-
tegration, we use the generated
pmLTL formulas (Figure 2) Clearly,
manually writing such formulas
can be quite error-prone, while
the fret formalization process has
been extensively tested through its
formalization verifier [17].

Steps 2 & 3: Variables data
and Component Specification.
We extended fret’s analysis portal [3] to capture the information needed to
generate Component Specifications for Ogma. To generate a specification, the
user must indicate the type (i.e., input, output, internal) and data type (integer,
Boolean, double, etc) of each variable (Figure 4).Internal variables represent ex-
pressions of input and output variables; if the same expression is used in multiple
requirements, an internal variable can be used to substitute it and simplify the
requirements. The user must assign an expression to each internal variable. In
our example, the flight internal variable is defined by the expression altitude

> 0.0, where altitude is an input variable. Internal variable assignments can
be defined in Lustre [20] or Copilot [29]. Integrated Lustre and Copilot parsers
identify parsing errors and return feedback (Figure 4). Once steps 1 and 2 are
completed, fret generates a Component Specification, which contains all re-
quirements in pmLTL and Lustre code, as well as variable data that belong to
the same system component.

I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, D. Giannakopoulou390

4 Ogma Steps

Ogma is a command-line tool to produce monitoring applications. Ogma gener-
ates monitors in Copilot, and also supports integrating them into larger systems,
such as applications built with NASA’s core Flight System (cFS) [40].

Step 4: Copilot Monitors. Ogma provides a command fret-component-spec

to process Component Specifications. The command traverses the Abstract Syn-
tax Tree of the Component Specification, and converts each tree node into its
Copilot counterpart. Input and output variables in fret become extern streams
in Copilot, or time-varying sources of information needed by the monitors:

airspeed :: Stream Double

airspeed = extern "airspeed" Nothing

Internal variables are also mapped to streams. Each requirement’s pmLTL formula
is translated into a Boolean stream, paired with a C handler triggered when
the requirement is violated. In the example below, the property we monitor is
associated with a handler, handlerpropAvoidStall, which must be implemented
separately in C by the user to determine how to address property violations:

propAvoidStall :: Stream Bool

propAvoidStall = ((PTLTL.alwaysBeen ((((not (flight)) && ...)))))

spec = trigger "handlerpropAvoidStall" (not propAvoidStall) []

5 Copilot Steps

Copilot is a stream-based runtime monitoring language. Copilot streams may
contain data of different types. At the top level, specifications consist of pairs of
Boolean streams, together with a C handler to be called when the current sample
of a stream becomes true. For a detailed introduction to Copilot, see [29].

Step 5: C Monitors. Ogma generates self-contained Copilot monitoring
specifications, which can be further compiled into C99 by just compiling and
running the Copilot specifications with a Haskell compiler. This process produces
two files: a C header and a C implementation.

Step 6: Larger Applications. The C files generated by Copilot are designed
to be integrated into larger applications. They provide three connection end-
points: extern variables, a step function, and handler functions, which users
implement to handle property violations. The code generated has no dynamic
memory allocation, loops or recursive calls, it executes in predictable memory and
time. For our running example, the header file generated by Copilot declares:

extern bool flight; extern float airspeed;

void handlerpropAvoidStall(void); void step(void);

Commonly, the calling application will poll sensors, write their values to
global variables, call the step function, and implement handlers that log property
violations or execute corrective actions. Users are responsible for compiling and
linking the Copilot code together with their application (step 7).

We also used the running requirement in this paper to monitor a flight in
the simulator X-Plane. We wrote an X-Plane plugin to show the state of the C

Automated Translation of NL Requirements to Runtime Monitors 391

(a) Cruising (b) Stall (c) Recovery

Fig. 5: Demonstration of Copilot monitor running as X-Plane plugin.

monitor and some additional information on the screen (Fig. 5a). To test the code,
we brought an aircraft to a stall by increasing the angle of attack, which also
lowered the airspeed (Fig. 5b). After 10 seconds below the specified threshold, the
monitor became active, remaining on after executing a stall recovery (Fig. 5c).

6 Preliminary Results

We report on experiments with monitors generated from the publicly available
Lockheed Martin Cyber-Physical System (LMCPS) challenge problems [11, 12],
which are a set of industrial Simulink model benchmarks and natural language
requirements developed by domain experts. LMCPS requirements were previously
written in fretish [27, 26] by a subset of the authors and were analyzed against
the provided models using model checking.

In this paper, we reuse the fretish requirements to generate monitors
and compare our runtime verification results with the model checking results
of [26]. For each Simulink model we generated C code through the automatic
code generation feature of Matlab/Simulink. We then attached the generated C
monitors to the C code and used the property-based testing system QuickCheck [9]
to generate random streams of data, feed them to the system under observation,
and report if any of the monitors were activated, based on [30, 31, 34].

We experimented with the Finite State Machine (FSM) and the Control
Loop Regulators (REG) LMCPS challenges. For both challenges, our results
are consistent with the model checking results - QuickCheck found inputs that
activated the monitors, indicating that some requirements were not satisfied.
Moreover, it returned results within seconds in cases where model checkers timed
out. See [33] for details on the results and [32] for a reproducible artifact.

7 Conclusion

We described an end-to-end framework in which requirements written in struc-
tured natural language can be equivalently transformed into monitors and be
analyzed against C code. Our framework ensures that requirements and analysis
activities are fully aligned: C monitors are derived directly from requirements and
not handcrafted. The design of our toolchain facilitates extension with additional
front-ends (e.g., JKind Lustre [15]), and backends (e.g., R2U2 [38]). In the future,
we plan to explore more use cases, including some from real drone test flights.

I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, D. Giannakopoulou392

References

1. Copilot. https://github.com/Copilot-Language/copilot/. Accessed Oct 04,
2021.

2. FRET: Formal Requirements Elicitation Tool. https://github.com/NASA-SW-VnV/
fret/. Accessed Oct 04, 2021.

3. FRET: Formal Requirements Elicitation Tool - User Manual. https://github.com/
NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/userManual.md.
See Section “Exporting for Analysis”. Accessed Oct 04, 2021.

4. Ogma. https://github.com/nasa/ogma/. Accessed Oct 04, 2021.

5. E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger. Introduction to runtime
verification. In Lectures on Runtime Verification - Introductory and Advanced
Topics, volume 10457 of Lecture Notes in Computer Science, pages 1–33. Springer,
2018.

6. J. Baumeister, B. Finkbeiner, S. Schirmer, M. Schwenger, and C. Torens. RT-
Lola cleared for take-off: Monitoring autonomous aircraft. In S. K. Lahiri and
C. Wang, editors, Computer Aided Verification, pages 28–39, Cham, 2020. Springer
International Publishing.

7. S. Biewer, B. Finkbeiner, H. Hermanns, M. A. Köhl, Y. Schnitzer, and M. Schwenger.
RTLola on board: Testing real driving emissions on your phone. In J. F. Groote
and K. G. Larsen, editors, Tools and Algorithms for the Construction and Analysis
of Systems, pages 365–372, Cham, 2021. Springer International Publishing.

8. A. Boteanu, T. Howard, J. Arkin, and H. Kress-Gazit. A model for verifiable ground-
ing and execution of complex natural language instructions. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 2649–
2654, 2016.

9. K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM Sigplan Notices, 46(4):53–64, 2011.

10. D. Cohen, M. S. Feather, K. Narayanaswamy, and S. S. Fickas. Automatic monitor-
ing of software requirements. In Proceedings of the 19th International Conference
on Software Engineering, pages 602–603, 1997.

11. C. Elliott. On example models and challenges ahead for the evaluation of complex
cyber-physical systems with state of the art formal methods V&V, Lockheed Martin
Skunk Works. In A. F. R. Laboratory, editor, Safe & Secure Systems and Software
Symposium (S5), 2015.

12. C. Elliott. An example set of cyber-physical V&V challenges for S5, Lockheed
Martin Skunk Works. In A. F. R. Laboratory, editor, Safe & Secure Systems and
Software Symposium (S5), 2016.

13. P. Faymonville, B. Finkbeiner, M. Schledjewski, M. Schwenger, M. Stenger, L. Ten-
trup, and H. Torfah. StreamLAB: Stream-based monitoring of cyber-physical
systems. In I. Dillig and S. Tasiran, editors, Computer Aided Verification, pages
421–431, Cham, 2019. Springer International Publishing.

14. A. Fifarek, L. G. Wagner, J. A. Hoffman, B. D. Rodes, M. A. Aiello, and J. A.
Davis. SpeAR v2.0: Formalized past LTL specification and analysis of requirements.
In NASA Formal Methods - 9th International Symposium, NFM 2017, Moffett
Field, CA, USA, May 16-18, 2017, Proceedings, pages 420–426, 2017.

15. A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani. The jk ind model
checker. In International Conference on Computer Aided Verification, pages 20–27.
Springer, 2018.

Automated Translation of NL Requirements to Runtime Monitors 393

https://github.com/Copilot-Language/copilot/
https://github.com/NASA-SW-VnV/fret/
https://github.com/NASA-SW-VnV/fret/
https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/userManual.md
https://github.com/NASA-SW-VnV/fret/blob/master/fret-electron/docs/_media/userManual.md
https://github.com/nasa/ogma/

16. S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner. ARSE-
NAL: automatic requirements specification extraction from natural language. In
S. Rayadurgam and O. Tkachuk, editors, NASA Formal Methods - 8th Interna-
tional Symposium, NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings,
volume 9690 of Lecture Notes in Computer Science, pages 41–46. Springer, 2016.

17. D. Giannakopoulou, T. Pressburger, A. Mavridou, J. Rhein, J. Schumann, and N. Shi.
Formal requirements elicitation with FRET. In Joint Proceedings of REFSQ-2020
Workshops, Doctoral Symposium, Live Studies Track, and Poster Track co-located
with the 26th International Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2020), 2020.

18. D. Giannakopoulou, T. Pressburger, A. Mavridou, and J. Schumann. Automated
formalization of structured natural language requirements. Inf. Softw. Technol.,
137:106590, 2021.

19. A. Goodloe and L. Pike. Monitoring distributed real-time systems: A survey
and future directions. Technical Report NASA/CR-2010-216724, NASA Langley
Research Center, July 2010.

20. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.

21. K. Havelund and A. Goldberg. Verify Your Runs, pages 374–383. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

22. B. Jeannet and F. Gaucher. Debugging embedded systems requirements with
STIMULUS: an automotive case-study. In 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016), Toulouse, France, Jan. 2016.

23. J. C. Knight. Safety critical systems: Challenges and directions. In Proceedings
of the 24th International Conference on Software Engineering, ICSE ’02, pages
547–550. ACM, 2002.

24. C. Lignos, V. Raman, C. Finucane, M. Marcus, and H. Kress-Gazit. Provably
correct reactive control from natural language. Auton. Robots, 38(1):89–105, jan
2015.

25. L. Lúcio, S. Rahman, C.-H. Cheng, and A. Mavin. Just formal enough? Automated
analysis of EARS requirements. In NASA Formal Methods - 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings,
pages 427–434, May 2017.

26. A. Mavridou, H. Bourbouh, P. L. Garoche, and M. Hejase. Evaluation of the
FRET and CoCoSim tools on the ten Lockheed Martin cyber-physical challenge
problems. Technical Report TM-2019-220374, National Aeronautics and Space
Administration, February 2020.

27. A. Mavridou, H. Bourbouh, D. Giannakopoulou, T. Pressburger, M. Hejase, P.-L.
Garoche, and J. Schumann. The ten Lockheed Martin cyber-physical challenges:
Formalized, analyzed, and explained. In 2020 IEEE 28th International Requirements
Engineering Conference (RE), pages 300–310, 2020.

28. P. Moosbrugger, K. Y. Rozier, and J. Schumann. R2U2: monitoring and diagnosis
of security threats for unmanned aerial systems. Formal Methods in System Design,
51(1):31–61, 2017.

29. I. Perez, F. Dedden, and A. Goodloe. Copilot 3. Technical Report
NASA/TM–2020–220587, NASA Langley Research Center, April 2020.

30. I. Perez, A. Goodloe, and W. Edmonson. Fault-tolerant swarms. In 2019 IEEE
International Conference on Space Mission Challenges for Information Technology
(SMC-IT), pages 47–54. IEEE, 2019.

31. I. Perez and A. E. Goodloe. Fault-tolerant functional reactive programming
(extended version). Journal of Functional Programming, 30, 2020.

I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, D. Giannakopoulou394

32. I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, and D. Giannakopoulou. Artifact
for Automated Translation of Natural Language Requirements to Runtime Monitors.
https://doi.org/10.5281/zenodo.5888956. Accessed Jan 21, 2022.

33. I. Perez, A. Mavridou, T. Pressburger, A. Goodloe, and D. Giannakopoulou. Inte-
grating FRET with Copilot: Automated Translation of Natural Language Require-
ments to Runtime Monitors. Technical Report NASA/TM–20220000049, NASA,
January 2022.

34. I. Perez and H. Nilsson. Runtime verification and validation of functional reactive
systems. Journal of Functional Programming, 30:e28, 2020.

35. L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard real-time runtime
monitor. In Proceedings of the 1st Intl. Conference on Runtime Verification, LNCS.
Springer, November 2010.

36. L. Pike, N. Wegmann, S. Niller, and A. Goodloe. Copilot: Monitoring embedded
systems. Innov. Syst. Softw. Eng., 9(4):235–255, Dec. 2013.

37. T. Reinbacher, K. Y. Rozier, and J. Schumann. Temporal-logic based runtime
observer pairs for system health management of real-time systems. In E. Ábrahám
and K. Havelund, editors, Tools and Algorithms for the Construction and Analysis
of Systems, pages 357–372, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

38. J. Schumann, P. Moosbrugger, and K. Y. Rozier. R2u2: monitoring and diagnosis
of security threats for unmanned aerial systems. In Runtime Verification, pages
233–249. Springer, 2015.

39. H. Torfah. Stream-based monitors for real-time properties. In B. Finkbeiner and
L. Mariani, editors, Runtime Verification - 19th International Conference, RV 2019,
Porto, Portugal, October 8-11, 2019, Proceedings, volume 11757 of Lecture Notes
in Computer Science, pages 91–110. Springer, 2019.

40. J. Wilmot. A core flight software system. In Proceedings of the 3rd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS ’05, pages 13–14, New York, NY, USA, 2005. ACM.

This is a U.S. government work and not under copyright protection in the
U.S.; foreign copyright protection may apply [2022].

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.

0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Automated Translation of NL Requirements to Runtime Monitors 395

https://doi.org/10.5281/zenodo.5888956
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

MaskD: A Tool for Measuring Masking
Fault-Tolerance?

Luciano Putruele1,3(�) , Ramiro Demasi2,3 ,
Pablo F. Castro1,3 , and Pedro R. D’Argenio2,3,4

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina, {lputruele,pcastro}@dc.exa.unrc.edu.ar

2 Universidad Nacional de Córdoba, FAMAF, Córdoba, Argentina,
{rdemasi,pedro.dargenio}@unc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET), Argentina
4 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

Abstract. We present MaskD, an automated tool designed to measure
the level of fault-tolerance provided by software components. The tool
focuses on measuring masking fault-tolerance, that is, the kind of fault-
tolerance that allows systems to mask faults in such a way that they
cannot be observed by the users. The tool takes as input a nominal model
(which serves as a specification) and its fault-tolerant implementation,
described by means of a guarded-command language, and automatically
computes the masking distance between them. This value can be under-
stood as the level of fault-tolerance provided by the implementation. The
tool is based on a sound and complete framework we have introduced in
previous work. We present the ideas behind the tool by means of a sim-
ple example and report experiments realized on more complex case studies.

1 Introduction

Fault-tolerance is an important characteristic of critical software. It can be
defined as the capability of systems to deal with unexpected events, which may
be caused by code bugs, interaction with an uncooperative environment, hardware
malfunctions, etc. Examples of fault-tolerant systems can be found everywhere:
communication protocols, hardware circuits, avionic systems, cryptocurrencies,
etc. So, the increasing relevance of critical software in everyday life has led to a
renewed interest in the automatic verification of fault-tolerant properties. However,
one of the main difficulties when reasoning about these kinds of properties is given
by their quantitative nature, which is true even for non-probabilistic systems. A
simple example is given by the introduction of redundancy in critical systems.
This is, by far, one of the most used techniques in fault-tolerance. In practice, it

? This work was supported by ANPCyT PICT-2017-3894 (RAFTSys), ANPCyT PICT
2019-03134, SeCyT-UNC 33620180100354CB (ARES), and EU Grant agreement ID:
101008233 (MISSION).

c© The Author(s) 2022

https://doi.org/10.1007/978-3-030-99524-9_22
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 396–403, 2022.

http://orcid.org/0000-0002-3063-4704
http://orcid.org/0000-0003-1651-624X
http://orcid.org/0000-0002-5835-4333
http://orcid.org/0000-0002-8528-9215
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_22

is well known that adding more redundancy to a system increases its reliability.
Measuring this increment is a central issue for evaluating fault-tolerant software.
On the other hand, there is no de-facto way to formally characterize fault-tolerant
properties. Thus these properties are usually encoded using ad-hoc mechanisms
as part of a general design.

The usual flow for the design and verification of fault-tolerant systems consists
of defining a nominal model (i.e., the “fault-free” or “ideal” program) and
afterwards extending it with faulty behaviors that deviate from the normal
behavior prescribed by the nominal model. This extended model represents the
way in which the system operates under the occurrence of faults. More specifically,
a model extension enriches a transition system by adding new (faulty) states and
transitions from and to those states, namely fault-tolerant implementation.

On the other hand, during the last decade, significant progress has been made
towards defining suitable metrics or distances for diverse types of quantitative
models including real-time systems [11], probabilistic models [7], and metrics for
linear and branching systems [5,2,10,13,19]. Some authors have already pointed
out that these metrics can be useful to reason about the robustness of a system,
a notion related to fault-tolerance.

We present MaskD, an automated tool designed to measure the level of fault-
tolerance among software components, described by means of a guarded-command
language. The tool focuses on measuring masking fault-tolerant components, that
is, programs that mask faults in such a way that they cannot be observed by the
environment. It is often classified as the most beneficial kind of fault-tolerance
and it is a highly desirable property for critical systems. The tool takes as
input a nominal model and its fault-tolerant implementation and automatically
computes the masking distance between them. It is based on a framework we
have introduced in [4], and shown to be sound and complete. In Section 2 we
give a brief introduction to this framework.

The tool is well suited to support engineers for the analysis and design of
fault-tolerant systems. More precisely, it uses a computable masking distance
function such that an engineer can measure the masking tolerance of a given
fault-tolerant implementation, i.e., the number of faults that the implementation
is able to mask in the worst case. Thereby, the engineers can measure and compare
the masking fault-tolerance distance of alternative fault-tolerant implementations,
and select one that best fits their preferences.

2 The MaskD Tool

MaskD takes as input a nominal model and its fault-tolerant implementation,
and produces as output the masking distance between them, which is a value in
the interval [0, 1]. The input models are described using the guarded command
language introduced in [3], a simple programming language common for describing
fault-tolerant algorithms. More precisely, a program is a collection of processes,
where each process is composed of a collection of labelled actions of the style:
[Label] Guard → Command, where Guard is a Boolean condition over the actual

MaskD: A Tool for Measuring Masking Fault-Tolerance 397

Process MEMORY {
w : BOOL; // the last value written
r : BOOL; // the value read from the

// memory
c0 : BOOL;

Initial: w && c0 && r;

[write1] true -> w=true, c0=true,
r=true;

[write0] true -> w=false, c0=false,
r=false;

[read0] !r -> r=r;
[read1] r -> r=r;

}

Process MEMORY FT {
w : BOOL;
r : BOOL;
c0 : BOOL; // first bit
c1 : BOOL; // second bit
c2 : BOOL; // third bit

Initial: w && c0 && c1 && c2 && r;

[write1] true -> w=true, c0=true, c1=true,
c3=true, r=true;

[write0] true -> w=false, c0=false, c1=false,
c3=false, r=false;

[read0] !r -> r=r;
[read1] r -> r=r;
[fail1] faulty true -> c0=!c0, r =(!c0&&c1)||(c1&&c2)||

(!c0&&c2);
[fail2] faulty true -> c1=!c1, r =(c0&&!c1)||(!c1&&c2)||

(c0&&c2);
[fail3] faulty true -> c2=!c2, r =(c0&&c1)||(c1&&!c2)||

(c0&&!c2);

}

Fig. 1. Processes for a memory cell example. On the left is the Nominal Model and on
the right is the Fault-tolerant Model.

state of the program, Command is a collection of basic assignments, and Label
is a name for the action. These syntactic constructions are called actions. The
language also allows users to label an action as internal (i.e., silent actions). This
is important for abstracting away internal parts of the system and building large
models. Moreover, some actions can be labeled as faulty to indicate that they
represent faults.

In order to compute the masking distance between two systems the tool uses
notions coming from game theory. More precisely, a two-player game (played by
the Refuter (R) and the Verifier (V)) is constructed using the two models. The
intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her
choice. However, when the Refuter chooses a fault, the Verifier must match it
with a masking transition. R wins if the game reaches the error state, denoted
verr . On the other hand, V wins when verr is not reached during the game.
Rewards are added to certain transitions in the game to reflect the fact that a
fault was masked. Thus, given a play (a maximal path in the game graph) a
function fmask computes the value of the play: if it reaches the error state, the
value is inversely proportional to the number of masking movements made by
the Verifier; if the play is infinite, it receives a value of 0 indicating that the
implementation was able to mask all the faults in the path. Summing up, the
fault-tolerant implementation is masking fault-tolerant if the value of the game is
0. Furthermore, the bigger the number, the farther the masking distance between
the fault-tolerant implementation and the specification.

As a running example, we consider a memory cell that stores a bit of infor-
mation and supports reading and writing operations, presented in a state-based
form in [6]. A state in this system maintains the current value of the memory cell
(m = i, for i = 0, 1), writing allows one to change this value, and reading returns
the stored value. In this system the result of a reading depends on the value
stored in the cell. Thus, a property that one might associate with this model is

L. Putruele et al.398

Fig. 2. Architecture of MaskD.

that the value read from the cell coincides with that of the last writing performed
in the system.

A potential fault in this scenario occurs when a cell unexpectedly loses its
charge, and its stored value turns into another one (e.g., it changes from 1 to 0
due to charge loss). A typical technique to deal with this situation is redundancy :
in this case, three memory bits are used instead of only one. Writing operations
are performed simultaneously on the three bits. Reading, on the other hand,
returns the value that is repeated at least twice in the memory bits; this is
known as voting. Figure 1 shows the processes representing the nominal and the
fault-tolerant implementation of this example.

2.1 Architecture

MaskD is open source software written in Java. Documentation and installation
instructions can be found at [1]. The architecture of the tool is shown in Fig. 2.
We briefly describe below the key components of the tool:

Parser Module. It performs basic syntactic analysis over the input models,
and produces data structures describing the inputs. Libraries Cup and JFlex
were used to automatically generate the parser from the grammar describing
the modeling language.

LTS Translation. The models obtained from the parser are translated into
Labeled Transition Systems (LTSs), i.e., graphs whose vertices represent
program states and whose transitions keep information about the actions in
the models.

Silent Transition Saturation. The internal/silent transitions in the LTSs rep-
resenting the input models are saturated using standard algorithms coming
from process algebras [14]. As a result, saturated LTSs are generated, these
are needed for verifying the masking relation when internal transitions are
present.

Game Graph Generation. It uses the saturated LTSs to produce a game
graph. Nodes in this graph encode the actual configuration of the game: the
next player to play, the last played action, and references to the LTS states
corresponding to the actual configuration of the game. Transitions in this
graph correspond to the possible plays for the players, i.e., transitions in the
original LTSs.

MaskD: A Tool for Measuring Masking Fault-Tolerance 399

G

Nominal Model

Fault-Tolerant
Model

Parser
Module

Silent
Transition
Saturation

Game
Graph

Generation

Shortest Path
Algorithm

Masking
Distance

LTS
Translation

Fix-Point
Algorithm

Error Trace

Distance
Calculator

Game Builder

0. ERR STATE
1. { <> , I m1.read1 , <m1r,m1c0,m1c2> , V }
2. { <> , # , <m1r,m1c0,m1c2> , R }
3. { <> , I m1.fail1 , <m1r,m1c0,m1c2> , V }
4. { <> , # , <m1c2> , R }
5. { <> , I m1.fail3 , <m1c2> , V }
6. { <> , # , <> , R }
7. { <m1w,m1r,m1c0> , I m1.write0 , <> , V }
8. { <m1w,m1r,m1c0> , # , <m1w,m1r,m1c0,m1c1,m1c2> , R }

Fig. 3. Error trace for the memory cell example.

Shortest Path Algorithm. If the input models are deterministic, Dial’s short-
est path algorithm is used to get the shortest path to the error state, from
which the final value is calculated.

Fix-Point Algorithm. If the input models are non-deterministic, a bottom-up
breadth-first search is used to compute the value of the game. This algorithm
is based on well-known algorithms to solve reachability games that use
attractor sets [15].

As explained above, an interesting point about our implementation is that,
for deterministic systems, the masking distance between two systems can be
computed by resorting to Dial’s shortest path algorithm [17], which runs in linear
time with respect to the size of the graphs used to represent the systems. In
the case of non-deterministic systems, a fixpoint traversal approach based on
breadth-first search is needed, making the algorithm less efficient. However, even
in this case, the algorithm is polynomial.

2.2 Usage

The standard command to execute MaskD in a Unix operating system is:

./MaskD <options> <spec_path> <imp_path>

In this case the tool returns the masking distance between the specification and
the implementation. Possible optional commands are: -t: print error trace,
prints a trace to the error state; and -s: start simulation, starts a simu-
lation from the initial state. A path to the error state is a useful feature for
debugging program descriptions, which may be failing for unintended reasons.
A trace for the memory cell example is shown in Fig. 3. States are denoted as
{spec_state, last_action_played, imp_state, player_turn}. In this case,
after two faults (bits being flipped), performing a read on the cell leads to the
error state since on the nominal model the value is 0 while on the fault-tolerant
model the value read by majority is 1. On the other hand, the simulation feature
allows the user to manually select the available actions at each point of the mask-
ing game, which is also useful for verifying that the models behave as intended.
By default, MaskD computes the masking distance for the given input using the
algorithm for non-deterministic systems. The user can use option -det to switch
to the deterministic masking distance algorithm.

L. Putruele et al.400

Case Study Redundancy M. Distance Time Time(Det)

Redundant Memory Cell
3 bits 0.333 0.7s 0.6s
5 bits 0.25 2.5s 1.9s
7 bits 0.2 7.2s 5.7s

N-Modular Redundancy
3 modules 0.333 0.6s 0.5s
5 modules 0.25 1.2s 0.7s
7 modules 0.2 5.6s 3.8s

Dining Philosophers
2 philosophers 0.5 0.6s 0.6s
3 philosophers 0.333 1.9s 0.9s

Byzantine Generals
3 generals 0.5 0.9s −
4 generals 0.333 17.1s −

Raft LRCC (5)
1 follower 0 0.7s 0.8s
2 followers 0 5.6s 3.6s

BRP (5)
1 retransm. 0.333 4.2s −
5 retransm. 0.143 4.8s −
10 retransm. 0.083 6.1s −

Table 1. Some results of the masking distance for the case studies.

3 Experiments

We report on Table 1 some results of the masking distance for multiple instances of
several case studies. These are: a Redundant Cell Memory (our running example),
N-Modular Redundancy (a standard example of fault-tolerant system [18]), a
variation of the Dining Philosophers problem [8], the Byzantine Generals problem
introduced by Lamport et al. [12], the Log Replication consistency check of Raft
[16], and the Bounded Retransmission Protocol (a well-known example of fault-
tolerant protocol [9]) where we have modeled using silent actions and evaluating
it with the weak masking distance. All case studies have been evaluated using
the algorithms for both deterministic and non-deterministic games, with the
exception of the non-deterministic models (i.e., the Byzantine Generals problem
and the Bounded Retransmission Protocol). It is worth noting that most of
the computational complexity arises from building the game graph rather than
the actual masking distance calculation. For space reasons, we omit details of
each case study and its complete experimental evaluation (delegated to the tool
documentation).

Some words are useful to interpret the results of our running example. For
the case of a 3 bit memory the masking distance is 0.333; the main reason for
this is that the faulty model (in the worst case) is only able to mask 2 faults (in
this example, a fault is an unexpected change of a bit) before failing to replicate
the nominal behaviour (i.e., reading the majority value). Thus, the result comes
from the definition of masking distance and taking into account the occurrence
of two faults. The situation is similar for the other instances of this problem with
more redundancy.

We have run our experiments on a MacBook Air with a 1.3 GHz Intel Core
i5 processor and 4 GB of memory. The case studies for reproducing the results
are available in the tool repository.

MaskD: A Tool for Measuring Masking Fault-Tolerance 401

References

1. MaskD: Masking Distance Tool. https://doi.org/10.5281/zenodo.5815693
2. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE

Trans. Software Eng. 35(2), 258–273 (2009)
3. Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant

computing. IEEE Transactions on Software Engineering 19(11) (1993)
4. Castro, P.F., D’Argenio, P.R., Demasi, R., Putruele, L.: Measuring masking fault-

tolerance. In: TACAS 2019, Prague, Czech Republic (2019)
5. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput.

Sci. 413(1), 21–35 (2012)
6. Demasi, R., Castro, P.F., Maibaum, T.S.E., Aguirre, N.: Simulation relations for

fault-tolerance. Formal Asp. Comput. 29(6), 1013–1050 (2017)
7. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled

Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)
8. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Informatica 1(2),

115–138 (1971)
9. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for large data

packets. In: Algebraic Methodology and Software Technology, 5th International
Conference, AMAST ’96, Munich, Germany, July 1-5, 1996, Proceedings. pp. 536–
550 (1996)

10. Henzinger, T.A.: Quantitative reactive modeling and verification. Computer Science
- R&D 28(4), 331–344 (2013)

11. Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying similarities between
timed systems. In: Formal Modeling and Analysis of Timed Systems, Third Inter-
national Conference, FORMATS 2005, Uppsala, Sweden, September 26-28, 2005,
Proceedings. pp. 226–241 (2005)

12. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

13. Larsen, K.G., Fahrenberg, U., Thrane, C.R.: Metrics for weighted transition systems:
Axiomatization and complexity. Theor. Comput. Sci. 412(28), 3358–3369 (2011)

14. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

15. nski, M.J.: Algorithms for solving parity games. In: Apt, K.R., Grädel, E. (eds.)
Lectures in Game Theory for Computer Scientist, chap. 3, pp. 74–95. Cambridge
University Press, New York, NY, USA (2011)

16. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference. pp. 305–319. USENIX Association
(2014)

17. R.B.Dial: Algorithm 360: shortest-path forest with topological ordering. Communi-
cations of ACM 12 (1969)

18. Shooman, M.L.: Reliability of Computer Systems and Networks: Fault Toler-
ance,Analysis,and Design. John Wiley & Sons, Inc (2002)

19. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted
transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)

L. Putruele et al.402

https://doi.org/10.5281/zenodo.5815693

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

MaskD: A Tool for Measuring Masking Fault-Tolerance 403

http://creativecommons.org/licenses/by/4.0/

Better Counterexamples for Dafny

Aleksandar Chakarov1, Aleksandr Fedchin2(�) , Zvonimir Rakamarić1 , and
Neha Rungta1

1 Amazon Web Services, Seattle, WA, USA
aleksach,zvorak,rungta@amazon.com
2 Tufts University, Medford, MA, USA
aleksandr.fedchin@tufts.edu

Abstract. Dafny is a verification-aware programming language used at
Amazon Web Services to develop critical components of their access man-
agement, storage, and cryptography infrastructures. The Dafny toolchain
provides a verifier that can prove an implementation of a method satis-
fies its specification. When the underlying SMT solver cannot establish
a proof, it generates a counterexample. These counterexamples are hard
to understand and their interpretation is often a bottleneck in the proof
debugging process. In this paper, we introduce an open-source tool that
transforms counterexamples generated by the SMT solver to a more user-
friendly format that maps to the Dafny syntax and is suitable for further
processing. This new tool allows the Dafny developers to quickly identify
the root cause of a problem with their proof, thereby speeding up the
development of Dafny projects.

Keywords: Dafny · Counterexample · Verification · SMT

1 Introduction

Dafny [12,11,6] is a verification-aware programming language popular in the
automated reasoning community. Amazon Web Services (AWS), in particular,
uses Dafny to develop critical components of their access management, storage,
and cryptography infrastructures [5]. For these components, developers at AWS
are writing Dafny programs that include the specification and the corresponding
implementation. The advantage of using Dafny is that one can leverage the
built-in verifier during the development process to automatically prove that the
implementation of a method satisfies its specification. Finally, Dafny provides
compilers for generating executable code in different target languages, such as
C#, Java, and Go. For example, AWS developers have implemented the core
AWS authorization logic in Dafny, and generated production Java code using a
custom Java compiler. However, despite its advantages, Dafny has so far lacked
in debugging functionality that could guide the developer to the root cause of
a potential assertion (i.e., proof) failure. This was slowing down the developers,
and it prompted the work on counterexample extraction that we present in this
paper.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 404–411, 2022.
https://doi.org/10.1007/978-3-030-99524-9_23

http://orcid.org/0000-0003-0810-1941
http://orcid.org/0000-0001-7946-0162
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_23

To confirm that an assertion holds, Dafny verifier first translates Dafny source
into the Boogie [1,3] intermediate verification language. Boogie generates a ver-
ification condition and submits it to an SMT solver (in our case Z3 [13,15]).
When an assertion is violated, the solver provides a counterexample (i.e., a coun-
terexample model). Understanding such counterexamples is key to debugging a
failing proof. However, due to the two translation steps separating Dafny code
from the SMT query, the counterexamples provided by the solver are difficult
to understand and inhibit the debugging process. The scope of the problem be-
comes apparent from the fact that a counterexample extraction tool was once
developed for Boogie [10], a language that is much closer to the solver in the
verification pipeline than Dafny.

Prior attempts to present Dafny counterexamples in a human-readable for-
mat [9,8] have been successful with integers and Booleans but yielded unsatis-
fying results for other types. Our main contribution is a tool that improves the
readability of Dafny counterexamples for other basic types, user-defined types,
and collections. The tool converts a counterexample generated by the solver to
a format that is intuitive to Dafny developers. In addition to improving the user
experience, our tool lays the foundation for automatic test case generation, as
we discuss in Section 4.

2 Motivation

Fig. 1 shows our running example of a Dafny program. The program defines
a class Simple with an instance method Match that returns true if argument s
(of type string that is alias for seq<char>) matches the pattern p. For sim-
plicity, we only allow the '?' meta-character in the pattern, which matches any
character. The program also includes specifications in the form of preconditions,
postconditions, and loop invariants. The Dafny verifier uses these to prove the
correctness of the method implementation.

To demonstrate the usefulness of counterexamples and the need to present
them in a human-readable format, we introduce a bug into the Match method.
We do this by deleting the part of the guard highlighted on line 16, thereby
turning the method into a string equality check. The implementation of the
method and its specification are no longer in agreement, and the Dafny verifier
reports that the postcondition on line 7 might be violated on line 18. Even in
this simple case, the information that the verifier gives, although it might help
in localizing the problem, does not make the cause of the bug apparent. The
counterexample provided by the solver spans hundreds of lines and is difficult to
read. For example, Fig. 2 gives a slice of this counterexample showing just that
variable s has type seq<char>.

In contrast, our tool, released with Dafny v3.3.0, generates the following
counterexample that triggers the postcondition violation:

s:seq<char> = (Length := 1, [0] := 'A');
this:Simple = (p: @1);
@1:seq<char> = (Length := 1, [0] := '?');

Better Counterexamples for Dafny 405

1 class Simple
2 {
3 var p:string
4

5 method Match(s: string) returns (b: bool)
6 requires |p| == |s|
7 ensures b <==> forall n :: 0 <= n < |s| ==>
8 s[n] == p[n] || p[n] == ’?’
9 {

10 var i := 0;
11 while i < |s|
12 invariant i <= |s|
13 invariant forall n :: 0 <= n < i ==>
14 s[n] == p[n] || p[n] == ’?’
15 {

16 if s[i] != p[i] && p[i] != ’?’

17 {
18 return false;
19 }
20 i := i + 1;
21 }
22

23 return true;
24 }
25 }

Fig. 1: A Dafny program that matches a string against a pattern. The highlighted
code is removed to introduce a bug as described in Section 2.

Here, the first line indicates that argument s is a sequence of characters (i.e., a
string) of length 1, where the character at index 0 is A. Field p of the receiving
object (this) points to object @1, where @1 is a string of length 1 with the
? meta-character at index 0. With these inputs, the buggy implementation of
method Match returns false because the pattern and argument are not identical,
even though they should match according to the specification.

Before we incorporated our tool into Dafny, it would report the following
counterexample for this same program:

s = [Length 1](T@U!val!71); this = (T@U!val!75);

Clearly the counterexample generated by our tool is much more informative.
Among the tools in this space that we know of, only Why3 [7] has counterexample
generation functionality of similar complexity.

A. Chakarov, A. Fedchin, Z. Rakamarić, N. Rungta406

s#0 -> T@U!val!71 // Boogie variable s#0 has ID 71
BoxType -> T@T!val!15 // Boogie’s Box type has ID 15
type -> { // The Boogie type of variable s#0 has ID 22
T@U!val!71 -> T@T!val!22

}
SeqTypeInv0 -> { // Boogie type of s#0 is Seq Box:
T@T!val!22 -> T@T!val!15

}
$Is -> { // Dafny type of variable s#0 has ID 76
T@U!val!71 T@U!val!76 -> true

}
Tag -> { // Type with ID 76 is a subtype of a type with ID 13
T@U!val!76 -> T@U!val!13

}
TagSeq -> T@U!val!13 // Dafny type with ID 13 is seq
TChar -> T@U!val!1 // Dafny type with ID 1 is char
Inv0_TSeq -> { // Dafny type with ID 76 is seq<char>
T@U!val!76 -> T@U!val!1

}

Fig. 2: An extract of a counterexample model generated by Z3 for the code in
Fig. 1 that shows that variable s has type seq<char>.

3 Design and Implementation

We implemented our tool on top of the existing Dafny counterexample extraction
functionality by adding key new features such as the ability to extract types from
the Z3 model and support complex types (e.g., sequences) beyond just integers
and Booleans. Our type extraction supports type parameterization and type
renaming, and makes extracted counterexamples useful beyond improved user
experience, e.g., automatic test case generation (see Section 4).

We illustrate how the counterexample generation tool works using our run-
ning example from Fig. 1. Before the tool can look up the types and values of
specific variables, it must first identify the variables and program states1 relevant
to the given counterexample. In our example, there are four relevant program
states: the initial state, the state following the initialization of i, the state at the
loop head, and the state preceding the return statement. There are three rele-
vant variables: this, s, and i. Our tool inherits the extraction of this information
from the Z3 model from the existing counterexample generator.

Once we identify the relevant variables and states, we determine the type of
each variable. This is a two-step process. First, we extract the Boogie type of
a variable in the Boogie translation from the Z3 model (e.g., Seq Box for s in
Fig. 2). Then, we map it to its corresponding Dafny type (seq<char> for s in

1 Dafny to Boogie translator marks Dafny program states with the :capturedState
annotation in Boogie.

Better Counterexamples for Dafny 407

Variable Constraint Counterexample
b:bv6 b == 1 b:bv6 := 0

r:real r != 0.2 r:real := 1.0/5.0

c:char c != 'c' c:char := 'c'

c:char c == 'c' c:char := 'A'

d:M.DType d.i > 4 d:M.DType = A(i := -34)

a:array2?<int> a.Length0 < 2 ||
a.Length1 < 2 ||
a[1,1] != 3

a:_System.array2?<int> :=
(Length0 := 2, Length1 := 40,
[1,1] := 3)

s:set<int> 1 in s s:set<int> = {1 := false}

s:set<int> 1 !in s s:set<int> = {1 := true}

s:seq<int> |s| < 1 || s[0] != 3 s:seq<int> = [3]

s:seq<int> |s| < 2 || s[1] != 3 s:seq<int> = (Length := 2,
[1] := 3)

m:map<int, char> 1 !in m m:map<int,char> = (1 := 'A',
2 :='B', 3 :='C', 4 :='D')

Table 1: Counterexamples generated for different constraints.

Fig. 2). The latter step may require choosing among the different types listed by
the model (e.g., between string and seq<char>). We give preference to the orig-
inal type names (seq<char>) to clearly separate user-defined from built-in types.
We also take special care to extract type parameters and reconstruct the Dafny
type name from its Boogie translation, for example, Module.Module2.Class
from Module_mModule2.Class.

After determining the type of a variable, our tool extracts the string rep-
resentation of the variable’s value. The way the value is specified in the coun-
terexample model depends on the variable type. In method Match in Fig. 1, the
receiver is an instance of a user-defined class Simple, so the tool looks up the
value of its only field this.p. This field is itself a non-primitive variable, and so
we recurse into its definition until we reach a value of a primitive type, which we
then use to construct the non-primitive value. In case the model does not specify
a value for some variable of primitive type, the tool automatically generates an
adequate value that is different from any other value of that type in the model
or source code.

Our implementation of the counterexample extraction tool supports all ba-
sic types, user-defined classes, datatypes, arrays, and the three most commonly
used collections (sequence, sets, and maps). See Table 1 for concrete examples
of the tool’s output. Previously, the counterexample generator could only show
the values of integer and Boolean variables, constructor names used to create a
datatype, or the length of a sequence. The differences between our new imple-
mentation and past versions are mostly due to the support we added for new
types and collections (e.g., chars, bit vectors, maps). However, we also had to
revamp and bring up-to-date some of the previously implemented features that
have since ceased to function as intended. For instance, Krucker and Schaden [9]

A. Chakarov, A. Fedchin, Z. Rakamarić, N. Rungta408

show that they could once extract the values of object’s fields, but this function-
ality had not been maintained and it stopped working properly. We speculate
that the lack of automated testing likely contributed to the failure to adapt the
counterexample extraction to the rapidly evolving Dafny infrastructure. To en-
sure maintainability, we have developed an extensive test suite as part of this
work. The test suite contains 54 tests covering all supported types and collec-
tions, and is executed as part of the continuous integration process of Dafny.

To benefit from the counterexample extraction feature while working in Vi-
sual Studio Code IDE, the user needs only to install the Dafny plugin.2 In addi-
tion to visualizing counterexamples in the VS Code plugin, the counterexample
extraction tool provides a public API and can be imported as a dependency by
any C# project. Finally, we made our accompanying artifact publicly available
to improve the reproducibility of our contributions [4].

4 Conclusions and Future Work

This paper presents the new, improved version of Dafny’s counterexample ex-
traction tool, which now extracts values of all variables of basic or user-defined
types as well as variables representing algebraic datatypes, arrays, sequences,
sets, and maps. We integrated the tool into the Dafny plugin for Visual Studio
Code, and released it with Dafny v3.3.0. The tool has already been used by
Dafny developers to assist them during the proof debugging process.

Note that a counterexample reported by the Dafny verifier might occasion-
ally be a spurious one. This is a well-known problem that users of these veri-
fiers struggle with. It is typically due to the incompleteness of the underlying
SMT solver, for example, in the presence of quantifiers. A possible solution to
identifying spurious counterexamples is to generate a concrete test case from
the counterexample, execute the program concretely using the test case, and
observe whether the concrete execution violates the same property [2,14]. The
counterexample extraction tool presented in this paper, with its ability to extract
the type and concrete value of any variable, can be used for test case generation
as well. As future work, we plan to build on this functionality and implement
extensions for identifying spurious counterexamples as well as for automatic unit
test generation.

Acknowledgements We thank Christoph Amrein, Rustan Leino, Bryan Parno,
Shaz Quadeer, Robin Salkeld, and Remy Wilems for reviewing our pull requests
to Boogie and Dafny, as well as for their feedback that helped us to improve the
early versions of the tool. We also thank Sean McLaughlin, Matthias Schlaipfer,
and Jenny Xiang for their insights into the usability of the tool in practice, and
to Jeff Foster for reviewing the initial drafts of the paper.

2 Developed by the Correctness Lab at OST Eastern Switzerland University of Applied
Sciences [9,8].

Better Counterexamples for Dafny 409

References

1. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: International Sym-
posium on Formal Methods for Components and Objects. pp. 364–387 (2005).
https://doi.org/10.1007/11804192_17

2. Becker, B.F.H., Lourenço, C.B., Marché, C.: Explaining counterexam-
ples with giant-step assertion checking. In: Workshop on Formal Inte-
grated Development Environment. EPTCS, vol. 338, pp. 82–88 (2021).
https://doi.org/10.4204/EPTCS.338.10

3. Boogie, https://github.com/boogie-org/boogie
4. Chakarov, A., Fedchin, A., Rakamarić, Z., Rungta, N.: Better counterexamples for

Dafny artifact (2021). https://doi.org/10.5281/zenodo.5571033
5. Cook, B.: Formal reasoning about the security of Amazon web services. In:

International Conference on Computer Aided Verification. pp. 38–47 (2018).
https://doi.org/10.1007/978-3-319-96145-3_3

6. Dafny, https://github.com/dafny-lang/dafny
7. Dailler, S., Hauzar, D., Marché, C., Moy, Y.: Instrumenting a weakest precondition

calculus for counterexample generation. Journal of Logical and Algebraic Methods
in Programming 99, 97–113 (2018). https://doi.org/10.1016/j.jlamp.2018.05.003

8. Hess, M., Kistler, T.: Dafny Language Server Redesign. Term project, HSR
Hochschule für Technik Rapperswil (2019)

9. Krucker, R., Schaden, M.: Visual Studio Code Integration for the Dafny Language
and Program Verifier. Bachelor’s thesis, HSR Hochschule für Technik Rapperswil
(2017)

10. Le Goues, C., Leino, K.R.M., Moskal, M.: The Boogie verification debugger (tool
paper). In: International Conference on Software Engineering and Formal Methods.
pp. 407–414 (2011). https://doi.org/10.1007/978-3-642-24690-6_28

11. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: International Conference on Logic for Programming Artificial Intelligence and
Reasoning. pp. 348–370 (2010). https://doi.org/10.1007/978-3-642-17511-4_20

12. Leino, K.R.M.: Accessible software verification with Dafny. IEEE Software 34(6),
94–97 (2017). https://doi.org/10.1109/MS.2017.4121212

13. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

14. Nilizadeh, A., Calvo, M., Leavens, G.T., Le, X.B.D.: More reliable test suites for
dynamic APR by using counterexamples. In: IEEE International Symposium on
Software Reliability Engineering (2021), to appear

15. Z3, https://github.com/Z3Prover/z3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

A. Chakarov, A. Fedchin, Z. Rakamarić, N. Rungta410

https://doi.org/10.1007/11804192_17
https://doi.org/10.4204/EPTCS.338.10
https://github.com/boogie-org/boogie
https://doi.org/10.5281/zenodo.5571033
https://doi.org/10.1007/978-3-319-96145-3_3
https://github.com/dafny-lang/dafny
https://doi.org/10.1016/j.jlamp.2018.05.003
https://doi.org/10.1007/978-3-642-24690-6_28
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
http://creativecommons.org/licenses/by/4.0/

material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

Better Counterexamples for Dafny 411

Constraint Solving

cvc5: A Versatile and Industrial-Strength
SMT Solver⋆

Haniel Barbosa3 , Clark Barrett1 , Martin Brain4 , Gereon Kremer1 ,
Hanna Lachnitt1 , Makai Mann1 , Abdalrhman Mohamed2 , Mudathir
Mohamed2 , Aina Niemetz1(B) , Andres Nötzli1 , Alex Ozdemir1 ,

Mathias Preiner1 , Andrew Reynolds2 , Ying Sheng1 , Cesare Tinelli2 ,
and Yoni Zohar1,5

1 Stanford University, Stanford, USA (B)niemetz@cs.stanford.edu
2 The University of Iowa, Iowa City, USA

3 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
4 City, University of London, London, UK
5 Bar-Ilan University, Ramat Gan, Israel

Abstract. cvc5 is the latest SMT solver in the cooperating validity
checker series and builds on the successful code base of CVC4. This paper
serves as a comprehensive system description of cvc5’s architectural
design and highlights the major features and components introduced
since CVC4 1.8. We evaluate cvc5’s performance on all benchmarks in
SMT-LIB and provide a comparison against CVC4 and Z3.

Keywords: automated reasoning · constraint solving · satisfiability mod-
ulo theories · cvc5

1 Introduction

SMT solvers are widely recognized as crucial back-end reasoning engines for
a variety of applications, including software and hardware verification [19, 52,
60, 68, 82, 86], model checking [41, 42, 98], type checking, static analysis, secu-
rity [10,62], automated test-case generation [40,135], synthesis [2,65], planning,
scheduling, and optimization [127]. Notable SMT solvers include Bitwuzla [92],
Boolector [98], CVC4 [21], MathSAT [46], OpenSMT2 [72], SMTInterpol [44],
SMT-RAT [50], STP [61], veriT [35], Yices2 [55], and Z3 [90].

Among these, the family of cooperating validity checker (CVC) tools [21,26,
27, 132] have played an important role, both in research and in practice [11, 48,
70,137,138]. The most recent incarnation, CVC4, was a from-scratch rewrite of

⋆ This work was supported by AFOSR, AFRL, Amazon Web Services, BSF, Cer-
tora, DARPA, ERC, GE Global Research, Google, Intel, Meta, NASA, NSF, ONR,
SRC, United Technologies Research Center, and Stanford University—including the
Center for Automated Reasoning (Centaur), the Center for Blockchain Research,
the Agile Hardware Center (AHA), and the SystemX Alliance. More details can be
found at: https://cvc5.github.io/acknowledgements.html.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 415–442, 2022.
https://doi.org/10.1007/978-3-030-99524-9_24

http://orcid.org/0000-0003-0188-2300
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0003-4216-7151
http://orcid.org/0000-0002-0393-5739
http://orcid.org/0000-0003-3355-7828
http://orcid.org/0000-0002-1555-5784
http://orcid.org/0000-0003-1414-7073
http://orcid.org/0000-0002-4644-5756
http://orcid.org/0000-0003-2600-5283
http://orcid.org/0000-0001-8669-0011
http://orcid.org/0000-0002-0181-6752
http://orcid.org/0000-0002-7142-6258
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-1883-2126
http://orcid.org/0000-0002-6726-775X
http://orcid.org/0000-0002-2972-6695
https://cvc5.github.io/acknowledgements.html
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_24

Barbosa et al.

CVC3, written with the aim of creating a flexible and performant architecture
that could last far into the future. The fact that CVC4 has integrated over a
decade’s worth of SMT research and development while becoming increasingly
robust and performance-competitive attests to the success of that endeavor.

In this paper, we introduce cvc5, the next solver in the series. cvc5 is not
a rewrite of CVC4 and indeed builds on its successful code base and architec-
ture. Compared to other SMT solvers, cvc5 supports a diverse set of theories
(all standard SMT-LIB theories, and many non-standard theories) and features
beyond regular SMT solving such as higher-order reasoning and syntax-guided
synthesis (SyGuS) [3]. The name-change6 rather acknowledges both a (mostly)
new team of developers as well as the significant evolution the tool has under-
gone since CVC4 was described in a tool paper published in 2011 [21]. Moreover,
cvc5 comes with updated documentation, new and improved APIs, and more
user-friendly installation. Most importantly, it introduces several significant new
features. Like its predecessors, cvc5 is available under the 3-clause BSD open
source license and runs on all major platforms (Linux, macOS, and Windows).

We make the following contributions:

– An in-depth description of the architectural design of cvc5 and how its pieces
and modules work together.

– A comprehensive summary of all features that have been added to the solver
since CVC4 was introduced in [21].

– A description of major features introduced since CVC4 1.8, the final version
of CVC4, including:
• a new C++ API, and new Python and Java APIs that build on top of it;
• a new theory solver for the theory of fixed-size bit-vectors;
• a new and extensive proof-production module;
• a new procedure for non-linear arithmetic; and
• a syntax-guided quantifier-instantiation procedure [96].

– Evidence, based on experimental evaluation and industrial use cases, that
cvc5 is in fact both versatile and industrial-strength.

2 Architecture and Core Components

cvc5 supports reasoning about quantifier-free and quantified formulas in a wide
range of background theories and their combinations, including all theories stan-
dardized in SMT-LIB [22]. It further natively supports several non-standard the-
ories and theory extensions. These include, among others, separation logic, the
theory of sequences, the theory of finite sets and relations, and the extension of
the theory of reals with transcendental functions.

In this section, we start with a brief overview of the core components of cvc5,
and then discuss them in more detail in the following subsections. A high-level
overview of the system architecture is given in Figure 1.

6 Whereas the convention for previous solvers in the CVC family was to use capital let-
ters, here we introduce a new convention of using lower-case letters (or alternatively
small capitals, as in this paper, which we find to be more visually appealing).

416

cvc5: A Versatile and Industrial-Strength SMT Solver

Fig. 1: High-level overview of cvc5’s system architecture.

The central engine of cvc5 is the SMT Solver module, which is based on
the CDCL(T) framework [99] and relies on a customized version of the MiniSat
propositional solver [57] at its core. The SMT Solver consists of several compo-
nents: the Rewriter and the Preprocessor modules, which apply simplifications
locally (at the term level) and globally (on the whole input formula), respec-
tively; the Propositional Engine, which serves as a manager for the CDCL(T)
SAT solver; and the Theory Engine, which manages theory combination and all
theory-specific and quantified reasoning procedures.

Besides standard satisfiability checking, cvc5 provides additional function-
ality such as abduction, interpolation, syntax-guided synthesis (SyGuS) [3], and
quantifier elimination. Each of these features is implemented as an additional
solver built on top of the SMT Solver. The SyGuS Solver is the main entry point
for synthesis queries, which encode SyGuS problems as (higher-order) satisfiabil-
ity problems with both semantic and syntactic constraints [114]. The Quantifier
Elimination Solver performs quantifier elimination based on tracking the quan-
tifier instantiations of the SMT Solver [116]. The Abduction Solver and the
Interpolation Solver are both SyGuS-based [110] and thus are built as layers on
top of the SyGuS Solver.

cvc5 provides a C++ API as the main interface, not just for external client
software, but also for its own parser and for additional language bindings in Java
and Python. cvc5 also provides a textual command-line interface (CLI), built on
top of the parser, which supports SMT-LIBv2 [25], SyGuS2 [104] and TPTP [134]
as input languages. The Proof Module can output formal unsatisfiability proofs
in three proof formats: Alethe [128], Lean 4 [88], and LFSC [133].

2.1 The SMT Solver Module

The SMT Solver module is the centerpiece of cvc5 and is responsible for han-
dling all SMT queries. Its functionality includes, in addition to satisfiability

417

checking, constructing models for satisfiable input formulas and extracting as-
sumptions, cores, and proof objects for unsatisfiable formulas. The main com-
ponents of the SMT Solver module are described below.

Preprocessor. Before any satisfiability check, cvc5 applies to each formula
from an input problem a sequence of satisfiability-preserving transformations.
We distinguish between (i) required normalization passes, e.g., removal of ite
terms; (ii) optional simplification passes aimed at making the formula easier to
solve, e.g., finding entailed theory literals; and (iii) optional reduction passes that
transform the formula from one logic to another, e.g., from non-linear integer
arithmetic to a bit-vector problem with configurable bit-width. Currently, cvc5
implements 34 passes, executed in a fixed order. Optional passes can be enabled
and disabled via configuration options. Preprocessing passes are self-contained,
and adding or modifying passes does not require knowledge of the internals of
the SMT solver engine.

Propositional Engine. The Propositional Engine serves as the core CDCL(T)
engine [99], which takes the Boolean abstraction of the input formula (together
with any lemmas produced during solving) and produces a satisfying assignment
for that abstraction. Its main components are the Clausifier and the propositional
satisfiability (SAT) solver. The Clausifier converts the Boolean abstraction into
Conjunctive Normal Form (CNF), which then serves as input for the SAT solver.
In cvc5, as in CVC4, we use a customized version of MiniSat [57] as the core
SAT solver. Extensions we have added to MiniSat include: the production of
resolution proofs; native support for pushing and popping assertions; and a De-
cision Engine [12], which can be used to create customized decision heuristics
for MiniSat.

During its search, the Propositional Engine asserts a theory literal (¬)p to
the Theory Engine as soon as the SAT solver assigns a truth value to the propo-
sitional variable abstracting the atom p. We refer to the set of all such literals
as the currently asserted literals. When checking the consistency of the set L
of currently asserted literals in the overall background theory T , we distinguish
between two levels of effort: standard and full, depending on whether the SAT
solver has a partial or full model, respectively, for the Boolean abstraction. At
standard effort, a theory solver may optionally perform some lightweight con-
sistency checking. At full effort, the theory solver must either produce a lemma
(following the splitting-on-demand approach [23]) or determine whether L is sat-
isfiable or not and, in the latter case, produce a conflict clause, a clause that is
valid in the theory T but is inconsistent with L.

Rewriter. The Rewriter module is responsible for converting terms via a set
of rewrite rules into semantically equivalent normal forms. In contrast to pre-
processing, rewriting is done during solving. In fact, all major components of
cvc5 invoke the Rewriter to ensure that the terms they work with are normal-
ized, thereby simplifying their implementation. Rewrite rules are applied locally,
i.e., independent of the currently asserted literals, and are divided into required
and optional rules, of which the latter can be enabled or disabled by the user.
The Rewriter maintains a cache to avoid processing any term more than once.

Barbosa et al.418

Examples of rewrites include simplifications such as x + 0 ❀ x, normalizations
that sort the operands of associative and commutative operators, and operator
eliminations such as x ≤ y ❀ y + 1 > x (when x and y have integer sort). In
certain contexts, e.g., enumerative SyGuS approaches, aggressive rewriting rules,
which would be detrimental to SMT solving, can be beneficial. Such rules are
implemented in an Extended Rewriter, which is enabled when needed.

To help automate improvements to the Rewriter, we developed a work-
flow that detects and enumerates new rewrite rule candidates using the SyGuS
solver [101]. It works by detecting and suggesting critical pairs, i.e., pairs of
equivalent terms that are not rewritten to the same term by the current rules.

Theory Engine. The Theory Engine is the main entry point for checking the
theory consistency of the theory literals asserted by the Propositional Engine. It
dispatches each of these literals to the appropriate theory solvers and is further
responsible for dispatching any propagated literals or lemmas generated by the
theory solvers back to the Propositional Engine.

When multiple theory solvers are enabled, the Combination Engine sub-
module is responsible for coordinating between them. Like CVC4, cvc5 uses
the polite theory combination mechanism [74,108,130]. This includes propagat-
ing or performing case splits on equalities and disequalities between shared terms
(terms appearing in the literals of more than one theory solver). As in CVC4,
the algorithm for computing these splits is based on care graphs [75].

The Combination Engine controls the Model Manager, which is responsible
for combining models from multiple theories and constructs a model for the input
formula. The Model Manager also maintains an equivalence relation E over all
the terms in the input formula, induced by all of the currently asserted literals
that are equalities. When invoked, the Model Manager has the responsibility
of assigning concrete values to each equivalence class of E with the assistance
of the individual theory solvers, which provide values for terms in their theory.
Typically, the Model Manager is invoked only when the theory solvers have
reached a saturation point that allows the Theory Engine to conclude that the
input problem is satisfiable (and thus, a model can be constructed successfully).

As in CVC4, each sub-formula of the input that starts with a quantifier is
abstracted by a propositional variable. When any such variable or its negation
is asserted, the Theory Engine dispatches the corresponding quantified formula
to the Quantifiers Module, which generates suitable quantifier instantiations.
Since certain techniques for handling quantified formulas, e.g., E-matching [89],
require knowledge of the state and terms known by the other theory solvers, this
module has access to all equality information from all theory solvers.

Theory Solvers. cvc5 supports a wide range of theories, including all theo-
ries standardized in SMT-LIB. Each theory solver relies on an Equality Engine
Module, which implements congruence closure over a configurable set of oper-
ators, typically those that belong to the solver’s theory. The Equality Engine
is responsible for quickly detecting conflicts due to equality reasoning. In addi-
tion, all theories communicate reasoning steps to the rest of the system via the
Theory Inference Manager. Every theory solver emits lemmas, conflict clauses,

cvc5: A Versatile and Industrial-Strength SMT Solver 419

and propagated literals through this interface. The Theory Inference Manager
implements or simplifies common usage pattern like caching and rewriting lem-
mas, proof construction, and collection of statistics. Every lemma or conflict sent
from a theory is associated with a unique identifier for its kind, the inference
identifier, which is a crucial debugging aid. Below, we briefly survey the theory
solvers in cvc5, along with their main implementation techniques.

Linear Arithmetic. The linear arithmetic solver [78] extends the simplex pro-
cedure adapted for SMT by Dutertre and de Moura [56]. It implements a sum-
of-infeasibilities-based heuristic [79], an integration with the external GLPK LP
solver [80], and certain heuristics proposed by Griggio [63]. Integer problems are
handled by solving their real relaxation before using branching [64] and cutting
planes [54] to find integer solutions. The branch-and-bound method optionally
generates lemmas consisting of ternary clauses inspired by unit-cube tests [39].

Non-linear Arithmetic. For non-linear arithmetic problems, cvc5 resorts to
linear abstraction and refinement. It uses a combination of independent sub-
solvers integrated with the linear arithmetic solver and invoked only when the
linear abstraction is satisfiable. One sub-solver implements cylindrical algebraic
coverings [1], while the other sub-solvers are based on incremental lineariza-
tion [45]. A variety of lemma schemas are used to assert properties of non-linear
functions (e.g., multiplication and trigonometric functions) in a counterexample-
guided fashion [123]. Non-linear integer problems are solved by incremental lin-
earization and incomplete techniques based on reductions to bit-vectors.

Arrays. As in CVC4, the array solver is based on a decision procedure by
de Moura and Bjørner [91] but following the more detailed description by Jo-
vanović and Barrett [75]. An alternative experimental implementation based on
an approach by Christ and Hoenicke [43] is also available.

Bit-Vectors. For the theory of fixed-size bit-vectors, cvc5’s main approach
is bit-blasting, which refers to the process of translating bit-vector problems into
equisatisfiable SAT problems, and is applied after preprocessing. In cvc5, we
distinguish two modes for bit-blasting: lazy and eager. Lazy bit-blasting seam-
lessly integrates with the CDCL(T) infrastructure of cvc5 and fully supports
the combination of bit-vectors with any theory supported by cvc5. It further
leverages the full power of cvc5’s Equality Engine for reasoning about equali-
ties over bit-vector terms and also uses the solve-under-assumptions feature [57]
supported by many state-of-the-art SAT solvers. For problems that can be fully
reduced to bit-vectors, cvc5 can also be used in eager mode. This mode does
not rely on solving under assumptions, but instead directly asserts all of the
bit-blasted constraints to the SAT solver, which usually enables more simplifica-
tions. Additionally, cvc5 supports the Ackermannization and eager bit-blasting
of constraints involving uninterpreted functions and sorts [66].

Datatypes. For quantifier-free constraints over datatypes, we use a rule-based
procedure that follows calculi already implemented in CVC4 [24, 112] and that
optimizes the sharing of selectors over multiple constructors [125].

Barbosa et al.420

Floating-Point Arithmetic. Formulas in the theory of floating-point arith-
metic are translated to equisatisfiable formulas in the theory of bit-vectors, in a
process referred to as word-blasting. For this, cvc5 integrates the SymFPU [37]
library, which was first used in CVC4 and has also been integrated in the Bitwu-
zla SMT solver [92]. This approach admits several optimizations compared to
earlier solvers, which translate directly to the bit-level, e.g., CNF or AIGs. An-
other difference from older approaches [38] is that translation is done at the for-
mula level instead of the term level. Conversions between real and floating-point
terms are treated as uninterpreted functions and refined if the models of the real
arithmetic and the floating-point solver do not agree. The refinement lemmas
use the monotonicity of the conversion functions to constrain the floating-point
and real arithmetic terms to matching intervals that exclude the current model.

Sets and Relations. cvc5 implements a solver for the parametric theory of
finite sets, i.e., sets whose elements are of any sort supported by cvc5. The
core decision procedure for sets is extended with support for cardinality con-
straints [13]. The set theory solver is extended with a sub-module that specializes
in relational constraints [87], where relations are modeled as sets of tuples.

Separation Logic. In separation logic, the semantics of constraints assume
a location and data type for specifying the model of the heap. cvc5 supports
an extension of the SMT-LIB language for separation logic [73], in which the
location and data types of the heap can be any sort supported by cvc5. The
classical separation logic connectives are treated as theory predicates which are
lazily reduced to constraints over sets and uninterpreted functions [115].

Strings and Sequences. For strings and sequences, cvc5 implements a solver
consisting of multiple layered components. At its core, the solver reasons about
length constraints and word equations [84], supplemented with reasoning about
code points to handle conversions between strings and integers efficiently [119].
Extended functions such as string replacement are lazily reduced to word equa-
tions after context-dependent simplifications [126]. When necessary, the regular
expressions in input problems are unfolded and derivatives are computed [85].
The string theory solver further incorporates aggressive simplification rules that
rely on abstractions to derive facts about string terms [118]. Finally, conflicts
are detected eagerly on partial assignments from the SAT solver by computing
the congruence closure and constant prefixes and suffixes of string terms.

Uninterpreted Functions. The theory of uninterpreted functions is handled
in largely the same way as in CVC4. It follows Simplify’s approach [53] ex-
tended with support for fixed finite cardinality constraints [121]. This extension
is used in combination with finite-model-finding techniques for finding finite
models based on minimal interpretations of uninterpreted sorts.

Quantifiers. Quantified formulas are all handled by the Quantifiers Mod-
ule, which resembles a theory solver. The module contains many sub-solvers, all
based on some form of quantifier instantiation, and each specializing in solving
specific classes of quantified formulas. The Quantifiers Module relies on heuris-
tic E-matching when uninterpreted functions are present [89]. This technique

cvc5: A Versatile and Industrial-Strength SMT Solver 421

is supplemented by conflict-based instantiation for detecting when an instanti-
ation is in conflict with the currently asserted literals [16, 124]. The Quantifiers
Module additionally incorporates finite-model-finding techniques, which are use-
ful for detecting satisfiable input problems [122]. It also relies on enumerative
approaches when other techniques are incomplete [109]. For quantifiers over lin-
ear arithmetic, it uses a specialized counterexample-guided based approach for
quantifier instantiation [116]. An extension of this technique is used for quanti-
fied bit-vector logics [95]. For other quantified logics in pure background theories,
e.g., over floating-point or non-linear arithmetic, cvc5 relies on syntax-guided
quantifier instantiation [96]. The Quantifiers Module also contains sub-solvers
implementing more advanced solving paradigms, including: a module for doing
Skolemization with inductive strengthening and enumeration of sub-goals for
inductive theorem proving problems [117], a finite-model-finding technique for
recursive functions [113], and a solver for syntax-guided synthesis [114].

2.2 Proof Module

The Proof Module of cvc5 was built from scratch and replaces the proof system
of CVC4 [67, 77], which was incomplete and suffered from a number of archi-
tectural shortcomings. The design of cvc5’s proof module was guided by the
following principles. First, the overhead incurred by proof production should be
at most linear in the solving time. Second, the emitted proofs should be de-
tailed enough to enable efficient (i.e., polynomial) checking, ensuring that proof
checking is inherently simpler than solving. Third, disabling a system compo-
nent when in proof production mode because it lacks adequate proof generation
capabilities should be done rarely and only if the component is not crucial for
performance. Finally, given the different needs of users and the trade-offs offered
by different proof systems, proof production should be flexible enough to allow
the emission of proofs in different formats.

Following these design principles, the Proof Module in cvc5 produces de-
tailed proofs for nearly all of its theories, rewrite rules, preprocessing passes,
internal SAT solvers, and theory combination engines. It further supports eager
and lazy proof production with built-in proof reconstruction. This enables proof
production for some notoriously challenging functionalities, such as substitution
and rewriting (common, for example, in simplification under global assumptions
and in string solving [126]). Furthermore, although it maintains internally a
single proof representation, cvc5 is able to emit proofs in multiple formats, in-
cluding those supported by the LFSC [133] proof checker and the Lean 4 [88],
Isabelle/HOL [100] and Coq [30] proof assistants.

2.3 Node Manager

Formulas and terms are represented uniformly in cvc5 as nodes in a directed
acyclic graph, reference-counted and managed by the Node Manager. The Node
Manager further maintains a Skolem Manager, which is responsible for tracking

Barbosa et al.422

Skolem symbols introduced during solving. All cvc5 instances in the same thread
share the same Node Manager instance.

Nodes are immutable and are aggressively shared using hash consing : when-
ever a new node is about to be created, the Node Manager checks whether a
node with the same structure already exists, and if it does, it returns a reference
to the existing node instead. Besides saving memory, this ensures that syntactic
equality checks can be performed in constant time (by comparing the unique ids
assigned to each node). Reference counting allows the Node Manager to deter-
mine when to dispose of nodes. Weak references are used whenever possible to
limit the overhead of reference counting.

Nodes store 96 bits of metadata (id, reference count, kind, and number of
children) and a variable number of pointers to child nodes. The kind of a node
can be an operator kind, e.g., addition, or a leaf kind, e.g., a variable. Optional
additional static information associated with nodes can be stored separately in
hash maps referred to as node attributes. Since node attributes are managed by
the Node Manager, which may be shared by multiple solver instances, attributes
must only be used to capture inherent node properties (i.e., properties that are
independent of run-time options).

Many theory solvers, including those for quantifiers, strings, arrays, non-
linear arithmetic, and sets, introduce terms with Skolem (i.e., fresh) constants
during solving. Such constants are centrally generated by the Skolem Manager,
which also associates with each of them a term of the same sort, the constant’s
witness form. If the computed witness form for a constant matches that of a
previously used constant, the previous constant can be reused. This not only
provides a deterministic way of generating fresh constants during solving but
also allows the system to minimize the number of introduced constants. This
reuse is crucial for performance in some theory solvers [120].

2.4 Context-Dependent Data Structures

Certain applications of SMT solvers require multiple satisfiability checks with
similar assertions. To support such applications, the SMT-LIB standard includes
commands to save (with a push command) the current set of user-level assertions
and restore (with a pop command) a previous set. This allows the solver to reuse
parts of the work from earlier satisfiability checks and amortizes startup cost.
Most of the state of cvc5 depends directly or indirectly on the current set of
assertions. So whenever the user pushes or pops, cvc5 has to save or restore
the corresponding state. Similarly, whenever the SAT solver makes a decision or
backtracks to a previous decision point, each theory solver has to save or restore
the corresponding information.

To support these operations, cvc5 defines a notion of context level, which
increases with each push and decreases with each pop operation, and imple-
ments context-dependent data structures. These data structures behave similarly
to corresponding mutable data structures provided in the C++ standard library,
except that they are associated with a context level and automatically save and
restore their state as the context increases or decreases. For efficiency reasons,

cvc5: A Versatile and Industrial-Strength SMT Solver 423

s = Solver ()
i = s.getIntegerSort ()
x = s.mkConst(i, "x")
s.assertFormula(

s.mkTerm(kinds.Equal ,
s.mkTerm(kinds.Mult ,

x, s.mkInteger (2)),
s.mkInteger (4)))

s.checkSat ()

(a) The base cvc5 Python API

solve(2 * Int("x") == 4)

(b) The “pythonic” API

Fig. 2: Example of using the Python APIs of cvc5.

this state data is stored using a region-based custom allocator that allocates one
region per context level, allowing all state data associated with a level to be
freed simultaneously by simply freeing the corresponding region.

3 Highlighted Features

In this section, we discuss features that are new in cvc5 as well as some of the
more prominent user- and developer-facing features. We compare them to their
counterparts in CVC4 when applicable.

Application Programming Interfaces (APIs). cvc5 provides a lean, com-
prehensive, and feature-complete C++ API, which also serves as the main inter-
face for the parser module and the basis for all other language bindings. The
parser module uses the same API as external users, without any special priv-
ileges. cvc5’s C++ API has been designed and written from scratch and thus
is not backwards compatible with CVC4’s C++ API. It is centered around the
Solver class, which represents a cvc5 instance and implements methods for
tasks such as creating terms, asserting formulas, and issuing checks.

cvc5’s Python API is built on top of cvc5’s C++ API using Cython [29] and
makes all of cvc5’s features accessible to Python users. It is a straightforward
translation of the C++ API without added syntactic sugar such as operator over-
loading. Additionally, however, cvc5 provides a higher-level layer on top of its
Python API, which is more user-friendly and pythonic. This layer provides au-
tomatic solver management, allows SMT terms to be constructed using Python
infix operators, and converts Python objects to SMT terms of the appropriate
sort. This leads to much more succinct code, as shown in Figure 2, which com-
pares using the high- and low-level Python APIs to solve the integer equation
2 · x = 4. The higher-level Python API is based on and designed to work as a
drop-in replacement for Z3py, the Python API of Z3 [90].

cvc5’s Java API is implemented via the Java Native Interface (JNI), which
allows Java applications to invoke native code and vice versa [83]. In contrast,
CVC4 uses SWIG [28] to semi-automatically generate bindings. One of the chal-
lenges of developing a Java API, and the main motivation for implementing it

Barbosa et al.424

manually instead of using SWIG, is the interaction between Java’s garbage col-
lector and cvc5’s reference-counting mechanism for terms and sorts. The new
API implements the AutoCloseable interface to destroy the underlying C++ ob-
jects in the expected order. It mostly mirrors the C++ API and supports operator
overloading, iterators, and exceptions. There are a few differences from the C++

API, such as using arbitrary-precision integer pairs, specifically, pairs of Java
BigInteger objects, to represent rational numbers. In contrast to the old Java
API, the new API puts greater emphasis on using Java-native types such as
List<T> instead of wrapper classes for C++ types such as std::vector<T>.

Documentation. We provide comprehensive documentation for both cvc5
users [8] and developers [6]. User documentation contains instructions for build-
ing and installing cvc5 and its dependencies, extensive documentation and ex-
amples of common uses cases for all available APIs, and a thorough description
of all supported non-standard theories with examples. Developer documentation
provides details of cvc5 internals and instructions for contributions, including
guidelines for coding and testing, and a recommended development workflow.

Proofs. As mentioned above, cvc5 has a new proof system. Proofs are stored
internally using a new custom intermediate representation. Multiple output proof
formats are supported via target-specific post-processing transformations on
this internal representation. The final proof object can then be pretty-printed
and saved in a text file. The currently supported output proof formats include
LFSC [133], Alethe [128], and the language of the Lean 4 [88] proof assistant.

CVC4 proofs exclusively used the LFSC format. cvc5 continues support for
LFSC but with a new, more user-friendly syntax. LFSC is a logical framework,
based on Edinburgh LF [69], which was explicitly designed to facilitate the pro-
duction and checking of fine-grained proofs in SMT. It comes with a small and
high-performance proof checker, which is generic in the sense that it takes as
input both a proof term p and a proof signature, a definition of the data types
and proof rules used to construct p. The checker verifies that p is well-formed
with respect to the provided signature. We have defined proof signatures for all
the individual theories supported by cvc5. These definitions can be combined
together as needed to define a proof system for any combination of those theo-
ries. When emitting proofs in LFSC, cvc5 includes all the relevant signatures
as a preamble to the proof term.

The Alethe proof format is a flexible proof format for SMT solvers based on
SMT-LIB. It includes both coarse- and fine-grained steps and was first imple-
mented in the veriT solver [34]. Alethe proofs can be checked via reconstruction
within Isabelle/HOL [15,129] as well as within Coq, the latter via the SMTCoq
plugin [5, 58]. Our main motivation for producing Alethe proofs is to leverage
these proof reconstruction infrastructures, thus enabling the trustworthy inte-
gration of cvc5 in Isabelle/HOL and Coq. Users of these tools can leverage the
integration to dispatch selected goals to cvc5 for proving, thereby increasing the
level of automation available to them without requiring a larger trusted core.
These integrations represent ongoing work in cvc5 and are being carried out in
close collaboration with both Isabelle/HOL and Coq experts.

cvc5: A Versatile and Industrial-Strength SMT Solver 425

Although we aim to have a similar full integration in the Lean 4 [88] proof
assistant in the future, cvc5 currently only supports the use of Lean 4 as an
external checker; i.e., cvc5 can emit proofs as Lean terms (for a subset of the
theories supported by cvc5), and Lean 4 can then check these proofs. Since the
underlying logic of Lean 4 is an extension of that of LFSC, this functionality
follows an approach similar to that used for LFSC by modeling cvc5 proof rules
as Lean types and reducing proof checking to type checking.

Syntax-Guided Synthesis. cvc5 has native support for syntax-guided syn-
thesis (SyGuS) problems [3]. As mentioned, the cvc5 core has a dedicated mod-
ule for encoding SyGuS problems into (higher-order) SMT formulas, annotated
with syntactic restrictions. These restrictions are represented via a deep embed-
ding into the theory of datatypes. Internally, after encoding the SyGuS problem,
a sub-module of the quantifiers theory, called the synthesis engine, is the main
entry point for solving. Based on the shape of the input, it uses one of three
approaches. If the input problem has no syntactic restrictions, and is in single
invocation form [114], that is, all functions to synthesize are applied to the same
argument list, then it uses a quantifier-instantiation based approach. Otherwise,
it uses one of two enumerative approaches, depending on the properties of the
input [111]. The SyGuS solver also implements further refinements and exten-
sions of the enumerative approaches, including algorithms for decision-tree learn-
ing [4] for programming-by-example problems, extended rewriting for enumera-
tion [101], piecewise-independent unification [17], and static grammar-reduction
techniques. Furthermore, the SyGuS solver contains specialized procedures to
support an efficient implementation of interpolation and abduction.

Interpolation and Abduction. cvc5 computes abducts and Craig inter-
polants [51] using solvers built on top of the SyGuS solver. The solver for in-
terpolation translates an interpolation query into a SyGuS conjecture whose
solutions are interpolants. Specifically, given quantifier-free formulas A and C
over any combination of the theories supported by cvc5, the interpolation solver
solves for B in the SyGuS conjecture A → B ∧ B → C, with the syntactic
restriction that B’s free symbols range over the symbols shared by A and C. Any
synthesized solution for B is, by construction, a Craig interpolant for A and C.

Abduction is the process of constructing a formula B that is enough to add
to a formula A to prove some goal formula C (equivalently, to make the formula
F = A∧B∧¬C unsatisfiable). cvc5’s abduction solver reduces this problem to a
SyGuS one where C is the formula to be synthesized and F is the semantic con-
straint. Optionally, the user can also impose syntactic restrictions on the abduct
B. The SyGuS solver implements specific optimizations for abduction queries,
such as using unsat cores to prune classes of invalid candidate solutions [110].

Non-Linear Arithmetic. The new sub-solver for non-linear arithmetic is
based on cylindrical algebraic coverings and closely follows [1], with some notable
extensions. The implementation uses the libpoly library [76], which provides
polynomial arithmetic and most algebraic routines required for the computation
of cylindrical algebraic decompositions and coverings. Infeasible subsets are com-
puted by tracking all contributing assertions for every covering. The infeasible

Barbosa et al.426

subset is then obtained from the union of assertions from the top-level covering.
The sub-solver implements several different variable orderings, as these can have
a significant impact on run-times in practice. Apart from classical variable order-
ings used for cylindrical algebraic decomposition, some experimental orderings
based on machine learning have been implemented, roughly following ideas from
England et al. [59]. (Mixed real-) integer problems are supported by dynamically
injecting intervals into coverings to cover gaps that do not contain integers.

Higher-Order Logic. cvc5 has been extended with partial support for higher-
order logic [18]. The extension is based on a pragmatic approach in which λ-
abstractions are eliminated eagerly via lambda lifting [71]. This approach is used
with the theory solver for the quantifier-free fragment of the theory of equality
with uninterpreted functions (EUF) and with the quantifier-instantiation tech-
nique based on E-matching with triggers [53,89]. For the EUF solver, we added
support for (dis)equality constraints between functions, via an extensionality
inference rule, and for partial applications of (Curried) functions. For quan-
tifier instantiation, we modified several of the data structures for E-matching
to incorporate matching in the presence of equalities between function values,
function variables, and partial function applications. The extension also uses
custom axioms, such as an axiom simulating how functions are updated, to im-
prove the generation of new λ-abstractions, since cvc5 does not yet perform
HO-unification, which would allow it to synthesize arbitrary λ-abstractions.

New Bit-Vector Solver. cvc5 features a new bit-blasting solver, which sup-
ports the use of off-the-shelf SAT solvers such as CaDiCaL [31] or CryptoMin-
iSat [131] as SAT back-ends for both the eager and lazy bit-blasting approaches.
In contrast, CVC4’s lazy bit-blasting solver relied on a customized version of
MiniSat and did not allow the use of more recent state-of-the-art SAT solvers.

Int-Blasting. In addition to bit-blasting, cvc5 implements int-blasting tech-
niques, which reduce bit-vector problems to equisatisfiable non-linear integer
arithmetic problems [97, 138]. These techniques are orthogonal to bit-blasting
and especially effective on unsatisfiable formulas over large bit-widths.

Syntax-Guided Quantifier Instantiation. cvc5 features a new theory-ag-
nostic enumerative quantifier-instantiation technique we call syntax-guided quan-
tifier instantiation [96]. This technique leverages cvc5’s SyGuS solver to syn-
thesize terms for quantifier instantiation in a counterexample-guided manner.

Unsatisfiable Cores. In cvc5, unsat (short for unsatisfiable) core extraction
has been completely overhauled. It now uses the new proof infrastructure for
tracking preprocessing transformations, which, differently from CVC4’s, sup-
ports most of the preprocessing passes. Unsat cores can be extracted based on
the constructed proof or via the tracked preprocessing and assumption-based un-
sat core extraction [47]. For the latter, cvc5 uses the solve-under-assumptions
feature available in the MiniSat-based SAT engine. This is a lightweight solution
that does not require the generation of proofs in the SAT solver and full prepro-
cessing proofs. However, if a user requests both unsat cores and proofs, cvc5
switches to proof-based unsat core extraction using the new proof infrastructure.

cvc5: A Versatile and Industrial-Strength SMT Solver 427

Distributed and Central Policies for Equality Reasoning. As mentioned
in Section 2, the Combination Engine manages theory combination, and theory
solvers manage their interactions with the rest of the system via their Equality
Engine. In contrast to CVC4, the policy for assigning an Equalitiy Engine to a
theory solver in cvc5 is configurable. In the distributed policy, a new Equality
Engine is generated and assigned for each theory solver. These theory solvers
perform congruence closure and their theory-specific reasoning locally. The ad-
vantage of this approach is that the constraints are local to the theory and thus
do not lead to overhead when combined with other theories. In the central policy,
a single, shared Equality Engine is assigned to all theory solvers. The advantage
of this approach is that communication of facts between theory solvers happens
automatically, which in turn can trigger theory propagations more eagerly. Both
policies use the same core Equality Engine Module. Each theory solver has been
refactored to be agnostic with respect to the equality policy.

Decision Heuristic. For Boolean reasoning, in addition to MiniSat’s decision
heuristic, cvc5 implements a separate decision heuristic which uses the original
Boolean structure of the input to keep track of the justified parts of the input
constraints, i.e., the parts where it can infer the value of terms based on a
(partial) assignment to sub-terms. To make decisions, this new heuristic traverses
assertions not satisfied by the currently asserted literals, computing the desired
values (starting with true as the desired value for the root) for each term until it
finds an unasserted literal that would contribute towards a desired value. This
heuristic is a reimplementation and extension of a heuristic [12] implemented
in CVC4. The heuristic optionally prioritizes assertions that most frequently
contributed to conflicts in the past using a dynamic ordering scheme.

Additional Features. Many more aspects and features have been improved
and implemented with the goal of providing useful information to users and de-
velopers. Notable examples include: a complete overhaul of CVC4’s mechanism
for collecting statistics; improved bookkeeping for information about theory lem-
mas; and a general mechanism for communicating additional information to users
such as quantifier instantiations and terms enumerated by the SyGuS solver.

4 Evaluation

We evaluate cvc5’s overall performance (commit 5f998504) by comparing it
against Z3 4.8.12 [90] and CVC4 1.8.7 Z3 is a widely used, high-performance
SMT solver which, like cvc5, supports a wide range of theories. We compare
against CVC4 to illustrate some of the performance improvements implemented
as part of the move to cvc5. To run CVC4 optimally, we use the same command-
line options as those in CVC4’s competition script for SMT-COMP 2020 [9].
Similarly, for cvc5, we use a (slightly updated) version of the competition script
from SMT-COMP 2021 [7]. For some logics, e.g., quantified logics, these scripts
try multiple options in a sequential portfolio.

7 The artifact of this evaluation is archived in the Zenodo open-access repository [14].

Barbosa et al.428

Division cvc5 CVC4 Z3

Arith (7104) 6593 6498 6844
Bitvec (6045) 5741 5690 5664
Equality (12159) 6677 6681 4688
Equality+LinearArith (55948) 49395 48487 49503
Equality+MachineArith (4712) 2065 1832 1804
Equality+NonLinearArith (17260) 11088 10906 9341
FPArith (3170) 2625 2113 2593
QF Bitvec (42450) 41569 41448 40582
QF Equality (16254) 16124 16121 16115
QF Equality+Bitvec (16518) 16274 16333 16318
QF Equality+LinearArith (3924) 3778 3782 3822
QF Equality+NonLinearArith (673) 598 610 616
QF FPArith (76084) 75998 75965 75816
QF LinearIntArith (9765) 8619 8778 8464
QF LinearRealArith (2008) 1849 1881 1864
QF NonLinearIntArith (24261) 17525 16860 18357
QF NonLinearRealArith (11552) 10889 9207 10354
QF Strings (69863) 69231 69367 68074

Total (379750) 346638 342559 340819

Table 1: Benchmarks solved by cvc5, CVC4, and Z3 with a 20 minute time limit.

We ran all experiments on a cluster equipped with Intel Xeon E5-2620 v4
CPUs. We allocated one CPU core and 8GB of RAM for each solver and bench-
mark pair and ran each benchmark with a 20 minute time limit, the same
time limit used at SMT-COMP 2021 [102]. We used all non-incremental SMT-
LIB [22] benchmarks for our evaluation, with the exception of 45 (misclassified)
benchmarks that have quantifiers in quantifier-free logics and 1128 (misclassi-
fied) benchmarks that have non-linear literals in linear arithmetic logics. These
are known misclassifications in the current release of SMT-LIB. Note that many
benchmarks in SMT-LIB come from industrial applications.

Table 1 shows the number of solved benchmarks for each solver using the
same divisions as those used for SMT-COMP 2021. There were no disagreements
among the solvers on the satisfiability of benchmarks. Overall, cvc5 solves the
largest number of benchmarks. Compared to CVC4, cvc5 solves fewer bench-
marks in the quantifier-free linear integer arithmetic division due to refactorings
related to adding proof support. In the quantifier-free equality and bit-vector
division, cvc5 also solves fewer benchmarks, which we attribute to the fact that
the new bit-vector solver has not yet been optimized for theory combination.
Finally, for quantifier-free string benchmarks, there have been bug fixes since
CVC4 that affected performance.

In addition to regularly participating in SMT-COMP, cvc5 and CVC4 also
participate in the CADE ATP System Competition (CASC) and in SyGuS-
Comp [103]. In CASC, cvc5 tends to perform in the middle of the pack on
untyped theorem divisions (unsatisfiable quantified UF in SMT-LIB parlance),
and towards the top of the pack on theorems with arithmetic. The last time
SyGuS-Comp was held was in 2019, when CVC4 won four out of five tracks.

cvc5: A Versatile and Industrial-Strength SMT Solver 429

CVC4 is used extensively in industry, and our users are in the process of
updating to cvc5. Examples of its use include: a back-end for Zelkova, a
tool developed at Amazon to reason about AWS Access Policies [10, 11, 33]; a
back-end for Boogie [20], which is used in many projects including Dafny [81]
and the Move Prover [137], a tool used to formally verify smart contracts; a
back-end at Certora, another company engaged in formal verification of smart
contracts [138]; a back-end for Sledgehammer [32], a tool for discharging proof
obligations in Isabelle used by Isabelle’s own industrial users; and a back-end
for SPARK [70], a development environment for safety-critical Ada programs.

5 Future Work

We briefly highlight a few current development directions for cvc5.
Optimization Solver. Optimization modulo theories (OMT) [136] is an exten-

sion of SMT, which requires a solver not only to determine satisfiability but also
to return a satisfying assignment (if any) that optimizes one or more objectives.
OMT is already supported by several solvers including MathSAT [46] and Z3.
cvc5 already has internal infrastructure for supporting OMT queries. We aim
to improve and expose (through the APIs) this capability in the near future.

Theory of Bags. cvc5 has preliminary support for a theory of multisets (or
bags) that can be implemented via a reduction to linear integer arithmetic [107].
We plan to extend this theory with higher-order combinators such as map and
fold. With these combinators, and encoding relational tables as bags of tuples,
cvc5 will be able to support several commonly-used table operations, with the
goal of facilitating reasoning about SQL queries and database applications.

Floating-Point Arithmetic. In addition to word-blasting, we plan to leverage
our work on invertibility conditions [36] to lift the local search approach for
bit-vectors from [93,94] to floating-point arithmetic.

Internal Portfolio. Due to the computational complexity of SMT, there is
often no single strategy that works best for all problems. As a result, users of
SMT solvers often rely on portfolio approaches to try different sets of options,
either in parallel or sequentially, as we did in Section 4. Implementing portfolio
approaches that use the solver as a black box is sub-optimal because some work,
such as parsing, has to be duplicated. The cvc5 roadmap includes plans to
support portfolio solving internally, thereby avoiding that additional overhead.
We further plan to provide predefined portfolios tuned for specific use cases. As
one example of the different needs of different use cases, some applications prefer
the solver to always return quickly (even if the answer is “unknown”) whereas
others expect the solver to try as hard as possible to solve a given problem.

New Parser. cvc5’s current parser is inherited from CVC4 and is based on
the ANTLR 3 parser generator [105]. In addition to relying on a now deprecated
version of ANTLR, the parser is unacceptably slow on large inputs and provides
no API for user applications to interact with. A new parser using Flex [106] and
Bison [49] is in development. The new parser will also provide an API allowing
users to parse whole files or individual terms.

Barbosa et al.430

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consis-
tency of non-linear real arithmetic constraints with a conflict driven search using
cylindrical algebraic coverings. J. Log. Algebraic Methods Program. 119, 100633
(2021). https://doi.org/10.1016/j.jlamp.2020.100633

2. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis.
In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR,
USA, October 20-23, 2013. pp. 1–8. IEEE (2013), https://ieeexplore.ieee.org/
document/6679385/

3. Alur, R., Bod́ık, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013. pp. 1–8. IEEE (2013), http://ieeexplore.ieee.org/document/
6679385/

4. Alur, R., Radhakrishna, A., Udupa, A.: Scaling enumerative program synthesis
via divide and conquer. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 10205, pp. 319–336 (2017).
https://doi.org/10.1007/978-3-662-54577-5 18

5. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.P., Shao, Z. (eds.) Certified Programs and Proofs. Lecture Notes in Computer
Science, vol. 7086, pp. 135–150. Springer (2011). https://doi.org/10.1007/978-3-
642-25379-9 12

6. cvc5 Authors: cvc5 developer documentation. https://github.com/cvc5/cvc5/wiki
(2021)

7. cvc5 Authors: cvc5 SMT-COMP 2021 Single Query run script. https:
//github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/
run-script-smtcomp-current (2021)

8. cvc5 Authors: cvc5 user documentation. https://cvc5.github.io (2021)
9. Authors, C.: CVC4 SMT-COMP 2020 Single Query run script.

https://github.com/CVC4/CVC4/blob/smtcomp2020/contrib/competitions/
smt-comp/run-script-smtcomp-current (2020)

10. Backes, J., Berrueco, U., Bray, T., Brim, D., Cook, B., Gacek, A., Jhala, R.,
Luckow, K.S., McLaughlin, S., Menon, M., Peebles, D., Pugalia, U., Rungta,
N., Schlesinger, C., Schodde, A., Tanuku, A., Varming, C., Viswanathan, D.:
Stratified abstraction of access control policies. In: Lahiri, S.K., Wang, C. (eds.)
Computer Aided Verification - 32nd International Conference, CAV 2020, Los An-
geles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12224, pp. 165–176. Springer (2020). https://doi.org/10.1007/978-3-
030-53288-8 9

11. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K.S.,
Rungta, N., Tkachuk, O., Varming, C.: Semantic-based automated reason-
ing for AWS access policies using SMT. In: Bjørner, N., Gurfinkel, A.
(eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018. pp. 1–9. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8602994

cvc5: A Versatile and Industrial-Strength SMT Solver 431

https://doi.org/10.1016/j.jlamp.2020.100633
https://ieeexplore.ieee.org/document/6679385/
https://ieeexplore.ieee.org/document/6679385/
http://ieeexplore.ieee.org/document/6679385/
http://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-642-25379-9_12
https://github.com/cvc5/cvc5/wiki
https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/cvc5/cvc5/blob/smtcomp2021/contrib/competitions/smt-comp/run-script-smtcomp-current
https://cvc5.github.io
https://github.com/CVC4/CVC4/blob/smtcomp2020/contrib/competitions/smt-comp/run-script-smtcomp-current
https://github.com/CVC4/CVC4/blob/smtcomp2020/contrib/competitions/smt-comp/run-script-smtcomp-current
https://doi.org/10.1007/978-3-030-53288-8_9
https://doi.org/10.1007/978-3-030-53288-8_9
https://doi.org/10.23919/FMCAD.2018.8602994

12. Bansal, K.: A branching heuristic in cvc4 smt solver. https://kshitij.io/articles/
cvc4-branching-heuristic.pdf (2012)

13. Bansal, K., Barrett, C.W., Reynolds, A., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. CoRR abs/1702.06259 (2017),
http://arxiv.org/abs/1702.06259

14. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann,
M., Mohamed, A., Mohamed, M.M.Y., Niemetz, A., Noetzli, A., Ozdemir,
A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: Arti-
fact for Paper cvc5: A Versatile and Industrial-Strength SMT Solver (Nov
2021). https://doi.org/10.5281/zenodo.5740365, https://doi.org/10.5281/zenodo.
5740365

15. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-grained
proofs for formula processing. Journal of Automated Reasoning 64(3), 485–510
(2020). https://doi.org/10.1007/s10817-018-09502-y

16. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 10206, pp. 214–230 (2017). https://doi.org/10.1007/978-
3-662-54580-5 13

17. Barbosa, H., Reynolds, A., Larraz, D., Tinelli, C.: Extending enumerative
function synthesis via smt-driven classification. In: Barrett, C.W., Yang, J.
(eds.) 2019 Formal Methods in Computer Aided Design, FMCAD 2019,
San Jose, CA, USA, October 22-25, 2019. pp. 212–220. IEEE (2019).
https://doi.org/10.23919/FMCAD.2019.8894267

18. Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.W.: Extending
SMT solvers to higher-order logic. In: Fontaine, P. (ed.) Proc. Conference on
Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 11716,
pp. 35–54. Springer (2019). https://doi.org/10.1007/978-3-030-29436-6 3

19. Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A mod-
ular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.P. (eds.) Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The Nether-
lands, November 1-4, 2005, Revised Lectures. Lecture Notes in Computer Science,
vol. 4111, pp. 364–387. Springer (2005). https://doi.org/10.1007/11804192 17

20. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: International Sympo-
sium on Formal Methods for Components and Objects. pp. 364–387. Springer
(2005)

21. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: CAV. Lecture Notes in Computer Science,
vol. 6806, pp. 171–177. Springer (2011)

22. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2020), http://smt-lib.org

23. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in
SAT modulo theories. In: Hermann, M., Voronkov, A. (eds.) Proceedings of the
13th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR ’06). Lecture Notes in Computer Science, vol. 4246, pp.
512–526. Springer-Verlag (Nov 2006), phnom Penh, Cambodia

Barbosa et al.432

https://kshitij.io/articles/cvc4-branching-heuristic.pdf
https://kshitij.io/articles/cvc4-branching-heuristic.pdf
http://arxiv.org/abs/1702.06259
https://doi.org/10.5281/zenodo.5740365
https://doi.org/10.5281/zenodo.5740365
https://doi.org/10.5281/zenodo.5740365
https://doi.org/10.1007/s10817-018-09502-y
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.1007/978-3-662-54580-5_13
https://doi.org/10.23919/FMCAD.2019.8894267
https://doi.org/10.1007/978-3-030-29436-6_3
https://doi.org/10.1007/11804192_17
http://smt-lib.org

24. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure
for a theory of inductive data types. JSAT 3(1-2), 21–46 (2007).
https://doi.org/10.3233/sat190028

25. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In:
Gupta, A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on
Satisfiability Modulo Theories (Edinburgh, UK) (2010)

26. Barrett, C.W., Berezin, S.: CVC lite: A new implementation of the cooperating
validity checker category B. In: Alur, R., Peled, D.A. (eds.) Computer Aided
Verification (CAV). Lecture Notes in Computer Science, vol. 3114, pp. 515–518.
Springer (2004). https://doi.org/10.1007/978-3-540-27813-9 49

27. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) Computer
Aided Verification (CAV). Lecture Notes in Computer Science, vol. 4590, pp.
298–302. Springer (2007). https://doi.org/10.1007/978-3-540-73368-3 34

28. Beazley, D.M.: SWIG: an easy to use tool for integrating scripting lan-
guages with C and C++. In: Diekhans, M., Roseman, M. (eds.) Fourth An-
nual USENIX Tcl/Tk Workshop 1996, Monterey, California, USA, July 10-13,
1996. USENIX Association (1996), https://www.usenix.org/legacy/publications/
library/proceedings/tcl96/beazley.html

29. Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K.:
Cython: The best of both worlds. Computing in Science & Engineering 13(2),
31–39 (2011)

30. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer (2004). https://doi.org/10.1007/978-
3-662-07964-5

31. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba,
Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T.,
Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT
Competition 2020 – Solver and Benchmark Descriptions. Department of Com-
puter Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki
(2020)

32. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction
- CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw,
Poland, July 31 - August 5, 2011. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 6803, pp. 116–130. Springer (2011). https://doi.org/10.1007/978-3-642-
22438-6 11

33. Bouchet, M., Cook, B., Cutler, B., Druzkina, A., Gacek, A., Hadarean, L., Jhala,
R., Marshall, B., Peebles, D., Rungta, N., Schlesinger, C., Stephens, C., Varming,
C., Warfield, A.: Block public access: trust safety verification of access control
policies. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13,
2020. pp. 281–291. ACM (2020). https://doi.org/10.1145/3368089.3409728

34. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An Open,
Trustable and Efficient SMT-Solver. In: Schmidt, R.A. (ed.) Proc. Conference on
Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 5663,
pp. 151–156. Springer (2009). https://doi.org/10.1007/978-3-642-02959-2 12

35. Bouton, T., Oliveira, D.C.B.D., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient smt-solver. In: Schmidt, R.A. (ed.) Automated Deduc-

cvc5: A Versatile and Industrial-Strength SMT Solver 433

https://doi.org/10.3233/sat190028
https://doi.org/10.1007/978-3-540-27813-9_49
https://doi.org/10.1007/978-3-540-73368-3_34
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/beazley.html
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/beazley.html
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-22438-6_11
https://doi.org/10.1007/978-3-642-22438-6_11
https://doi.org/10.1145/3368089.3409728
https://doi.org/10.1007/978-3-642-02959-2_12

tion - CADE-22, 22nd International Conference on Automated Deduction, Mon-
treal, Canada, August 2-7, 2009. Proceedings. Lecture Notes in Computer Science,
vol. 5663, pp. 151–156. Springer (2009). https://doi.org/10.1007/978-3-642-02959-
2 12

36. Brain, M., Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli,
C.: Invertibility conditions for floating-point formulas. In: Dillig, I., Tasiran,
S. (eds.) Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 11562, pp. 116–136. Springer (2019).
https://doi.org/10.1007/978-3-030-25543-5 8

37. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-
point problems. In: TACAS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part I. LNCS, vol. 11427, pp. 79–98. Springer (2019).
https://doi.org/10.1007/978-3-030-17462-0 5

38. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: Proceedings of 9th International Conference on Formal Methods in
Computer-Aided Design, FMCAD 2009, 15-18 November 2009, Austin, Texas,
USA. pp. 69–76. IEEE (2009). https://doi.org/10.1109/FMCAD.2009.5351141

39. Bromberger, M., Weidenbach, C.: Fast cube tests for LIA constraint solving. In:
IJCAR. Lecture Notes in Computer Science, vol. 9706, pp. 116–132. Springer
(2016)

40. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: Draves, R., van
Renesse, R. (eds.) 8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2008, December 8-10, 2008, San Diego, California, USA,
Proceedings. pp. 209–224. USENIX Association (2008), http://www.usenix.org/
events/osdi08/tech/full papers/cadar/cadar.pdf

41. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuxmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) Computer Aided Verification - 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Aus-
tria, July 18-22, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8559,
pp. 334–342. Springer (2014). https://doi.org/10.1007/978-3-319-08867-9 22

42. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The kind 2 model checker. In:
Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification - 28th International
Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 9780, pp. 510–517. Springer (2016).
https://doi.org/10.1007/978-3-319-41540-6 29

43. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: FroCos. Lecture Notes in
Computer Science, vol. 9322, pp. 119–134. Springer (2015)

44. Christ, J., Hoenicke, J., Nutz, A.: Smtinterpol: An interpolating SMT solver.
In: Donaldson, A.F., Parker, D. (eds.) Model Checking Software - 19th Inter-
national Workshop, SPIN 2012, Oxford, UK, July 23-24, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7385, pp. 248–254. Springer (2012).
https://doi.org/10.1007/978-3-642-31759-0 19

45. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant check-
ing of NRA transition systems via incremental reduction to LRA with EUF. In:
Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 23rd International Conference, TACAS 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS

Barbosa et al.434

https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-030-25543-5_8
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1109/FMCAD.2009.5351141
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-642-31759-0_19

2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10205, pp. 58–75 (2017). https://doi.org/10.1007/978-3-
662-54577-5 4

46. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Proc. TACAS. Lecture Notes in Computer Science, vol. 7795, pp. 93–
107. Springer (2013)

47. Cimatti, A., Griggio, A., Sebastiani, R.: Computing small unsatisfiable cores in
satisfiability modulo theories. J. Artif. Intell. Res. (JAIR) 40, 701–728 (2011).
https://doi.org/10.1613/jair.3196

48. Cook, B.: Formal reasoning about the security of amazon web services. In:
Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification - 30th
International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10981, pp. 38–47. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3 3

49. Corbett, R.: Gnu bison (2021), https://www.gnu.org/software/bison/
50. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an

open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M.,
Weaver, S.A. (eds.) Theory and Applications of Satisfiability Testing - SAT 2015
- 18th International Conference, Austin, TX, USA, September 24-27, 2015, Pro-
ceedings. Lecture Notes in Computer Science, vol. 9340, pp. 360–368. Springer
(2015). https://doi.org/10.1007/978-3-319-24318-4 26

51. Craig, W.: Linear reasoning. A new form of the herbrand-gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

52. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-c - A software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) Software Engineering and Formal Methods - 10th Interna-
tional Conference, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7504, pp. 233–247. Springer (2012).
https://doi.org/10.1007/978-3-642-33826-7 16

53. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

54. Dillig, I., Dillig, T., Aiken, A.: Cuts from proofs: a complete and practical tech-
nique for solving linear inequalities over integers. Formal Methods Syst. Des.
39(3), 246–260 (2011)

55. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verifica-
tion (CAV). Lecture Notes in Computer Science, vol. 8559, pp. 737–744. Springer
(2014). https://doi.org/10.1007/978-3-319-08867-9 49

56. Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In:
CAV. Lecture Notes in Computer Science, vol. 4144, pp. 81–94. Springer (2006)

57. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT. Lecture Notes in
Computer Science, vol. 2919, pp. 502–518. Springer (2003)

58. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Bar-
rett, C.W.: Smtcoq: A plug-in for integrating SMT solvers into coq. In:
Majumdar, R., Kuncak, V. (eds.) Computer Aided Verification (CAV). Lec-
ture Notes in Computer Science, vol. 10427, pp. 126–133. Springer (2017).
https://doi.org/10.1007/978-3-319-63390-9 7

59. England, M., Bradford, R.J., Davenport, J.H., Wilson, D.J.: Choosing a vari-
able ordering for truth-table invariant cylindrical algebraic decomposition by in-
cremental triangular decomposition. In: Hong, H., Yap, C. (eds.) Mathematical

cvc5: A Versatile and Industrial-Strength SMT Solver 435

https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1613/jair.3196
https://doi.org/10.1007/978-3-319-96145-3_3
https://www.gnu.org/software/bison/
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.2307/2963593
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-63390-9_7

Software - ICMS 2014 - 4th International Congress, Seoul, South Korea, August 5-
9, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8592, pp. 450–457.
Springer (2014). https://doi.org/10.1007/978-3-662-44199-2 68

60. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen, M.,
Gardner, P. (eds.) Programming Languages and Systems - 22nd European Sym-
posium on Programming, ESOP 2013, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 125–
128. Springer (2013). https://doi.org/10.1007/978-3-642-37036-6 8

61. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In:
Damm, W., Hermanns, H. (eds.) Computer Aided Verification, 19th Interna-
tional Conference, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4590, pp. 519–531. Springer (2007).
https://doi.org/10.1007/978-3-540-73368-3 52

62. Godefroid, P., Levin, M.Y., Molnar, D.A.: SAGE: whitebox
fuzzing for security testing. Commun. ACM 55(3), 40–44 (2012).
https://doi.org/10.1145/2093548.2093564

63. Griggio, A.: An Effective SMT Engine for Formal Verification. Ph.D. thesis, Uni-
versity of Trento, Italy (2009)

64. Griggio, A.: A practical approach to satisfiability modulo linear integer arithmetic.
Journal on Satisfiability, Boolean Modeling and Computation 8(1-2), 1–27 (2012)

65. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free pro-
grams. In: Hall, M.W., Padua, D.A. (eds.) Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011. pp. 62–73. ACM (2011).
https://doi.org/10.1145/1993498.1993506

66. Hadarean, L.: An efficient and trustworthy theory solver for bit-vectors in satis-
fiability modulo theories. Ph.D. thesis, Citeseer (2015)

67. Hadarean, L., Barrett, C.W., Reynolds, A., Tinelli, C., Deters, M.: Fine grained
SMT proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker, A.,
McIver, A., Voronkov, A. (eds.) Logic for Programming, Artificial Intelligence,
and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, Novem-
ber 24-28, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9450, pp.
340–355. Springer (2015). https://doi.org/10.1007/978-3-662-48899-7 24

68. Hajdu, Á., Jovanovic, D.: solc-verify: A modular verifier for solidity smart con-
tracts. In: Chakraborty, S., Navas, J.A. (eds.) Verified Software. Theories, Tools,
and Experiments - 11th International Conference, VSTTE 2019, New York City,
NY, USA, July 13-14, 2019, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 12031, pp. 161–179. Springer (2019). https://doi.org/10.1007/978-3-
030-41600-3 11

69. Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal
of the Association for Computing Machinery 40(1), 143–184 (Jan 1993)

70. Hauzar, D., Marché, C., Moy, Y.: Counterexamples from proof failures in SPARK.
In: Nicola, R.D., eva Kühn (eds.) Software Engineering and Formal Methods
- 14th International Conference, SEFM 2016, Held as Part of STAF 2016, Vi-
enna, Austria, July 4-8, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9763, pp. 215–233. Springer (2016). https://doi.org/10.1007/978-3-319-41591-
8 15

71. Hughes, R.J.M.: Super combinators: a new implementation method for applicative
languages. In: Symposium on LISP and Functional Programming. pp. 1–10 (1982)

Barbosa et al.436

https://doi.org/10.1007/978-3-662-44199-2_68
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1007/978-3-662-48899-7_24
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-030-41600-3_11
https://doi.org/10.1007/978-3-319-41591-8_15
https://doi.org/10.1007/978-3-319-41591-8_15

72. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An
SMT solver for multi-core and cloud computing. In: Creignou, N., Berre, D.L.
(eds.) Theory and Applications of Satisfiability Testing - SAT 2016 - 19th In-
ternational Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Lec-
ture Notes in Computer Science, vol. 9710, pp. 547–553. Springer (2016).
https://doi.org/10.1007/978-3-319-40970-2 35

73. Iosif, R., Serban, C., Reynolds, A., Sighireanu, M.: Encoding separation logic in
smt-lib v2.5 (2018)

74. Jovanovic, D., Barrett, C.W.: Polite theories revisited. In: LPAR (Yogyakarta).
Lecture Notes in Computer Science, vol. 6397, pp. 402–416. Springer (2010)

75. Jovanovic, D., Barrett, C.W.: Being careful about theory combination. Formal
Methods Syst. Des. 42(1), 67–90 (2013)

76. Jovanovic, D., Dutertre, B.: Libpoly: A library for reasoning about polynomials.
In: Brain, M., Hadarean, L. (eds.) Proceedings of the 15th International Workshop
on Satisfiability Modulo Theories affiliated with the International Conference on
Computer-Aided Verification (CAV 2017), Heidelberg, Germany, July 22 - 23,
2017. CEUR Workshop Proceedings, vol. 1889, pp. 28–39. CEUR-WS.org (2017),
http://ceur-ws.org/Vol-1889/paper3.pdf

77. Katz, G., Barrett, C.W., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy
proofs for dpll(t)-based SMT solvers. In: Piskac, R., Talupur, M. (eds.)
2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Moun-
tain View, CA, USA, October 3-6, 2016. pp. 93–100. IEEE (2016).
https://doi.org/10.1109/FMCAD.2016.7886666

78. King, T.: Effective Algorithms for the Satisfiability of Quantifier-Free Formulas
Over Linear Real and Integer Arithmetic. Ph.D. thesis, New York University
(2014)

79. King, T., Barrett, C.W., Dutertre, B.: Simplex with sum of infeasibilities for
SMT. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland,
OR, USA, October 20-23, 2013. pp. 189–196. IEEE (2013), https://ieeexplore.
ieee.org/document/6679409/

80. King, T., Barrett, C.W., Tinelli, C.: Leveraging linear and mixed integer pro-
gramming for SMT. In: Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014. pp. 139–146. IEEE (2014).
https://doi.org/10.1109/FMCAD.2014.6987606

81. Leino, K.M.: Accessible software verification with dafny. IEEE Software 34(06),
94–97 (nov 2017). https://doi.org/10.1109/MS.2017.4121212

82. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelli-
gence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 6355, pp. 348–370. Springer (2010). https://doi.org/10.1007/978-3-642-
17511-4 20

83. Liang, S.: The Java Native interface : programmer’s guide and specification /
Sheng Liang. Java series, Addison-Wesley, Reading, Mass. ; Harlow, England
(1999)

84. Liang, T., Reynolds, A., Tinelli, C., Barrett, C.W., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: CAV. Lecture Notes in
Computer Science, vol. 8559, pp. 646–662. Springer (2014)

85. Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.W.: A decision
procedure for regular membership and length constraints over unbounded strings.

cvc5: A Versatile and Industrial-Strength SMT Solver 437

https://doi.org/10.1007/978-3-319-40970-2_35
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.1109/FMCAD.2016.7886666
https://ieeexplore.ieee.org/document/6679409/
https://ieeexplore.ieee.org/document/6679409/
https://doi.org/10.1109/FMCAD.2014.6987606
https://doi.org/10.1109/MS.2017.4121212
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20

In: FroCos. Lecture Notes in Computer Science, vol. 9322, pp. 135–150. Springer
(2015)

86. Mattarei, C., Mann, M., Barrett, C.W., Daly, R.G., Huff, D., Hanrahan, P.:
Cosa: Integrated verification for agile hardware design. In: Bjørner, N., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018. pp. 1–5. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8603014

87. Meng, B., Reynolds, A., Tinelli, C., Barrett, C.W.: Relational constraint solving
in SMT. In: de Moura, L. (ed.) Automated Deduction - CADE 26 - 26th Interna-
tional Conference on Automated Deduction, Gothenburg, Sweden, August 6-11,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10395, pp. 148–165.
Springer (2017). https://doi.org/10.1007/978-3-319-63046-5 10

88. de Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) Automated Deduction - CADE 28 - 28th
International Conference on Automated Deduction, Virtual Event, July 12-15,
2021, Proceedings. Lecture Notes in Computer Science, vol. 12699, pp. 625–635.
Springer (2021). https://doi.org/10.1007/978-3-030-79876-5 37

89. de Moura, L.M., Bjørner, N.: Efficient e-matching for SMT solvers. In: Pfen-
ning, F. (ed.) Automated Deduction - CADE-21, 21st International Conference
on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4603, pp. 183–198. Springer (2007).
https://doi.org/10.1007/978-3-540-73595-3 13

90. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-
78800-3 24, https://doi.org/10.1007/978-3-540-78800-3 24

91. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD. pp. 45–52. IEEE (2009)

92. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020), https://arxiv.org/abs/2006.01621

93. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: 2020 Formal Methods in Computer Aided Design, FM-
CAD 2020, Haifa, Israel, September 21-24, 2020. pp. 214–224. IEEE (2020).
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6 29

94. Niemetz, A., Preiner, M., Biere, A.: Propagation based local search for
bit-precise reasoning. Formal Methods Syst. Des. 51(3), 608–636 (2017).
https://doi.org/10.1007/s10703-017-0295-6

95. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: On solving
quantified bit-vector constraints using invertibility conditions. Formal Methods
Syst. Des. 57(1), 87–115 (2021). https://doi.org/10.1007/s10703-020-00359-9

96. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C.W., Tinelli, C.: Syntax-guided
quantifier instantiation. In: Groote, J.F., Larsen, K.G. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems - 27th International Confer-
ence, TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March
27 - April 1, 2021, Proceedings, Part II. Lecture Notes in Computer Science, vol.
12652, pp. 145–163. Springer (2021). https://doi.org/10.1007/978-3-030-72013-
1 8

Barbosa et al.438

https://doi.org/10.23919/FMCAD.2018.8603014
https://doi.org/10.1007/978-3-319-63046-5_10
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://arxiv.org/abs/2006.01621
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1007/s10703-020-00359-9
https://doi.org/10.1007/978-3-030-72013-1_8
https://doi.org/10.1007/978-3-030-72013-1_8

97. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C.W., Tinelli,
C.: Towards bit-width-independent proofs in SMT solvers. In: Fontaine, P.
(ed.) Automated Deduction - CADE 27 - 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings. Lec-
ture Notes in Computer Science, vol. 11716, pp. 366–384. Springer (2019).
https://doi.org/10.1007/978-3-030-29436-6 22

98. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , btormc and boolector
3.0. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part I.
Lecture Notes in Computer Science, vol. 10981, pp. 587–595. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3 32

99. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theo-
ries: From an abstract davis–putnam–logemann–loveland procedure to dpll(T).
J. ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859

100. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer
(2002). https://doi.org/10.1007/3-540-45949-9

101. Nötzli, A., Reynolds, A., Barbosa, H., Niemetz, A., Preiner, M., Barrett, C.W.,
Tinelli, C.: Syntax-guided rewrite rule enumeration for SMT solvers. In: Janota,
M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing - SAT 2019 -
22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11628, pp. 279–297. Springer
(2019). https://doi.org/10.1007/978-3-030-24258-9 20

102. Organizers, S.C.: SMT-COMP 2021. https://smt-comp.github.io/2021/ (2021)
103. Organizers, S.C.: SyGuS-Comp 2019. https://sygus.org/comp/2019/ (2021)
104. Padhi, S., Polgreen, E., Raghothaman, M., Reynolds, A., Udupa, A.: The sygus

language standard version 2.1 (2021)
105. Parr, T.: ANTLRv3 (2021), https://www.antlr3.org/
106. Paxson, V.: Flex lexical analyser generator (2021), https://github.com/westes/

flex
107. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality con-

straints. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) Verification, Model Check-
ing, and Abstract Interpretation, 9th International Conference, VMCAI 2008,
San Francisco, USA, January 7-9, 2008, Proceedings. Lecture Notes in Computer
Science, vol. 4905, pp. 218–232. Springer (2008). https://doi.org/10.1007/978-3-
540-78163-9 20

108. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably
infinite theories using many-sorted logic. In: FroCoS. Lecture Notes in Computer
Science, vol. 3717, pp. 48–64. Springer (2005)

109. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation.
In: Beyer, D., Huisman, M. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems - 24th International Conference, TACAS 2018, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 10806, pp. 112–131. Springer (2018).
https://doi.org/10.1007/978-3-319-89963-3 7

110. Reynolds, A., Barbosa, H., Larraz, D., Tinelli, C.: Scalable algorithms for
abduction via enumerative syntax-guided synthesis. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Automated Reasoning - 10th International Joint Con-

cvc5: A Versatile and Industrial-Strength SMT Solver 439

https://doi.org/10.1007/978-3-030-29436-6_22
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-030-24258-9_20
https://smt-comp.github.io/2021/
https://sygus.org/comp/2019/
https://www.antlr3.org/
https://github.com/westes/flex
https://github.com/westes/flex
https://doi.org/10.1007/978-3-540-78163-9_20
https://doi.org/10.1007/978-3-540-78163-9_20
https://doi.org/10.1007/978-3-319-89963-3_7

ference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 12166, pp. 141–160. Springer (2020).
https://doi.org/10.1007/978-3-030-51074-9 9

111. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy:
Smart and fast term enumeration for syntax-guided synthesis. In: Dillig, I.,
Tasiran, S. (eds.) Computer Aided Verification - 31st International Conference,
CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 11562, pp. 74–83. Springer (2019).
https://doi.org/10.1007/978-3-030-25543-5 5

112. Reynolds, A., Blanchette, J.C.: A decision procedure for (co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) Automated Deduction - CADE-
25 - 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9195, pp.
197–213. Springer (2015). https://doi.org/10.1007/978-3-319-21401-6 13

113. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) Automated Reasoning - 8th
International Joint Conference, IJCAR 2016, Coimbra, Portugal, June 27 - July
2, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9706, pp. 133–151.
Springer (2016). https://doi.org/10.1007/978-3-319-40229-1 10

114. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.:
Counterexample-guided quantifier instantiation for synthesis in SMT. In:
Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 9207, pp. 198–216.
Springer (2015). https://doi.org/10.1007/978-3-319-21668-3 12

115. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separation
logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) Automated Technology for
Verification and Analysis - 14th International Symposium, ATVA 2016, Chiba,
Japan, October 17-20, 2016, Proceedings. Lecture Notes in Computer Science,
vol. 9938, pp. 244–261 (2016). https://doi.org/10.1007/978-3-319-46520-3 16

116. Reynolds, A., King, T., Kuncak, V.: Solving quantified linear arithmetic by
counterexample-guided instantiation. Formal Methods Syst. Des. 51(3), 500–532
(2017). https://doi.org/10.1007/s10703-017-0290-y

117. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) Verification, Model Checking, and Abstract Interpretation
- 16th International Conference, VMCAI 2015, Mumbai, India, January 12-14,
2015. Proceedings. Lecture Notes in Computer Science, vol. 8931, pp. 80–98.
Springer (2015). https://doi.org/10.1007/978-3-662-46081-8 5

118. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: High-level abstractions for
simplifying extended string constraints in SMT. In: CAV (2). Lecture Notes in
Computer Science, vol. 11562, pp. 23–42. Springer (2019)

119. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: A decision procedure for string
to code point conversion. In: IJCAR (1). Lecture Notes in Computer Science, vol.
12166, pp. 218–237. Springer (2020)

120. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: Reductions for strings and
regular expressions revisited. In: FMCAD. pp. 225–235. IEEE (2020)

121. Reynolds, A., Tinelli, C., Goel, A., Krstic, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 8044, pp. 640–655. Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8 42

Barbosa et al.440

https://doi.org/10.1007/978-3-030-51074-9_9
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-319-21401-6_13
https://doi.org/10.1007/978-3-319-40229-1_10
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/978-3-662-46081-8_5
https://doi.org/10.1007/978-3-642-39799-8_42

122. Reynolds, A., Tinelli, C., Goel, A., Krstic, S., Deters, M., Barrett, C.W.: Quan-
tifier instantiation techniques for finite model finding in SMT. In: Bonacina,
M.P. (ed.) Automated Deduction - CADE-24 - 24th International Conference
on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7898, pp. 377–391. Springer (2013).
https://doi.org/10.1007/978-3-642-38574-2 26

123. Reynolds, A., Tinelli, C., Jovanovic, D., Barrett, C.W.: Designing theory solvers
with extensions. In: Dixon, C., Finger, M. (eds.) Frontiers of Combining Systems
- 11th International Symposium, FroCoS 2017, Braśılia, Brazil, September 27-29,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10483, pp. 22–40.
Springer (2017). https://doi.org/10.1007/978-3-319-66167-4 2

124. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quanti-
fied formulas in SMT. In: Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014. pp. 195–202. IEEE (2014).
https://doi.org/10.1109/FMCAD.2014.6987613

125. Reynolds, A., Viswanathan, A., Barbosa, H., Tinelli, C., Barrett, C.W.: Datatypes
with shared selectors. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Auto-
mated Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part
of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10900, pp. 591–608. Springer
(2018). https://doi.org/10.1007/978-3-319-94205-6 39

126. Reynolds, A., Woo, M., Barrett, C.W., Brumley, D., Liang, T., Tinelli, C.: Scaling
up DPLL(T) string solvers using context-dependent simplification. In: CAV (2).
Lecture Notes in Computer Science, vol. 10427, pp. 453–474. Springer (2017)

127. Schkufza, E., Sharma, R., Aiken, A.: Stochastic program optimization. Commun.
ACM 59(2), 114–122 (2016). https://doi.org/10.1145/2863701

128. Schurr, H., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: Towards a generic SMT
proof format (extended abstract). In: Keller, C., Fleury, M. (eds.) Workshop on
Proof eXchange for Theorem Proving (PxTP). EPTCS, vol. 336, pp. 49–54 (2021).
https://doi.org/10.4204/EPTCS.336.6, https://doi.org/10.4204/EPTCS.336.6

129. Schurr, H., Fleury, M., Desharnais, M.: Reliable reconstruction of fine-grained
proofs in a proof assistant. In: Platzer, A., Sutcliffe, G. (eds.) Proc. Conference on
Automated Deduction (CADE). Lecture Notes in Computer Science, vol. 12699,
pp. 450–467. Springer (2021). https://doi.org/10.1007/978-3-030-79876-5 26

130. Sheng, Y., Zohar, Y., Ringeissen, C., Lange, J., Fontaine, P., Barrett, C.W.:
Politeness for the theory of algebraic datatypes. In: Peltier, N., Sofronie-
Stokkermans, V. (eds.) Automated Reasoning - 10th International Joint Con-
ference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 12166, pp. 238–255. Springer (2020).
https://doi.org/10.1007/978-3-030-51074-9 14

131. Soos, M.: CryptoMiniSat. https://github.com/msoos/cryptominisat (2020)
132. Stump, A., Barrett, C.W., Dill, D.L.: CVC: A cooperating validity checker.

In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 2404, pp. 500–504. Springer (2002).
https://doi.org/10.1007/3-540-45657-0 40

133. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof check-
ing using a logical framework. Formal Methods in System Design 42(1), 91–118
(2013). https://doi.org/10.1007/s10703-012-0163-3

134. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483–502
(2017)

cvc5: A Versatile and Industrial-Strength SMT Solver 441

https://doi.org/10.1007/978-3-642-38574-2_26
https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1109/FMCAD.2014.6987613
https://doi.org/10.1007/978-3-319-94205-6_39
https://doi.org/10.1145/2863701
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.4204/EPTCS.336.6
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-030-51074-9_14
https://github.com/msoos/cryptominisat
https://doi.org/10.1007/3-540-45657-0_40
https://doi.org/10.1007/s10703-012-0163-3

135. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net. In: Beckert,
B., Hähnle, R. (eds.) Tests and Proofs - 2nd International Conference, TAP 2008,
Prato, Italy, April 9-11, 2008. Proceedings. Lecture Notes in Computer Science,
vol. 4966, pp. 134–153. Springer (2008). https://doi.org/10.1007/978-3-540-79124-
9 10

136. Trentin, P.: Optimization Modulo Theories with OptiMathSAT. Ph.D. thesis,
University of Trento (2019)

137. Zhong, J.E., Cheang, K., Qadeer, S., Grieskamp, W., Blackshear, S., Park,
J., Zohar, Y., Barrett, C.W., Dill, D.L.: The move prover. In: Lahiri, S.K.,
Wang, C. (eds.) Computer Aided Verification - 32nd International Conference,
CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part I. Lec-
ture Notes in Computer Science, vol. 12224, pp. 137–150. Springer (2020).
https://doi.org/10.1007/978-3-030-53288-8 7

138. Zohar, Y., Irfan, A., Mann, M., Niemetz, A., Nötzli, A., Preiner, M., Reynolds,
A., Barrett, C., Tinelli, C.: Bit-Precise Reasoning via Int-Blasting, to appear in
the proceedings of VMCAI 2022

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

Barbosa et al.442

https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-030-53288-8_7
http://creativecommons.org/licenses/by/4.0/

Clausal Proofs for Pseudo-Boolean Reasoning?

Randal E. Bryant1 B , Armin Biere2 , and Marijn J. H. Heule1

1 Carnegie Mellon University, Pittsburgh, PA, United States
{Randy.Bryant, mheule}@cs.cmu.edu

2 Albert-Ludwigs University, Freiburg, Germany
biere@cs.uni-freiburg.de

Abstract. When augmented with a Pseudo-Boolean (PB) solver, a Boolean sat-
isfiability (SAT) solver can apply apply powerful reasoning methods to determine
when a set of parity or cardinality constraints, extracted from the clauses of the
input formula, has no solution. By converting the intermediate constraints gen-
erated by the PB solver into ordered binary decision diagrams (BDDs), a proof-
generating, BDD-based SAT solver can then produce a clausal proof that the input
formula is unsatisfiable. Working together, the two solvers can generate proofs of
unsatisfiability for problems that are intractable for other proof-generating SAT
solvers. The PB solver can, at times, detect that the proof can exploit modular
arithmetic to give smaller BDD representations and therefore shorter proofs.

1 Introduction

Like all complex software, modern satisfiability (SAT) solvers are prone to bugs. In
seeking to maximize their performance, developers may attempt optimizations that are
either unsound or incorrectly implemented. Requiring a solver to be formally verified
is not feasible for current solvers. On the other hand, ensuring that each execution of
the solver yields the correct result has become a standard requirement. For a satisfiable
formula, the solver can generate a purported solution, and this can be checked directly.
For an unsatisfiable formula, the solver can produce a proof of unsatisfiability in a
logical framework that enables checking by an efficient and trusted proof checker. Proof
generation is a vital capability when SAT solvers are used for formal correctness and
security verification, and for mathematical theorem proving.

Most high-performance, proof-generating SAT solvers are based on conflict-driven,
clause-learning (CDCL) algorithms [42]. Although the methods used by earlier solvers
were limited to steps that could be justified within a resolution framework [43, 52],
modern solvers employ a variety of optimizations that require a more expressive proof
framework, with the most common being Deletion Resolution Asymmetric Tautology
(DRAT) [31,50]. Like resolution proofs, a DRAT proof is a clausal proof consisting of a
sequence of clauses, each of which preserves the satisfiability of the preceding clauses.
An unsatisfiability proof starts with the clauses of the input formula and ends with an
empty clause, indicating logical falsehood. The fact that this clause can be derived from
the original formula proves that the original formula cannot be satisfied.
? The first and third authors were supported by the U. S. National Science Foundation under

grant CCF-2108521

c© The Author(s) 2022

https://doi.org/10.1007/978-3-030-99524-9_25
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 443–461, 2022.

http://orcid.org/0000-0001-5024-6613
http://orcid.org/0000-0001-7170-9242
http://orcid.org/0000-0002-5587-8801
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_25

R. E. Bryant, A. Biere, and M. J. H. Heule

Even with the capabilities of the DRAT framework, some solvers employ reasoning
techniques for which they cannot generate unsatisfiability proofs. A number of SAT
solvers can extract parity constraints from the input clauses and solve these as linear
equations over the integers modulo 2 [6, 30, 37, 47]. Some can also detect and reason
about cardinality constraints [6]. However, all these programs revert to standard CDCL
when proof generation is required. To overcome the proof-generating limitations of cur-
rent solvers, some have suggested using more powerful proof frameworks, for example,
based on pseudo-Boolean constraints [27] or Binary Decision Diagrams [5]. Staying
with DRAT avoids the need to develop, certify, and deploy new proof systems, file
formats, and checkers.

Current CDCL solvers do not use the full power of the DRAT framework. In par-
ticular, DRAT supports adding extension variables to a clausal proof, in the style of
extended resolution [48]. These variables serve as abbreviations for formulas over ex-
isting input and extension variables. Compared to standard resolution, allowing exten-
sion variables can yield proofs that are exponentially more compact [19], and the same
holds for the extension rule in DRAT. In general, however, CDCL solvers have been un-
able to exploit this capability, with the exception that some of their preprocessing and
inprocessing techniques [8, 34] require extension variables [39]. One solver attempted
to introduce extension variables as it operated [3], but it achieved only modest success.

In 2006, Biere, Jussila, and Sinz demonstrated that the underlying logic behind al-
gorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) [10]
can be encoded as steps in an extended resolution framework [35, 46]. By introducing
an extension variable for each BDD node generated, the logic for each recursive step of
standard BDD operations can be expressed with a short sequence of proof steps. BDDs
provide a systematic way to exploit the power of extension variables. The recently de-
veloped solver PGBDD [11, 12] (for “proof-generating BDD”) builds on this work with
a more general capability for existentially quantifying variables. It can generate unsat-
isfiability proofs for several classic challenge problems for which the shortest possible
standard resolution proofs are of exponential size.

We show that BDDs can provide a bridge between pseudo-Boolean reasoning and
clausal proofs. Pseudo-Boolean (PB) constraints have the form

∑
j=1,n aj xjBb, where

each variable xj can be assigned value 0 or 1, the coefficients aj and constant b are
integers, and the relation symbol B is either =, ≥, or ≡ mod r for some modulus r.
Both parity and cardinality constraints can be expressed as PB constraints. A PB solver
can employ Gaussian elimination or Fourier-Motzkin elimination [21, 51] to determine
when a set of constraints is unsatisfiable. Our newly developed program PGPBS (for
“proof-generating pseudo-Boolean solver”) augments PGBDD with a pseudo-Boolean
solver, combining the power of PB reasoning with DRAT proof generation.

To enable proof generation, the PB solver generates BDD representations of its in-
termediate constraints and has proof-generating BDD operations construct proofs that
each of these constraints is logically implied by previous constraints. When the PB
solver reaches a constraint that cannot be satisfied, e.g., the equation 0 = 2, the con-
straint will be represented by the false BDD leaf⊥, which yields a proof step consisting
of the empty clause. The resulting proof is checkable within the DRAT framework with-
out any reference to pseudo-Boolean constraints or BDDs. Barnett and Biere [5] also

444

Clausal Proofs from Pseudo-Boolean Reasoning

proposed using BDDs when proving that the constraints generated by a PB solver were
logically implied by their predecessors, but they proposed doing so in a separate proof
framework rather than as the solver operates.

As an optimization, the PB solver can automatically detect cases where the unsatis-
fiability proof for an integer-constraint problem can use modular arithmetic. This leads
to more compact BDD representations, and therefore shorter proofs.

We demonstrate the power of PGPBS’s combination of BDDs and pseudo-Boolean
reasoning by showing that that it can achieve polynomial scaling on two classes of
problems for which CDCL solvers have exponential performance. These include parity
constraints involving exclusive-or operations [17, 49] and cardinality constraints, in-
cluding the mutilated chessboard [2] and pigeonhole problems [29]. Although PGBDD
on its own can also achieve polynomial scaling for both classes of problems, incorporat-
ing pseudo-Boolean reasoning makes the solver much more robust. It can handle wider
variations in the problem definition, how the problem is encoded as clauses, and the
BDD variable ordering. It also operates with greater automation, requiring no guidance
or hints from the user. These capabilities eliminate major shortcomings of PGBDD.

2 Pseudo-Boolean Constraints

Let xj , for 1 ≤ j ≤ n, be a set of variables, each of which may be assigned value
0 or 1, and aj , for 1 ≤ j ≤ n, be a set of integer coefficients. Constant b is also an
integer. A pseudo-Boolean constraint is of the form

∑
j=1,n aj xj B b, with B defining

the relation between the left-hand weighted sum and the right-hand constant. For an
integer equation, B is =, i.e., the two sides must be equal. For an ordering constraint,
B is ≥. For a modular equation, B is ≡ mod r, where r is the chosen modulus.

Three constraint types are of special importance for solving cardinality problems.
An at-least-one (ALO) constraint is an ordering constraint with aj ∈ {0,+1} for all
j, and b = +1. An at-most-one (AMO) constraint is an ordering constraint with aj ∈
{−1, 0} for all j, and b = −1. An exactly-one constraint is an integer equation with
aj ∈ {0,+1} for all j and b = +1.

2.1 BDD Representations

Many researchers have investigated the use of BDDs to represent pseudo-Boolean con-
straints [1,24,33]. As examples, Figure 1 shows BDD representations of the three forms
of constraints for n = 10 and b = 0, with aj = +1 for odd values of j and −1 for even
values. The modular equation has r = 3. The BDDs for both the integer equation
(A) and ordering constraint (B) have an increasing number of nodes at each level for
the first n/2 levels, with a node at level k for each possible value of the prefix sum∑

j=1,k−1 aj xj . As the level k approaches n, however, the number of nodes at each
level decreases. If a prefix sum becomes too extreme on the negative side, it becomes
impossible for the remaining values to cause the sum to reach b = 0. For the integer
equation, a similar phenomenon happens if a prefix sum becomes too extreme on the
positive side. For an ordering constraint, a sufficiently positive prefix sum will guaran-
tee that the total sum will be at least 0. For the modular sum (C), the number of nodes
at any level cannot exceed r—one for each possible value of the prefix sum modulo r.

445

>

(A) Integer equation

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

>

(B) Ordering constraint

>

(C) Modular equation

Fig. 1. Example BDD representations of pseudo-Boolean equations and ordering constraints.
Solid (respectively, dashed) lines indicate the branch when the variable is assigned 1 (resp., 0).
The leaf representing the false Boolean constant ⊥ and its incoming edges are omitted.

Letting amax = max1≤j≤n |aj |, the BDD representation of an integer equation or
ordering constraint will have at most 2 amax · n nodes at any level, while the repre-
sentation of a modular equation will have at most r nodes at any level. Although large
values of amax (amax � n), can cause the BDDs to be of exponential size [1, 33], our
use of them will assume that both amax and r are small constants. The BDD represen-
tations will then be O(n2) for integer equations and ordering constraints, and O(n) for
modular equations. These bounds are independent of the BDD variable ordering.

Most BDD operations are implemented via the Apply algorithm [10], recursively
traversing a set of argument BDDs to either construct a new BDD or to test some prop-
erty of existing ones. The BDDs representing pseudo-Boolean constraints are levelized:
every branch from a node at level j goes to a leaf node or to a node at level j + 1. We
can therefore derive a bound on the maximum number of recursive steps to perform an
operation on k argument BDDs, assuming both amax and r are small constants. Due to
the caching of intermediate results, the maximum number of steps at each level will be
bounded by the product of the number of argument nodes at this level. The operation
will therefore have worst-case complexity O(nk+1) for integer equations and ordering
constraints, while it will have complexity O(k · n) for modular equations.

2.2 Solving Systems of Equations with Gaussian Elimination

We use a formulation of Gaussian elimination that scales each derived equation, rather
than dividing by the pivot value [4, 44]. Performing the steps therefore requires only
addition and multiplication. This allows maintaining integer coefficients and automati-
cally detecting a minimum, possibly non-prime, modulus for equation solving.

R. E. Bryant, A. Biere, and M. J. H. Heule446

Consider a system of integer or modular equations E, where each equation ei ∈ E,
is of the form

∑
j=1,n ai,j xj = bi. Applying one step of Gaussian elimination involves

selecting a pivot, consisting of an equation es ∈ E and a variable xt such that as,t 6= 0.
Then an equation e′i is generated for each value of i:

e′i =

{
ei ai,t = 0
−ai,t · es + as,t · ei, ai,t 6= 0

(1)

where operations + and · denote addition and scalar multiplication of equations. Ob-
serve that a′i,t = 0 for all equations e′i. Letting E ← {e′i|i 6= s}, this step has reduced
both the number of equations in E and the number of variables in the equations by one.

Repeated applications of the elimination step will terminate when either 1) all equa-
tions have been eliminated, or 2) an unsolvable equation is encountered. For case 1,
the system has solutions, but these may, in general, assign values other than 0 and 1
to the variables. (Importantly, parity constraints are represented by modular equations
with r = 2. Their solutions will be 0-1 valued, and so a SAT solver can make use of
them [30, 37].) For case 2, if some elimination step generates an equation of the form
0 = b with b 6= 0, then this equation has no solution in any case, and therefore neither
did the original system. Our proofs of unsatisfiability rely on reaching this condition.

For the modular case, all coefficients and the constants are kept within the range 0 to
r − 1. For integer equations, the coefficients can grow exponentially in m. Fortunately,
the cardinality problems we consider only require coefficient values −1, 0, and +1.

As we have seen, the BDD representations of modular equations have bounded
width, making them both more compact and making the algorithms that operate on
them more efficient than for integer equations. As we will see, the unsatisfiability proof
generated by applying Gaussian elimination to a system of modular equations can be
significantly more compact than for the same equations over integers. This gives rise to
an optimization we call modulus auto-detection. The idea is to apply Gaussian elimi-
nation to a set of integer equations, recording the dependencies between the equations
generated, but without performing any proof generation. Once the solver reaches an
equation of the form 0 = b where b 6= 0, it chooses the smallest r ≥ 2 such that
b mod r 6= 0. It then generates a proof, reinterpreting the Gaussian elimination steps
using modulo-r arithmetic. Since the only operations of (1) are multiplication and ad-
dition, the final equation will be 0 ≡ b (mod r), which has no solution. Here we can
see that allowing r to be composite is both valid and may be optimal. For example, the
smallest choice for b = 30 would be r = 4, rather than the prime r = 7. Auto-detection
can be applied whenever Gaussian elimination encounters an unsolvable equation.

2.3 Solving Systems of Ordering Constraints with Fourier-Motzkin Elimination

Consider a setC, consisting of constraints ci of the form
∑

j=1,n ai,j xj ≥ bi. Applying
one step of Fourier-Motzin elimination [21, 51] to this system involves identifying a
pivot, consisting of a variable xt such that ak,t 6= 0 for at least one value of k. The set is
partitioned into three sets by assigning each constraint ci to C+, C−, or C0, depending
on whether coefficient ai,t is positive, negative, or zero, respectively. For each pair i
and i′ such that ci ∈ C+ and ci′ ∈ C−, a new constraint ci,i′ is generated as:

ci,i′ = −ai′,t · ci + ai,t · ci′ (2)

Clausal Proofs from Pseudo-Boolean Reasoning 447

Constraint
Extractor

BDD-based
SAT

Solver
PGBDD

Augmented Solver PGPBS

Pseudo-
Boolean
Solver

CNF
File

DIMACS
Schedule

Constraints

BDDs

Clausal
Proof
DRAT

Fig. 2. Overall Structure of PGPBS. It augments the BDD-based SAT solver PGBDD with infer-
ences from a pseudo-Boolean constraint solver. The constraint extractor is a separate program.

(Note that the multiplication is always by positive values, since ai′,t < 0.) Letting
C ← C0 ∪ {ci,i′ | ci ∈ C+, ci′ ∈ C−}, all of these constraints have coefficient 0 for
variable xt. Therefore this step has reduced the number of variables in the constraints
by one, but it may have increased the number of constraints.

As with Gaussian elimination, repeated application of the elimination step will ter-
minate when either 1) all variables have been eliminated or 2) an unsolvable constraint
is encountered. With case 1, the constraints can be satisfied, although possibly by as-
signing values other than 0 or 1 to some of the variables. An unsolvable constraint (case
2) is one where the sum of the positive coefficients is less than the constant term. If such
a constraint is encountered, then the original system of constraints has no solution.

Fourier-Motzkin elimination would appear to be hopelessly inefficient. The number
of constraints can grow exponentially as the elimination proceeds, and the coefficients
can grow doubly exponentially. Fortunately, the cardinality problems we consider have
the property that for any variable xt, there is at most one constraint ci having ai,t =
+1, at most constraint ci′ having ai′,t = −1, and no other constraint with a non-zero
coefficient at position t. This property is maintained by each elimination step, and so
the number of constraints will decrease with each step, and the coefficients will be
restricted to the values −1, 0, and +1.

3 Overall Operation

Figure 2 illustrates the program structure. The pair of programs—extractor and solver—
supports the standard flow for proof-generating SAT solvers, reading the input conjunc-
tive normal form (CNF) formula expressed in the standard DIMACS format and gen-
erating proofs in the standard DRAT format. No other guidance or hint is provided.
The constraint extractor identifies pseudo-Boolean constraints encoded as clauses in
the input file and generates a schedule indicating how clauses should be combined and
quantified to derive BDD representations of the constraints. PGPBS augments the SAT
solver PGBDD with a PB solver. PGBDD supplies the constraints to the PB solver, which
applies either Gaussian elimination or Fourier-Motzkin elimination. The PB solver gen-
erates BDD representations of the constraints it generates, and, since the BDD library
generates proof steps while performing BDD operations, it can generate a proof that
each new constraint is logically implied by previous constraints. When the PB solver en-
counters an unsolvable constraint, an empty clause is generated, completing the proof.

R. E. Bryant, A. Biere, and M. J. H. Heule448

(A)
Exclusive-Or/Nor

CLAUSES

-1 2 6 0
1 -2 6 0
1 2 -6 0
-1 -2 -6 0
3 6 7 0
-3 -6 7 0
-3 6 -7 0
3 -6 -7 0

(B)
Exactly-one, direct encoding

CLAUSES

1 2 3 4 0
-1 -2 0
-1 -3 0
-1 -4 0
-2 -3 0
-2 -4 0
-3 -4 0

(C)
At-most-one, Sinz encoding [45]

CLAUSES

-1 5 0
-2 5 0
-1 -2 0
-5 -3 0
-5 6 0
-3 6 0
-6 -4 0

SCHEDULE

c 1 2 3 4
a 3
=2 0 1.1 1.2 1.6
c 5 6 7 8
a 3
=2 1 1.3 1.6 1.7

SCHEDULE

c 1 2 3 4 5 6 7
a 6
= 1 1.1 1.2 1.3 1.4

SCHEDULE

c 1 2 4 5
a 3
q 5
c 6 7
a 2
q 6
c 3
a 1
>= -1 -1.1 -1.2 -1.3 -1.4

Fig. 3. Examples of pseudo-Boolean constraints extracted from CNF representations. Schedules
use a stack notation indicating clauses, conjunction and quantification operations, and constraints.

3.1 Constraint Extraction

The constraint extractor uses heuristic methods to identify how the input clauses
match standard patterns for exclusive-or/nor, ALO, and AMO constraints. The heuris-
tics are independent of any ordering of the clauses or variables, although they do de-
pend on the polarities of the literals. The generated schedule indicates how to combine
clauses and to quantify variables to give the different constraints. The schedule uses a
stack notation, having the following commands:

c c1, . . . , ck Generate and push the BDDs for the specified clauses.
a m Pop the top m+ 1 elements. Combine with m AND

operations. Push the result.
q v1, . . . , vk Quantify the top element by the specified variables.
C b a1.v1, . . . , ak.vk Confirm that the top stack element implies the constraint

The different constraint types C are ‘=’ for integer equations, ‘=2’ for mod-2 equations,
and ‘>=’ for integer orderings. Each constraint line lists the constant b and then indicates
the non-zero terms as a combination of coefficient and variable, separated by ‘.’.

Figure 3 provides a series of examples illustrating the operation of the extractor. A
k-way exclusive-or or exclusive-nor (A) is encoded with 2k−1 clauses (here k = 3),
listing all combinations of the negated variables having even (XOR) or odd (XNOR)
parity. The schedule lists the clause numbers, forms their conjunction, and indicates a
mod-2 equation. The constant b is 1 for exclusive-or and 0 for exclusive-nor.

Clausal Proofs from Pseudo-Boolean Reasoning 449

An exactly-one constraint (B) can be expressed as a combination of an ALO con-
straint and an AMO constraint. The extractor assumes that any clause with all literals
having positive polarity encodes an ALO constraint. In this example, a k-way AMO
constraint (k = 4) is encoded directly as a set of k (k − 1)/2 binary clauses.

An AMO constraint can be also encoded with auxiliary variables (B) in variety
of ways, including that devised by Sinz [45]. The extractor examines how variables
occur in binary clauses. Those that occur only with negative polarity are assumed to be
constraint variables, while those that have mixed polarity are assumed to be auxiliary
variables. As is shown, the generated schedule for an AMO constraint encoded with
auxiliary variables employs early quantification [13] to linearize the conjuncting of
clauses and the quantification of auxiliary variables.

The heuristics used for identifying auxiliary variables and partitioning the clauses
into distinct constraints apply to a wide range of AMO constraints, including those us-
ing hierarchical encodings [16, 36] and those considered in other constraint extraction
programs [9]. Our method can be overly optimistic, labeling some subsets of clauses
incorrectly. Fortunately, any such error will be quickly identified when the solver at-
tempts to prove that the BDD generated by conjuncting the clauses and quantifying the
auxiliary variables implies the BDD generated for the constraint.

3.2 Solver Operation

The SAT solver portion of PGPBS can generate BDD representations of input clauses
and perform conjunction and existential quantification operations on BDDs [11, 12].
As the solver manipulates BDDs to track the solution state, it also generates clauses
according to resolution and extension proof rules. The state of the solver at any time is
captured by a set of terms T1, T2, . . . , Tn, where each term Ti consists of:

– A root node ui in the BDD.
– The extension variable associated with this node, also written as ui.
– A unit clause, included in the proof clauses, consisting of extension variable ui,

asserting that the Boolean function represented by BDD node ui evaluates to true
for any variable assignment that satisfies the input clauses.

– Implicitly, the set θ(ui) of all defining clauses that were added to the proof when
introducing the extension variables for the nodes in the BDD subgraph having root
ui. These provide the semantic model for the BDD within the proof framework.

The BDD package supports proof-generating BDD operations APPLYAND, used to
perform conjunction, and PROVEIMPLICATION, used to generate proofs of implication.
The APPLYAND operation takes as arguments BDD roots u and v, and it generates
a BDD representation with root w of their conjunction. It also generates a proof of
the clause u ∨ v ∨ w, proving the implication u ∧ v → w. The PROVEIMPLICATION
operation performs implication testing without generating any new BDD nodes. It takes
as arguments BDD roots u and v, and it generates a proof of the clause u ∨ v, proving
that u→ v. An error is signaled if the implication does not hold.

When the solver encounters a clause command in the schedule file, it generates a
term Ti for each of the specified input clauses Ci and pushes the term onto a stack. It

R. E. Bryant, A. Biere, and M. J. H. Heule450

also generates the proof θ(ui), Ci ` ui, i.e., that function represented by BDD node ui
will evaluate to true for any variable assignment that satisfies the clause.

When the solver encounters a conjunction or quantification command, it creates a
new term by performing the specified operation and proving that it is implied by earlier
terms. Given newly generated BDD root un+1, it must prove that un+1 is implication
redundant with respect to the existing terms. That is, if un+1 was generated by applying
some operation to terms Ti1 , Ti2 , . . . , Tik , then it must generate a proof of the clause
ui1 ∨ ui2 ∨ · · · ∨ uik ∨ un+1. This clause can then be resolved with the unit clauses
associated with the existing terms to yield the unit clause un+1, allowing a new term
Tn+1 to be added. If some step generates a term Tn+1 with BDD representation un+1 =
⊥, it will also generate the empty clause, completing a proof of unsatisfiability.

The PB solver portion of PGPBS can generate BDD representations of the inter-
mediate constraints it creates. The SAT solver generates a new term for each of these
BDDs. The proof generator need not have any understanding of the operation of the PB
solver, and vice-versa. Suppose some set of input clauses encodes a pseudo-Boolean
constraint, possibly using auxiliary variables, as was illustrated in Figure 3. The SAT
solver performs the series of conjunction and quantification operations specified by the
schedule to reduce the clauses to a single term Tn consisting of BDD root un and unit
clause un. The auxiliary variables have been quantified away, and so un depends only
on the constraint variables. It passes the constraint to the PB solver, which generates
its BDD representation with root un+1. The SAT solver uses the PROVEIMPLICATION
operation to generate the clause un ∨ un+1. This can be resolved with unit clause un
to generate the unit clause un+1, and so the BDD representation of the constraint be-
comes term Tn+1. (Typically, the two BDDs are identical and so the implication holds
trivially.) This process is repeated to convert the input formula into a set of pseudo-
Boolean constraints, each represented as a term in the SAT solver.

Once the SAT solver has converted all of the input clauses into constraints, it passes
control to the PB solver. From that point on, the SAT solver serves in a support role,
generating proofs to justify the steps of the PB solver. As the PB solver operates, it gen-
erates a BDD representation of each new constraint: for each equation e′i generated by
Gaussian elimination (1) or each ordering constraint ci,i′ generated by Fourier-Motzkin
elimination (2). For a new BDD with root un+1 generated from constraints represented
by terms Ti and Tj , it uses the APPLYAND operation to generate the conjunction w
of the BDDs with roots ui and uj , as well as a proof of the clause ui ∨ uj ∨ w. It
then uses the PROVEIMPLICATION operation with arguments w and un+1 to generate
a proof of the clause w ∨ un+1. It can then resolve the unit clauses for terms Ti and Tj
with the generated clauses to generate a proof of the unit clause un+1, and so the BDD
representation of the constraint becomes term Tn+1. When some step of the PB solver
generates an unsolvable equation or ordering constraint, it encodes the constraint as the
false BDD leaf ⊥, and the SAT solver will generate the empty clause.

As an optimization, we implemented an operation APPLYANDPROVEIMPLICATION
combining the functions of APPLYAND and PROVEIMPLICATION. It takes as arguments
BDD roots u, v, and w and generates a proof that u ∧ v → w without constructing the
BDD representation of u∧ v. We found this reduced the total proof lengths by over 2×.

Clausal Proofs from Pseudo-Boolean Reasoning 451

2 4 8 16 32 64
104

105

106

107

108

m

Urquhart Clauses

Simon, KISSAT

Simon, PGBDD, Bucket Elimination
Simon, PGPBS, Mod-2 Equations
Li, PGBDD, Bucket Elimination
Li, PGPBS, Mod-2 Equations

Fig. 4. Total number of clauses in proofs of two sets of Urquhart formulas.

4 Experimental Results

PGPBS is written in Python with its own BDD package and pseudo-Boolean constraint
solver.3 The Gaussian elimination solver employs a standard greedy pivot selection
heuristic, attributed to Markowitz [23, 41], that seeks to minimize the number of non-
zero coefficients created. The Fourier-Motzin solver uses a similar heuristic for select-
ing pivot variables.

The operation of PGPBS follows the flow illustrated in Figure 2, with constraints
extracted directly from the input CNF file, and with the generated schedule driving the
operation of the solver. Some measurements were taken using a BDD variable ordering
according to their numbering in the input file, while others used a random BDD variable
ordering to assess the sensitivity to the variable ordering. All generated proofs were
checked with an LRAT proof checker [20]. We used KISSAT, winner of the 2020 SAT
competition [7], as a representative CDCL solver. All measurements labeled “PGBDD”
are for the earlier version of the solver, without pseudo-Boolean reasoning [11, 12].

We measure the performance of the solvers in terms of the total number of clauses
in the generated proofs of unsatisfiability. This metric tracks closely with the solver
runtime and has the advantage that it is machine independent. We set an upper limit of
100 million clauses for the proof sizes for the three measured solvers.

4.1 Urquhart Parity Formulas

Urquhart [49] defined a family of formulas that require resolution proofs of exponential
size. Over the years, two sets of SAT benchmarks have been labeled as “Urquhart Prob-

3 PGPBS, PGBDD, and the code for generating and testing a set of benchmarks, are available at
https://github.com/rebryant/pgpbs-artifact and as https://doi.org/10.5281/zenodo.5907086.

R. E. Bryant, A. Biere, and M. J. H. Heule452

https://github.com/rebryant/pgpbs-artifact
https://doi.org/10.5281/zenodo.5907086

lems” [15, 38]. The formulas are defined over a class of degree-5, undirected, bipartite
graphs, parameterized by a size m, with the graph having 2m2 nodes. To transform a
graph into a formula, each edge {i, j} in the set of edges E has an associated variable
x{i,j}. (We use set notation to emphasize that the order of the indices does not matter.)
Each vertex is assigned a polarity pi ∈ {0, 1}, such that the sum of the polarities is odd.
The clauses then encode that the sum for all values of i and j of x{i,j} + pi equals 0
modulo 2. This is false of course, since each edge is counted twice in the sum, and the
sum of the polarities is odd.

The two families of benchmarks differ in how the graphs are constructed. Li’s
benchmarks are based on the explicit construction of expander graphs [26, 40], upon
which Urquhart’s lower bound proof is based. Simon’s benchmarks are based on ran-
domly generated graphs and thus depend on the random seed. We generated five dif-
ferent formulas for each value of m. Simon’s graphs are not guaranteed satisfy the
expander property, but they still provide challenging benchmarks for SAT solvers.

Figure 4 shows the performance of the solvers, measured as the number of clauses
as a function of m, for both Simon’s and Li’s benchmarks. The smallest instances of
the benchmark have m = 3. As can be seen KISSAT is able to generate proofs for the
Simon version for four cases with m = 3 and one with m = 4, but it is unable to
handle any other cases, including not even the minimum instance for Li’s benchmark.
Measurements are shown for PGBDD running bucket elimination, a simple algorithm
that processes clauses and intermediate terms with conjunction and quantification oper-
ations according to the levels of the topmost variables [22, 35]. It achieves polynomial
scaling on both benchmarks, with only mild sensitivity to the random seeds. Running
PGPBS with modulo-2 equation solving improves the performance even further, such
that we were able to handle both families of benchmarks up to m = 48. Considering
that the problem grows quadratically in m, this represents a major improvement over
KISSAT.

4.2 Other Parity Constraint Benchmarks

Chew and Heule [17] introduced a benchmark based on Boolean expressions computing
the parity of a set of Boolean values x1, . . . , xn using two different orderings of the
inputs, with a randomly chosen variable negated in the second computation. The SAT
problem is to find a satisfying assignment that makes the two expressions yield the same
result—an impossibility due to the negated variable. With KISSAT, we found the results
were very sensitive to the choice of random permutation, and so we ran the solver for
five different random seeds for each value of n. We were able to generate proofs for
instances with n up to 47, but we also encountered cases where the proofs exceeded the
100-million clause limit starting with n = 40. The overall scaling is exponential.

Chew and Heule showed they could generate proofs for this problem that scale as
n log n. Using bucket elimination, PGBDD is able to obtain polynomial performance,
handling up to n = 3,000 with a proof of 61 million clauses. PGPBS is able to apply
Gaussian elimination with modulus r = 2, obtaining even better performance than did
Chew and Heule. For n = 10,000, Chew and Heule’s proof has 14 million clauses while
the proof generated by PGPBS has less than 7 million.

Clausal Proofs from Pseudo-Boolean Reasoning 453

4 8 16 32 64 128
103

104

105

106

107

108

n

Mutilated Chessboard Clauses

KISSAT

PGPBS, Integer Equations, Input Order
PGBDD, Column Scan, Input Order
PGPBS, Mod-3 Equations, Input Order

Fig. 5. Total number of clauses in proofs of n× n mutilated chess board problems.

Elffers and Nordström created the TSEITINGRID family of benchmarks for the 2016
SAT competition, based on grid graphs having fixed width but variable lengths [25].
These are designed to be challenging for SAT solvers while having polynomial scaling.
The 2020 SAT competition included two instances of this benchmark, with 7×165 and
7 × 185 grids. None of the entrants could generate an unsatisfiability proof for either
instance within the 5000 second time limit. On the other hand, PGPBS can readily
handle both, generating proofs with less than 500,000 clauses and requiring at most 63
seconds. Indeed, PGPBS can solve the largest published instance, having a 7×200 grid,
in 76 seconds. Clearly, parity constraint problems pose no major challenge for PGPBS.

4.3 Variants of the Mutilated Chessboard

The mutilated chessboard problem considers an n× n chessboard, with the corners on
the upper left and the lower right removed. It attempts to tile the board with dominos,
with each domino covering two squares. Since the two removed squares had the same
color, and each domino covers one white and one black square, no tiling is possible.
This problem has been well studied in the context of resolution proofs, for which it can
be shown that any proof must be of exponential size [2].

The standard CNF encoding defines a Boolean variable for each possible horizon-
tal or vertical domino placement. For each square, it encodes an exactly-one constraint
for the set of dominos that could cover that square. Both the number of variables and
the number of clauses scale as Θ(n2). Figure 5 shows the performance of the different
solvers as a function of n. KISSAT scales exponentially, hitting the 100-million clause
limit with n = 20. The plot labeled “Column Scan” demonstrates that PGBDD per-
forms very well on this problem when given a carefully crafted schedule and the proper
variable ordering [11], requiring less than 20 million clauses for n = 128.

R. E. Bryant, A. Biere, and M. J. H. Heule454

4 8 16 32 64 128
103

104

105

106

107

108

n

Mutilated Chess Board/Torus Clauses

Board, PGBDD, Column Scan, Random Order
Torus, PGBDD, Column Scan, Input Order
Torus, PGPBS, Autodetect, Random Order
Board, PGPBS, Autodetect, Random Order

Fig. 6. Stress Testing: Changing the topology and variable ordering for mutilated chess. Autode-
tection enables the PB solver to use modulo-3 arithmetic.

The plot labeled “Integer Equations, Input Ordering” shows that PGPBS can achieve
polynomial scaling on this problem when performing Gaussian elimination on integer
equations. It does not scale as well as column scanning, reaching n = 96 before hitting
the clause limit. (The unevenness of the plot appears to be an artifact of the randomiza-
tion used to break ties during pivot selection.)

Looking deeper, we can see that solver avoids the worst-case performance for Gaus-
sian elimination on this problem. Let us assume that the omitted corners are both white,
and so the board has k black squares and k − 2 white squares, where k = n2/2. Each
variable occurs in one equation for a black square and in one for a white square. If we
were to sum all of the equations for the black squares, we would get

∑
j=1,m xj = k,

where m is the number of variables. Similarly, summing the equations for the white
squares gives

∑
j=1,m xj = k − 2. Subtracting the second equation for the first gives

the unsolvable equation 0 = 2. These sums and differences can be performed using
pseudo-Boolean equations with coefficients 0 and +1. Although Gaussian elimination
combines equations in a different order, it maintains the property that the coefficients
are limited to values −1, 0, and +1.

The plot labeled “Mod-3 Equations, Input Ordering” demonstrates the benefit of
modular arithmetic when solving systems of equations. The equation 0 = 2, obtained
by integer Gaussian elimination for this problem, has no solution for any odd modulus;
modulus auto-detection chooses r = 3. This optimization achieves better scaling, due
to the bounded width of the BDD representations. Indeed, it outperforms the best results
obtained with PGBDD, generating a proof with less than 8 million clauses for n = 128.
For the remaining measurements, we assume that modulus auto-detection is enabled.

The plots of Figure 6 illustrate how pseudo-Boolean reasoning makes PGPBS more
robust than PGBDD. First, we consider the extension of the mutilated chessboard prob-

Clausal Proofs from Pseudo-Boolean Reasoning 455

4 8 16 32 64 128
102

103

104

105

106

107

108

n

Pigeonhole Clauses

Direct, KISSAT

Sinz, KISSAT

Direct, PGBDD, Tree, Input Order
Direct/Sinz, PGPBS, Constraints, Random Order
Sinz, PGPBS, Equations, Random Order
Sinz, PGBDD, Column Scan, Input Order
Direct, Cook’s Proof

Fig. 7. Total number of clauses in proofs of pigeonhole problem for n holes

lem to a torus, with the sides of the board wrapping around both vertically and hor-
izontally. As the plot labeled “Torus, PGBDD, Column Scan, Input Order” indicates,
the performance of column scanning disintegrates for this seemingly minor change.
The compact state encoding exploited by column scanning works only when there is
a single frontier as the variables are processed from left to right. Second, the plot la-
beled “Board, PGBDD, Column Scan, Random Order” illustrates that column scanning
is highly sensitive to the chosen BDD variable ordering. On the other hand, the four
versions using auto-detected modular equations are only mildly sensitive to the topol-
ogy (torus or board) or the variable ordering (input or random). For both topologies, the
clause counts for the two different orderings (input and random) are so close to each
other that they cannot be distinguished on the log-log scale. and so we show only the
results for random orderings. These results show that pseudo-Boolean reasoning over-
comes several major weaknesses of the pure Boolean methods of PGBDD. With its PB
solver, PGPBS requires no guidance from the user regarding how to process the clauses,
nor does it require any guidance or heuristics to choose a good BDD variable ordering.
Furthermore, it is less sensitive to the problem definition.

4.4 Pigeonhole Problem

The pigeonhole problem is one of the most studied problems in propositional reasoning.
Given a set of n holes and a set of n+1 pigeons, it asks whether there is an assignment of
pigeons to holes such that (1) every pigeon is in some hole, and (2) every hole contains
at most one pigeon. The answer is no, of course, but any resolution proof for this must
be of exponential length [29].

R. E. Bryant, A. Biere, and M. J. H. Heule456

The problem can be encoded into CNF with Boolean variables pi,j , for 1 ≤ i ≤ n
and 1 ≤ j ≤ n + 1, indicating that pigeon j is placed in hole i. A set of n AMO
constraints indicates that each hole can contain at most one pigeon, and n + 1 ALO
constraints indicate that each pigeon must be placed in some hole. We experimented
with two different encodings for the AMO constraints: the direct encoding requiring
n (n+ 1)/2 clauses per hole, and the Sinz encoding [45], requiring 3n− 1 clauses.

Figure 7 shows the total number of clauses (input plus proof) as functions of n
for this problem. KISSAT performs poorly, reaching the 100-million clause limit with
n = 14 for the direct encoding and n = 15 for the Sinz encoding. Using PGBDD, we
were unable to find any strategy that gets beyond n = 16 with a direct encoding. Our
best results came from a “tree” strategy, simply forming the conjunction of the input
clauses using a balanced tree of binary operations. For the Sinz encoding, on the other
hand, we devised a column scanning technique similar to the method used to solve the
mutilated chessboard problem. This approach scales very well, empirically measured
as Θ(n3). The proofs stay below 100 million clauses up to n = 128, although it can
only reach n = 17 with a random variable ordering (plot not shown).

Using pseudo-Boolean reasoning with Fourier-Motzkin elimination, we were able
to achieve polynomial scaling, reaching n = 34 with both encodings and for both input
and random ordering. The four results are so similar that they are indistinguishable on a
log-log plot, and so we show the average for the two encodings with random orderings.
Observe that each variable pi,j occurs with coefficient −1 in the AMO constraint for
hole i and with coefficient +1 in the ALO constraint for pigeon j. Thus, as described in
Section 2.3, each step of Fourier-Motzkin elimination reduces the number of constraints
by at least one, with the coefficients restricted to the values −1, 0, and +1. Indeed, it
can be seen that the solver, in effect, sums the n AMO and n + 1 ALO constraints to
get the unsolvable constraint 0 ≥ 1. The scaling of proof sizes, empirically measured
as Θ(n5), is limited by the O(n2) growth of the BDD representations for the ordering
constraints, as was illustrated in Figure 1C.

The plot labeled “Sinz, PGPBS, Equations, Random Order” demonstrates the effect
of adding constraints to enforce exactly-one constraints on both the pigeons and the
holes. The solver applies modulus auto-detection to give a modulus of r = 2. Modulo-
2 reasoning enables the solver to match the performance of column scanning, with
the further advantages of being fully automated and being insensitive to the variable
ordering. However, it requires additional constraints in the input file.

Finally, the plot labeled “Direct, Cook’s Proof” shows the complexity of Cook’s
extended-resolution proof of the pigeonhole problem [19], encoded in DRAT format.
Although it is very concise for small values of n, its scaling as Θ(n4) lies between the
Θ(n3) achieved by column scanning and equation solving, and the Θ(n5) achieved by
constraint solving. Of these, only Cook’s proof and the solution by constraint solving
are directly comparable, in that only these use a direct encoding and have only the
minimum set of AMO and ALO constraints.

In summary, pseudo-Boolean reasoning makes this problem tractable with full au-
tomation, and it has minimal sensitivity to the variable ordering. Generating proofs by
solving systems of ordering constraints is more challenging than by solving automati-
cally detected modular equations, but both achieve polynomial scaling.

Clausal Proofs from Pseudo-Boolean Reasoning 457

4.5 Other Cardinality Constraint Problems

Codel et al. [18] defined a general class of problems that includes the mutilated chess-
board and the pigeonhole problems as special cases. Given a bipartite graph with ver-
tices L and R such that |L| < |R|, the problem is to find a perfect matching, i.e., a
subset of the edges such that each vertex has exactly one incident edge. For the muti-
lated chessboard, L andR correspond to the white and black squares, respectively, with
edges based on chessboard adjacencies. For pigeonhole, L corresponds to the holes and
R to the pigeons, and the graph is the complete bipartite graph Kn,n+1. No instance of
this matching problem has a solution, since the sets of nodes are of unequal size.

Twelve instances of this problem were included in the 2021 SAT competition, based
on randomly generated graphs with n = |L| ranging from 15 to 20 and with |R| =
n+1. Different methods were used to encode the AMO constraints, and some included
clauses to convert both sets of constraints into exactly-one constraints. In the compe-
tition, all of the solvers could easily handle the benchmarks with n = 15, most could
handle n = 16, with typical runtimes of around 1000 seconds, but none could solve
any of the larger problems. PGPBS can easily handle all of the benchmarks, requiring
at most 13 seconds and generating proofs with less than 500,000 clauses.

5 Conclusions

Incorporating pseudo-Boolean reasoning into a SAT solver enables it to handle classes
of problems encoded in CNF that are intractable for CDCL solvers. By having the PB
solver generate BDD representations of its intermediate results, a BDD-based, proof-
generating SAT solver can generate clausal proofs of unsatisfiability on behalf of the PB
solver in the standard, DRAT proof framework. Compared to the SAT solver operating
on its own, including a PB solver enables greater automation with less sensitivity to
problem definition, encoding method, and variable ordering.

We have shown that applying pseudo-Boolean reasoning to unsatisfiable instances
of parity and cardinality constraint problems can yield proofs that scale polynomially.
Solving systems of equations over the integers modulo 2 yields 0-1 valued solutions,
and so parity reasoning can also be used on satisfiable problems [6, 30, 37, 47]. On
the other hand, Gaussian elimination over integers or with modulus r > 2, as well
as Fourier-Motzkin elimination, are not guaranteed to find 0-1 valued solutions. When
seeking solutions with cardinality reasoning, it seems more effective to use methods
that adapt CDCL-based search to pseudo-Boolean constraints [14].

The method described here can be generalized to incorporate other reasoning meth-
ods into a proof-generating SAT solver. As long as intermediate results can be expressed
as BDDs, a proof can be generated that the result of each step logically follows from the
preceding steps. Thus, we could incorporate other pseudo-Boolean reasoning methods,
such as cutting planes [28, 32], or we could add totally different reasoning methods.

R. E. Bryant, A. Biere, and M. J. H. Heule458

References

1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: A new look at BDDs for
pseudo-Boolean constraints. Journal of Artificial Intelligence Research 45, 443–480 (2012)

2. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theo-
retical Computer Science 310(1-3), 513–525 (Jan 2004)

3. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause
learning SAT solvers. In: AAAI Conference on Artificial Intelligence. pp. 15–20 (2010)

4. Bareiss, E.H.: Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Mathematics of Computation 22, 565–578 (1968)

5. Barnett, L.A., Biere, A.: Non-clausal redundancy properties. In: Conference on Automated
Deduction (CADE). LNAI, vol. 12699, pp. 252–272 (2021)

6. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition
2016. In: Proc. of SAT Competition 2016 – Solver and Benchmark Descriptions. Dep. of
Computer Science Series of Publications B, vol. B-2016-1, pp. 44–45. University of Helsinki
(2016)

7. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT Competition 2020. In: Proc. of SAT Competition 2020 –
Solver and Benchmark Descriptions. Department of Computer Science Report Series B, vol.
B-2020-1, pp. 51–53. University of Helsinki (2020)

8. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing SAT solving. In: Handbook of Satisfiabil-
ity, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 391–435. IOS Press,
second edn. (2021)

9. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 8561, pp. 285–301
(2014)

10. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Com-
puters 35(8), 677–691 (1986)

11. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-based SAT
solver. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Part I. LNCS, vol. 12651, pp. 76–93 (2021)

12. Bryant, R.E., Heule, M.J.H.: Generating extended resolution proofs with a BDD-based SAT
solver. CoRR abs/2105.00885 (2021)

13. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition
relations. In: VLSI91 (1991)

14. Chai, D., Kuehlmann, A.: A fast pseudo-Boolean constraint solver. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 24(3), 305–317 (2005)

15. Chatalic, P., Simon, L.: ZRes: The old Davis-Putnam procedure meets ZBDD. In: Conference
on Automated Deduction (CADE). LNCS, vol. 1831, pp. 449–454 (2000)

16. Chen, J.: A new SAT encoding of at-most-one constraint. In: Workshop on Constraint Mod-
eling and Reformulation (2010)

17. Chew, L., Heule, M.J.H.: Sorting parity encodings by reusing variables. In: Theory and Ap-
plications of Satisfiability Testing (SAT). LNCS, vol. 12178, pp. 1–10 (2020)

18. Codel, C., Reeves, J., Heule, M.J.H., Bryant, R.E.: Bipartite perfect matching benchmarks.
In: Pragmatics of SAT (2021)

19. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28–32 (Oct 1976)

20. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient
certified RAT verification. In: Conference on Automated Deduction (CADE). LNCS, vol.
10395, pp. 220–236 (2017)

Clausal Proofs from Pseudo-Boolean Reasoning 459

21. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual with application to
integer programming. In: Combinatorial Programming: Methods and Applications. pp. 93–
102. Springer (1974)

22. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence
113(1–2), 41–85 (1999)

23. Duff, I.S., Reid, J.K.: A comparison of sparsity orderings for obtaining a pivotal sequence in
Gaussian elimination. IMA Journal of Applied Mathematics 14(3), 281–291 (1974)

24. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal of Satis-
fiability, Boolean Modeling and Computation 2, 1–26 (2006)

25. Ellfers, J., Nordström, J.: Documentation of some combinatorial benchmarks. In: Proceed-
ings of the SAT Competition 2016 (2016)

26. Gabber, O., Galil, Z.: Explicit construction of linear-sized superconcentrators. Journal of
Computer and System Sciences 22, 407–420 (1981)

27. Gocht, S., Nordström, J.: Certifying parity reasoning efficiently using pseudo-Boolean
proofs. In: AAAI Conference on Artificial Intelligence. pp. 3768–3777 (2021)

28. Gomory, R.: Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematical Society 64, 275–278 (1958)

29. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308
(1985)

30. Han, C.S., Jiang, J.H.R.: When Boolean satisfiability meets Gaussian elimination in a sim-
plex way. In: Computer-Aided Verification (CAV). LNCS, vol. 7358, pp. 410–426 (2012)

31. Heule, M.J.H., Hunt, Jr., W.A., Wetzler, N.D.: Verifying refutations with extended resolution.
In: Conference on Automated Deduction (CADE). LNCS, vol. 7898, pp. 345–359 (2013)

32. Hooker, J.N.: Generalized resolution and cutting planes. Annals of Operations Research 12,
217–238 (1988)

33. Hosaka, K., Takenaga, Y., Yajima, S.: Size of ordered binary decision diagrams representing
threshold functions. Theoretical Computer Science 180, 47–60 (1996)

34. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: International Joint Conference
on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370 (2012)

35. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with
quantification. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 4121,
pp. 54–60 (2006)

36. Klieber, W., Kwon, G.: Efficient CNF encoding for selecting 1 from N objects. In: Con-
straints in Formal Verification (CFV) (2007)

37. Laitinen, T., Junttila, T., Niemelä, I.: Extending clause learning SAT solvers with complete
parity reasoning. In: International Conference on Tools with Artificial Intelligence. pp. 65–
72. IEEE (2012)

38. Li, C.M.: Equivalent literal propagation in the DLL procedure. Discrete Applied Mathemat-
ics 130(2), 251–276 (2003)

39. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Haifa
Verification Conference. LNCS, vol. 7857 (2013)

40. Margulis, G.A.: Explicit construction of concentrators. Probl. Perdachi Info (Problems in
Information Transmission) 9(4), 71–80 (1973)

41. Markowitz, H.M.: The elimination form of the inverse and its application to linear program-
ming. Management Science 3(3), 213–284 (1957)

42. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

43. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.ACM 12(1),
23–41 (January 1965)

44. Rosser, J.B.: A method of computing exact inverses of matrices with integer coefficients.
Journal of Research of the National Bureau of Standards 49(5), 349–358 (1952)

R. E. Bryant, A. Biere, and M. J. H. Heule460

45. Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: Principles
and Practice of Constraint Programming (CP). LNCS, vol. 3709, pp. 827–831 (2005)

46. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Computer Science
Symposium in Russia (CSR). LNCS, vol. 3967, pp. 600–611 (2006)

47. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In:
Proc. of the 12th Int. Conference on Theory and Applications of Satisfiability Testing (SAT
2009). LNCS, vol. 5584, pp. 244–257 (2009)

48. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning: 2: Classical Papers on Computational Logic 1967–1970. pp. 466–483. Springer
(1983)

49. Urquhart, A.: The complexity of propositional proofs. The Bulletin of Symbolic Logic 1(4),
425–467 (1995)

50. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and trimming
using expressive clausal proofs. In: Theory and Applications of Satisfiability Testing (SAT).
LNCS, vol. 8561, pp. 422–429 (2014)

51. Williams, H.P.: Fourier-Motzkin elimination extension to integer programming problems.
Journal of Combinatorial Theory (A) 21, 118–123 (1976)

52. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker:
Practical implementations and other applications. In: Design, Automation and Test in Europe
(DATE). pp. 880–885 (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

Clausal Proofs from Pseudo-Boolean Reasoning 461

http://creativecommons.org/licenses/by/4.0/

Moving Definition Variables
in Quantified Boolean Formulas?

Joseph E. Reeves � , Marijn J. H. Heule , and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{jereeves,mheule,randy.bryant}@cs.cmu.edu

Abstract. Augmenting problem variables in a quantified Boolean formula with
definition variables enables a compact representation in clausal form. Generally
these definition variables are placed in the innermost quantifier level. To re-
store some structural information, we introduce a preprocessing technique that
moves definition variables to the quantifier level closest to the variables that de-
fine them. We express the movement in the QRAT proof system to allow verifica-
tion by independent proof checkers. We evaluated definition variable movement
on the QBFEVAL’20 competition benchmarks. Movement significantly improved
performance for the competition’s top solvers. Combining variable movement
with the preprocessor BLOQQER improves solver performance compared to us-
ing BLOQQER alone.

1 Introduction

Boolean formulas and circuits can be translated into conjunctive normal form (CNF) by
introducing definition variables to augment the existing problem variables. Definition
variables are introduced through a set of defining clauses, given by the Tseitin [19] or
Plaisted-Greenbaum [16] transformation. Problem variables occurring in the defining
clauses constitute the defining variables; they effectively determine the values of the
definition variables. In CNF, definitions are not an explicit part of the problem repre-
sentation, preventing solvers from using this structural information. Quantified Boolean
formulas (QBF) extend CNF into prenex conjunctive normal form (PCNF) with the ad-
dition of quantifier levels. In practice, definition variables are usually placed in the
innermost quantifier level. However, as we will show, placing a definition variable in
the quantifier level immediately following its defining variables can improve solver per-
formance.

We describe a preprocessing technique for moving definition variables to the quanti-
fier level of their innermost defining variables. As a starting point, existing tools KISSAT
and CNFTOOLS can detect definitions in a CNF formula. We process and order the can-
didate definitions, moving definition variables sequentially. For each instance of move-
ment we generate a proof in the QRAT proof system that, through a series of clause
additions and deletions, effectively replaces the old definition variable with a new vari-
able at the desired quantification level.

? The authors are supported by the NSF under grant CCF-2108521.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 462–479, 2022.
https://doi.org/10.1007/978-3-030-99524-9_26

http://orcid.org/0000-0002-4585-0565
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0001-5024-6613
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_26

Most Boolean satisfiability (SAT) solvers generate proofs of unsatisfiability for in-
dependent checking [7,9,20]. This has proved valuable for verifying solutions inde-
pendent of the (potentially buggy) solvers. Proof generation is difficult for QBF and
relatively uncommon in solvers. The QBF preprocessor BLOQQER [2] generates QRAT
proofs [8] for all of the transformations it performs. Our QRAT proofs for variable
movement also allow verification with the independent proof checker QRAT-TRIM,
ensuring that the movement preserves equivalence with the original formula.

Clausal-based QBF solvers rely on preprocessing to improve performance. Almost
every top-tier solver in the QBFEVAL’20 competition1 used some combination of BLO-
QQER, HQSPRE [21], or QBFRELAY [15]. Some solvers incorporate preprocessing
techniques into the solving phase, e.g., DEPQBF’s [14] use of dynamic quantified
blocked clause elimination. Unlike other preprocessing techniques, variable movement
does not add or remove clauses or literals. However, it can prompt the removal of literals
through universal reduction and may guide solver decisions in a beneficial way.

The contributions of this paper include: (1) adapting the SAT solver KISSAT and
CNF preprocessor CNFTOOLS to detect definitions in a QBF, (2) giving an algorithm
for moving variables that maximizes variable movement, (3) formulating steps for gen-
erating a QRAT proof of variable movement, and (4) evaluting the impact of these trans-
formations. Variable movement significantly improves the performance of top solvers
from the QBFEVAL’20 competition. Combining variable movement with BLOQQER
further improves solver performance.

2 Preliminaries

2.1 Quantified Boolean Formulas

Quantified Boolean formulas (QBF) can be represented in prenex conjunctive normal
form (PCNF) as Π.ψ, where Π is a prefix of the form Q1X1Q2X2 · · ·QnXn for
Qi ∈ {∀, ∃} and the matrix ψ is a CNF formula. The formula ψ is a conjunction of
clauses, where each clause is a disjunction of literals. A literal l is either a variable
l = x or negated variable l = x, and Var(l) = x. The formula ψ(l) is the clauses
{C | C ∈ ψ, l ∈ C}. The set of all variables occurring in a formula is given by
Var(ψ). Substituting a variable y for x in ψ, denoted as ψ[y/x], will replace every in-
stance of x with y and x with y in the formula. The sets of variables Xi are disjoint,
and we assume every variable occurring in ψ is in some Xi. A variable x is fresh if it
does not occur in Π.ψ. The quantifier for literal l with Var(l) ∈ Xi is Q(Π, l) = Qi,
and l is said to be in quantifier level λ(l) = i. If Q(Π, l) = Qi and Q(Π, k) = Qj ,
then l ≤Π k if i ≤ j. Q1X1 is referred to as the outermost quantifier level and QnXn

is the innermost quantifier level.

2.2 Inference Techniques in QBF

Given a clause C, if a literal l ∈ C is universally quantified, and all existentially quan-
tified literals k ∈ C satisfy k <Π l, then l can be removed from C. This process is

1 available at http://www.qbflib.org/qbfeval20.php

Moving Definition Variables in Quantified Boolean Formulas 463

http://www.qbflib.org/qbfeval20.php

called universal reduction (UR). Given two clauses C and D with x ∈ C and x ∈ D,
the Q-resolvent over pivot variable x is UR(C) ∪ UR(D) \ {x, x} [12]. The operation
is undefined if the result is tautological. This extends resolution for propositional logic
by applying UR to the clauses before combining them, while disallowing tautologies.
Adding or removing non-tautological Q-resolvents preserves logical equivalence.

Given a prefix Π and clauses C and D with l ∈ C and l ∈ D, the outer resolvent
over existentially quantified pivot literal l is C ∪ {k | k ∈ D, k 6= l, k ≤Π l}. Given
a QBF Π.ψ, a clause C is Q-blocked on some existentially quantified literal l ∈ C if
for all D ∈ ψ(l) the outer resolvent of C with D on l is a tautology. This extends the
blocked property for CNF with the restriction on the conflicting literal’s quantifier level.

A clause C subsumes D if C ⊆ D. The property Q-blocked-subsumed generalizes
Q-blocked by requiring the outer resolvents be tautologies or subsumed by some clause
in the formula.

Given a QBF Ψ = Π.ψ, if a clause C is Q-blocked-subsumed then C is QRAT
w.r.t. Ψ . In this case, C can be added to ψ or if C ∈ ψ deleted from ψ while preserving
equivalence. A series of clause additions and deletions resulting in the empty formula
is a satisfaction proof for a QBF if all clause deletions are QRAT. A series of clause
additions and deletions deriving the empty clause is a refutation proof for a QBF if all
clause additions are QRAT. If both clause additions and deletions are QRAT, each step
preserves equivalence regardless of the truth value of the QBF. We call this a dual proof.
The QBF Ψ ′ that results from applying the dual proof steps to Ψ is equivalent to Ψ .

2.3 Definitions

A variable x is a definition variable in Ψ = Π.ψ with defining clauses δ(x) containing
x, δ(x̄) containing x, and defining variables Zx = Var [δ(x) ∪ δ(x)] \ {x} when two
properties hold: (1) the definition is left-total, meaning that for every assignment of Zx
there exists a value of x that satisfies δ(x)∪ δ(x̄), and (2) the definition is right-unique,
meaning that for every assignment of Zx there exists exactly one value of x that satisfies
δ(x) ∪ δ(x̄). The clauses δ(x) ∪ δ(x̄) are left-total iff they are Q-blocked on variable
x. This implies that the definition variable comes after the defining variables w.r.t. Π .
The definition is right-unique if the SAT problem {C \ {x, x} | C ∈ δ(x) ∪ δ(x̄)} is
unsatisfiable. We can assume that any right-unique variable is existentially quantified,
otherwise the formula would be trivially false.

The remaining clauses of x are ρ(x) = ψ(x) \ δ(x) and ρ(x) = ψ(x) \ δ(x̄). If x
occurs as a single polarity in the remaining clauses, it can be encoded as a one-sided
definition: if ρ(x) is empty only δ(x) are needed to determine if x is assigned to true
and therefore unable to satisfy the clauses in ρ(x). This is a stronger condition than
monotonicity used for the general Plaisted-Greenbaum transformation [16].

Example 1. x ↔ a ∧ b is written in CNF as (x ∨ a ∨ b) ∧ (x ∨ a) ∧ (x ∨ b). Given
ρ(x) = {(x ∨ c), (x ∨ d ∨ e)} and ρ(x) = {}, x = a ∧ b can be written as a one-sided
definition with clauses (x ∨ a) ∧ (x ∨ b).

In some definitions including exclusive-or (XOR denoted by ⊕), multiple variables
are left-total and right-unique. Determining the definition variable requires information
about how definition variables are nested within the formula.

464 J. E. Reeves et al.

Q-resolution can be generalized to sets of clauses C and D, denoted C ⊗x D, by
generating the non-tautological resolvents from clauses in C(x) and D(x) on pivot
variable x pairwise. Given a definition variable x and defining variables {z1, . . . , zn},
let x′ be a fresh variable with θx = δ(x) and θx′ = δ(x)[x′/x]. The procedure
defining variable elimination applies set-based Q-resolution in the following way: set
θ1 = θx(z1) ⊗z1 θx′(z1) ∧ θx(z1) ⊗z1 θx′(z1) and compute θ2 = θ1(z2) ⊗z2 θ1(z2);
continue the process until θn = θn−1(zn) ⊗zn θn−1(zn). UR is not applied because x
is in the innermost quantifier level with respect to its defining variables. The first step
ensures all clauses in θ1 will contain both x and x′. θn will either be {(x ∨ x′)} or
empty. If θn = {(x ∨ x′)}, linearizing the sets of resolvents θi forms a Q-resolution
derivation of (x ∨ x′). This is similar to Davis Putnam variable elimination [4].

3 Definition Detection

Given a QBF with no additional information, we first detect definitions to determine
which variables can be moved. All definitions are detected before variable movement
begins. Variable movement depends on the defining clauses, the definition variables, and
the nesting of definition variables. At a minimum, definition detection must produce the
defining clauses, and the rest can be inferred during movement.

Since the seminal work by Eén and Biere [5], bounded variable elimination (BVE)
has been an essential preprocessing technique in SAT solving. The technique relies on
definitions, so most SAT solvers incorporate some form of definition detection. The
conflict-driven clause learning SAT solver KISSAT [1] extends the commonly used syn-
tactic pattern matching with semantic definition detection. The detection is applied to
variables independently. Alternatively, the preprocessor CNFTOOLS [10] performs hier-
archical definition detection, capturing additional information about definition variable
nesting and monotonic definitions.

These tools run on CNF formulas. A QBF can be transformed into a CNF by remov-
ing the prefix, but not all definitions in the CNF are valid w.r.t. the prefix. For example,
some definitions will not be left-total because of the quantifier level restrictions in the
Q-blocked property. Such definitions can be easily filtered out before variable move-
ment, so there is no need to add these quantifier-based checks into the tools.

3.1 Hierarchical Definition Detection in CNFTOOLS

The hierarchical definition detection in CNFTOOLS employs a breadth first search (BFS)
to recurse through nested definitions in a formula. Root clauses are selected heuris-
tically, then BFS begins on the variables occurring in those clauses. All unit clauses
are selected as root clauses. The max-var heuristic selects root variables based on their
numbering. This exploits the practice of numbering definition variables after problem
variables. The more involved min-unblocked heuristic finds a minimally unblocked lit-
eral. This is more expensive to compute but does not rely on variable numbering.

When a variable is encountered in the BFS, CNFTOOLS checks if the defining
clauses are blocked. If so, the following detection methods are applied: pattern match-
ing for BiEQ, AND, OR, and full patterns, monotonic checking, and semantic checking.
BiEQ refers to an equivalence between two variables.

Moving Definition Variables in Quantified Boolean Formulas 465

A definition is a full pattern if ∀C ∈ δ(x) ∪ δ(x), |C| = n + 1 where n is the
number of defining variables and there are 2n defining clauses. The full pattern includes
some common encodings for XOR, XNOR, NOT, and Majority3, but is often avoided.
Since the detection follows the hierarchical nesting of definitions, there is no ambiguity
between the defining variables and definition variables in XOR definitions.

The advantage of hierarchical detection is the ability to detect monotonic defini-
tions. For variable movement we consider only monotonic definitions that are either
fully-defined or one-sided. If a monotonic definition is not fully-defined but the defini-
tion variable occurs positively and negatively in the defining clauses of other definitions,
the additional clauses can prevent variable movement w.r.t. the QRAT proof system.

Semantic checking involves solving the SAT problem for right uniquness described
in the preliminaries. As definitions are detected the defining clauses are removed from
the formula for the following iterations. This can produce problematic one-sided defini-
tions. For example, a variable may occur both positively and negatively in the defining
clauses of other definitions, and removing those clauses makes the variable one-sided.
Similar to the monotonic case, the additional defining clauses can prevent movement
w.r.t. the QRAT proof system, so these types of definitions must be filtered out.

3.2 Independent Definition Detection in KISSAT

KISSAT uses definition detection to find candidates for BVE. Starting with the 2021
SAT Competition, KISSAT added semantic definition detection [6] to complement the
existing syntactic pattern matching for BiEQ, AND, OR, ITE, and XOR definitions. In
semantic detection an internal SAT solver KITTEN with low overhead and limited capa-
bilities performs a right-uniqueness check on the formula ψ(x) ∪ ψ(x) after removing
all occurrences of x and x. This formula includes ρ(x) and ρ(x̄) as the set of defining
clauses are not known in advance. If the formula is unsatisfiable, an unsatisfiable core
is extracted (potentially after reduction) and returned as the set of defining clauses.

Core extraction does not guarantee the defining clauses are blocked. Internally
KISSAT generates resolvents over the defining clauses for BVE. We modify KISSAT to
only detect semantic definition where zero resolvents are generated, ensuring the defin-
ing clauses are blocked. We ignore built-in heuristics for selecting candidate variables
and instead iterate over all variables.

No nesting information is gathered during definition detection in KISSAT. If a vari-
able is a part of an XOR definition, KISSAT cannot determine if the variable is a defining
variable or the definition variable. The defining variables for an XOR may themselves
be defined by another definition in the formula. To check for this, if a variable was
detected as part of an XOR or semantic definition, the definition clauses were set to
inactive and the detection procedure was rerun for that variable.

4 Moving Variables

After all definitions are detected, we move definition variables as close to their defining
variables as possible to maximize universal reduction. To do this, we introduce empty
existential quantifier levels, denoted Ti, following each QiXi in the prefix yielding

466 J. E. Reeves et al.

Q1X1∃T1Q2X2∃T2 · · ·Qn−1Xn−1∃Tn−1QnXn. There is no Tn because variables are
not moved inwards. For each definition variable x that can be moved, a fresh variable
x′ is placed in the quantifier level Tm for m = max{λ(z) | z ∈ Zx}. That is, x′ will be
placed in the existential block that immediately follows the innermost defining variable.
Finally, x will be removed from the prefix, and the new formula will be ψ[x′/x].

Example 2. In the formula ∃x3∀x1∃x4∀x2∃x5.(x5∨x4∨x3)∧(x5∨x3) ∧(x5∨x4)∧
(x5∨x1)∧(x2∨x5), the variable x5 is defined as x5 ↔ x3∧x4, with defining variables
{x3, x4}. A fresh variable x′5 is introduced to replace x5. x′5 is placed in an existential
quantifier level following the innermost defining variable x4. Then, x′5 is substituted for
x5 in the formula giving ∃x3∀x1∃x4∃x′5∀x2.(x′5 ∨ x4 ∨ x3)∧ (x′5 ∨ x3) ∧ (x′5 ∨ x4)∧
(x′5∨x1)∧(x2∨x′5). Finally, x2 can be removed from (x2∨x′5) by universal reduction.

Movement requires new variables because QRAT steps either add or delete clauses
and cannot affect the quantifier placement of existing variables. When definitions are
added in the checker QRAT-TRIM the new definition variables are placed in a quantifier
level based on their defining variables. For a definition variable x, if the innermost
defining variable z ∈ Xi is existentially quantified (Qi = ∃) the definition variable is
placed inXi, and if z is universally quantified (Qi = ∀) the definition variable is placed
in the existential level Xi+1, So, new definition variables are placed in the desired
quantifier level. Because contiguous levels with the same quantifier can be combined,
the introduction of T levels does not change the semantics.

4.1 Moving in Order

The tools for definition detection run on CNF instances, so, some definitions may not
be left-total when considering the prefix. This can occur if the definition variable is in
a level outer to one of its defining variables. Also, some monotonic definitions may not
satisfy the one-sided property. These problems are checked during proof generation. If
they occur, that variable is not moved.

The variable movement algorithm starts at the outermost quantifier level and sweeps
inwards, at each step moving all possible definition variables to the current level. A
definition variable x can be moved if x >Π z for all z ∈ Zx, and x is not universally
quantified. It can be moved to Tm where m = max{λ(z) | z ∈ Zx}, and will be
moved during iteration m of the algorithm. A look up table is used to efficiently find
definitions with the innermost defining variable at level m. Once a definition variable
has been moved, if it was a defining variable for some other definitions, those definitions
are checked for movement and the look up table is updated. Since the iteration starts at
the outermost level, it guarantees variables that can be moved within our framework are
moved as far as possible. This requires a single pass, so moved definitions will not be
revisited.

4.2 XOR Processing

In an XOR definition multiple variables are left-total and right-unique. Additional infor-
mation is required to determine which variable is the proper candidate for movement.

Moving Definition Variables in Quantified Boolean Formulas 467

If a variable is defined elsewhere and appears in an XOR, it must be a defining variable
in the XOR. In addition, universal variables must be defining variables. However, a dis-
tinction cannot be made between the remaining variables before beginning movement.

Example 3. Given the QBF, ∃1x1, x2∀y1∃2x3∀y2∃3x4∀y3∃4x5∀y4∃5x6, x7.(x6 ↔ x1
∧ xi) ∧ (x3 ⊕ x4 ⊕ x5) ∧ (x1 ⊕ x5 ⊕ x6) ∧ . . . , determining the definition variables
for the XOR definitions will hinge on the movement of x6. Case 1, Let xi = x7 in the
AND definition, x6 cannot be moved. Then, x5 can be moved to ∃3 as the definition
variable of (x3⊕x4⊕x5). No other variables can be moved. Case 2, Let xi = x2 in the
AND definitions, x6 can be moved to ∃1. Then, x5 can be moved to ∃1 as the definition
variable of (x1 ⊕ x5 ⊕ x6). Next, x4 can be moved to ∃2 as the definition variable of
(x3 ⊕ x4 ⊕ x5). The possible movement of x6 will determine how the XOR definitions
are moved. This information is not known until runtime, so the definition variable of an
XOR cannot be determined before variable movement is performed.

As seen in the example, movement of definition variables can affect what variable in
an XOR is eventually moved. The definition variable for an XOR must be determined
during the movement process. The definition variable is initially set as the innermost
variable in the XOR. If that variable is defined elsewhere and moved, the definition
variable of the XOR is reset to the new innermost variable. We perform the same check
as the general case to see if the definition variable can be moved. With XOR definitions,
the algorithm is still deterministic and produces optimal movement, since all variables
that can be moved are moved to their outermost level.

4.3 Proving Variable Movement

In this section we describe how to modify a formula through a series of QRAT clause
additions and deletions to achieve variable movement. Moving a definition variable x
in the formula Π.ψ involves:

– Introducing a new definition variable x′ to replace x.
– Deriving an equivalence between x′ and x.
– Transforming the formula ψ to ψ[x′/x] with x removed from Π and x′ placed in

the existential quantifier level following its innermost defining variable.

The algorithm for moving a definition variable x proceeds in five steps, each involv-
ing some clause additions or deletions. Some of the steps can be simplified depending
on the type of definition. Moving a one-sided definition requires slight modifications to
a few steps, and these are discussed following each of the relevant steps.

1. Add the defining clauses δ(x′) and δ(x′).
We introduce a fresh existential variable x′ and add the defining clauses δ(x)[x′/x]
and δ(x̄)[x′/x]. Each clause is Q-blocked on x′ or x′ since the definition is left-total
and variable x′ is in the quantifier level following its innermost defining variable.

2. Add the equivalence clauses x↔ x′.
Both x and x′ are fully defined by the same set of variables, so it is possible to
derive the equivalence clauses (x ∨ x′) and (x ∨ x′). The first implication added

468 J. E. Reeves et al.

is Q-blocked-subsumed. Consider (x ∨ x′), for each clause C ′ ∈ δ(x′). The outer
resolvent ofC ′ with (x∨x′) on x is subsumed by the correspondingC ∈ δ(x). This
is not the case for (x ∨ x′) because the outer resolvent of (x ∨ x′) with (x ∨ x′) is
not subsumed by the formula. The clause (x ∨ x′) is QRAT for certain definitions,
in particular AND/OR. In the general case we generate a chain of Q-resolutions
that imply (x ∨ x′). We use defining variable elimination to eliminate Zx from the
formula δ(x)∪δ(x′). The procedure produces the clause (x∨x′). The resolution tree
rooted at (x∨x′) is traversed in post-order giving the list of clausesC1, ..., Cn, (x∨
x′). We add the clauses in order, deriving (x ∨ x′). The clauses are subsumed by
(x ∨ x′) and deleted. If defining variable elimination does not produce (x ∨ x′),
then the definition is not right-unique. The variable x cannot be moved in this case.
ONE-SIDED: assuming for the one-sided definition that x occurs positively in the
defining clauses, the implication (x′ ∨ x) is added. The implication is Q-blocked-
subsumed for the same reasons as the first implication above. If x occurs negatively
the implication (x ∨ x′) is added. We will continue the remaining steps under the
assumption that x occurs positively in the defining clauses for the one-sided case.

3. Add and remove the remaining clauses ρ(x) and ρ(x).
For all clauses C ∈ ρ(x) , C ′ ∈ ρ(x′) is the Q-resolvent of C with (x ∨ x′) on
pivot x, so C ′ can be added. C can be deleted because it is the Q-resolvent of C ′

with (x′ ∨ x) on pivot x′. Similar reasoning is used for C ∈ ρ(x).
ONE-SIDED: All C ′ ∈ ρ(x′) are added with the same reasoning as above. However,
there is no (x ∨ x′) so C ∈ ρ(x) cannot be deleted until step 5.

4. Remove the equivalence clauses x↔ x′

Equivalence clauses (x∨x′), (x∨x′) are deleted. (x∨x′) is Q-blocked-subsumed
on variable x since for all D ∈ δ(x), the outer resolvent of (x ∨ x′) and D is
subsumed by the defining clause D′ ∈ δ(x′), and the outer resolvent of (x ∨ x′)
with (x ∨ x′) is a tautology. Similarly, (x ∨ x′) is Q-blocked-subsumed.
ONE-SIDED: the definition clauses need the implication in order to be deleted, and
so deletion is deferred to step 5.

5. Remove the defining clauses δ(x) and δ(x̄).
The defining clauses on x are all Q-blocked and are deleted.
ONE-SIDED: The defining clauses D ∈ δ(x) can be deleted because they are Q-
resolvents of D′ ∈ δ(x′) with (x′ ∨ x) on x′. Now the clauses (x′ ∨ x) and ρ(x)
are Q-blocked on x because x only occurs negatively. They are deleted.

Given the QBF Π.ψ, applying the transformation sequentially with definition vari-
ables x1, . . . , xn will yield the QBF Π.ψ′ where all definition variables xi have been
replaced by new variables x′i and the new variables are in the appropriate quantifier
levels. The concatenated series of clause additions and deletions generated for each
definition variable gives a QRAT proof of the equivalence between Π.ψ and Π.ψ′

The steps above can also be used to move a definition variable to some existential
quantifier between the variable and its innermost defining variable. In addition, a def-
inition variable that is inside its defining variables can be moved further inwards by
reversing the steps, but it is not clear when this would be useful.

Example 4. Given the QBF ∃x1∀x2.(x1 ∨ x2) ∧ (x1 ∨ x2), we have the definition
x1 ↔ x2. The definition is right-unique but the defining clauses are not Q-blocked on

Moving Definition Variables in Quantified Boolean Formulas 469

x1 since x1 is at an outer quantifier level. The QBF is false but moving x1 inward would
make it true. To avoid this, we only move variables outward.

Example 5. Given the definition x1⊕x2⊕x3 with x1 as the definition variable we have
δ(x1) = {(x1∨x2∨x3), (x1∨x2∨x3)} and δ(x′1) = {(x′1∨x2∨x3), (x′1∨x2∨x3)}.
Defining variable elimination will perform the following steps:

Eliminate x2 :{(x1∨x2∨x3)⊗x2 (x′1 ∨ x2 ∨ x3), (x′1 ∨ x2 ∨ x3)⊗x2 (x1 ∨ x2 ∨ x3)}
θ1 = {(x1 ∨ x′1 ∨ x3), (x1 ∨ x′1 ∨ x3)}

Eliminate x3 :{(x1 ∨ x′1 ∨ x3)⊗x3 (x1 ∨ x′1 ∨ x3)}
θ2 = {(x1 ∨ x′1)}

The clause additions to derive the second implication in step 2 would be (x1 ∨ x′1 ∨
x3), (x1 ∨ x′1 ∨ x3), (x1 ∨ x′1). Each subsequent clause in the list is implied by Q-
resolution. With more defining variables, the resolution tree becomes more complex.
The derivation will be of the form θ′1, ..., θ

′
n−1 for θ′i ⊂ θi where θ′i will include only

the clauses needed to derive (x1 ∨ x′1). These can be determined by working through
the resolution chain backwards from (x1 ∨ x′1).

Example 6. Given the formula ∃x1x2x3∀x5x6∃x4(x1 ∨ x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x4) ∧
(x2 ∨x4)∧ (x3 ∨x4)∧ (x4 ∨x5)∧ (x4 ∨x6), we show the steps generating the QRAT
proof of movement for variable x4 with the pivot appearing as the first literal in the
clause. Clauses following a d are deleted from the formula.

1. (x′4 ∨ x1 ∨ x2 ∨ x3), (x′4 ∨ x1), (x′4 ∨ x2), (x′4 ∨ x3)
2. (x′4 ∨ x4), (x′4 ∨ x4)
3. (x′4 ∨ x5), d(x4 ∨ x5), (x′4 ∨ x6), d(x4 ∨ x6)
4. d(x4 ∨ x′4), d(x4 ∨ x′4)
5. d(x4 ∨ x1 ∨ x2 ∨ x3), d(x4 ∨ x1), d(x4 ∨ x2), d(x4 ∨ x3)

The definition variable x4 is replaced by the fresh variable x′4 which will be placed
in the prenex as ∃x1x2x3∃x′4∀x5x6 achieving the desired movement. The QRAT proof
system uses a stronger redundancy notion that avoids auxiliary clauses for an AND
definition in step 2.

We verified all instances of variable movement on QBFEVAL’20 benchmarks using
QRAT-TRIM [8]. By default, QRAT-TRIM will check a satisfaction proof with forward
checking, verifying the clause deletion steps are correct in the order they appear. A
refutation proof is checked with backward checking, verifying the clause addition steps
are correct starting at the empty clause and working backwards. It is not known whether
the problem is true or false at the variable movement stage, so both clause addition and
deletion steps are checked to preserve equivalence. To do this, we modified QRAT-
TRIM by adding a DUAL-FORWARD mode that performs a forward check, verifying
both clause additions and deletions. We verified several end-to-end proofs for formulas
solved by BLOQQER after variable movement. We appended the BLOQQER proof onto
the variable movement proof, and verified it against the original formula with QRAT-
TRIM. All formulas that BLOQQER solved after movement were verified in this way.

470 J. E. Reeves et al.

5 Evaluation

Variable movement is evaluated on 494 of the 521 QBFEVAL’20 benchmarks. Two
benchmark families were removed due to resource limits preventing proof verification.
We compare definition detection tools KISSAT and CNFTOOLS, then evaluate the affect
of variable movement on solver performance. We ran our experiments on StarExec [18].
The compute nodes that ran our experiments were Intel Xeon E5 cores with 2.4 GHz,
and all experiments ran with 32 GB. The repository with programs and data is archived
at https://zenodo.org/record/5733440.

5.1 Evaluating Definition Detection

The tools are given 10 seconds to detect definitions. KISSAT attempts to check each
variable, whereas CNFTOOLS will iterate through root clauses until the time limit. Root
clause selection is split into max-var (mv) and minimally-unblocked (mb). We consider
all definitions extracted up to a timeout if one occurs. The combined approach takes the
union of definitions found in each tool, and each tool is still allotted 10 seconds.

Figure 1 shows the number of definitions found (top) and moved (bottom) com-
pared to the combined approach. The tools do not go above the diagonal in either plot
because the combined approach takes a union of found definitions and movement can-
not be worsened by additional definitions. For many formulas multiple tools contribute
to the combined total, shown by a column of points where none are on the diagonal.
There is a noticeable pattern between CNFTOOLS (mb) and (mv) where (mb) performs
slightly worse due to the additional time spent computing the minimally-unblocked root
clauses. But there are some instances where the minimally-unblocked heuristic finds
definitions that lead to more movement. For combined, definitions were found in 493
instances and moved in 157 instances In comparing the plots it is clear that the num-
ber of definitions found is not a strict predictor of movement. KISSAT finds a similar
number of definitions as CNFTOOLS for many instances but consistently moves more.
Table 1 shows the breakdown of definitions found and moved by type, and the AND/OR
found more frequently by KISSAT are moved more often.

Table 1 further illuminates the differences between the tools. CNFTOOLS has syntac-
tic definition detection similar to KISSAT for BiEQ, AND/OR, XOR, but fails to move
a fraction of the XOR definitions. CNFTOOLS does detect tens of XORs as monotonic
definitions with the wrong definition variable, meaning the BFS picked up nested def-
initions in the wrong direction w.r.t. quantifier levels. But, the reason for the large gap
between CNFTOOLS and KISSAT is efficiency. CNFTOOLS does not detect the vast ma-
jority of XOR definitions moved by KISSAT within the time limit, and the same is true
for the other definitions. KISSAT uses the entire 10 seconds on 11 formulas whereas
CNFTOOLS times out on 111 (mv) and 99 (mb). Increasing the timeout for each tool
in the combined approach to 50 seconds produces only 780 more moved variables over
2 formulas. It is clear from the bottom plot in Figure 1 that CNFTOOLS contributes to
the movement of the combined approach in a handful of cases where KISSAT is not on
the diagonal. Combining the output of the tools makes use of KISSAT’s speed in detect-
ing many simple definitions and CNFTOOLS’s ability to find one-sided definitions using
complex heuristics and hierarchical search.

Moving Definition Variables in Quantified Boolean Formulas 471

https://zenodo.org/record/5733440

100 101 102 103 104 105 106
100

101

102

103

104

105

106

100 101 102 103 104 105 106
100

101

102

103

104

105

106

Fig. 1. Comparison of definitions found (top) and moved (bottom) per instance between combined
and the individual tools.

No variables found by semantic detection were moved in KISSAT and only 88 were
moved in CNFTOOLS (mb). KISSAT found 159,544 right-unique definitions with KIT-
TEN, but only 23,457 were left-total. Of those, the majority had defining variables in the
same level as the definition variable, and a smaller fraction had the definition variable
at an outer level. For CNFTOOLS 48,715 (mb) and 147,170 (mv) semantic definitions
were detected via. right-uniqueness checks. These semantic definitions may not be in-
troduced or manipulated by users in the same way as the standard definitions, explaining
why they already occur in the desired quantifier level.

The far most common reason definitions cannot be moved is that they already appear
in the same quantifier level as some of their defining variables. For example, many

472 J. E. Reeves et al.

Table 1. The number of definitions found and moved over all instances. Definitions moved are
broken down by a selection of the types, omitting ITE and semantic. Some one-sided definitions
CNFTOOLS moves are fully-defined, and combined will move them based on the fully-defined
definition provided by KISSAT. So, the missing one-sided definitions for combined are spread
across the other definition types.

Detection Tool Found Moved BiEQ AND/OR One-Sided XOR

CNFTOOLS(mv) 3,525,559 1,032,807 21,198 969,630 37,642 0
CNFTOOLS(mb) 2,856,306 935,336 4,619 891,027 39,863 0
KISSAT 9,243,158 1,567,746 308,987 1,215,036 — 42,364
combined 9,624,654 1,664,655 309,793 1,273,381 37,646 42,476

Table 2. The number of definitions found that were not left-total, split by existentially and uni-
versally quantified variables, along with monotonic definitions that could not be moved because
they were not one-sided. If any universally quantified variable was left-total, the formula would
be trivially false.

Detection Tool Existential Universal One-sided

CNFTOOLS(mv) 43,278 11,360 1,107
CNFTOOLS(mb) 23,690 3,771 1,421
KISSAT 32,681 3,219 —

formulas have only two quantifier levels, so there would be no possible movement with
all existential variables in the same level. Table 2 shows other reasons a variable may
not be moved. A definition is not left-total when the definition variable is at a level
outer to some of its defining variables. The tools detected several of these definitions
on both universally and existentially quantified variables. Example 2 shows why these
variables cannot be moved inwards. Additionally, some of the monotonic definitions
extracted by CNFTOOLS are neither fully-defined nor one-sided. These checks are not
made until a variable becomes a candidate for movement because a large fraction will
be preemptively filtered out due to their quantifier level placement.

CNFTOOLS detect 2,038,407 (mv) and 1,897,482 (mb) monotonic definitions, but
this does not match the number of one-sided definitions moved. The majority of mono-
tonic definitions found and moved are actually fully defined. This means for many of
the definitions, either δ(x) or δ(x̄) can be removed from the QBF while preserving
equivalence. This can be done in QRAT by recursing through the monotonic definitions
and deleting the redundant defining clauses. The large number of fully-defined mono-
tonic definitions shows that QBF formulas generally do not take advantage of optimized
encodings, such as the Plaisted-Greenbaum transformation.

5.2 Evaluating Solvers

We used the following solvers to evaluate the impact of variable movement.

– RAREQS (Recursive Abstraction Refinement QBF Solver) [11] pioneered the use
of counterexample guided abstraction refinement (CEGAR)-driven recursion and

Moving Definition Variables in Quantified Boolean Formulas 473

learning in QBF solvers. The 2012 version has comparable performance to current
top-tier solvers.

– CAQE (Clausal Abstraction for Quantifier Elimination) [17] is the first place winner
of the 2017, 2018, and 2020 competitions. The solver is written in RUST and based
on the CEGAR clausal abstraction algorithm.

– DEPQBF implements the adapted DPLL algorithm QDPLL, relying on depen-
dency schemes to select independent variables for decision making [14]. DEPQBF
incorporates QBCE [2] as inprocessing which complicates its relation to prepro-
cessors like BLOQQER.

– GHOSTQ is a non-clausal QBF solver [13]. The solver attempts to convert CNF
or QCIR to the GHOSTQ format which introduces Ghost variables, the dual of
Tseitin variables. The structural information gained by the conversion is important
to GHOSTQ’s performance. The conversion relies on the discovery of definitions,
which is significantly hampered by preprocessors that delete or change clauses.
GHOSTQ also supports a CEGAR extension.

Table 3 shows that variable movement always improves solver performance with
and without BLOQQER. Figure 2 provides a more detailed view of the QBF solvers’
performance on the original (-o) and moved (-m) formulas using the combined defi-
nition detection. The times include definition detection and proof generation, adding
50 seconds on average. In moved formulas, adjacent quantifier levels of the same type
were conjoined into a single quantifier level because of GHOSTQ’s internal definition
detection. This did not impact the other solvers. Movement significantly improves per-
formance of CAQE, DEPQBF, and GHOSTQ-p (plain mode). GHOSTQ-ce (CEGAR
mode) and RAREQS improve slightly with movement. Since both GHOSTQ modes
use the same conversion to the GHOSTQ format, the impact of variable movement on
the conversion does not explain the difference in performance. . Separate experiments
moving all definitions except XORs did improve the performance of GHOSTQ in both
modes while not affecting other solvers. This is because the conversion to the GHOSTQ
format only checks the innermost quantifier level for XOR definitions, and cannot find
them if they have been moved. The three solvers implementing CEGAR, GHOSTQ-
ce, RAREQS, and CAQE, were affected differently by movement. This may be due to
internal heuristics.

Most state-of-the-art QBF solvers make use of preprocessors. The exception is
GHOSTQ because its definition detection suffers after the application of QBCE. Fig-

Table 3. The number of instances solved within the 5,000 time-limit over benchmarks where
variable movement was possible.

Solver Original Moved BLOQQER Moved-BLOQQER

CAQE 74 84 99 103
GHOSTQ(p) 55 61 47 52
GHOSTQ(ce) 77 80 65 70
RAREQS 72 72 94 98
DEPQBF 64 70 64 71

474 J. E. Reeves et al.

0 1,000 2,000 3,000 4,000 5,000
30

40

50

60

70

80

CPU time

so
lv

ed
in

st
an

ce
s

QBFEVAL’20 with Movement

CAQE-m
GHOSTQ(ce)-m
GHOSTQ(ce)-o
CAQE-o
RAREQS-m
RAREQS-o
DEPQBF-m
DEPQBF-o
GHOSTQ(p)-m
GHOSTQ(p)-o

Fig. 2. Cumulative number of solved instances considering only the 157 benchmarks which had
variables that could be moved.

0 1,000 2,000 3,000 4,000 5,000

40

60

80

100

CPU time

so
lv

ed
in

st
an

ce
s

QBFEVAL’20 BLOQQER with Movement

CAQE-m-b
CAQE-b
RAREQS-m-b
RAREQS-b
DEPQBF-m-b
GHOSTQ(ce)-m-b
GHOSTQ(ce)-b
DEPQBF-b
GHOSTQ(p)-m-b
GHOSTQ(p)-b

Fig. 3. Cumulative number of solved instances after applying BLOQQER for 100 seconds consid-
ering only the 157 benchmarks with movement.

ure 3 shows solver performance with moving variables before applying BLOQQER (m-
b) and only applying BLOQQER (-b). The solving time includes the variable movement
and BLOQQER runtime within a 100 second timeout. After moving variables, BLO-
QQER solved 3 formulas and those data are reflected in the plot. In addition, each

Moving Definition Variables in Quantified Boolean Formulas 475

of the 14 formulas BLOQQER solved before movement, BLOQQER also solved after
movement. Performance improved for all solvers when applying variable movement
before BLOQQER. One reason for this is movement may allow for more applications
of universal reduction. We also experimented with moving variables after BLOQQER
preprocessed the formulas. Few variables were moved, and it did not affect solver per-
formance. This is likely due to QBCE removing defining clauses from the formula.

6 PGBDDQ Case Study

Two player games can be succinctly represented in QBF, as an existential player versus
a universal opponent. Problem variables encode moves alternating between quantifier
levels, and definition variables encode the game state as moves are played over time.
Given a 1 × N board, the linear domino placement game has two players alternately
placing 1× 2 dominos on the board. The first player who cannot place a domino loses.
The game can be encoded with around N2/2 problem and 3N2/2 definition variables.

PGBDDQ is a BDD-based, proof-generating QBF solver. [3] It starts at the inner-
most quantifier level and performs bucket elimination, linearizing variables and elim-
inating them through a series of BDD operations that are equivalence-preserving. As
BDDs are manipulated, PGBDDQ generates a dual proof through a series of clause
additions and deletions. PGBDDQ can solve the linear domino placement problem
with polynomial performance when definitions are placed in carefully selected quan-
tifier levels after their defining variables (Manual). In this configuration, moves are
processed from the last to the first, with the BDDs at each quantifier level effectively
encoding the outcomes of the possible end games for each board state. The performance
deteriorates when definition variables are placed in the innermost quantifier level (End).

0 1,000 2,000 3,000 4,000 5,000

10

20

30

CPU time

N

LDomino with Varying Definition Variable Placement

Manual
Move
End

Fig. 4. Performance on boards of size N for false formulas where player two wins. The Move
placement times out at N = 30 and the End placement runs out of memory at N = 14.

476 J. E. Reeves et al.

In this configuration, the BDDs at each quantifier level must encode the outcomes of
the possible end games in terms of the history of all moves up to that point in the game.

Figure 6 shows the performance of PGBDDQ on false formulas where the second
player will win. In each configuration, the same hand-crafted BDD variable ordering
was used. With the End encoding PGBDDQ runs out of memory on 32 GB RAM
at N = 12. Applying our movement algorithm to this encoding (Move), the solver
performs significantly better and solves all formulas up to N = 30 before timeouts
occur. This shows how the general problem of memory inefficiency within a BDD can
be eased by moving definition variables across quantifier levels. The gap in performance
between the Move placement and the Manual placement may be due to the ordering
of variables within a quantifier block or moving variables too far outward. When a
variable is moved it can be placed anywhere within a quantifier level as this does not
change semantics. Also, variables do not need to be moved all the way to their innermost
defining variable. Exploring these options in the context of a structurally dependent
solver PGBDDQ may lead to improvements that affect other QBF solvers.

7 Conclusion and Future Work

We presented a technique for moving definition variables in QBFs. The movement can
be verified within the QRAT proof system, and we validated all proofs in the evaluation
with QRAT-TRIM. Using the tools KISSAT and CNFTOOLS to detect definitions, we
created a tool-chain for variable movement. On the QBFEVAL’20 benchmarks, one
quarter of formulas had definitions that could be moved, and the movement increased
solver performance. In addition, we found that movement followed by BLOQQER was
more effective than preprocessing with BLOQQER.

For future work, incorporating quantifier level information into definition detection
could reduce the costs. For example, the hierarchical detection could recurse outwards
based on quantifier levels, reducing the number of root clauses explored and reducing
the number of unmoveable definitions detected. Additionaly, there are ways to expand
on variable movement. It is possible to place variables anywhere within a given quan-
tifier level and also to adjust how far variables are moved. Optimizing movement may
require understanding how variable movement impacts each solver’s internal heuristics
and solving algorithm. Separately, monotonic definitions that are not one-sided present
an interesting challenge for variable movement, as they occur in both polarities outside
of the definition. It might also be possible to move the approximately 160,000 semantic
definitions found be KITTEN that were right-unique but not left-total.

8 Acknowledgements

We would like to thank Armin Biere for feedback on the semantic definition detection in
KISSAT, Markus Iser for insight into the hierarchical definition detection of CNFTOOLS,
and Will Klieber for his explanation of GHOSTQ’s PCNF converter. We also thank the
community at StarExec for providing computational resources.

Moving Definition Variables in Quantified Boolean Formulas 477

References

1. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT competition 2020. Tech. rep. (2020)

2. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Automated De-
duction (CADE). pp. 101–115. Springer (2011)

3. Bryant, R.E., Heule, M.J.H.: Dual proof generation for quantified Boolean formulas with a
BDD-Based solver. In: Automated Deduction (CADE). pp. 433–449. Springer (2021)

4. Davis, M., Putnam, H.: A computing procedure for quantification theory. ACM 7(3),
394–397 (Jul 1962)

5. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 3569, pp. 61–75.
Springer (2005)

6. Fleury, M., Biere, A.: Mining definitions in Kissat with Kittens. In: Proceedings of Pragmat-
ics of (SAT) (2021)

7. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension free proof systems. In: Journal of Au-
tomated Reasoning. vol. 64, pp. 533–544 (2020)

8. Heule, M.J.H., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In: Au-
tomated Reasoning. pp. 91–106. Springer, Cham (2014)

9. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs. In: 2013
Formal Methods in Computer-Aided Design (FMCAD). pp. 181–188 (2013)

10. Iser, M.: Recognition and Exploitation of Gate Structure in SAT Solving. Ph.D. thesis, Karl-
sruhe Institute of Technology (KIT) (2020)

11. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with counterexample
guided refinement. Artificial Intelligence 234, 1–25 (2016)

12. Kleine Buning, H., Karpinski, M., Flogel, A.: Resolution for quantified boolean formulas.
Inf. Comput. 117(1), 12–18 (Feb 1995)

13. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF solver with game-
state learning. In: Theory and Applications of Satisfiability Testing (SAT). pp. 128–142.
Springer (2010)

14. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice.
Ph.D. thesis, Johannes Kepler University (JKU) (2012)

15. Lonsing, F.: QBFRelay, QRATPre+, and DepQBF: Incremental preprocessing meets search-
based QBF solving. Journal on Satisfiability, Boolean Modeling and Computation 11, 211–
220 (09 2019)

16. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. Journal of
Symbolic Computation 2(3), 293–304 (1986)

17. Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Formal Methods in Computer-
aided Design (FMCAD). pp. 136–143 (September 2015)

18. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure for logic
solving. In: International Joint Conference on Automated Reasoning (IJCAR). LNCS,
vol. 8562, pp. 367–373. Springer (2014)

19. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–483.
Springer (1983)

20. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In: Theory and Applications of Satisfiability Testing (SAT). pp.
422–429. Springer (2014)

21. Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre – an effective preprocessor for QBF
and DQBF. In: Tools and Algorithms for the Construction and Analysis of Systems. pp.
373–390. Springer (2017)

478 J. E. Reeves et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Moving Definition Variables in Quantified Boolean Formulas 479

http://creativecommons.org/licenses/by/4.0/

A Sorted Datalog Hammer for Supervisor
Verification Conditions Modulo Simple Linear Arithmetic

Martin Bromberger1 (�) , Irina Dragoste2, Rasha Faqeh2, Christof Fetzer2, Larry González2,
Markus Krötzsch2, Maximilian Marx2, Harish KMurali1,3, and Christoph Weidenbach1

1 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
{mbromber, weidenb}@mpi-inf.mpg.de

2 TU Dresden, Dresden, Germany
3 IIITDMKancheepuram, Chennai, India

Abstract. In a previous paper, we have shown that clause sets belonging to the Horn
Bernays-Schönfinkel fragment over simple linear real arithmetic (HBS(SLR)) can be
translated into HBS clause sets over a finite set of first-order constants. The translation
preservesvalidity and satisfiability and it is still applicable ifweextendour inputwithpos-
itive universally or existentially quantified verification conditions (conjectures). We call
this translationaDataloghammer.Thecombinationof its implementation inSPASS-SPL
with theDatalog reasonerVLog establishes an effectiveway of deciding verification con-
ditions in theHorn fragment.We verify supervisor code for two examples: a lane change
assistant in a car and an electronic control unit of a supercharged combustion engine.
In this paper, we improve our Datalog hammer in several ways: we generalize it tomixed
real-integer arithmetic and finite first-order sorts; we extend the class of acceptable
inequalities beyond variable bounds and positively grounded inequalities; and we
significantly reduce the size of the hammer output by a soft typing discipline. We call
the result the sorted Datalog hammer. It not only allows us to handle more complex
supervisor code and to model already considered supervisor code more concisely, but it
also improves our performance on real world benchmark examples. Finally, we replace
the before file-based interface between SPASS-SPL and VLog by a close coupling
resulting in a single executable binary.

1 Introduction

Modern dynamic dependable systems (e.g., autonomous driving) continuously update software
components to fix bugs and to introduce new features. However, the safety requirement of such
systemsdemands software tobe safetycertifiedbefore it canbeused,which is typicallya lengthy
process that hinders the dynamic update of software. We adapt the continuous certification
approach [17] for variants of safety critical software components using a supervisor that
guarantees important aspects through challenging, see Fig. 1. Specifically, multiple processing
units run in parallel – certified and updated not-certified variants that produce output as
suggestions and explications. The supervisor compares the behavior of variants and analyses
their explications. The supervisor itself consists of a rather small set of rules that can be
automatically verified and run by a reasoner such as SPASS-SPL. In this paper we concentrate
on the further development of our verification approach through the sorted Datalog hammer.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 480–501, 2022.
https://doi.org/10.1007/978-3-030-99524-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_27

Suggest
Actions
& provide
Explications

O
b

se
rv

at
io

n
s

 E
xe

cu
te

 A
ct

io
n

R
aw

 D
at

a

Environment

Sensors Processing
units

P1

...

Supervisor

Reasoner

Actuators

A1

Am

......
Request
Action

Pn

Fa
ct

s
+

R
u

le
s

N
ew

 F
ac

ts

Fig. 1. The supervisor architecture.

While supervisor safety conditions formalized as existentially quantified properties can
often already be automatically verified, conjectures about invariants requiring universally
quantified properties are a further challenge. Analogous to the Sledgehammer project [8] of
Isabelle [31] that translates higher-order logic conjectures to first-order logic (modulo theories)
conjectures, our sorted Datalog hammer translates first-order Horn logic modulo arithmetic
conjectures into pure Datalog programs, which is equivalent to the Horn Bernays-Schönfinkel
clause fragment, called HBS.

More concretely, the underlying logic for both formalizing supervisor behavior and for-
mulating conjectures is the hierarchic combination of the Horn Bernays-Schönfinkel fragment
with linear arithmetic, HBS(LA), also called Superlog for Supervisor Effective Reasoning
Logics [17]. Satisfiability of BS(LA) clause sets is undecidable [15,23], in general, however,
the restriction to simple linear arithmetic BS(SLA) yields a decidable fragment [19,22].

Inspired by the test point method for quantifier elimination in arithmetic [27] we show
that instantiation with a finite number of values is sufficient to decide whether a universal
or existential conjecture is a consequence of a BS(SLA) clause set.

In this paper, we improve our Datalog hammer [11] for HBS(SLA) in three directions.
First, we modify our Datalog hammer so it also accepts other sorts for variables besides
reals: the integers and arbitrarily many finite first-order sorts F8. Each non-arithmetic sort
has a predefined finite domain corresponding to a set of constants F8 for F8 in our signature.
Second, we modify our Datalog hammer so it also accepts more general inequalities than
simple linear arithmetic allows (but only under certain conditions). In [11], we have already
started in this direction by extending the input logic from pure HBS(SLA) to pure positively
grounded HBS(SLA). Here we establish a soft typing discipline by efficiently approximating
potential values occurring at predicate argument positions of all derivable facts. Third, we
modify the test-point scheme that is the basis of our Datalog hammer so it can exploit the
fact that not all all inequalities are connected to all predicate argument positions.

Our modifications have three major advantages: first of all, they allow us to express super-
visor code for our previous use cases more elegantly and without any additional preprocessing.
Second of all, they allow us to formalize supervisor code that would have been out of scope

A Sorted Datalog Hammer for Supervisor Verification Conditions 481

of the logic before. Finally, they reduce the number of required test points, which leads to
smaller transformed formulas that can be solved in much less time.

For our experiments of the test point approach we consider again two case studies. First,
verification conditions for a supervisor taking care of multiple software variants of a lane
change assistant. Second, verification conditions for a supervisor of a supercharged combustion
engine, also called an ECU for Electronical Control Unit. The supervisors in both cases are
formulated byBS(SLA) Horn clauses. Via our test point technique they are translated together
with the verification conditions to Datalog [1] (HBS). The translation is implemented in our
Superlog reasoner SPASS-SPL. The resulting Datalog clause set is eventually explored by the
Datalog engine VLog [13]. This hammer constitutes a decision procedure for both universal
and existential conjectures. The results of our experiments show that we can verify non-trivial
existential and universal conjectures in the range of seconds while state-of-the-art solvers
cannot solve all problems in reasonable time, see Section 4.
Related Work: Reasoning about BS(LA) clause sets is supported by SMT (Satisfiability
Modulo Theories) [30,29]. In general, SMTcomprises the combination of a number of theories
beyondLA such as arrays, lists, strings, or bit vectors.WhileSMT is adecisionprocedure for the
BS(LA) ground case, universally quantified variables can be considered by instantiation [36].
Reasoning by instantiation does result in a refutationally complete procedure forBS(SLA), but
not in a decision procedure. The Horn fragment HBS(LA) out of BS(LA) is receiving addi-
tional attention [20,7], because it is well-suited for software analysis and verification. Research
in this direction also goes beyond the theory of LA and considers minimal model semantics
in addition, but is restricted to existential conjectures. Other research focuses on universal
conjectures, but over non-arithmetic theories, e.g., invariant checking for array-based sys-
tems [14] or considers abstract decidability criteria incomparablewith theHBS(LA) class [34].
Hierarchic superposition [3] and Simple Clause Learning over Theories (SCL(T)) [12] are both
refutationally complete for BS(LA). While SCL(T) can be immediately turned into a decision
procedure for even larger fragments than BS(SLA) [12], hierarchic superposition needs to be
refined to become a decision procedure already because of the Bernays-Schönfinkel part [21].
Our Datalog hammer translates HBS(SLA) clause sets with both existential and universal
conjectures intoHBS clause sets which are also subject to first-order theorem proving. Instance
generating approaches such as iProver [25] are a decision procedure for this fragment, whereas
superposition-based [3] first-order provers such asE [38], SPASS [40],Vampire [37], have addi-
tional mechanisms implemented to decideHBS. In our experiments, Section 4, wewill discuss
thedifferences betweenall these approachesonanumberof benchmark examples inmoredetail.

The paper is organized as follows: after a section on preliminaries, Section 2, we present
the theory of our sorted Datalog hammer in Section 3, followed by experiments on real world
supervisor verification conditions, Section 4. The paper ends with a discussion of the obtained
results and directions for future work, Section 5. The artifact (including binaries of our tools
and all benchmark problems) is available at [9]. An extended version is available at [10]
including proofs and pseudo-code algorithms for the presented results.

2 Preliminaries

We briefly recall the basic logical formalisms and notations we build upon [11]. Starting point
is a standard many-sorted first-order language for BS with constants (denoted 0,1,2), without

M. Bromberger et al.482

non-constant function symbols, variables (denoted F,G,H,I), and predicates (denoted %,&,')
of some fixed arity. Terms (denoted C,B) are variables or constants. We write Ḡ for a vector of
variables, 0̄ for a vector of constants, and so on. An atom (denoted �,�) is an expression %(C̄)
for a predicate % of arity = and a term list C̄ of length =. A positive literal is an atom � and
a negative literal is a negated atom ¬�. We define comp(�)=¬�, comp(¬�)= �, |�|= �
and |¬�|=�. Literals are usually denoted !, ,�.

A clause is a disjunction of literals, where all variables are assumed to be universally
quantified. �,� denote clauses, and # denotes a clause set. We write atoms(-) for the set
of atoms in a clause or clause set -. A clause is Horn if it contains at most one positive literal,
and a unit clause if it has exactly one literal. A clause �1∨...∨�=∨¬�1∨...∨¬�< can be
written as an implication �1∧...∧�<→�1∨...∨�=, still omitting universal quantifiers. If
. is a term, formula, or a set thereof, vars(.) denotes the set of all variables in . , and . is
ground if vars(.)=∅. A fact is a ground unit clause with a positive literal.

Datalog and the Horn Bernays-Schönfinkel Fragment: The Horn case of the Bernays-
Schönfinkel fragment (HBS) comprises all sets of clauses with at most one positive literal. The
more general Bernays-Schönfinkel fragment (BS) in first-order logic allows arbitrary formulas
over atoms, i.e., arbitrary Boolean connectives and leading existential quantifiers. BS formulas
can be polynomially transformed into clause setswith common syntactic transformationswhile
preserving satisfiability and all entailments that donot refer to auxiliary constants andpredicates
introduced in the transformation [32].BS theories inour senseare alsoknownasdisjunctiveDat-
alog programs [16], specificallywhenwritten as implications. AHBS clause set is also called a
Datalog program. Datalog is sometimes viewed as a second-order language. We are only inter-
ested in query answering, which can equivalently be viewed as first-order entailment or second-
order model checking [1]. Again, it is common to write clauses as implications in this case.

Two types of conjectures, i.e., formulas we want to prove as consequences of a clause set,
are of particular interest: universal conjectures ∀Ḡ.q and existential conjectures ∃Ḡ.q, where q
is a BS formula that only uses variables in Ḡ. We call such a conjecture positive if the formula
only uses conjunctions and disjunctions to connect atoms. Positive conjectures are the focus of
ourDatalog hammer and they have the useful property that they can be transformed to one atom
over a fresh predicate symbol by adding some suitable Horn clause definitions to our clause
set # [32,11]. This is also the reason why we assume for the rest of the paper that all relevant
universal conjectures have the form ∀Ḡ.%(Ḡ) and existential conjectures the form ∃Ḡ.%(Ḡ).

A substitution f is a function from variables to terms with a finite domain dom(f)={G |
Gf≠G} and codomain codom(f)={Gf |G∈dom(f)}.We denote substitutions byf,X,d. The
application of substitutions is often written postfix, as in Gf, and is homomorphically extended
to terms, atoms, literals, clauses, and quantifier-free formulas. A substitution f is ground if
codom(f) is ground. Let . denote some term, literal, clause, or clause set. f is a grounding
for. if.f is ground, and.f is a ground instance of. in this case. We denote by gnd(.) the
set of all ground instances of. , and by gnd� (.) the set of all ground instances over a given set
of constants �. The most general unifier mgu(/1,/2) of two terms/atoms/literals /1 and /2 is
defined as usual, and we assume that it does not introduce fresh variables and is idempotent.

We assume a standard many-sorted first-order logic model theory, and writeA |=q if an
interpretation A satisfies a first-order formula q. A formula k is a logical consequence of
q, written q |=k, ifA |=k for allA such thatA |=q. Sets of clauses are semantically treated
as conjunctions of clauses with all variables quantified universally.

A Sorted Datalog Hammer for Supervisor Verification Conditions 483

BS with Linear Arithmetic: The extension of BS with linear arithmetic both over real and
integer variables, BS(LA), is the basis for the formalisms studied in this paper. We extend
the standard many-sorted first-order logic with finitely many first-order sorts F8 and with
two arithmetic sortsR for the real numbers and Z for the integer numbers. The sort Z is
a subsort ofR. Given a clause set #, the interpretationsA of our sorts are fixed:RA=R,
ZA=Z, and FA

8
=F8, i.e., a first-order sort interpretation F8 consists of the set of constants

in # belonging to that sort, or a single constant out of the signature if no such constant occurs.
Note that this is not a deviation from standard semantics in our context as for the arithmetic
part the canonical domain is considered and for the first-order sorts BS has the finite model
property over the occurring constants which is sufficent for refutation-based reasoning. This
way first-order constants are distinct values.

Constant symbols, arithmetic function symbols, variables, and predicates are uniquely
declared together with sort expressions. The unique sort of a constant symbol, variable,
predicate, or term is denoted by the function sort(.) and we assume all terms, atoms, and
formulas to bewell-sorted. The sort of predicate%’s argument position 8 is denoted by sort(%,8).
For arithmetic function symbolsweconsider theminimal sortwith respect to the subsort relation
betweenR and Z. Eventually, we don’t consider arithmetic functions here, so the subsort
relationship boils down to substitute an integer sort variable or number for a real sort variable.

We assume pure input clause sets, which means the only constants of sortR or Z are
numbers. This means the only constants that we do allow are integer numbers 2∈Z and the
constants defining our finite first-order sorts F8. Satisfiability of pure BS(LA) clause sets is
semi-decidable, e.g., using hierarchic superposition [3] or SCL(T) [12]. Impure BS(LA) is
no longer compact and satisfiability becomes undecidable, but it can be made decidable when
restricting to ground clause sets [18].

All arithmetic predicates and functions are interpreted in the usual way. An interpretation
of BS(LA) coincides withALA on arithmetic predicates and functions, and freely interprets
free predicates. For pure clause sets this is well-defined [3]. Logical satisfaction and entailment
is defined as usual, and uses similar notation as for BS.

Example 1. The following BS(LA) clause from our ECU case study compares the values of
engine speed (Rpm) and pressure (KPa) with entries in an ignition table (IgnTable) to derive
the basis of the current ignition value (IgnDeg1):

G1<0∨ G1≥13∨ G2<880∨ G2≥1100∨¬KPa(G3,G1) ∨
¬Rpm(G4,G2) ∨¬IgnTable(0,13,880,1100,I) ∨ IgnDeg1(G3,G4,G1,G2,I)

(1)

Termsof the two arithmetic sorts are constructed froma setX of variables, the set of integer
constants 2∈Z, and binary function symbols + and − (written infix). Atoms in BS(LA) are
either first-orderatoms (e.g., IgnTable(0,13,880,1100,I))or (linear)arithmeticatoms (e.g.,G2<
880). Arithmetic atoms may use the predicates ≤,<,≠,=,>,≥, which are written infix and have
the expected fixed interpretation. Predicates used in first-order atoms are called free.First-order
literals and related notation is defined as before. Arithmetic literals coincide with arithmetic
atoms, since the arithmetic predicates are closed under negation, e.g.,¬(G2≥1100)≡G2<1100.

BS(LA) clauses and conjectures are defined as forBS but using BS(LA) atoms.We often
write Horn clauses in the form Λ ‖Δ→� where Δ is a multiset of free first-order atoms, �
is either a first-order atom or⊥, andΛ is a multiset of LA atoms. The semantics of a clause in

M. Bromberger et al.484

the formΛ ‖Δ→� is
∨
∈Λ¬∨

∨
�∈Δ¬�∨�, e.g., the clause G>1∨H≠5∨¬&(G)∨'(G,H)

is also written G≤1,H=5||&(G)→'(G,H).
A clause or clause set is abstracted if its first-order literals contain only variables or

first-order constants. Every clause � is equivalent to an abstracted clause that is obtained
by replacing each non-variable arithmetic term C that occurs in a first-order atom by a fresh
variable G while adding an arithmetic atom G≠C to�.We asssume abstracted clauses for theory
development, but we prefer non-abstracted clauses in examples for readability,e.g., a fact
%(3,5) is considered in the development of the theory as the clause G=3,G=5 ‖→%(G,H), this
is important when collecting the necessary test points. Moreover, we assume that all variables
in the theory part of a clause also appear in the first order part, i.e., vars(Λ) ⊆vars(Δ→�)
for every clause Λ ‖ Δ→�. If this is not the case for G in Λ ‖ Δ→�, then we can easily
fix this by first introducing a fresh unary predicate& over the sort(G), then adding the literal
&(G) to Δ, and finally adding a clause ‖→&(G) to our clause set. Alternatively, G could be
eliminated by LA variable elimintation in our context, however this results in a worst case
exponential blow up in size. This restriction is necessary because we base all our computations
for the test-point scheme on predicate argument positions and would not get any test points
for variables that are not connected to any predicate argument positions.
Simpler Forms of Linear Arithmetic: The main logic studied in this paper is obtained by
restricting HBS(LA) to a simpler form of linear arithmetic. We first introduce a simpler logic
HBS(SLA) as awell-known fragment ofHBS(LA) forwhich satisfiability is decidable [19,22],
and later present the generalization HBS(LA)PA of this formalism that we will use.

Definition 2. TheHornBernays-Schönfinkel fragmentover simple lineararithmetic,HBS(SLA),
is a subset of HBS(LA) where all arithmetic atoms are of the form G⊳2 or 3⊳2, such that
2∈Z, 3 is a (possibly free) constant, G∈X , and ⊳∈{≤,<,≠,=,>,≥}.

Please note that HBS(SLA) clause sets may be unpure due to free first-order constants
of an arithmetic sort. Studying unpure fragments is beyond the scope of this paper but they
show up in applications as well.

Example 3. The ECU use case leads to HBS(LA) clauses such as

G1<H1∨ G1≥ H2∨ G2<H3∨ G2≥ H4∨¬KPa(G3,G1) ∨
¬Rpm(G4,G2) ∨¬IgnTable(H1,H2,H3,H4,I) ∨ IgnDeg1(G3,G4,G1,G2,I).

(2)

This clause is not inHBS(SLA), e.g., since G1>G5 is not allowed inBS(SLA). However, clause
(1) of Example 1 is a BS(SLA) clause that is an instance of (2), obtained by the substitution
{H1 ↦→ 0,H2 ↦→ 13,H3 ↦→ 880,H4 ↦→ 1100}. This grounding will eventually be obtained by
resolution on the IgnTable predicate, because it occurs only positively in ground unit facts.

Example 3 shows that HBS(SLA) clauses can sometimes be obtained by instantiation. In
fact, for the satisfiability of anHBS(LA) clause set # only those instances of clauses (Λ ‖Δ→
�)f are relevant, for which we can actually derive all ground facts �∈Δf by resolution from
#. If � cannot be derived from # and # is satisfiable, then there always exists a satisfying
interpretationA that interprets � as false (and thus (Λ ‖Δ→�)f as true). Moreover, if those
relevant instances can be simplified to HBS(SLA) clauses, then it is possible to extend almost
all HBS(SLA) techniques (including our Datalog hammer) to those HBS(LA) clause sets.

A Sorted Datalog Hammer for Supervisor Verification Conditions 485

In our case resolution means hierarchic unit resolution: given a clause Λ1 ‖ !,Δ→� and
a unit clause Λ2 ‖→ with f=mgu(!,), their hierarchic resolvent is (Λ1,Λ2 ‖Δ→�)f.
A fact %(0̄) is derivable from a pure set of HBS(LA) clauses # if there exists a clause
Λ ‖→%(C̄) that (i) is the result of a sequence of unit resolution steps from the clauses in # and
(ii) has a groundingf such that %(C̄)f=%(0̄) andΛf evaluates to true. If # is satisfiable, then
this means that any fact %(0̄) derivable from # is true in all satisfiable interpretations of #,
i.e., # |=%(0̄). We denote the set of derivable facts for a predicate % from # by dfacts(%,#).
A refutation is the sequence of resolution steps that produces a clauseΛ ‖→⊥withALA |=ΛX
for some grounding X. Hierarchic unit resolution is sound and refutationally complete for
pure HBS(LA), since every set # of pure HBS(LA) clauses # is sufficiently complete [3],
and hence hierarchic superposition is sound and refutationally complete for # [3,6].

So naturally if all derivable facts of a predicate % already appear in #, then only those
instances of clauses can be relevant whose occurrences of % match those facts (i.e., can be
resolved with them). We call predicates with this property positively grounded:

Definition 4 (Positively Grounded Predicate [11]). Let # be a set of HBS(LA) clauses. A
free first-order predicate % is a positively grounded predicate in # if all positive occurrences
of % in # are in ground unit clauses (also called facts).

Definition 5 (Positively Grounded HBS(SLA): HBS(SLA)P [11]). An HBS(!�) clause
set # is out of the fragment positively grounded HBS(SLA) (HBS(SLA)P) if we can
transform # into an HBS(SLA) clause set # ′ by first resolving away all negative occurrences
of positively grounded predicates % in #, simplifying the thus instantiated LA atoms, and
finally eliminating all clauses where those predicates occur negatively.

As mentioned before, if all relevant instances of an HBS(LA) clause set can be simplified
toHBS(SLA) clauses, then it is possible to extend almost allHBS(SLA) techniques (including
our Datalog hammer) to those clause sets. HBS(SLA)P clause sets have this property and this
is the reason, why we managed to extend our Datalog hammer to pure HBS(SLA)P clause
sets in [11]. For instance, the set #={%(1),%(2),&(0), (G≤ H+I ‖%(H),&(I)→'(G,H))} is
an HBS(LA) clause set, but not an HBS(SLA) clause set due to the inequality G≤ H+I. Note,
however, that the predicates% and& are positively grounded, the only positive occurrences of%
and& are the facts %(1), %(2), and&(0). If we resolve with the facts for % and& and simplify,
then we get the clause set # ′= {%(1), %(2), &(0), (G ≤ 1 ‖→'(G,1)), (G ≤ 2 ‖→'(G,2))},
which does now belong to HBS(SLA). This means # is a positively grounded HBS(SLA)
clause set and our Datalog hammer can still handle it.

Positively grounded predicates are only one way to filter out irrelevant clause instances. As
part of our improvements, we define in Section 3 a new logic called approximately grounded
HBS(SLA) (HBS(SLA)PA) that is an extension of HBS(SLA)P and serves as the new input
logic of our sorted Datalog hammer.

Test-Point Schemes and Functions The Datalog hammer in [11] is based on the following
idea: For any pure HBS(SLA) clause set # that is unsatisfiable, we only need to look
at the instances gnd� (#) of # over finitely many test points � to construct a refutation.
Symmetrically, if # is satisfiable, then we can extrapolate a satisfying interpretation for #
from a satisfying interpretation for gnd� (#). If we can compute such a set of test points � for

M. Bromberger et al.486

a clause set #, then we can transform the clause set into an equisatisfiable Datalog program.
There exist similar properties for universal/existential conjectures. A test-point scheme is an
algorithm that can compute such a set of test points � for any HBS(SLA) clause set # and
any conjecture # |=QḠ.%(Ḡ) withQ∈{∃,∀}.

The test-point scheme used by our original Datalog hammer computes the same set of
test points for all variables and predicate argument positions. This has several disadvantages:
(i) it cannot handle variables with different sorts and (ii) it often selects too many test points
(per argument position) because it cannot recognize which inequalities and which argument
positions are connected. The goal of this paper is to resolve these issues. However, this also
means that we have to assign different test-point sets to different predicate argument positions.
We do this with so-called test-point functions.

A test-point function (tp-function) V is a function that assigns to some argument positions
8 of some predicates % a set of test points V(%,8). An argument position (%,8) is assigned a
set of test points if V(%,8) ⊆ sort(%,8)A and otherwise V(%,8)=⊥. A test-point function V is
total if all argument positions (%,8) are assigned, i.e., V(%,8)≠⊥.

A variable G of a clause Λ ‖ Δ→ � occurs in an argument position (%,8) if (%,8) ∈
depend(G,Λ ‖Δ→�), where depend(G,.)={(%,8) |%(C̄) ∈atoms(.) and C8=G}. Similarly, a
variable G of an atom&(C̄) occurs in an argument position (&,8) if (&,8) ∈depend(G,&(C̄)). A
substitution f for a clause. or atom. is a well-typed instance over a tp-function V if it guar-
antees for each variable G that Gf is an element of sort(G)A and part of every test-point set (i.e.,
Gf∈ V(%,8)) of every argument position (%,8) it occurs in (i.e., (%,8) ∈depend(G,.)) and that
is assigned a test-point set by V (i.e., V(%,8)≠⊥). To abbreviate this, we define a setwti(G,.,V)
that contains all values with which a variable can fulfill the above condition, i.e., wti(G,.,V)=
sort(G)A∩ (⋂(%,8) ∈depend(G,.) and V(%,8)≠⊥V(%,8)). Following this definition, we denote by
wtisV (.) the set of all well-typed instances for a clause/atom. over the tp-function V, or for-
mally:wtisV (.)={f |∀G∈vars(.).(Gf) ∈wti(G,.,V)}.With the function gndV, we denote the
set of all well-typed ground instances of a clause/atom. over the tp-function V, i.e., gndV (.)=
{.f |f∈wtisV (.)}, or a set of clauses #, i.e., gndV (#)={.f |. ∈# and f∈wtisV (.)}.

The most general tp-function, denoted by V∗, assigns each argument position to the
interpretation of its sort, i.e., V∗(%,8)=sort(%,8)A. So depending on the sort of (%,8), either
to R, Z, or one of the F8. A set of clauses # is satisfiable if and only if gndV∗ (#), the set
of all ground instances of # over the base sorts, is satisfiable. Since V∗ is the most general
tp-function, we also write gnd(.) for gndV∗ (.) and wtis(.) for wtisV∗ (.).

If we restrict ourselves to test points, then we also only get interpretations over test points
and not for the full base sorts. In order to extrapolate an interpretation from test points to
their full sorts, we define extrapolation functions (ep-functions) [. An extrapolation function
(ep-function) [(%,0̄) maps an argument vector of test points for predicate % (with 08 ∈ V(%,8))
to the subset of sort(%,1)A×...×sort(%,=)A that is supposed to be interpreted the same as
0̄, i.e., %(0̄) is interpreted as true if and only if %(1̄) with 1̄ ∈[(%,0̄) is interpreted as true.
By default, any argument vector of test points 0̄ for % must also be an element of [(%,0̄), i.e.,
0̄∈[(%,0̄). An extrapolation function does not have to be complete for all argument positions,
i.e., there may exist argument positions from which we cannot extrapolate to all argument
vectors. Formally this means that the actual set of values that can be extrapolated from (%,8)
(i.e.,

⋃
01∈V(%,1) ...

⋃
0=∈V(%,=)[(%,0̄)) may be a strict subset of sort(%,1)A×...×sort(%,=)A.

For all other values 0̄, %(0̄) is supposed to be interpreted as false.

A Sorted Datalog Hammer for Supervisor Verification Conditions 487

Covering Clause Sets and Conjectures Our goal is to create total tp-functions that restrict
our solution space from the infinite reals and integers to finite sets of test points while
still preserving (un)satisfiability. Based on these tp-functions, we are then able to define a
Datalog hammer that transforms a clause set belonging to (an extension of) HBS(LA) into
an equisatisfiable HBS clause set; even modulo universal and existential conjectures.

To be more precise, we are interested in finite tp-functions (together with matching
ep-functions) that cover a clause set # or a conjecture # |=QḠ.%(Ḡ) withQ∈{∃,∀}. A total
tp-function V is finite if each argument position is assigned to a finite set of test points, i.e.,
|V(%,8)| ∈N. A tp-function V covers a set of clauses # if gndV (#) is equisatisfiable to #. A
tp-function V covers a universal conjecture ∀Ḡ.&(Ḡ) over # if gndV (#)∪#& is satisfiable if
and only if # |=∀Ḡ.&(Ḡ) is false. Here #& is the set {‖gndV (&(Ḡ))→⊥} if [is complete for
& or the empty set otherwise. A tp-function V covers an existential conjecture # |=∃Ḡ.&(Ḡ)
if gndV (#)∪gndV (‖&(Ḡ)→⊥) is satisfiable if and only if # |=∃Ḡ.&(Ḡ) is false.

Themost general tp-function V∗ obviously covers allHBS(LA) clause sets and conjectures
because satisfiability of # is defined over gndV∗ (#). However, V∗ is not finite. The test-point
scheme in [11], which assigns one finite set of test points � to all variables, also covers clause
sets and universal/existential conjectures; at least if we restrict our input to variables over
the reals. As mentioned before, the goal of this paper is improve this test-point scheme by
assigning different test-point sets to different predicate argument positions.

3 The Sorted Datalog Hammer

In this section, we present a transformation that we call the sorted Datalog hammer. It
transforms any pure HBS(SLA) clause set modulo a conjecture into an HBS clause set. To
guide our explanations, we apply each step of the transformation to a simplified example of
the electronic control unit use case:

Example 6. An electronic control unit (ECU) of a combustion engine determines actuator
operations. For instance, it computes the ignition timings based on a set of input sensors. To
this end, it looks up some base factors from static tables and combines them to the actual
actuator values through a series of rules.

In our simplified model of an ECU, we only compute one actuator value, the ig-
nition timing, and we only have an engine speed sensor (measuring in Rpm) as our
input sensor. Our verification goal, expressed as a universal conjecture, is to confirm,
that the ECU computes an ignition timing for all potential input sensor values. Deter-
mining completeness of a set of rules, i.e., determining that the rules produce a re-
sult for all potential input values, is also our most common application for universal
conjectures. The ECU model is encoded as the following pure HBS(LA) clause set
#:
�1 :SpeedTable(0,2000,1350), �2 :SpeedTable(2000,4000,1600),
�3 :SpeedTable(4000,6000,1850), �4 :SpeedTable(6000,8000,2100),
�1 :0≤G?,G?<8000 ‖→Speed(G?),
�2 :G1≤G?,G?<G2 ‖Speed(G?),SpeedTable(G1,G2,H)→IgnDeg(G?,H),
�3 :IgnDeg(G?,I)→ResArgs(G?), �4 :ResArgs(G?)→Conj(G?),
�5 :G? ≥8000 ‖→Conj(G?), �6 :G?<0 ‖→Conj(G?),

M. Bromberger et al.488

In this example all variables are real variables. The clauses �1−�4 are table entries from
which we determine the base factor of our ignition time based on the speed. Semantically,
�1 :SpeedTable(0,2000,1350) states that the base ignition time is 13.5◦ before dead center if
the engine speed lies between 0Rpm and 2000Rpm. The clause�1 produces all possible input
sensor values labeled by the predicateSpeed. The clause�2 determines the ignition timing from
the current speed and the table entries. The end result is stored in the predicate IgnDeg(G?,I),
where I is the resulting ignition timing and G? is the speed that led to this result. The clauses
�3−�6 are necessary for encoding the verification goal as a universal conjecture over a
single atom. In clause �3, the return value is removed from the result predicate IgnDeg(G?,I)
because for the conjecture we only need to know that there is a result and not what the result is.
Clause �4 guarantees that the conjecture predicate Conj(G?) is true if the rules can produce a
IgnDeg(G?,I) for the sensor value. Clauses �5&�6 guarantee that the conjecture predicate is
true ifoneof thesensorvalues isoutofbounds.This flatteningprocesscanbedoneautomatically
using the techniques outlined in [11]. Hence, the ECU computes an ignition timing for all
potential input sensor values if the universal conjecture ∀G?.Conj(G?) is entailed by #.

Approximately Grounded Example 6 contains inequalities that go beyond simple variable
bounds, e.g., G1≤G? in �2. However, it is possible to reduce the example to an HBS(SLA)
clause set. As our first step of the sorted Datalog hammer, we explain a way to heuristically
determine which HBS(LA) clause sets can be reduced to HBS(SLA) clause sets. Moreover,
we show later that we do not have to explicitly perform this reduction but that we can extend
our other algorithms to handle this heuristic extension of HBS(SLA) directly.

We start by formulating an extension of positively grounded HBS(SLA) called approx-
imately grounded HBS(SLA). It is based on over-approximating the set of derivable values
dvals(%,8,#)={08 |%(0̄) ∈dfacts(%,#)} for each argument position 8 of each predicate % in #
with only finitely many derivable values, i.e., |dvals(%,8,#)| ∈N. These argument positions are
also called finite. Naturally, all argument positions over first-order sorts F are finite argument
positions. With regard to clause relevance, only those clause instances are relevant, where a
finite argument position is instantiated by one of the derivable values.We call a set of clauses #
an approximately grounded HBS(SLA) clause set if all relevant instances based on this crite-
rion canbe simplified toHBS(SLA) clauses. For instance, the set#={(G≤1 ‖→%(G,1)), (G>
2 ‖→%(G,3)), (G≥0 ‖→&(G,0)), (D≤ H+I ‖%(G,H),&(G,I)→'(G,H,I,D))} is an HBS(LA)
clause set, but not a (positively grounded) HBS(SLA) clause set due to the inequality I≤ H+D
and the lack of positively grounded predicates. However, the argument positions (%,2), (&,2),
(',2) and (',3) only have finitelymany derivable values dvals(%,2,#)=dvals(',2,#)={1,3}
and dvals(&,2,#) =dvals(',3,#) = {0}. If we instantiate all occurrences of % and & over
those values, then we get the set # ′ = {(G ≤ 1 ‖→ %(G,1)), (G > 2 ‖→ %(G,3)), (G ≥ 0 ‖→
&(G,0)), (D≤1 ‖ %(G,1),&(G,0)→'(G,1,0,D)), (D≤3 ‖ %(G,3),&(G,0)→'(G,3,0,D))} that
is an HBS(SLA) clause set. This means # is an approximately grounded HBS(SLA) clause
set and our extended Datalog hammer can handle it.

Determining the finiteness of a predicate argument position (and all its derivable values)
is not trivial. In general, it is as hard as determining the satisfiability of a clause set [10], so in
the case of HBS(LA) undecidable [15,23]. This is the reason, why we only over-approximate
the derivable values with the following algorithm.

A Sorted Datalog Hammer for Supervisor Verification Conditions 489

DeriveValues(#)
for all predicates % and argument positions 8 for %

avals(%,8,#) :=∅;
change :=>;
while (change)

change :=⊥;
for all Horn clauses Λ ‖Δ→%(C1,...,C=) ∈#

for all argument positions 1≤ 8≤= where avals(%,8,#)≠R
if [(C8=2) or C8 is assigned a constant 2 in Λ and 2∉avals(%,8,#)] then

avals(%,8,#) :=avals(%,8,#)∪{2},change :=>;
else if [C8 appears in argument positions (&1,:1),...,(&<,:<) in Δ

and avals(%,8,#)+⋂ 9avals(& 9 ,: 9 ,#)] then
if [R≠

⋂
9avals(& 9 ,: 9 ,#)] then

avals(%,8,#) :=avals(%,8,#)∪⋂ 9avals(& 9 ,: 9 ,#),change :=>;
else

avals(%,8,#) :=R,change :=>;

At the start, DeriveValues(#) sets avals(%,8,#)=∅ for all predicate argument positions.
Then it repeats iterating over the clauses in # and uses the current sets avals in order to derive
new values, until it reaches a fixpoint. Whenever, DeriveValues(#) computes that a clause
can derive infinitely many values for an argument position, it simply sets avals(%,8,#)=R
for both real and integer argument positions. This is the case, when we have a clause
Λ ‖Δ→%(C1,...,C=), and an argument position 8 for %, such that: (i) C8 is not a constant (and
therefore a variable), (ii) C8 is not assigned a constant 2 in Λ (i.e., there is no equation C8=2 in
Λ), (iii) C8 is only connected to argument positions (&1,:1),...,(&<,:<) in Δ that already have
avals(& 9 ,: 9 ,#)=R. The latter also includes the case that C8 is not connected to any argument
positions in Δ. For instance, DeriveValues(#) would recognize that clause �1 in example 6
can be used to derive infinitely many values for the argument position (Speed,1) because
the variable G? is not assigned an equation in �1’s theory constraint Λ := (0≤G?,G?<8000)
and G? is not connected to any argument position on the left side of the implication. Hence,
DeriveValues(#) would set avals(Speed,1,#)=R.

For each run through thewhile loop, at least onepredicate argumentposition is set toRor the
set is extended by at least one constant. The set of constants in # as well as the number of predi-
cate argument positions in# are finite, henceDeriveValues(#) terminates. It is correct because
in each step it over-approximates the result of a hierarchic unit resulting resolution step, see Sec-
tion 2. The above algorithm is highly inefficient. In our own implementation, we only apply it if
all clauses are non-recursive and by first ordering the clauses based on their dependencies. This
guarantees that every clause is visited at most once and is sufficient for both of our use cases.

Based on avals, we can now build a tp-function V0 that maps all finite argument positions
(%,8) that our over-approximation detected to the over-approximation of their derivable values,
i.e., V0(%,8) := avals(%,8,#) if |avals(%,8,#)| ∈N and V0(%,8) :=⊥ otherwise. With V0 we
derive the finitely grounded over-approximation agnd(.) of a set of clauses . , a clause .
or an atom . . This set is equivalent to gndV0 (.), except that we assume that all LA atoms
are simplified until they contain at most one integer number and that LA atoms that can be
evaluated are reduced to true and false and the respective clause simplified. Based of agnd(#)
we define a new extension of HBS(SLA) called approximately grounded HBS(SLA):

M. Bromberger et al.490

Definition 7 (Approximately Grounded HBS(SLA): HBS(SLA)A). A clause set # is out
of the fragment approximately grounded HBS(SLA) or short HBS(SLA)A if agnd(#) is out
of the HBS(SLA) fragment. It is called HBS(SLA)PA if it is also pure.

Example 8. Executing DeriveValues(#) on example 6 leads to the following results:
avals(SpeedTable,1,#)={0,2000,4000,6000},
avals(SpeedTable,2,#)={2000,4000,6000,8000},
avals(SpeedTable,3,#)={1350,1600,1850,2100},
avals(IgnDeg,2,#)={1350,1600,1850,2100},
and all other argument positions (%,8) are infinite so avals(%,8,#)=R for them.

We can now easily check whether agnd(#) would turn our clause set into an HBS(SLA)
fragment by checking whether the following holds for all inequalities: all variables in the
inequality except for one must be connected to a finite argument position on the left side of the
clause it appears in. This guarantees that all but one variable will be instantiated in agnd(#)
and the inequality can therefore be simplified to a variable bound.

Connecting Argument Positions and Selecting Test Points As our second step, we are
reducing the number of test points per predicate argument position by incorporating that
not all argument positions are connected to all inequalities. This also means that we select
different sets of test points for different argument positions. For finite argument positions,
we can simply pick avals(%,8,#) as its set of test points. However, before we can compute the
test-point sets for all other argument positions, we first have to determine to which inequalities
and other argument positions they are connected.

Let # be an HBS(SLA)PA clause set and (%,8) an argument position for a predicate
in #. Then we denote by conArgs(%,8,#) the set of connected argument positions and by
conIneqs(%,8,#) the set of connected inequalities. Formally, conArgs(%,8,#) is defined as
the minimal set that fulfills the following conditions: (i) two argument positions (%,8) and
(&, 9) are connected if they share a variable in a clause in #, i.e., (&, 9) ∈conArgs(%,8,#) if
(Λ ‖Δ→�) ∈#, %(C̄),&(B̄) ∈atoms(Δ∪{�}), and C8=B 9 =G; and (ii) the connection relation
is transitive, i.e., if (&, 9) ∈conArgs(%,8,#), then conArgs(%,8,#)=conArgs(&, 9,#). Simi-
larly, conIneqs(%,8,#) is defined as the minimal set that fulfills the following conditions: (i) an
argument position (%,8) is connected to an instance_′ of an inequality_ if they share a variable
in a clause in #, i.e., _′∈conIneqs(%,8,#) if (Λ ‖Δ→�) ∈#, %(C̄) ∈atoms(Δ∪{�}), C8=G,
(Λ′ ‖Δ′→�′) ∈agnd(Λ ‖Δ→�),_′∈Λ′, and_′=G⊳2 (where ⊳={<,>,≤,≥,=,≠} and 2∈Z);
(ii) an argument position (%,8) is connected to a value 2∈Z if%(C̄)with C8=2 appears in a clause
in #, i.e., (G= 2) ∈ conIneqs(%,8,#) if (Λ ‖Δ→�) ∈#, %(C̄) ∈ atoms(Δ∪{�}), and C8 = 2;
(iii) anargumentposition (%,8) is connected toavalue 2∈Z if (%,8) is finite and 2∈avals(%,8,#),
i.e., (G=2) ∈conIneqs(%,8,#) if (%,8) is finite and 2∈avals(%,8,#); and (iv) the connection rela-
tion is transitive, i.e.,_∈conArgs(&, 9,#) if_∈conIneqs(%,8,#) and (&, 9) ∈conArgs(%,8,#).

Example 9. To highlight the connections in example 6 more clearly, we use the same variable
symbol for connected argument positions. Therefore (SpeedTable,1) and (SpeedTable,2) are
only connected to themselves and conArgs(SpeedTable,3,#)={(SpeedTable,3),(IgnDeg,2)},
and conArgs(Speed,1,#)= {(Speed,1),(IgnDeg,1),(ResArgs,1),(Conj,1)}, Computing the
connected argument positions is a little bit more complicated: first, if a connected argument
position is finite, then we have to add all values in avals as equations to the connected

A Sorted Datalog Hammer for Supervisor Verification Conditions 491

inequalities. E.g., conIneqs(SpeedTable,1,#) = {G1 = 0,G1 = 2000,G1 = 4000,G1 = 6000} be-
cause avals(SpeedTable,1,#)={0,2000,4000,6000}. Second, we have to add all inequalities
connected in agnd(#). Again this is possible without explicitly computing agnd(#). E.g., for
the inequality G1≤G? in clause �2, we determine that G1 is connected to the finite argument
position (SpeedTable,1) in�2 and G? is not connected to any finite argument positions. Hence,
we have to connect the following variable bounds to all argument positions connected to G?,
i.e., {G1 ≤ G? | G1 ∈ avals(SpeedTable,1,#)} = {G? ≥ 0,G? ≥ 2000,G? ≥ 4000,G? ≥ 6000} to
the argument positions conArgs(Speed,1,#). If we apply the above two steps to all clauses,
then we get as connected inequalities: conIneqs(SpeedTable,2,#)={G2=2000,G2=4000,G3=
6000,G4=8000}, conIneqs(SpeedTable,3,#)= {H=1350,H=1600,H=1850,H=2100}, and
conIneqs(Speed,1,#) = {G? < 0,G? < 2000,G? < 4000,G? < 6000,G? < 8000,G? ≥ 0,G? ≥
2000,G? ≥4000,G? ≥6000,G? ≥8000}.

Now based on these sets we can construct a set of test points as follows: For each
argument position (%,8), we partition the reals R into intervals such that any variable bound in
_∈conIneqs(%,8,#) is satisfied by all points in one such interval � or none. Since we are in the
Horn case, this is enough to ensure that we derive facts uniformly over those intervals and the
integers/non-integers. To be more precise, we derive facts uniformly over those intervals and
the integers because %(0̄) is derivable from # and 08 ∈ �∩Z implies that %(1̄) is also derivable
from #, where 1 9 =0 9 for 8≠ 9 and 18 ∈ �∩Z. Similarly, we derive facts uniformly over those
intervals and the non-integers because %(0̄) is derivable from# and 08 ∈ �\Z implies that %(1̄)
is also derivable from #, where 1 9 =0 9 for 8≠ 9 and 18 ∈ �. As a result, it is enough to pick (if
possible) one integer and one non-integer test point per interval to cover the whole clause set.

Formallywecompute the interval partition iPart(%,8,#) and the set of test points tps(%,8,#)
as follows: First we transform all variable bounds _∈conIneqs(%,8,#) into interval borders. A
variable bound G⊳2 with ⊳∈{≤,<,>,≥} in conIneqs(%,8,#) is turned into two interval borders.
One of them is the interval border implied by the bound itself and the other its negation, e.g.,
G ≥ 5 results in the interval border [5 and the interval border of the negation 5). Likewise,
we turn every variable bound G⊳2 with ⊳∈ {=,≠} into all four possible interval borders for
2, i.e. 2), [2, 2], and (2. The set of interval borders iEP(%,8,#) is then defined as follows:

iEP(%,8,#)= {2],(2 |G⊳2∈conIneqs(%,8,#) where ⊳∈{≤,=,≠,>}}∪
{2),[2 |G⊳2∈conIneqs(%,8,#) where ⊳∈{≥,=,≠,<}} ∪ {(−∞,∞)}

The interval partition iPart(%,8,#) can be constructed by sorting iEP(%,8,#) in an
ascending order such that we first order by the border value—i.e. X<n if X∈ {2),[2,2],(2},
n ∈ {3), [3,3], (3}, and 2 < 3—and then by the border type—i.e. 2) < [2 < 2] < (2. The
result is a sequence [...,X;,XD,...], where we always have one lower border X;, followed by
one upper border XD. We can guarantee that an upper border XD follows a lower border X;
because iEP(%,8,#) always contains 2) together with [2 and 2] together with (2 for 2∈Z, so
always two consecutive upper and lower borders. Together with (−∞ and∞) this guarantees
that the sorted iEP(%,8,#) has the desired structure. If we combine every two subsequent
borders X;, XD in our sorted sequence [...,X;,XD,...], then we receive our partition of intervals
iPart(%,8,#). For instance, if G<5 and G=0 are the only variable bounds in conIneqs(%,8,#),
then iEP(%,8,#) = {5), [5,0), [0,0],(0,(−∞,∞)} and if we sort and combine them we get
iPart(%,8,#)={(−∞,0),[0,0],(0,5),[5,∞)}.

M. Bromberger et al.492

After constructing iPart(%,8,#), we can finally construct the set of test points tps(%,8,#)
for argument position (%,8). If |avals(%,8,#)| ∈N, i.e., we determined that (%,8) is finite,
then tps(%,8,#) = avals(%,8,#). If the argument position (%,8) is over a first-order sort F8,
i.e., sort(%,8)=F8, then we should always be able to determine that (%,8) is finite because
F8 is finite. If the argument position (%,8) is over an arithmetic sort, i.e., sort(%,8) =R or
sort(%,8)=Z, and our approximation could not determine that (%,8) is finite, then the test-point
set tps(%,8,#) for (%,8) consists of at most two points per interval � ∈ iPart(%,8,#): one integer
value 0� ∈ �∩Z if � contains integers (i.e. if �∩Z≠∅) and one non-integer value 1� ∈ �\Z
if � contains non-integers (i.e. if � is not just one integer point). Additionally, we enforce that
tps(%,8,#)= tps(&, 9,#) if conArgs(%,8,#)=conArgs(&, 9,#) and both (%,8) and (&, 9) are
infinite argument positions. (In our implementation of this test-point scheme, we optimize
the test point selection even further by picking only one test point per interval—if possible
an integer value and otherwise a non-integer—if all conArgs(%,8,#) and all variables G
connecting them in # have the same sort. However, we do not prove this optimization explicitly
here because the proofs are almost identical to the case for two test points per interval.)

Based on these sets, we can now also define a tp-function V and an ep-function [. For the
tp-function, we simply assign any argument position to tps(%,8,#), i.e., V(%,8)= tps(%,8,#)∩
sort(%,8)A. (The intersection with sort(%,8)A is needed to guarantee that the test-point set of
an integer argument position is well-typed.) This also means that V is total and finite. For the
ep-function[,weextrapolate any test-point vector 0̄ (with 0̄= Ḡf andf∈wtisV (%(Ḡ))) over the
(non-)integer subset of the intervals the test points belong to, i.e.,[(%,0̄)= � ′1×...×�

′
=,where � ′8 =

{08} if we determined that (%,8) is finite and otherwise �8 is the interval �8 ∈ iPart(%,8,#) with
08 ∈ �8 and � ′8 = �8∩Z if 08 is an integer value and � ′8 = �8\Z if 08 is a non-integer value. Note that
thismeans that[might not be complete for everypredicate%, e.g.,when% has a finite argument
position (%,8)withan infinitedomain.However, both V and[together still cover theclause set#,
cover any universal conjecture # |=∀Ḡ.&(Ḡ), and cover any existential conjecture # |=∃Ḡ.&(Ḡ).
Theorem 10. The tp-function V covers #. The tp-function V covers an existential conjecture
|=∃Ḡ.&(Ḡ). The tp-function V covers a universal conjecture # |=∀Ḡ.&(Ḡ).
Example 11. Continuation of example 6: The majority of argument positions in our example
are finite. Hence, determining their test point set is equivalent to the over-approximation
of derivable values avals we computed for them: V(SpeedTable,1) = {0,2000,4000,6000},
V(SpeedTable,2) = {2000,4000,6000,8000}, V(SpeedTable,3) = {1350,1600,1850,2100},
and V(IgnDeg,2)={1350,1600,1850,2100}. The other argument positions are all connected
to (Speed,1) and conIneqs(Speed,1,#) = {G? < 0,G? < 2000,G? < 4000,G? < 6000,G? <
8000,G? ≥ 0,G? ≥ 2000,G? ≥ 4000,G? ≥ 6000,G? ≥ 8000}, from which we can compute

iPart(%,8,#)={(−∞,0),[0,2000),[2000,4000),[4000,6000),[6000,8000),[8000,∞)}
and select the test point sets V(Speed,1) = V(IgnDeg,1) = V(ResArgs,1) = V(Conj,1) =
{−1,0,2000,4000,6000,8000}. (Note that all variables in our problem are over the reals, so
we only have to select one test point per interval! Moreover, in our previous version of the test
point scheme, there would have been more intervals in the partition because we would have
processed all inequalities, e.g., also those in conIneqs(SpeedTable,3,#).) The ep-function
[that determines which interval is represented by which test point is [(%,1,−1)= (−∞,0),
[(%,1,0)= [0,2000), [(%,1,2000)= [2000,4000), [(%,1,4000)= [4000,6000), [(%,1,6000)=
[6000,8000),[(%,1,8000)= [8000,∞) for the predicates Speed, IgnDeg, ResArgs, and Conj.
[behaves like the identity function for all other argument positions because they are finite.

A Sorted Datalog Hammer for Supervisor Verification Conditions 493

FromaTest-PointFunction toaDatalogHammer Wecanuse the coveringdefinitions, e.g.,
gndV (#) is equisatisfiable to#, to instantiate our clause set (and conjectures)with numbers.As
a result, we can simply evaluate all theory atoms and thus reduce ourHBS(SLA)PA clause set-
s/conjectures to groundHBS clause sets, whichmeanswe could reduce our input into formulas
without any arithmetic theory that can be solved by anyDatalog reasoner. There is, however, one
problem. The set gndV (#) grows exponentially with regard to the maximum number of vari-
ables =� in any clause in #, i.e.$(|gndV (#)|)=$(|# | · |�|=�), where �=max(%,8) (V(%,8))
is the largest test-point set for any argument position. Since =� is large for realistic examples,
e.g., in our examples the size of =� ranges from 9 to 11 variables, the finite abstraction is often
too large to be solvable in reasonable time. Due to this blow-up, we have chosen an alternative
approach for our Datalog hammer. This hammer exploits the ideas behind the covering
definitions and will allow us to make the same ground deductions, but instead of grounding ev-
erything,we only need to (i) ground the negated conjecture over our tp-function and (ii) provide
a set of ground facts that define which theory atoms are satisfied by our test points. As a result,
the hammered formula is much more concise and we need no actual theory reasoning to solve
the formula. In fact, we can solve the hammered formula by greedily applying unit resolution
until this produces the empty clause—which would mean the conjecture is implied—or until
it produces no more new facts—which would mean we have found a counter example. In
practice, greedily applying resolution is not the best strategy and we recommend to use more
advanced HBS techniques for instance those used by a state-of-the-art Datalog reasoner.

The Datalog hammer takes as input (i) an HBS(SLA)PA clause set # and (ii) optionally a
universal conjecture ∀H̄.%(H̄). The case for existential conjectures is handled by encoding the
conjecture # |=∃Ḡ.&(Ḡ) as the clause set #∪{&(Ḡ)→⊥}, which is unsatisfiable if and only if
the conjecture holds. Given this input, theDatalog hammer first computes the tp-function V and
the ep-function [as described above. Next, it computes four clause sets that will make up the
Datalog formula. The first set tren# (#) is computed by abstracting away any arithmetic from
the clauses (Λ ‖Δ→�) ∈#. This is done by replacing each theory atom � in Λ with a literal
%�(Ḡ),wherevars(�)=vars(Ḡ) and%� is a fresh predicate. The abstraction of the theory atoms
is necessary because Datalog does not support non-constant function symbols (e.g., +,−) that
would otherwise appear in approximately grounded theory atoms. Moreover, it is necessary to
add extra sort literals¬& (%,8,() (G) for someof the variables G∈vars(�), where�=%(C̄), C8=G,
sort(G)=(, and& (%,8,() is a fresh predicate. This is necessary in order to define the test point
set for G if G does not appear inΛ or inΔ. It is also necessary in order to filter out any test points
that are not integer values if G is an integer variable (i.e. sort(G)=Z) but connected only to real
sorted argument positions inΔ (i.e. sort(&, 9)=R for all (&, 9) ∈depend(G,Δ)). It is possible to
reduce the number of fresh predicates needed, e.g., by reusing the same predicate for two theory
atomswhosevariables rangeover the samesets of test points.The resulting abstracted clausehas
then the formΔ) ,Δ(,Δ→�, whereΔ) contains the abstracted theory literals (e.g.%�(Ḡ) ∈Δ))
and Δ(the “sort” literals (e.g.& (%,8,() (G) ∈Δ(). The second set is denoted by #� and it is
empty if we have no universal conjecture or if [does not cover our conjecture. Otherwise,
#� contains the ground and negated version q of our universal conjecture ∀H̄.%(H̄) . q has
the form Δq→⊥, where Δq=gndV (%(H̄)) contains all literals %(H̄) for all groundings over V.
We cannot skip this grounding but the worst-case size of Δq is$(gndV (%(H̄)))=$(|�|=q),
where =q= |H̄|, which is in our applications typically much smaller than the maximum number
of variables =� contained in some clause in #. The third set is denoted by tfacts(#,V) and

M. Bromberger et al.494

contains a fact tren# (�) for every ground theory atom � contained in the theory part Λ of a
clause (Λ ‖Δ→�) ∈gndV (#) such that � simplifies to true. This is enough to ensure that our
abstracted theory predicates evaluate every test point in every satisfiable interpretationA to true
that also would have evaluated to true in the actual theory atom. Alternatively, it is also possible
to use a set of axioms and a smaller set of facts and let theDatalog reasoner compute all relevant
theory facts for itself. The set tfacts(#,V) can be computed without computing gndV (#) if we
simply iterate over all theory atoms � in all constraints Λ of all clauses. =Λ ‖Δ→� (with
. ∈#) and compute allwell typed groundings g∈wtisV (.) such that �g simplifies to true. This
can be done in time$(`(=E) ·=! · |�|=E) and the resulting set tfacts(#,V) has worst-case size
$(=�· |�|=E), where =! is the number of literals in #, =E is the maximum number of variables
|vars(�)| in any theory atom � in #, =� is the number of different theory atoms in #, and `(G)
is the time needed to simplify a theory atom over G variables to a variable bound. The last set is
denoted by sfacts(#,V) and contains a fact& (%,8,() (0) for every fresh sort predicate& (%,8,()
added during abstraction and every 0 ∈ V(%,8)∩(A. This is enough to ensure that & (%,8,()
evaluates to true for every test point assigned to the argument position (%,8) filtered by the
sort (. Please note that already satifiability testing for BS clause sets is NEXPTIME-complete
in general, and DEXPTIME-complete for the Horn case [26,33]. So when abstracting to a
polynomially decidable clause set (ground HBS) an exponential factor is unavoidable.

Lemma 12. # is equisatisfiable to itshammeredversion tren# (#)∪tfacts(#,V)∪sfacts(#,V).
The conjecture # |= ∃H̄.&(H̄) is false iff #� = tren′

#
(# ′) ∪ tfacts(# ′, V) ∪ sfacts(# ′, V)

is satisfiable with # ′ = # ∪ {&(H̄) → ⊥}. The conjecture # |= ∀H̄.&(H̄) is false iff
#�= tren# (#)∪tfacts(#,V)∪sfacts(#,V)∪#� is satisfiable.

Note that tren# (#) ∪ tfacts(#,V) ∪sfacts(#,V) ∪#� is only a HBS clause set over a
finite set of constants and not yet a Datalog input file. It is well known that such a formula
can be transformed easily into a Datalog problem by adding a nullary predicate Goal and
adding it as a positive literal to any clause without a positive literal. Querying for the Goal
atom returns true if the HBS clause set was unsatisfiable and false otherwise.

Example 13. The hammered formula for example 6 looks as follows. The set of renamed
clauses tren# (#) consists of all the previous clauses in #, except that inequalities have been
abstracted to new first-order predicates:
�′1 :SpeedTable(0,2000,1350), �′2 :SpeedTable(2000,4000,1600),
�′3 :SpeedTable(4000,6000,1850), �′4 :SpeedTable(6000,8000,2100),
�′1 :%0≤G? (G?),%G?<8000(G?)→Speed(G?),
�′2 :%G1≤G? (G1,G?),%G?<G2 (G?,G2),Speed(G?),SpeedTable(G1,G2,H)→IgnDeg(G?,H),
�′3 :IgnDeg(G?,I)→ResArgs(G?), �′4 :ResArgs(G?)→Conj(G?),
�′5 :%G?≥8000(G?)→Conj(G?), �′6 :%G?<0(G?)→Conj(G?),
The set tfacts(#, V) defines for which test points those new predicates evaluate to true:
{%0≤G? (0), %0≤G? (2000), %0≤G? (4000), %0≤G? (6000), %0≤G? (8000), %G?<8000(−1),
%G?<8000(0), %G?<8000(2000), %G?<8000(4000), %G?<8000(6000), %G1≤G? (0,0),
%G1≤G? (0,2000), %G1≤G? (0,4000), %G1≤G? (0,6000), %G1≤G? (0,8000), %G1≤G? (2000,2000),
%G1≤G? (2000,4000), %G1≤G? (2000,6000), %G1≤G? (2000,8000), %G1≤G? (4000,4000),
%G1≤G? (4000,6000), %G1≤G? (4000,8000), %G1≤G? (6000,6000), %G1≤G? (6000,8000),
%G?<G2 (−1,2000), %G?<G2 (0,2000), %G?<G2 (−1,4000), %G?<G2 (0,4000),
%G?<G2 (2000,4000), %G?<G2 (−1,6000), %G?<G2 (0,6000), %G?<G2 (2000,6000),

A Sorted Datalog Hammer for Supervisor Verification Conditions 495

Problem Q Status |# | vars |�< | |Δq | SSPL |�B | |Δ>
q
| SSPL06 vampire spacer z3 cvc4

lc_e1 ∃ true 139 9 9 0 < 0.1s 45 0 < 0.1s < 0.1s < 0.1s 0,1 < 0.1s
lc_e2 ∃ false 144 9 9 0 < 0.1s 41 0 < 0.1s < 0.1s < 0.1s - -
lc_e3 ∃ false 138 9 9 0 < 0.1s 37 0 < 0.1s < 0.1s < 0.1s - -
lc_e4 ∃ true 137 9 9 0 < 0.1s 49 0 < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s
lc_e5 ∃ false 152 13 9 0 33.5s - - N/A < 0.1s - - -
lc_e6 ∃ true 141 13 9 0 42.8s - - N/A 0.1s 3.3s 11.5s 0.4s
lc_e7 ∃ false 141 13 9 0 41.4s - - N/A < 0.1s 7.6s - -
lc_e8 ∃ false 141 13 9 0 32.5s - - N/A < 0.1s 2.1s - -
lc_u1 ∀ false 139 9 9 27 < 0.1s 45 27 < 0.1s < 0.1s N/A - -
lc_u2 ∀ false 144 9 9 27 < 0.1s 41 27 < 0.1s < 0.1s N/A - -
lc_u3 ∀ true 138 9 9 27 < 0.1s 37 27 < 0.1s < 0.1s N/A < 0.1s < 0.1s
lc_u4 ∀ false 137 9 9 27 < 0.1s 49 27 < 0.1s < 0.1s N/A - -
lc_u5 ∀ false 154 13 9 3888 32.4s - - N/A 0.1s N/A - -
lc_u6 ∀ true 154 13 9 3888 32.5s - - N/A 2.3s N/A - -
lc_u7 ∀ true 141 13 9 972 32.3s - - N/A 0.2s N/A - -
lc_u8 ∀ false 141 13 9 1259712 48.8s - - N/A 2351.4s N/A - -
ecu_e1 ∃ false 757 10 96 0 < 0.1s 624 0 1.3s 0.2s 0.1s - -
ecu_e2 ∃ true 757 10 96 0 < 0.1s 624 0 1.3s 0.2s 0.1s 1.4s 0.4s
ecu_e3 ∃ false 775 11 196 0 50.1s 660 0 41.5s 3.1s 0.1s - -
ecu_u1 ∀ true 756 11 96 37 0.1s 620 306 1.1s 32.8s N/A 197.5s 0.4s
ecu_u2 ∀ false 756 11 96 38 0.1s 620 307 1.1s 32.8s N/A - -
ecu_u3 ∀ true 745 9 88 760 < 0.1s 576 11360 0.7s 1.2s N/A 239.5s 0.1s
ecu_u4 ∀ true 745 9 486 760 < 0.1s 2144 237096 15.9s 1.2s N/A 196.0s 0.1s
ecu_u5 ∀ true 767 10 96 3900 0.1s 628 415296 31.9s - N/A - -
ecu_u6 ∀ false 755 10 95 3120 < 0.1s 616 363584 14.4s 597.8 N/A - -
ecu_u7 ∀ false 774 11 196 8400 48.9s 656 2004708 - - N/A - -
ecu_u8 ∀ true 774 11 196 8400 48.7s 656 2004708 - - N/A - -

Fig. 2. Benchmark results and statistics

%G?<G2 (4000,6000), %G?<G2 (−1,8000), %G?<G2 (0,8000), %G?<G2 (2000,8000),
%G?<G2 (4000,8000), %G?<G2 (6000,8000), %G?≥800(8000), %G?<0(−1)}
sfacts(#,V)=∅ because there are no fresh sort predicates. The hammered negated conjecture
is #� :=Conj(−1), Conj(0), Conj(2000), Conj(4000), Conj(6000), Conj(8000) →⊥ and
lets us derive false if and only if we can derive Conj(0) for all test points 0∈ V(Conj,1).

4 Implementation and Experiments

We have implemented the sorted Datalog hammer as an extension to the SPASS-SPL
system [11] (option -d) (SSPL in the table). By default the resulting formula is then solved
with the Datalog reasoner VLog. The previously file-based combination with the Datalog
reasonerVLoghas been replaced by an integration ofVLog intoSPASS-SPLvia theVLogAPI.
We focus here only on the sorted extension and refer to [11] for an introduction into coupling
of the two reasoners. Note that the sorted Datalog hammer itself is not fine tuned towards
the capabilities of a specific Datalog reasoner nor VLog towards the sorted Datalog hammer.

In order to test the progress in efficiency of our sorted hammer, we ran the benchmarks
of the lane change assistant and engine ECU from [11] plus more sophisticated, extended for-
malizations. While for the ECU benchmarks in [11] we modeled ignition timing computation
adjusted by inlet temperaturemeasurements, the new benchmarks take also gear box protection
mechanisms into account. The lane change examples in [11] only simulated the supervisor for
lane change assistants over some real-world instances. The new lane change benchmarks check
properties for all potential inputs. The universal ones check that any suggested action by a lane

M. Bromberger et al.496

change assistant is either proven as correct or disproven by our supervisor. The existential ones
check safety properties, e.g., that the supervisor never returns both a proof and a disproof for the
same input. We actually used SPASS-SPL to debug a prototype supervisor for lane change as-
sistants during its development. The new lane change examples are based on versions generated
during this debugging processwhereSPASS-SPL found the followingbugs: (i) it did not always
return a result, (ii) it declaredactions asboth safe andunsafe at the same time, and (iii) it declared
actions as safe although they would lead to collisions. The supervisor is now fully verified.

The names of the problems are formatted so the lane change examples start with lc and
the ECU examples start with ecu. Our benchmarks are prototypical for the complexity of
HBS(SLA) reasoning in that they cover all abstract relationships between conjectures and
HBS(SLA) clause sets. With respect to our two case studies we have many more examples
showing respective characteristics.Wewould have liked to run benchmarks from other sources,
but could not find any problems in the SMT-LIB [5,35] or CHC-COMP [2] benchmarks
within the range of what our hammer can currently accept. Either the arithmetic part goes
beyond SLA or there are further theories involved such as equality on first-order symbols.

For comparison, we also tested several state-of-the-art theorem provers for related logics
(with the best settings we found): SPASS-SPL-v0.6 (SSPL06 in the table) that uses the original
version of our Datalog Hammer [11] with settings -d for existential and -d -n for universal
conjectures; the satisfiabilitymodulo theories (SMT) solver cvc4-1.8 [4]with settings--multi-
trigger-cache --full-saturate-quant; the SMT solver z3-4.8.12 [28] with its default
settings; the constrained horn clause (CHC) solver spacer [24] with its default settings; and the
first-order theorem prover vampire-4.5.1 [37] with settings --memory_limit 8000 -p off,
i.e., with memory extended to 8GB and without proof output. For the SMT/CHC solvers, we
directly transformed the benchmarks into their respective formats. Vampire gets the same input
asVLog transformed into theTPTP format [39].Our experimentswith vampire investigate how
superposition reasoners perform on the hammered benchmarks compared toDatalog reasoners.

For the experiments, we used the TACAS 22 artifact evaluation VM (Ubuntu 20.04 with
8 GB RAM and a single processor core) on a system with an Intel Core i7-9700K CPU with
eight 3.60GHz cores. Each tool got a time limit of 40 minutes for each problem.

The table in Fig. 2 lists for each benchmark problem: the name of the problem (Problem);
the type of conjecture (Q), i.e., whether the conjecture is existential ∃ or universal ∀; the status
of the conjecture (Status); number of clauses (|# |); maximum number of variables in a clause
(vars); the size of the largest test-point set introduced by the sorted/original Hammer (�B/�>);
the size of the hammered universal conjecture (|Δq |/|Δ>q | for sorted/original); the remaining
columns list the time needed by the tools to solve the benchmark problems. An entry "N/A"
means that the benchmark example cannot be expressed in the tools input format, e.g., it is not
possible to encode auniversal conjecture (or, to bemoreprecise, its negation) in theCHCformat
and SPASS-SPL-v0.6 is not sound when the problem contains integer variables. An entry "-"
means that the tool ran out of time, ran out ofmemory, exitedwith an error or returned unknown.

The experiments show that SPASS-SPL (with the sorted Hammer) is orders of magnitudes
faster than SPASS-SPL-v0.6 (with the original Hammer) on problems with universal con-
jectures. On problems with existential conjectures, we cannot observe any major performance
gain compared to the original Hammer. Sometimes SPASS-SPL-v0.6 is even slightly faster
(e.g. ecu_e3). Potential explanations are: First, the number of test points has a much larger
impact on universal conjectures because the size of the hammered universal conjecture

A Sorted Datalog Hammer for Supervisor Verification Conditions 497

increases exponentially with the number of test points. Second, our sorted Hammer needs to
generate more abstracted theory facts than the original Hammer because the latter can reuse
abstraction predicates for theory atoms that are identical upto variable renaming. The sorted
Hammer can reuse the same predicate only if variables also range over the same sets of test
points, which we have not yet implemented.

Compared to the other tools, SPASS-SPL is the only one that solves all problems in
reasonable time. It is also the only solver that can decide in reasonable timewhether a universal
conjecture is not a consequence. This is not surprising because to our knowledge SPASS-SPL
is the only theorem prover that implements a decision procedure for HBS(SLA). On the
problems with existential conjectures, our tool-chain solves all of the problems in under
a minute and with comparable times to the best tool for the problem. The only exception
are problems that contain a lot of superfluous clauses, i.e., clauses that are not needed to
confirm/refute the conjecture. The reason might be that VLog derives all facts for the input
problem in a breadth-first way, which is not very efficient if there are a lot of superfluous
clauses. Vampire coupled with our sorted Hammer returns the best results for those problems.
Vampire performed best on the hammered problems among all first-order theorem provers we
tested, including iProver [25], E [38], and SPASS [40].We tested all provers in default theorem
proving mode with adjusted memory limits. The experiments with the first-order provers
showed that our hammer also works reasonably well for them, but they do not scale well if the
size and the complexity of the universal conjectures increases. For problems with existential
conjectures, the CHC solver spacer is often the best, but as a trade-off it is unable to handle
universal conjectures. The instantiation techniques employed by cvc4 are good for proving
some universal conjectures, but both SMT solvers seem to be unable to disprove conjectures.

5 Conclusion

We have presented an extension of our previous Datalog hammer [11] supporting a more
expressive input logic resulting in more elegant and more detailed supervisor formalizations,
and through a soft typing discipline supporting more efficient reasoning. Our experiments
show, compared to [11], that our performance on existential conjectures is at the same level
as SMT and CHC solvers. The complexity of queries we can handle in reasonable time has
significantly increased, see Section 4, Figure 2. Still SPASS-SPL is the only solver that can
prove and disprove universal queries. The file interface between SPASS-SPL and VLog has
been replaced by a close coupling resulting in a more comfortable application.

Our contribution here solves the third point for future work mentioned in [11] although
there is still room to also improve our soft typing discipline. In the future, we want SPASS-SPL
to produce explications that prove that its translations are correct. Another direction is to exploit
specialized Datalog expressions and techniques, e.g., aggregation and stratified negation, to
increase the efficiency of our tool-chain and to lift some restrictions from our input formulas.
Finally, our hammer can be seen as part of an overall reasoning methodology for the class
of BS(LA) formulas which we presented in [12]. We will implement and further develop this
methodology and integrate our Datalog hammer.
Acknowledgments: This work was funded by DFG grant 389792660 as part of TRR 248
(CPEC), by BMBF in project ScaDS.AI, and by the Center for Advancing Electronics Dresden
(cfaed). We thank our anonymous reviewers for their constructive comments.

M. Bromberger et al.498

http://perspicuous-computing.science
http://perspicuous-computing.science
https://www.scads.de
https://cfaed.tu-dresden.de/

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Angelis, E.D., K, H.G.V.: Constrained horn clauses (chc) competition (2022),

https://chc-comp.github.io/
3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order

theories. Applicable Algebra in Engineering, Communication and Computing, AAECC 5(3/4),
193–212 (1994)

4. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli,
C.: CVC4. In: CAV, LNCS, vol. 6806 (2011)

5. Barrett, C.W., de Moura, L.M., Ranise, S., Stump, A., Tinelli, C.: The SMT-LIB initiative and
the rise of SMT - (HVC 2010 award talk). In: Barner, S., Harris, I.G., Kroening, D., Raz, O. (eds.)
Hardware and Software: Verification and Testing - 6th International Haifa Verification Conference,
HVC 2010, Haifa, Israel, October 4-7, 2010. Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6504, p. 3. Springer (2010)

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C., Sattler, U., Tinelli,
C., Turhan, A., Wolter, F. (eds.) Description Logic, Theory Combination, and All That - Essays
Dedicated to Franz Baader on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 11560, pp. 15–56. Springer (2019)

7. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers for program
verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.)
Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His
75th Birthday. Lecture Notes in Computer Science, vol. 9300, pp. 24–51. Springer (2015)

8. Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R. (eds.) Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6173, pp. 107–121. Springer (2010)

9. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., González, L., Krötzsch, M., Marx, M., Murali,
H.K., Weidenbach, C.: Artifact for a sorted Datalog hammer for supervisor verification conditions
modulo simple linear arithmetic (Jan 2022). https://doi.org/10.5281/zenodo.5888272

10. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., González, L., Krötzsch, M., Marx, M., Murali,
H.K., Weidenbach, C.: A sorted Datalog hammer for supervisor verification conditions modulo
simple linear arithmetic. CoRR abs/2201.09769 (2022), https://arxiv.org/abs/2201.09769

11. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., Krötzsch, M., Weidenbach, C.: A Datalog
hammer for supervisor verification conditions modulo simple linear arithmetic. In: Reger, G.,
Konev, B. (eds.) Frontiers of Combining Systems - 13th International Symposium, FroCoS 2021,
Birmingham, United Kongdom, September 8-10, 2021. Proceedings. Lecture Notes in Computer
Science, vol. 12941, pp. 3–24. Springer (2021)

12. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the bernays-schoenfinkel fragment over
bounded difference constraints by simple clause learning over theories. In: Henglein, F., Shoham,
S., Vizel, Y. (eds.) Verification, Model Checking, and Abstract Interpretation - 22nd International
Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings. Lecture
Notes in Computer Science, vol. 12597, pp. 511–533. Springer (2021)

13. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog: A rule engine
for knowledge graphs. In: Ghidini et al., C. (ed.) Proc. 18th Int. Semantic Web Conf. (ISWC’19,
Part II). LNCS, vol. 11779, pp. 19–35. Springer (2019)

14. Cimatti, A., Griggio, A., Redondi, G.: Universal invariant checking of parametric systems with
quantifier-free SMT reasoning. In: Proc. CADE-28 (2021), to appear

15. Downey, P.J.: Undecidability of presburger arithmetic with a single monadic predicate letter. Tech.
rep., Center for Research in Computer Technology, Harvard University (1972)

A Sorted Datalog Hammer for Supervisor Verification Conditions 499

https://chc-comp.github.io/
https://doi.org/10.5281/zenodo.5888272
https://arxiv.org/abs/2201.09769

16. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22(3), 364–418
(1997)

17. Faqeh, R., Fetzer, C., Hermanns, H., Hoffmann, J., Klauck, M., Köhl, M.A., Steinmetz, M.,
Weidenbach, C.: Towards dynamic dependable systems through evidence-based continuous
certification. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12477, pp. 416–439. Springer (2020)

18. Fiori, A., Weidenbach, C.: SCL with theory constraints. CoRR abs/2003.04627 (2020),
https://arxiv.org/abs/2003.04627

19. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In: Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp.
306–320. Springer (2009)

20. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers
from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012. pp. 405–416.
ACM (2012)

21. Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In: Bonacina, M.P., Stickel,
M. (eds.) McCune Festschrift. LNCS, vol. 7788, pp. 68–100. Springer (2013)

22. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the bernays-schönfinkel-ramsey
fragment with simple linear integer arithmetic. In: deMoura, L. (ed.) Automated Deduction - CADE
26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, August 6-11,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10395, pp. 77–94. Springer (2017)

23. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of presburger arithmetic with
unary uninterpreted predicates is undecidable. CoRR abs/1703.01212 (2017)

24. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs.
In: CAV. Lecture Notes in Computer Science, vol. 8559, pp. 17–34. Springer (2014)

25. Korovin, K.: iprover - an instantiation-based theorem prover for first-order logic (system description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint
Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings. Lecture Notes
in Computer Science, vol. 5195, pp. 292–298. Springer (2008)

26. Lewis, H.R.: Complexity results for classes of quantificational formulas. Journal of Compututer
and System Sciences 21(3), 317–353 (1980)

27. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36(5),
450–462 (1993)

28. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, vol. 4963 (2008)

29. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and applications.
Communications of the ACM 54(9), 69–77 (2011)

30. Nieuwenhuis,R.,Oliveras,A.,Tinelli,C.:Solving sat and satmodulo theories:Fromanabstract davis–
putnam–logemann–loveland procedure to dpll(t). Journal of theACM 53, 937–977 (November 2006)

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic,
LNCS, vol. 2283. Springer (2002)

32. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of
Automated Reasoning, pp. 335–367. Elsevier and MIT Press (2001)

33. Plaisted, D.A.: Complete problems in the first-order predicate calculus. Journal of Computer and
System Sciences 29, 8–35 (1984)

34. Ranise, S.: On the verification of security-aware e-services. Journal of Symbolic Compututation
47(9), 1066–1088 (2012)

M. Bromberger et al.500

https://arxiv.org/abs/2003.04627

35. Ranise, S., Tinelli, C., Barrett, C., Fontaine, P., Stump, A.: Smt-lib the satisfiability modulo theories
library (2022), https://smtlib.cs.uiowa.edu/

36. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In: Beyer, D.,
Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10806, pp. 112–131. Springer (2018)

37. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communications
15(2-3), 91–110 (2002)

38. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine, P. (ed.) Proc.
of the 27th CADE, Natal, Brasil. pp. 495–507. No. 11716 in LNAI, Springer (2019)

39. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to th0, TPTP
v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

40. Weidenbach, C., Dimova, D., Fietzke, A., Suda, M., Wischnewski, P.: Spass version 3.5. In:
Schmidt, R.A. (ed.) 22nd International Conference on Automated Deduction (CADE-22). Lecture
Notes in Artificial Intelligence, vol. 5663, pp. 140–145. Springer, Montreal, Canada (August 2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

A Sorted Datalog Hammer for Supervisor Verification Conditions 501

https://smtlib.cs.uiowa.edu/
http://creativecommons.org/licenses/by/4.0/

Model Checking and Verification

Property Directed Reachability

for Generalized Petri Nets

Nicolas Amat1(�) , Silvano Dal Zilio1 , and Thomas Hujsa1

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France
namat@laas.fr

Abstract. We propose a semi-decision procedure for checking general-
ized reachability properties, on generalized Petri nets, that is based on
the Property Directed Reachability (PDR) method. We actually define
three different versions, that vary depending on the method used for ab-
stracting possible witnesses, and that are able to handle problems of in-
creasing difficulty. We have implemented our methods in a model-checker
called SMPT and give empirical evidences that our approach can handle
problems that are difficult or impossible to check with current state of
the art tools.

Keywords: Petri nets · Model Checking · Reachability · SMT solving

1 Introduction

We propose a new semi-decision procedure for checking reachability properties
on generalized Petri nets, meaning that we impose no constraints on the weights
of the arcs and do not require a finite state space. We also consider a generalized
notion of reachability, in the sense that we can not only check the reachability of
a given state, but also if it is possible to reach a marking that satisfies a combina-
tion of linear constraints between places, such as (p0+p1 = p2+2)∧(p1 6 p2) for
example. Another interesting feature of our approach is that we are able to re-
turn a “certificate of invariance”, in the form of an inductive linear invariant [26],
when we find that a constraint is true on all the reachable markings. To the best
of our knowledge, there is no other tool able to compute such certificates in the
general case.

Our approach is based on an extension of the Property Directed Reachability
(PDR) method, originally developed for hardware model-checking [8,9], to the
case of Petri nets. We actually define three variants of our algorithm—two of
them completely new when compared to our previous work [1]—that vary based
on the method used for generalizing possible witnesses and can handle problems
of increasing difficulty.

Reachability for Petri nets is an important and difficult problem with many
practical applications: obviously for the formal verification of concurrent sys-
tems, but also for the study of diverse types of protocols (such as biological or
business processes); the verification of software systems; the analysis of infinite

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 505–523, 2022.
https://doi.org/10.1007/978-3-030-99524-9_28

http://orcid.org/0000-0002-5969-7346
http://orcid.org/0000-0002-6002-2696
http://orcid.org/0000-0001-5226-8752
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_28

N. Amat et al.

state systems; etc. It is also a timely subject, as shown by recent publications on
this subject [7,15], but also with the recent progress made on settling its theoret-
ical complexity [12,13], which asserts that reachability is Ackermann-complete,
and therefore inherently more complex than, say, the coverability problem. A
practical consequence of this “inherent complexity”, and a general consensus, is
that we should not expect to find a one-size-fits-all algorithm that could be us-
able in practice. A better strategy is to try to improve the performances on some
cases—for example by developing new tools, or optimizations, that may perform
better on some examples—or try to improve “expressiveness”—by finding algo-
rithms that can manage new cases, that no other tool can handle.

This wisdom is illustrated by the current state of the art at the Model Check-
ing Contest (MCC) [3], a competition of model-checkers for Petri nets that in-
cludes an examination for the reachability problem. Albeit strongly oriented
towards the analysis of bounded nets. As a matter of fact, the top three tools
in recent competitions—ITS-Tools [30], LoLA [34], and Tapaal [14]—all rely
on a portfolio approach. Methods that have been proposed in this context in-
clude the use of symbolic techniques, such as k-induction [31]; abstraction re-
finement [10]; the use of standard optimizations with Petri nets, like stubborn
sets or structural reductions; the use of the “state equation”; reduction to integer
linear programming problems; etc.

The results obtained during the MCC highlight the very good performances
achieved when putting all these techniques together, on bounded nets, with a col-
lection of randomly generated properties. Another interesting feedback from the
MCC is that simulation techniques are very good at finding a counter-example
when a property is not an invariant [7,31].

In our work, we seek improvements in terms of both performance and ex-
pressiveness. We also target what we consider to be a difficult, and less studied
area of research: procedures that can be applied when a property is an invariant
and when the net is unbounded, or its state space cannot be fully explored. We
also focus on the verification of “genuine” reachability constraints, which are not
instances of a coverability problem. These properties are seldom studied in the
context of unbounded nets. Interestingly enough, our work provides a simple
explanation of why coverability problems are also “simpler” in the case of PDR;
what we will associate with the notion of monotonic formulas.

Concerning performances, we propose a method based on a well-tried sym-
bolic technique, PDR, that has proved successful with unbounded model-checking
and when used together with SMT solvers [11,22]. Concerning expressiveness,
we define a small benchmark of “difficult nets”: a set of synthetic examples,
representative of patterns that can make the reachability problem harder.

Outline and Contributions. We define background material on Petri nets
in Sect. 2, where we use Linear Integer Arithmetic (LIA) formulas to reason
about nets. Section 3 describes our decision method, based on PDR and SMT
solvers, for checking the satisfiability of linear invariants over the reachable states
of a Petri net. Our method builds sequences of incremental invariants using

506

PDR for Generalized Petri Nets

both a property that we want to disprove, and a stepwise approximation of
the reachability relation. It also relies on a generalization step where we can
abstract possible “bad states” into clauses that are propagated in order to find
a counter-example, or to block inconsistent states.

We describe a first generalization method, based on the upset of markings,
that is able to deal with coverability properties. We propose a new, dual variant
based on the concept of hurdles [21], that is without restrictions on the prop-
erties. In this method, the goal is to block bad sequences of transitions instead
of bad states. We show how this approach can be further improved by defin-
ing a notion of saturated transition sequence, at the cost of adding universal
quantification in our SMT problems.

We have implemented our approach in an open-source tool, called SMPT,
and compare it with other existing tools. In this context, one of our contributions
is the definition of a set of difficult nets, that characterizes classes of difficult
reachability problems.

2 Petri Nets and Linear Reachability Constraints

Let N denote the set of natural numbers and Z the set of integers. Assuming P
is a finite, totally ordered set {p1, . . . , pn}, we denote by NP the set of mappings
from P → N and we overload the addition, subtraction and comparison operators
(=,≥,≤) to act as their component-wise equivalent on mappings. A QF-LIA
formula F , with support in P , is a Boolean combination of atomic propositions
of the form α ∼ β, where ∼ is one of =,≤ or ≥ and α, β are linear expressions,
that is, linear combinations of elements in N∪P . We simply use the term linear
constraint to describe F .

A Petri net N is a tuple (P, T,pre,post) where P = {p1, . . . , pn} is a finite
set of places, T is a finite set of transitions (disjoint from P), and pre : T → NP

and post : T → NP are the pre- and post-condition functions (also called the
flow functions of N). A state m of a net, also called a marking, is a mapping of
NP . We say that the marking m assigns m(pi) tokens to place pi. A marked net
(N,m0) is a pair composed from a net and an initial marking m0.

A transition t ∈ T is enabled at marking m ∈ NP when m > pre(t). When
t is enabled at m, we can fire it and reach another marking m′ ∈ NP such that
m′ = m − pre(t) + post(t). We denote this transition m

t
−→m′. The difference

between m and m′ is a mapping ∆(t) = post(t)− pre(t) in Z
P , also called the

displacement of t.
By extension, we say that a firing sequence σ = t1 . . . tk ∈ T ∗ can be fired

from m, denoted m
σ
=⇒m′, if there exist markings m0, . . . ,mk such that m = m0,

m′ = mk and mi

ti+1

−−→mi+1 for all i < k. We can also simply write m →⋆ m′. In
this case, the displacement of σ is the mapping ∆(σ) = ∆(t1) + · · ·+∆(tk). We
denote by R(N,m0) the set of markings reachable from m0 in N . A marking m
is k-bounded when each place has at most k tokens. By extension, we say that
a marked Petri net (N,m0) is bounded when there is k such that all reachable
markings are k-bounded.

507

Fig. 1. Two examples of Petri nets: Parity (left) and PGCD (right).

While reachable states are computed by adding a linear combination of “dis-
placements” (vectors in ZP), the set R(N,m0) is not necessarily semilinear or,
equivalently, definable using Presburger arithmetic [20,26]. This is a consequence
of the constraint that transitions must be enabled before firing. But there is still
some structure to the set R(N,m0), like for instance the following monotonicity
constraint:

∀m ∈ N
P . m1

σ
=⇒m2 implies m1 +m

σ
=⇒m2 +m (H1)

We have other such results, such as with the notion of hurdle [21]. Just as
pre(t) is the smallest marking for which a given transition t is enabled, there is
a smallest marking at which a given firing sequence σ is fireable. This marking,
denoted by H(σ), has a simple inductive definition:

H(t) = pre(t) and H(σ1 · σ2) = max (H(σ1), H(σ2)−∆(σ1)) (H2)

Given this notion of hurdles, we obtain that m
σ
=⇒ m′ if and only if (1) the

sequence σ is enabled: m > H(σ), and (2) m′ = m+∆(σ). We use this result in
the second variant of our method.

We can go a step further and characterize a necessary and sufficient condition
for firing the sequence σ.σk, meaning firing the same sequence more than once.
Given ∆(σ), a place p with a negative displacement (say −d) means that we
“loose” d token each time we fire σ. Hence we should budget d tokens in p
for each new iteration. Therefore we have m

σ
=⇒

σ
k

=⇒m′ if and only if (1) m >
H(σ) + k · max(0,−∆(σ)), and (2) m′ = m + (k + 1) · ∆(σ). Equivalently, if
we denote by m+ the “positive” part of mapping m, such that m+(p) = 0 when
m(p) 6 0 and m+(p) = m(p) otherwise, we have:

H(σk+1) = max (H(σ), H(σ) − k ·∆(σ)) = H(σ) + k · (−∆(σ))
+

(H3)

Examples. We give two simple examples of unbounded nets in Fig. 1, which
are both part of our benchmark. Parity has a single place, hence its state space
can be interpreted as a subset of N: with an initial marking of 1, this is exactly
the set of odd numbers (and therefore state 0 is not reachable). We are in a
special case where the set R(N,m0) is semilinear. For instance, it can be seen
as solution to the constraint ∃k.(p = 2k + 1), or equivalently p ≡ 1 (mod 2).
But it cannot be expressed with a linear constraint involving only the variable

N. Amat et al.508

p without quantification or modulo arithmetic. This example can be handled by
most of the tools used in our experiments, e.g. with the help of k-induction.

In PGCD, transitions t0/t1 can decrement/increment the marking of p0 by 1.
Nonetheless, with this initial state, it is the case that the number of occurrences
of t0 is always less than the one of t1 in any feasible sequence σ. Hence the two
predicates p0 ≥ 2 and p2 ≥ p1 are valid invariants. (Since some tools do not
accept literals of the form p ≥ q, we added the “redundant” place p3 so we can
restate our second invariant as p3 ≥ 1.) These invariants cannot be proved by
reasoning only on the displacements of traces (using the state equation) and are
already out of reach for LoLA or Tapaal.

Linear Reachability Formulas. We can revisit the semantics of Petri nets
using linear predicates. In the following, we use p for the vector (p1, . . . , pn),
and F (p) for a formula with variables in P . We also simply use F (α) for the
substitution F{p1 ← α1} . . . {pn ← αn}, with α = (α1, . . . , αn) a sequence of
linear expressions. We say that a mapping m of NP is a model of F , denoted
m |= F , if the ground formula F (m) = F (m(p1), . . . ,m(pn)) is true. Hence
we can also interpret F as a predicate over markings. Finally, we define the
semantics of F as the set JF K = {m ∈ NP | m |= F}.

As usual, we say that a predicate F is valid, denoted |= F , when all its
interpretations are true (JF K = NP); and that F is unsatisfiable (or simply
unsat), denoted 2 F , when JF K = ∅.

We can define many properties on the markings of a net N using this frame-
work. For instance, we can model the set of markings m such that some transition
t is enabled using predicate ENBLt (see Equation (2) below). We can also define
a linear predicate to describe the relation between the markings before and after
some transition t fires. To this end, we use a vector p

′ of “primed variables”
(p′1, . . . , p

′
n), where p′

i
will stand for the marking of place pi after a transition

is fired. With this convention, formula FIREt(p,p
′) is such that FIREt(m,m′)

entails m
t
−→ m′ or m = m′ when t is enabled at m. With all these notations,

we can define a predicate T(p,p′) that “encodes” the effect of firing at most one
transition in the net N .

GEQm(p)
def
=

∧

i∈1..n (pi > m(pi)) (1)

ENBLt(p)
def
=

∧

i∈1..n (pi > pre(t)(pi)) = GEQ
H(t)(p) (2)

∆t(p,p
′)

def
=

∧

i∈1..n (p
′
i
= pi + post(t)(pi)− pre(t)(pi)) (3)

EQ(p,p′)
def
=

∧

i∈1..n (p
′
i
= pi) (4)

FIREt(p,p
′)

def
= EQ(p,p′) ∨ (ENBLt(p) ∧∆t(p,p

′)) (5)

T(p,p′)
def
= EQ(p,p′) ∨

∨

t∈T
(ENBLt(p) ∧∆t(p,p

′)) (6)

In our work, we focus on the verification of safety properties on the reachable
markings of a marked net (N,m0). Examples of properties that we want to check

PDR for Generalized Petri Nets 509

include: checking if some transition t is enabled (commonly known as quasi-
liveness); checking if there is a deadlock; checking whether some linear invariant
between place markings is true; . . . All properties that can be expressed using a
linear predicate.

Definition 1 (Linear Invariants and Inductive Predicates).
A linear predicate F is an invariant on (N,m0) if and only if we have m |= F
for all m ∈ R(N,m0). It is inductive if for all markings m we have m |= F and
m → m′ entails m′ |= F .

It is possible to characterize inductive predicates using our logical framework.
Indeed, F is inductive if and only if the QF-LIA formula (i) F (p) ∧ T (p,p′) ∧
¬F (p′) is unsat. Also, an inductive formula is an invariant when (ii) m0 |= F , or
equivalently |= F (m0). As a consequence, a sufficient condition for a predicate
F to be invariant is to have both conditions (i) and (ii); conditions that can
be checked using a SMT solver. Unfortunately, the predicates that we need to
check are often not inductive. In this case, the next best thing is to try to build
an inductive invariant, say R, such that JRK ⊆ JF K (or equivalently R ∧ ¬F
unsat). This predicate provides a certificate of invariance that can be checked
independently.

Lemma 1 (Certificate of Invariance). A sufficient condition for F to be
invariant on (N,m0) is to exhibit a linear predicate R that is (i) initial: R(m0)
valid; (ii) inductive: R(p) ∧ T (p,p′) ∧ ¬R(p) unsat; and (iii) that entails F ,
for instance: R ∧ ¬F unsat.

This result is in line with a property proved by Leroux [26], which states
that when a final configuration m is not reachable there must exist a Presburger
inductive invariant that contains m0 but does not contain m. This result does
not explain how to effectively compute such an invariant. Moreover, in our case,
we provide a method that works with general linear predicates, and not only
with single configurations. On the other side of the coin, given the known results
about the complexity of the problem, we do not expect our procedure to be
complete in the general case.

In the next section, we show how to (potentially) find such certificates using
an adaptation of the PDR method. An essential component of PDR is to abstract
a “scenario” leading to the model of some property F—say a transition m

σ
=⇒m′

with m′ |= F—into a predicate that contains m (and potentially many more
similar scenarios). More generally, a generalization of the trio (m,σ, F) is a
predicate G satisfied by m such that m1 |= G entails that there is m1 →⋆ m2

with m2 |= F .
We can use properties (H1)–(H3), defined earlier, to build generalizations.

Lemma 2 (Generalization). Assume we have a scenario such that m
σ
=⇒m′

and m′ |= F . We have three possible generalizations of the trio (m,σ, F).

(G1) If property F is monotonic, then m1 |= GEQ
m
(p) implies there is m2 > m′

such that m1
σ
=⇒m2 and m2 |= F .

N. Amat et al.510

(G2) If m1 |= GEQH(σ)(p) ∧ F (p+∆(σ)) then m1
σ
=⇒m2 and m2 |= F .

(G3) Assume a, b are mappings of NP such that a = H(σ) and b = (−∆(σ))+,
with the notations used in (H3). Then

m1 |= ∃k.

([
∧

i∈1..n(pi > a(i) + k · b(i))
]

∧F (p+ (k + 1) ·∆(σ))

)

implies

{

∃k.m1
σ
k+1

===⇒m2

and m2 |= F

Proof. Each property is a direct result of properties (H1) to (H3).

Property (G3) is the first and only instance of linear formula using an extra
variable, k, that is not in P . The result is still a linear formula though, since we
never need to use the product of two variables. This generalization is used when
we want to “saturate the sequence σ”. This is the only situation where we may
need to deal with quantified LIA formulas. Another solution would be to replace
each quantification with the use of modulo arithmetic, but this operation may
be costly and could greatly increase the size of our formulas. It would also not
cut down the complexity of the SMT problems.

3 Property Directed Reachability

Some symbolic model-checking procedure, such as BMC [6] or k-induction [28],
are a good fit when we try to find counter-examples on infinite-state systems.
Unfortunately, they may perform poorly when we want to check an invariant.
In this case, adaptations of the PDR method [8,9] (also known as IC3, for “In-
cremental Construction of Inductive Clauses for Indubitable Correctness”) have
proved successful.

We assume that we start with an initial state m0 satisfying a linear property,
I, and that we want to prove that property P is an invariant of the marked net
(N,m0). (We use blackboard bold symbols to distinguish between parameters
of the problem, and formulas that we build for solving it.) We define F = ¬P
as the “set of feared events”; such that P is not an invariant if we can find m
in R(N,m0) such that m |= F. To simplify the presentation, we assume that F

is a conjunction of literals (a cube), meaning that P is a clause. In practice, we
assume that F is in Disjunctive Normal Form.

PDR is a combination of induction, over-approximation, and SAT or SMT
solving. The goal is to build an incremental sequence of predicates F0, . . . , Fk

that are “inductive relative to stepwise approximations”: such that m |= Fi and
m → m′ entails m′ |= Fi+1, but not m′ |= F. The method stops when it finds a
counter-example, or when we find that one of the predicates Fi is inductive.

We adapt the PDR approach to Petri nets, using linear predicates and SMT
solvers for the QF-LIA and LIA logics in order to learn, generalize, and propagate
new clauses. The most innovative part of our approach is the use of specific
“generalization algorithms” that take advantage of the Petri nets theory, like the
use of hurdles for example. Our implementation follows closely the algorithm for
IC3 described in [9] and, for the sake of brevity, we only give the pseudo-code
for the four main functions.

PDR for Generalized Petri Nets 511

Function prove(I, F: linear predicates)

Result: ⊥ if F is reachable (P = ¬F is not an invariant), otherwise ⊤

1 if sat(I(p) ∧ T (p,p′) ∧ F(p′)) then

2 return ⊥

3 k ← 1, F0 ← I, F1 ← P

4 while ⊤ do

5 if not strengthen(k) then

6 return ⊥
7 propagateClauses(k)

8 if CL(Fi) = CL(Fi+1) for some 1 6 i 6 k then

9 return ⊤
10 k ← k + 1

The main function, prove, computes an Over Approximated Reachability Se-
quence (OARS) (F0, . . . , Fk) of linear predicates, called frames, with variables
in p. An OARS meets the following constraints: (1) it is monotonic: Fi ∧ ¬Fi+1

unsat for 0 6 i < k; (2) it contains the initial states: I ∧ ¬F0 unsat; (3) it
does not contain feared states: Fi ∧ F unsat for 0 6 i 6 k; and (4) it satisfies
consecution: Fi(p) ∧ T(p,p′) ∧ ¬Fi+1(p

′) unsat for 0 6 i < k.

By construction, each frame Fi in the OARS is defined as a set of clauses,
CL(Fi), meaning that Fi is built as a formula in CNF: Fi =

∧

cl∈CL(Fi)
cl . We

also enforce that CL(Fi+1) ⊆ CL(Fi) for 0 6 i < k, which means that the
monotonicity property between frames is trivially ensured.

The body of function prove contains a main iteration (line 4) that increases
the value of k (the number of levels of the OARS). At each step, we enter a
second, minor iteration (line 2 in function strengthen), where we generate new
minimal inductive clauses that will be propagated to all the frames. Hence both
the length of the OARS, and the set of clauses in its frames, increase during
computation. The procedure stops when we find an index i such that Fi = Fi+1.
In this case we know that Fi is an inductive invariant satisfying P. We can also
stop during the iteration if we find a counter-example (a model m of F). In this
case, we can also return a trace leading to m.

When we start the first minor iteration, we have k = 1, F0 = I and F1 = P.
If we have Fk(p)∧T (p,p′)∧F(p) unsat, it means that P is inductive, so we can
stop and return that P is an invariant. Otherwise, we proceed with the strengthen
phase, where each model of Fk(p)∧T (p,p′)∧F(p) becomes a potential counter-
example, or witness, that we need to “block” (line 3–5 of function strengthen).

Instead of blocking only one witness, we first generalize it into a predicate
that abstracts similar dangerous states (see the call to generalizeWitness).
This is done by applying one of the three generalization results in Lemma 2. We
give more details about this step later. By construction, each generalization is a
cube s (a conjunction of literals). Hence, when we block it, we learn new clauses
from ¬s that can be propagated to the previous frames.

N. Amat et al.512

Function strengthen(k : current level)

1 try:

2 while (m
t
−→m′) |= Fk(p) ∧ T (p,p′) ∧ F(p′) do

3 s ← generalizeWitness(m, t, F)
4 n ← inductivelyGeneralize(s, k - 2, k)
5 pushGeneralization({(s, n+1)}, k)

6 return ⊤

7 catch counter example:
8 return ⊥

Function inductivelyGeneralize(s : cube, min: level, k: level)

1 if min < 0 and sat(F0(p) ∧ T (p,p′) ∧ s(p′)) then

2 raise Counterexample

3 for i ← max(1, min+ 1) to k do

4 if sat(Fi(p) ∧ T (p,p′) ∧ ¬s(p) ∧ s(p′)) then

5 generateClause(s, i-1, k)
6 return i− 1

7 generateClause(s, k, k)
8 return k

Before pushing a new clause, we test whether s is reachable from previous
frames. We take advantage of this opportunity to find if we have a counter-
example and, if not, to learn new clauses in the process. This is the role of
functions pushGeneralization and inductivelyGeneralize.

We find a counter example (in the call to inductivelyGeneralize) if the
generalization from a witness found at level k, say s, reaches level 0 and F0(p)∧
T (p,p′) ∧ s(p′) is satisfiable (line 1 in inductivelyGeneralize). Indeed, it
means that we can build a trace from I to F by going through F1, . . . , Fk.

The method relies heavily on checking the satisfiability of linear formulas in
QF-LIA, which is achieved with a call to a SMT solver. In each function call, we
need to test if predicates of the form Fi∧T ∧G are unsat and, if not, enumerate
its models. To accelerate the strengthening of frames, we also rely on the unsat
core of properties in order to compute a minimal inductive clause (MIC).

Our approach is parametrized by a generalization function (generalizeWit-
ness) that is crucial if we want to avoid enumerating a large, potentially un-
bounded, set of witnesses. This can be the case, for example, in line 5 of pushGe-
neralization. In this particular case, we find a state m at level n (because
m |= Fn), and a transition t that leads to a problematic clause in Fn+1. There-
fore we have a sequence σ of size k − n+ 1 such that m

σ
=⇒m′ and m′ |= F. We

consider three possible methods for generalizing the trio (m,σ,F), that corre-
sponds to property (G1)–(G3) in Lemma 2.

PDR for Generalized Petri Nets 513

Function pushGeneralization(states: set of (state, level), k: level)

1 while ⊤ do

2 (s, n) ← from states minimizing n

3 if n > k then

4 return

5 if (m
t
−→m′) |= Fn(p) ∧ T (p,p′) ∧ s(p′) then

6 p ← generalizeWitness(m, t, s)
7 l ← inductivelyGeneralize(p, n - 2, k)
8 states ← states∪ {(p, l + 1)}

9 else

10 l ← inductivelyGeneralize(s, n, k)
11 states ← states \ {(s, n)} ∪ {(s, l + 1)}

State-based Generalization. A special case of the reachability problem is
when the predicate F is monotonic„ meaning that m1 |= F entails m1 +m2 |= F

for all markings m1,m2. A sufficient (syntactic) condition is for F to be a positive
formula with literals of the form

∑

i∈I
pi ≥ a. This class of predicates coincide

with what is called a coverability property, for which there exists specialized
verification methods (see e.g. [18,19]).

By property (G1), If we have to block a witness m such that m
σ
=⇒ m′ and

m′ |= F, we can as well block all the states greater than m. Hence we can
choose the predicate GEQm to generalize m. This is a very convenient case for
verification and one of the optimizations used in previous works on PDR for
Petri nets [1,16,23,24]. First, the generalization is very simple and we can easily
compute a MIC when we block predicate GEQ

m
in a frame. Also, we can prove

the completeness of the procedure when F is monotonic. An intuition is that it
is enough, in this case, to check the property on the minimal coverability set
of the net, which is always finite [18]. The procedure is also complete for finite
transition systems. These are the only cases where we have been able to prove
that our method always terminates.

Transition-based Generalization. We propose a new generalization based
on the notion of hurdles. This approach can be used when F is not monotonic,
for example when we want to check an invariant that contains literals of the
form p = k (e.g. the reachability of a fixed marking) or p > q.

Assume we need to block a witness of the from m
σ
=⇒m′ |= s. Typically, s is a

cube in F, or a state resulting from a call to pushGeneralization. By property
(G2), we can as well block all the states satisfying Gσ(p)

def
= GEQH(σ)(p)∧ s(p+

∆(σ)). This generalization is interesting when property s does not constraint all
the places, or when we have few equality constraints. In this case Gσ may have
an infinite number of models. It should be noted that using the duality between
“feasible traces” and hurdles is not new. For example, it was used recently [19]
to accelerate the computation of coverability trees. Nonetheless, to the best of

N. Amat et al.514

our knowledge, this is the first time that this generalization method has been
used with PDR.

Saturated Transition-based Generalization. We still assume that we start
from a witness m

σ
=⇒m′ |= s. Our last method relies on property (G3) and allows

us to consider several iterations of σ. If we fix the value of k, then a possible
generalization is Gk

σ

def
=
(
∧

i∈1..n(pi > a(i) + k · b(i))
)

∧s(p+(k+1) ·∆(σ)), where
a, b are the mappings of NP defined in Lemma 2. (Notice that G1

σ
= Gσ.) More

generally the predicate G6k
σ

= G1
σ
∨ · · · ∨ Gk

σ
is a valid generalization for the

witness (m,σ, s), in the sense that if m1 |= G6k
σ then there is a trace m1 →⋆ m2

such that m2 |= s. At the cost of using existential quantification (and therefore
a “top-level” universal quantification when we negate the predicate to block it
in a frame), we can use the more general predicate G⋆

σ

def
= ∃k.Gk

σ, which is still
linear and has its support in P .

We know examples of invariants where the PDR method does not terminate
except when using saturation. A simple example is the net Parity, used as an
example in Sect. 2, with the invariant P = (p > 1). In this case, F = ¬P = (p =
0). Hence we are looking for witnesses such that m →⋆ 0. The simplest example
is 2

t2−→ 0, which corresponds to the “blocking clause” p 6= 2. In this case, we
have H(t2) = 2 and ∆(t2) = −2. Hence the transition-based generalization is
(p ≥ 2) ∧ (p − 2 = 0) ≡ (p = 2), which does not block new markings. At this
point, we try to block (p = 0) ∨ (p = 2). The following minor iteration of our
method will consider the witness 4

t2.t2===⇒ 0, etc. Hence after k minor iterations,
we have Fk ≡ (p 6= 0)∧ (p 6= 2)∧ · · · ∧ (p 6= 2k). If we saturate t2, we find in one
step that we should block ∃k.(p− 2 · (k + 1) = 0). This is enough to prove that
(p > 1) is an invariant as soon as the initial marking is an odd number.

This example proves that PDR is not complete, without saturation, in the
general case. We conjecture that it is also the case with saturation. Even though
example Parity is extremely simple, it is also enough to demonstrate the limit
of our method without saturation. Indeed, when we only allow unquantified
linear predicates with variables in P , it is not possible to express all the possible
semilinear sets in NP . (We typically miss some periodic sets.) In practice, it is not
always useful to saturate a trace and, in our implementation, we use heuristics
to limit the number of quantifications introduced by this operation. Actually,
nothing prevents us from mixing our different kinds of generalization together,
and there is still much work to be done in order to find good tactics in this case.

4 Experimental Results

We have implemented our complete approach in a tool, called SMPT (for Satis-
fiability Modulo P/T Nets), and made our code freely available under the GPLv3
license. The software, scripts and data used to perform our analyses are available
on Github (htttps://github.com/nicolasAmat/SMPT) and are archived in Zen-
odo [2]. The tool supports the declaration of reachability constraints expressed

PDR for Generalized Petri Nets 515

htttps://github.com/nicolasAmat/SMPT

Instance SMPT ITS-Tools LoLA Tapaal

Murphy 0.75
∗ TLE TLE TLE

PGCD 0.11
∗ 139.08 TLE TLE

CryptoMiner 0.19 ∗ 5.92 TLE 0.18

Parity 0.40 ∗ 3.36 0.01 4.16
Process 83.39 TLE 0.03 0.18

Table 1. Computation time on our synthetic examples (time in seconds).

using the same syntax as in the Reachability examinations of the Model Check-
ing Contest (MCC). For instance, we use PNML as the input format for nets.
SMPT relies on a SMT solver to answer sat and unsat-core queries. It inter-
acts with SMT solvers using the SMT-LIBv2 format, which is a well-supported
interchange format. We used the z3 solver for all the results presented in this
section.

Evaluation on Expressiveness. It is difficult to find benchmarks with un-
bounded Petri nets. To quote Blondin et al. [7], “due to the lack of tools handling
reachability for unbounded state spaces, benchmarks arising in the literature are
primarily coverability instances”. It is also very difficult to randomly generate a
true invariant that does not follow, in an obvious way, from the state equation.
For this reason, we decided to propose our own benchmark, made of five syn-
thetic examples of nets, each with a given invariant. This benchmark is freely
available and presented as an archive similar to instances of problems used in
the MCC.

Our benchmark is made of deceptively simple nets that have been engineered
to be difficult or impossible to check with current techniques. Our two first ex-
amples are displayed in Fig. 1. We give another example in Fig. 2. Each example
is quite small, with less than 10 places or transitions, and is representative of
patterns that can make the reachability problem harder: the use of self-loops;
dead transitions that cannot be detected with the state equation; weights that
are relatively prime; etc.

We compared SMPT against ITS-Tools, LoLA, and Tapaal and give our
results in Table 1. All results are computed using 4 cores, a limit of 16GB of
RAM, and a timeout of 1 h. A result of TLE stands for “Time Limit Exceeded”.
For SMPT, we marked with an asterisk (∗) the results computed using our
saturation-based generalization. Our results show that SMPT is able to answer
on several classes of examples that are out of reach for some, or all the other
tools; often by orders of magnitude.

Computing Certificate of Invariance. A distinctive feature of SMPT is the
ability to output a linear inductive invariant for reachability problems: when we
find that P is invariant, we are also able to output an inductive formula C, of

N. Amat et al.516

Fig. 2. Example Murphy, with invariant P = (p1 6 2 ∧ p4 > p5).

the form P ∧G, that can be checked independently with a SMT solver. We can
find the same capability in the tool Petrinizer [16] in the case of coverability
properties.

To get a better sense of this feature, we give the actual outputs computed with
SMPT on the two nets of Fig. 1. The invariant for the net Parity is P1 = (p0 > 1),
and for PGCD it is P2 = (p1 6 p2)

The certificate for property P1 on Parity is C1 ≡ (p0 > 1) ∧ ∀k.((p0 <
2 k + 2) ∨ (p0 > 2 k + 3)), which is equivalent to (p0 > 1) ∧ (∀k > 1).(p0 6= 2.k),
meaning the marking of p0 is odd. This invariant would be different if we changed
the initial marking to an even number.

[PDR] Certificate of invariance

(not (p0 < 1))

(forall (k1) ((p0 < (2 + (k1 * 2))) or (p0 + (-2 * (k1 + 1))) >= 1))

The certificate for property P2 on PGCD is C2 ≡ (p1 6 p2) ∧ ∀k.((p0 <
k+ 3)∨ (p2 − p1 > k + 1)) and may seem quite inscrutable. It happens actually
that the saturation “learned” the invariant p0 + p1 = p2 + 2 and was able to use
this information to strengthen property P2 into an inductive invariant.

[PDR] Certificate of invariance

(not (p1 > p2))

(forall (k1) ((p0 < (3 + (k1 * 1))) or ((p1 + (1 * (k1 + 1))) <= p2))

Evaluation on Performance. Since it is not sufficient to use only a small
number of hand-picked examples to check the performance of a tool, we also
provide results obtained on a set of 30 problems (a net together with an invariant)
that are borrowed from test cases used by the tool Sara [32,33] and a similar
software, called Reach, that is part of the Tina toolbox [5]. Most of these
problems can be easily answered, but are interesting to test our reliability on a
relatively even-handed benchmark.

The experiments were performed with the same conditions as previously. We
display our results in the chart of Fig. 3, which gives the number of feasible
problems, for each tool, when we change the timeout value. We observe that

PDR for Generalized Petri Nets 517

Fig. 3. Minimal timeout to compute a given number of queries.

our performances are on par with Tapaal, which is the fastest among our three
reference tools on this benchmark.

Our tool is actually quite mature. In particular, a preliminary version of
SMPT [1] (without many of the improvements described in this work) partic-
ipated in the 2021 edition of the MCC, where we ranked fourth, out of five
competitors, and achieved a reliability in excess of 99.9%. Even if it was with
a previous version of our tool, there are still lessons to be learned from these
results. In particular, it can inform us on the behavior of SMPT on a very
large and diverse benchmark of bounded nets, with a majority of reachability
properties that are not invariants.

We can compare our results with those of LoLA, that fared consistently well
in the reachability category of the MCC. LoLA is geared towards model checking
of finite state spaces, but it also implements semi-decision procedures for the
unbounded case. Out of 45 152 reachability queries at the MCC in 2021 (one
instance of a net with one formula), LoLA was able to solve 85% of them (38 175
instances) and SMPT only 52% (23 375 instances); it means approximately ×1.6
more instances solved using LoLA than using SMPT. Most of the instances
solved with SMPT have also been solved by LoLA; but still 1 631 instances are
computed only with our tool, meaning we potentially increase the number of
computed queries by 4%. This is quite an honorable result for SMPT, especially
when we consider the fact that we use a single technique, with only a limited
number of optimizations.

5 Conclusion and Related Works

One of the most important results in concurrency theory is the decidability of
reachability for Petri nets or, equivalently, for Vector Addition Systems with

N. Amat et al.518

States (VASS) [25]. Even if this result is based on a constructive proof, and
its “construction” streamlined over time [26], the classical Kosaraju-Lambert-
Mayr-Sacerdote-Tenney approach does not lead to a workable algorithm. It is
in fact a feat that this algorithm has been implemented at all, see e.g. the tool
KReach [15]. While the (very high) complexity of the problem means that no
single algorithm could work efficiently on all inputs, it does not prevent the
existence of methods that work well on some classes of problems. For example,
several algorithms are tailored for the discovery of counter-examples. We mention
the tool FastForward [7] in our experiments, that explicitly targets the case
of unbounded nets.

We propose a method that works as well on bounded as on unbounded ones;
that behaves well when the invariant is true; and that works with “genuine”
reachability properties, and not only with coverability. But there is of course no
panacea. Our approach relies on the use of linear predicates, which are incremen-
tally strengthened until we find an invariant based on: the transition relation of
the net; the property we want to prove (it is “property-directed”); and constraints
on the initial states. This is in line with a property proved by Leroux [26], which
states that when a final configuration is not reachable then “there exist check-
able certificates of non-reachability in the Presburger arithmetic.” Our extension
of PDR provides a constructive method for computing such certificates, when
it terminates. For our future works, we would like to study more precisely the
completeness of our approach and/or its limits.

This is not something new. There are many tools that rely on the use of in-
teger programming techniques to check reachability properties. We can mention
the tool Sara [33], that is now integrated inside LoLA and can answer reach-
ability problems on unbounded nets; or libraries like Fast [4], designed for the
analysis of systems manipulating unbounded integer variables. An advantage of
our method is that we proceed in a lazy way. We never explicitly compute the
structural invariants of a net, never switch between a Presburger formula and
its representation as a semilinear set (useful when one wants to compute the
“Kleene closure” of a linear constraint), . . . and instead let a SMT solver work
its magic.

We can also mention previous works on adapting PDR/IC3 to Petri nets.
A first implementation of SMPT was presented in [1], where we focused on the
integration of structural reductions with PDR. This work did not use our abstrac-
tion methods based on hurdles and saturation, which are new. We can find other
related works, such as [16,23,24]. Nonetheless they all focus on coverability prop-
erties. Coverability is not only a subclass of the general reachability problem, it
has a far simpler theoretical complexity (EXPSPACE vs NONELEMENTARY).
It is also not expressive enough for checking the absence of deadlocks or for
complex invariants, for instance involving a comparison between the marking
of two places, such as p < q. The idea we advocate is that approaches based
on the generalization of markings are not enough. This is why we believe that
abstractions (G2) and (G3) defined in Lemma 2 are noteworthy.

PDR for Generalized Petri Nets 519

We can also compare our approach with tools oriented to the verification of
bounded Petri nets; since many of them integrate methods and semi-decision
procedures that can work in the unbounded case. The best performing tools in
this category are based on a portfolio approach and mix different methods. We
compared ourselves with three tools: ITS-Tools [30], Tapaal [14] and LoLA

[34], that have in common to be the top trio in the Model Checking Contest [3].
(And can therefore accept a common syntax to describe nets and properties.)
Our main contribution in this context, and one of our most complex results, is
to provide a new benchmark of nets and properties that can be used to evaluate
future reachability algorithms “for expressiveness”.

The methods closest to ours in these portfolios are Bounded Model Check-
ing and k-induction [28], which are also based on the use of SMT solvers.
We can mention the case of ITS-Tools [31], that can build a symbolic over-
approximation of the state space, represented as set of constraints. This ap-
proximation is enough when it is included in the invariant that we check, but
inconclusive otherwise. A subtle and important difference between PDR and
these methods is that PDR needs only 2n variables (the p and p

′), whereas we
need n fresh variables at each new iteration of k-induction (so kn variables in
total). This contributes to the good performances of PDR since the complexity
of the SMT problems are in part relative to the number of variables involved.
Another example of over-approximation is the use of the so-called “state equation
method” [27], that can strengthen the computations of inductive invariants by
adding extra constraints, such as place invariants [29], siphons and traps [16,17],
causality constraints, etc. We plan to exploit similar constraints in SMPT to
better refine our invariants.

To conclude, our experiments confirm what we already knew: we always ben-
efit from using a more diverse set of techniques, and are still in need of new tech-
niques, able to handle new classes of problems. For instance, we can attribute the
good results of Tapaal, in our experiments, to their implementation of a Trace
Abstraction Refinement (TAR) techniques, guided by counter-examples [10]. The
same can be said with LoLA, that also uses a CEGAR-like method [33]. We be-
lieve that our approach could be a useful addition to these techniques.

Acknowledgements. We would like to thank Alex Dixon, Philip Offtermatt
and Yann Thierry-Mieg for their support when evaluating their respective tools.
Their assistance was essential in improving the quality of our experiments.

References

1. Amat, N., Berthomieu, B., Dal Zilio, S.: On the combination of polyhedral abstrac-
tion and SMT-based model checking for Petri nets. In: International Conference
on Application and Theory of Petri Nets and Concurrency (Petri Nets). LNCS,
vol. 12734. Springer (2021). https://doi.org/10.1007/978-3-030-76983-3_9

2. Amat, N., Dal Zilio, S., Hujsa, T.: SMPT (2022).
https://doi.org/10.5281/zenodo.5863379

N. Amat et al.520

https://doi.org/10.1007/978-3-030-76983-3_9
https://doi.org/10.5281/zenodo.5863379

3. Amparore, E., Berthomieu, B., Ciardo, G., Dal Zilio, S., Gallà, F., Hillah, L.M.,
Hulin-Hubard, F., Jensen, P.G., Jezequel, L., Kordon, F., Le Botlan, D., Liebke,
T., Meijer, J., Miner, A., Paviot-Adet, E., Srba, J., Thierry-Mieg, Y., van Dijk, T.,
Wolf, K.: Presentation of the 9th edition of the model checking contest. In: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). Springer
(2019). https://doi.org/10.1007/978-3-662-58381-4_9

4. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: acceleration from theory to
practice. International Journal on Software Tools for Technology Transfer 10(5)
(2008). https://doi.org/10.1007/s10009-008-0064-3

5. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA–construction of abstract
state spaces for Petri nets and time Petri nets. International journal of production
research 42(14) (2004)

6. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). LNCS, Springer (1999). https://doi.org/10.1007/3-540-49059-0_14

7. Blondin, M., Haase, C., Offtermatt, P.: Directed reachability for infinite-state sys-
tems. In: Tools and Algorithms for the Construction and Analysis of Systems.
LNCS, Springer (2021). https://doi.org/10.1007/978-3-030-72013-1_1

8. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: Verification,
Model Checking, and Abstract Interpretation (VMCAI), LNCS, vol. 6538. Springer
(2011). https://doi.org/10.1007/978-3-642-18275-4_7

9. Bradley, A.R.: Understanding IC3. In: Theory and Applications
of Satisfiability Testing (SAT), LNCS, vol. 7317. Springer (2012).
https://doi.org/10.1007/978-3-642-31612-8_1

10. Cassez, F., Jensen, P.G., Larsen, K.G.: Refinement of trace abstraction for real-
time programs. In: International Workshop on Reachability Problems. Springer
(2017). https://doi.org/10.1007/978-3-319-67089-8_4

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via
implicit predicate abstraction. In: International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer (2014).
https://doi.org/10.1007/978-3-642-54862-8_4

12. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., Mazowiecki, F.: The reachability
problem for Petri nets is not elementary. Journal of the ACM (JACM) 68(1) (2020).
https://doi.org/10.1016/0304-3975(79)90041-0

13. Czerwinski, W., Orlikowski, L.: Reachability in vector addition
systems is Ackermann-complete. CoRR abs/2104.13866 (2021),
https://arxiv.org/abs/2104.13866

14. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: Integrated development environment for timed-arc Petri nets. In:
Tools and Algorithms for the Construction and Analysis of Systems. Springer
(2012). https://doi.org/10.1007/978-3-642-28756-5_36

15. Dixon, A., Lazić, R.: Kreach: A tool for reachability in Petri nets. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol.
12078. Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_22

16. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
Based Approach to Coverability Analysis. In: Computer Aided Verification (CAV).
LNCS (2014). https://doi.org/10.1007/978-3-319-08867-9_40

17. Esparza, J., Melzer, S.: Verification of safety properties using integer programming:
Beyond the state equation (2000). https://doi.org/10.1023/A:1008743212620

PDR for Generalized Petri Nets 521

https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-319-67089-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1016/0304-3975(79)90041-0
https://arxiv.org/abs/2104.13866
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1023/A:1008743212620

18. Finkel, A.: The minimal coverability graph for Petri nets. In: Interna-
tional Conference on Application and Theory of Petri Nets. Springer (1991).
https://doi.org/10.1007/3-540-56689-9_45

19. Finkel, A., Haddad, S., Khmelnitsky, I.: Commodification of accelerations for
the Karp and Miller construction. Discret. Event Dyn. Syst. 31(2) (2021).
https://doi.org/10.1007/s10626-020-00331-z

20. Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas, and languages. Pacific
journal of Mathematics 16(2) (1966). https://doi.org/10.2140/pjm.1966.16.285

21. Hack, M.H.T.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts
Institute of Technology (1976)

22. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: International
Conference on Theory and Applications of Satisfiability Testing (SAT). Springer
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

23. Kang, J., Bai, Y., Jiao, L.: Abstraction-based incremental inductive cover-
ability for Petri nets. In: International Conference on Applications and The-
ory of Petri Nets and Concurrency. LNCS, vol. 12734. Springer (2021).
https://doi.org/10.1007/978-3-030-76983-3_19

24. Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, induc-
tive coverability. In: Computer Aided Verification (CAV). Springer (2013).
https://doi.org/10.1007/978-3-642-39799-8_10

25. Kosaraju, S.R.: Decidability of reachability in vector addition systems. In: Pro-
ceedings of the Fourteenth Annual ACM Symposium on Theory of Computing.
ACM (1982). https://doi.org/10.1145/800070.802201

26. Leroux, J.: The general vector addition system reachability problem by Presburger
inductive invariants. In: 2009 24th Annual IEEE Symposium on Logic In Computer
Science. IEEE (2009). https://doi.org/10.1109/LICS.2009.10

27. Murata, T.: State equation, controllability, and maximal matchings of
petri nets. IEEE Transactions on Automatic Control 22(3) (1977).
https://doi.org/10.1109/TAC.1977.1101509

28. Sheeran, M., Singh, S., Stålmarck, G.: Checking Safety Properties Using Induc-
tion and a SAT-Solver. In: Formal Methods in Computer-Aided Design. LNCS,
Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-40922-X_8

29. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Advanced Course on
Petri Nets. Springer (1998). https://doi.org/10.1007/3-540-65306-6_19

30. Thierry-Mieg, Y.: Symbolic Model-Checking Using ITS-Tools. In: Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). Springer (2015).
https://doi.org/10.1007/978-3-662-46681-0_20

31. Thierry-Mieg, Y.: Structural reductions revisited. In: Application and The-
ory of Petri Nets and Concurrency. LNCS, vol. 12152. Springer (2020).
https://doi.org/10.1007/978-3-030-51831-8_15

32. Wimmel, H.: Sara: Structures for automated reachability analysis (2013),
https://github.com/nlohmann/service-technology.org/tree/master/sara

33. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net
state equation. Logical Methods in Computer Science 8 (2012).
https://doi.org/10.2168/LMCS-8(3:27)2012

34. Wolf, K.: Petri net model checking with LoLA 2. In: Applica-
tion and Theory of Petri Nets and Concurrency. Springer (2018).
https://doi.org/10.1007/978-3-319-91268-4_18

N. Amat et al.522

https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/s10626-020-00331-z
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-030-76983-3_19
https://doi.org/10.1007/978-3-642-39799-8_10
https://doi.org/10.1145/800070.802201
https://doi.org/10.1109/LICS.2009.10
https://doi.org/10.1109/TAC.1977.1101509
https://doi.org/10.1007/3-540-40922-X_8
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-030-51831-8_15
https://github.com/nlohmann/service-technology.org/tree/master/sara
https://doi.org/10.2168/LMCS-8(3:27)2012
https://doi.org/10.1007/978-3-319-91268-4_18

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

PDR for Generalized Petri Nets 523

http://creativecommons.org/licenses/by/4.0/

Transition Power Abstractions for Deep
Counterexample Detection?

Martin Blicha1,3(�) , Grigory Fedyukovich2 , Antti E.J. Hyvärinen1 , and
Natasha Sharygina1

1 Università della Svizzera italiana, Lugano, Switzerland, first.last@usi.ch
2 Florida State University, Tallahassee, FL, USA, grigory@cs.fsu.edu

3 Charles University, Prague, Czech Republic

Abstract. While model checking safety of infinite-state systems by in-
ferring state invariants has steadily improved recently, most verification
tools still rely on a technique based on bounded model checking to detect
safety violations. In particular, the current techniques typically analyze
executions by unfolding transitions one step at a time, and the slow
growth of execution length prevents detection of deep counterexamples
before the tool reaches its limits on computations. We propose a novel
model-checking algorithm that is capable of both proving unbounded
safety and finding long counterexamples. The idea is to use Craig inter-
polation to guide the creation of symbolic abstractions of exponentially
longer sequences of transitions. Our experimental analysis shows that on
unsafe benchmarks with deep counterexamples our implementation can
detect faulty executions that are at least an order of magnitude longer
than those detectable by the state-of-the-art tools.

Keywords: Model checking · Transition systems · Craig interpolation ·
Model-based projection.

1 Introduction

Model checking [17] is a very successful technique widely used for formal ver-
ification of hardware and software. While its ultimate goal is to prove safety,
the ability to discover and report counterexamples primarily contributes to its
industrial success. The algorithm that paved the way for the adaptation in the
industry, bounded model checking (BMC) [9], still remains one of the most suc-
cessful techniques today for detecting counterexamples. A typical BMC algorithm
searches for counterexamples reachable in a finite number of steps, and if nothing
is found, it increases the search limits and restarts. This philosophy has been
largely adopted by most modern model-checking algorithms based on reachability

? The first author is partially funded by the project 20-07487S of the Czech Science
Foundation. The first, third, and forth authors are partially funded by the Swiss
National Science Foundation project 200021 185031. The second author is partially
funded by the gift from Amazon Web Services.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 524–542, 2022.
https://doi.org/10.1007/978-3-030-99524-9_29

http://orcid.org/0000-0001-8140-4098
http://orcid.org/0000-0003-1727-4043
http://orcid.org/0000-0001-6672-5109
http://orcid.org/0000-0002-8872-4913
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_29

analysis as one of the advantages of this approach is that it finds the shortest
counterexample (if one exists). However, it also results in scalability issues. Specif-
ically, in modern software systems, it is not uncommon that a program must
iterate through a certain loop thousands of times (or more) before it reaches some
error state. These deep counterexamples pose problems for reachability-based
algorithms that rely on unrolling the bounds of the system’s transition relation
one transition at a time.

An important class of loops present in software systems are multi-phase
loops [44]. A multi-phase loop, in short, is a loop with a conditional (branch) in
its body such that the conditional exhibits a fixed number of phase transitions
during the execution of the loop. A phase is a sequence of iterations during which
the conditional has the same value. Multi-phase loops are notoriously challenging
to analyze. When they are safe, they typically require disjunctive invariants. On
the other hand, an unsafe multi-phase loop may admit only deep counterexamples
if only later phases reveal the unsafe behavior.

In this paper we present a novel model-checking algorithm that is able to
find counterexamples of much greater depth than state-of-the-art algorithms.
At the same time, it is able to prove system safe under certain conditions and
is competitive also on a general set of benchmarks. We build upon the large
body of work on SMT-based model checking [1,3,4,8,14,15,25,28,30,37,38] and
use Craig interpolation [18,35] for computing abstractions. However, we shift the
focus from state abstractions—which is the widespread approach—to transition
abstractions [40].

Our algorithm works on transition systems and it builds a sequence of ab-
stract relations that gradually summarize (in an over-approximating way) an
increasing number of steps of the transition relation. One important feature
is that the summarized number of steps increases exponentially, not linearly.
Another important feature is that all the abstract relations are expressed only
over state and next-state variables, i.e., they do not require multiple copies of
state variables to capture multiple steps of the transition relation. This sequence
of abstract relations is used to refute the existence of bounded reachability paths
in the system. If existence of a path cannot be refuted in the current abstraction,
either the abstraction is strengthened to refute such path, or the path is shown to
be real. The precise mechanics of building and refining the sequence of abstract
relations are explained in Section 4. Our experiments demonstrate that our
algorithm improves the ability to detect deep counterexamples in the multi-phase
loop programs up to two orders of magnitude compared to the state-of-the-art.
Furthermore, it enables the detection of bugs left undiscovered by the other tools.

The main contributions of the paper are the following:

– A novel model-checking algorithm for safety properties of transition system
based on a sequence of relations over-approximating exponentially increasing
number of steps of transition relation.

– Proof of correctness of the algorithm and its termination for unsafe systems.

Transition Power Abstractions for Deep Counterexample Detection 525

– Implementation and experimental evaluation of the proposed algorithm dem-
onstrating its capabilities of finding deep counterexamples in challenging
benchmarks containing multi-phase loops.

The rest of the paper is organized as follows. The necessary background is
given in Section 2, and a motivating example is given in Section 3. Section 4
describes our novel algorithm, and Section 5 presents the experimental results.
We discuss the related work in Section 6 and conclude in Section 7.

2 Background

Safety problem We work with a standard symbolic representation of transition
systems using the language of first-order logic. Given a set of variables X, we
denote as X ′ the primed copy of X, i.e., X ′ = {x′ | x ∈ X}. X is a set of state
variables and X ′ is a set of next-state variables. The formulas are interpreted
with respect to some background theory T ; in our examples and benchmarks we
work with the theory of linear real or integer arithmetic (LRA and LIA in the
terminology of satisfiability modulo theories (SMT) [6,7]). We say that a formula
in the language of T over X is a state formula and a formula over X ∪X ′ is a
transition formula. We identify state formulas with a set of states where they
hold and we freely move between these two representations. Similarly, we identify
transition formulas with binary relations over the set of states. The identity
relation Id(x, x′) corresponds to the transition formula x = x′.

Transition system is a pair 〈Init ,Tr〉 where Init is a state formula representing
the initial states of the system and Tr is a transition formula representing the
transition relation of the system. A safety problem is a triple 〈Init ,Tr ,Bad〉
where 〈Init ,Tr〉 is a transition system and Bad is a state formula representing
bad states.

When we only need to distinguish state and next-state variables, but not the
individual state variables, for simplicity we only use the lower-case x, x′ and not
X,X ′. These can be viewed as variables representing tuples. We also often need
to refer to next-next-state variables, which we denote as x′′.

We use ◦ to represent concatenation of relations. For example, given two
relations R1(x, y) and R2(y, z) then R = R1 ◦ R2 is a relation over x, z such
that R(x, z) ⇐⇒ ∃y : R1(x, y) and R2(y, z). In transition systems we can
define relations that represent multiple steps of a transition relation. For example
Tr2(x, x′′) ≡ Tr(x, x′) ◦ Tr(x′, x′′) relates pair of states (s, t) such that t is
reachable from s in exactly two steps of the transition relation Tr . We also write
that (s, t) ∈ Tr2. Existence of a counterexample (a path from some initial to
some bad state) of a fixed length l can be encoded as a satisfiability check of
formula

Init(x(0)) ∧ Tr(x(0), x(1)) ∧ Tr(x(1), x(2)) ∧ . . . ∧ Tr(x(l−1), x(l)) ∧ Bad(x(l)),

where x(i) is a state variable shifted i steps, “with i primes”. A satisfying
assignment determines l + 1 states such that the first one is an initial state, the

526 M. Blicha et al.

last one is a bad state, and each successor can be reached from its predecessor by
one step of the transition relation Tr . If there is no satisfying assignment then
no path of l steps from Init to Bad exists.

Craig interpolation [18] Given an unsatisfiable formula A ∧ B, an interpolant
I is a formula over the shared symbols of A and B such that A =⇒ I and
I ∧B is unsatisfiable. We denote as Itp(A,B) an interpolation procedure that
computes an interpolant for unsatisfiable A∧B. Various interpolation procedures
exist, for propositional logic [31,42,34,19] as well as for different first-order
theories [36,16,2,11].

3 Motivating example

Throughout the paper we demonstrate our approach on a family of C-like pro-
grams with a multi-phase loop (generalized from [44] where N=50) and an unsafe
assertion. The use of parameter N (should not be confused with a nondeterministic
variable) demonstrates the scale of search of counterexamples of different lengths.
We have experimentally evaluated how various tools perform on this example in
Section 5. The program source code and the corresponding transition system are
given in Figure 1.

x=0; y=N;

while(x < 2N){

x = x + 1;

if(x > N)

y = y + 1;

}

assert(y != 2N);

Init(x, y) ≡ x = 0 ∧ y = N

Tr(x, y, x′, y′) ≡ x < 2N ∧ x′ = x + 1

∧ y′ = ite(x′ > N, y + 1, y)

Bad(x, y) ≡ x ≥ 2N ∧ y = 2N

Fig. 1: An example of unsafe multi-phase loop

Since the assertion is placed after the loop, any counterexample requires
finding a complete unrolling of the loop, i.e., all 2N iterations (or 2N steps in the
corresponding transition system). Interestingly, even a linear growth of N results
in the exponential growth of complexity of search of counterexamples. Because of
the control-flow divergence in each iteration of the loop, the number of possible
program paths (that a verifier explores) doubles with each increment of counter x.
Our technique allows finding the counterexamples for any N drastically more
efficiently.

Transition Power Abstractions for Deep Counterexample Detection 527

input : transition system S = 〈Init ,Tr ,Bad〉
global :TPA sequence S (lazily initialized to true)
Function CheckSafetyTPA(〈Init ,Tr ,Bad〉):

1 S[0]← Id ∨ Tr
2 if Sat?[Init(x) ∧ S[0](x, x′) ∧ Bad(x′)] then return UNSAFE
3 n← 0
4 while TRUE do
5 res← IsReachable(n, Init ,Bad)
6 if res 6= ∅ then return UNSAFE
7 n← n + 1

8 end

Algorithm 1: Main procedure for checking safety

4 Finding deep counterexamples with transition power
abstractions

Our main procedure for detecting safety violation—given in Algorithm 1—follows
the typical scheme of bounded model checking where in each iteration the
reachability of Bad is checked within certain bounded number of steps and
the bound gradually increases. This scheme has also been adopted by other
model checking algorithms, such as Spacer [30] and interpolation-based model
checking [20,34,45], which further support a generalization/adaptation of the
proof of bounded safety to a proof of unbounded safety.

The distinguishing feature of our approach is that it increases the bound for
the safety check exponentially in the number of iterations, while other approaches
do this linearly. That is, in the nth iteration, traditional algorithms check bounded
safety up to n steps; but our approach does up to 2n+1 steps. However, we do
not unroll the transition relation an exponential number of times. Instead, we
maintain a sequence of transition formulas (i.e., each formula contains only two
copies of the state variables) where each element over-approximates twice as
many steps of transition relation Tr as its predecessor. We call this sequence a
Transition Power Abstraction (TPA) sequence.

4.1 TPA sequence for bounded reachability queries

The core of our approach lies in creating and refining a sequence of relations
ATr≤0,ATr≤1, . . . ,ATr≤n, . . . where each relation over-approximates twice as
many transition steps of a transition relation Tr as its predecessor. Formally, we
require that nth relation ATr≤n satisfies:

Id(x, x′) ∨ Tr(x, x′) ∨ Tr2(x, x′) ∨ . . . ∨ Tr2n(x, x′) =⇒ ATr≤n(x, x′) (1)

The base for constructing a TPA sequence is ATr≤0 ≡ Id ∨ Tr . Thus, ATr≤0 is
not an over-approximation, but a precise relation capturing true reachability in
either 0 or 1 steps.

528 M. Blicha et al.

Our check for bounded safety is based on a procedure that answers bounded
reachability queries : Given a set of source and target states, is any target state
reachable from some source state in up to 2n+1 steps (for n ≥ 0)? The procedure
uses the TPA sequence to answer such queries and, at the same time, it extends
the sequence and refines its existing elements.

Given two sets of states, Source and Target , and nth element of the current
TPA sequence ATr≤n, the following SMT query is issued:

Sat?[Source(x) ∧ ATr≤n(x, x′) ∧ATr≤n(x′, x′′) ∧ Target(x′′)]. (2)

If query (2) is unsatisfiable, it means that there is no intermediate state
that would be reachable from Source using one step of ATr≤n and, at the same
time, can reach Target in yet another step of ATr≤n. Since one step of ATr≤n

over-approximates reachability (using Tr) in 0 to 2n steps, this means that no
path of length ≤2n+1 exists from Source to Target . Thus, the procedure can
immediately conclude that no state from Target is reachable from any state in
Source in ≤2n+1 steps.

Additionally, it is also possible to learn new information about the reachability
in ≤2n+1 steps in the form of an interpolant between ATr≤n(x, x′)∧ATr≤n(x′, x′′)
and Source(x) ∧ Target(x′′). The properties of interpolation guarantee that the
interpolant contains only variables x, x′′ (i.e., it does not contain x′), it over-
approximates ATr≤n ◦ ATr≤n, and it does not relate any source state with a
target state. The relation defined by such an interpolant satisfies condition (1)
for the n+1st element of TPA sequence and the current TPA sequence can be
refined by conjoining the interpolant (after renaming of variables) to its n+1st

element.
If query (2) is satisfiable, there exists some intermediate state m that can

be reached from Source by one step of ATr≤n and that can reach Target by
yet another step of ATr≤n. If n = 0, the procedure returns and reports the
answer “reachable” as ATr≤0 is precise, not over-approximating. Otherwise, such
an intermediate state m can be seen as a potential point on the path from Source
to Target , and this path can be shown to be real if there exist two real paths:
from Source to m and from m to Target . The existence of these two real paths
can be checked in a recursive manner.

4.2 Algorithm for bounded reachability checks

The pseudocode for the procedure is given in Algorithm 2. We first explain the
steps in more detail and demonstrate a run of the algorithm on our example
from Section 3. We then prove the correctness and termination of Algorithm 2
from which follow the correctness of Algorithm 1 and its termination for unsafe
systems.

Function IsReachable takes as input an integer n ≥ 0, a set of source states,
and a set of target states. The output is a subset of target states that are reachable
in ≤2n+1 steps of transition relation Tr . The output set is empty if and only if
no target state is reachable from any source state within the given bound.

Transition Power Abstractions for Deep Counterexample Detection 529

input : level n, source states Source, target states Target
output : subset of Target reachable from Source within 2n+1 steps
global :TPA sequence S
Function IsReachable(n,Source,Target):

1 while true do

2 ATr≤n ← S[n]

3 query ← Source(x) ∧ATr≤n(x, x′) ∧ATr≤n(x′, x′′) ∧ Target(x′′)
4 sat res← Sat?[query]
5 if sat res = UNSAT then

6 I ← Itp(ATr≤n(x, x′) ∧ATr≤n(x′, x′′),Source(x) ∧ Target(x′′))
7 S[n + 1]← S[n + 1] ∧ I[x′′ 7→ x′]
8 return ∅
9 else

10 if n = 0 then return QE(∃x, x′ query)[x′′ 7→ x]
11 Intermediate ← QE(∃x, x′′ query)[x′ 7→ x]
12 IntermediateReached ← IsReachable(n− 1,Source, Intermediate)
13 if IntermediateReached = ∅ then continue
14 TargetReached ← IsReachable(n− 1, IntermediateReached ,Target)
15 if TargetReached = ∅ then continue
16 return TargetReached

17 end

18 end

Algorithm 2: Reachability query using TPA

The procedure loops until it computes a truly reachable subset of target states
or proves all target states unreachable. In each iteration the procedure reads
the current nth element of the TPA sequence (line 2). Note that this will be
different in each iteration as the TPA sequence will be updated in the recursive
calls on lines 13 and 15. After that, a satisfiability query is constructed and
passed to a decision procedure for the background theory T (lines 3 and 4).
The satisfiability query represents a question whether or not there exists an
intermediate state that would be reachable from Source using one step of ATr≤n

and, at the same time, can reach Target in yet another step of ATr≤n.

Query on line 4 is unsatisfiable. If the query is unsatisfiable then no target state
can be reached from any source state in two steps of ATr≤n. It follows from
Eq. (1) that no target state can be reached from any source state in ≤2n+1 steps.
Before indicating the unreachability by returning ∅ (line 8), the function updates
the TPA sequence to ensure termination (discussed later): The function computes
an interpolant between ATr≤n(x, x′)∧ATr≤n(x′, x′′) and Source(x)∧Target(x′′)
(line 6). After renaming variables, the interpolant is conjoined to the n+1st

element of the TPA sequence. The following example demonstrates this part of
the procedure on our motivating example.

Example 1. Consider the system from Figure 1 for N = 3. This system is not
safe and the counterexample requires six steps of transition relation Tr .

530 M. Blicha et al.

After Algorithm 1 initializes the base element of TPA sequence to (x′ =
x∧y′ = y)∨ (x < 6∧x′ = x+ 1∧y′ = ite(x′ > 3, y+ 1, y)) it issues a reachability
query IsReachable(0, x = 0 ∧ y = 3, x ≥ 6 ∧ y = 6) in the first iteration of its
loop. This translates to a satisfiability check of the formula

x = 0 ∧ y = 3

∧ ((x′ = x ∧ y′ = y) ∨ (x < 6 ∧ x′ = x+ 1 ∧ y′ = ite(x′ > 3, y + 1, y)))

∧ ((x′′ = x′ ∧ y′′ = y′) ∨ (x′ < 6 ∧ x′′ = x′ + 1 ∧ y′′ = ite(x′′ > 3, y′ + 1, y′)))

∧ x′′ ≥ 6 ∧ y′′ = 6

on line 4 of Algorithm 2. This query is unsatisfiable, and x′′ ≤ x+ 2 is a possible
interpolant computed on line 6. After variable renaming, this interpolant refines
S[1], which becomes x′ ≤ x+ 2. Then this call to IsReachable terminates and
the main loop issues a new reachability query for n = 1. This yields a satisfiability
query x = 0 ∧ y = 3 ∧ x′ ≤ x + 2 ∧ x′′ ≤ x′ + 2 ∧ x′′ ≥ 6 ∧ y′′ = 6. Again, this
formula is unsatisfiable and a possible interpolant is x′′ ≤ x+4. The next element
of the TPA sequence, S[2] is refined to x′ ≤ x+ 4.

For n = 2 (reachability within eight steps), the query on line 4 is satisfiable,
and the procedure switches to checking if the counterexample from abstract
transition is real or exists only due to a coarse abstraction.

Query on line 4 is satisfiable. If the query on line 9 is satisfiable, a concrete path
of length ≤2n+1 cannot be ruled out at this point and the algorithm proceeds
to recursively check the existence of one. In the base case n = 0 of the recursion,
ATr≤0 is not an over-approximation but a precise relation representing 0 or 1 steps
of Tr and there exists a real path from Source to Target . The algorithm computes
a state formula representing a truly reachable subset of Target . This is done by first
using quantifier elimination (QE) to eliminate all except next-next state variables
from the query (line 10) and then renaming the variables to state variables.4

If the base case has not been reached yet (n > 0), the procedure first computes
a set of candidate intermediate states by eliminating all except next-state variables
from the query (line 11). Then, the procedure recursively calls itself to determine
the existence of a path from Source to the newly computed intermediate set with
the bound on length halved (line 12). This check has two possible outcomes. In
case the recursive call returns ∅, none of the intermediate candidates is reachable
(within 2n steps). Moreover, S[n] must have been strengthened (line 7) before the
recursive call returned as to not relate any of the source states and intermediate
candidates. The procedure then continues to the next iteration (line 13) where it
tries to find new intermediate candidates or prove there are none anymore. In case
the set returned on line 12 is non-empty, it represents a set of states reachable
from Source within 2n steps of Tr . The procedure proceeds to check the existence

4 QE computes maximal reachable subsets. While this is convenient for proving termi-
nation of Algorithm 2, in practice quantifier elimination is a very expensive operation.
Our implementation therefore supports also the use of model-based projection to
efficiently under-approximate quantifier elimination (see Section 4.4).

Transition Power Abstractions for Deep Counterexample Detection 531

of a path from these states to the target states (line 14). The reasoning here is
the same as for the first recursive call: If Target is not reachable, the procedure
attempts to find new intermediate candidates in a new iteration. Otherwise, real
path from Source to Target exists and the computed truly reachable states are
returned. The returned states are reachable with 2n+1 steps as both recursive
calls check reachability within 2n steps.

We continue Example 1 to illustrate this phase of Algorithm 2.

Example 2. Following Example 1, the algorithm is checking bounded reachability
between Init and Bad for n = 2, i.e., within 8 steps. The issued satisfiability
query is x = 0 ∧ y = 3 ∧ x′ ≤ x+ 4 ∧ x′′ ≤ x′ + 4 ∧ x′′ ≥ 6 ∧ y′′ = 6. Eliminating
all except next-state variables yields x′ ≤ 4 ∧ x′ ≥ 2. This results in the call
IsReachable(1, x = 0 ∧ y = 3, x ≤ 4 ∧ x ≥ 2). The satisfiability query issued
next is x = 0 ∧ y = 3 ∧ x′ ≤ x + 2 ∧ x′′ ≤ x′ + 2 ∧ x′′ ≤ 4 ∧ x′′ ≥ 2. This is
again satisfiable and yields x′ ≤ 2 ∧ x′ ≥ 0 after quantifier elimination. Now
we reach level 0 with a call IsReachable(0, x = 0 ∧ y = 3, x ≤ 2 ∧ x ≥ 0). The
constructed satisfiability query is again satisfiable and since we are at level 0, the
procedure returns a set of states truly reachable from x = 0∧y = 3 within 2 steps.
These can be characterized as (x = 0 ∨ x = 1 ∨ x = 2) ∧ y = 3. The reachable
states are reported to level 1 which issues reachability query for the second part:
IsReachable(0, (x = 0 ∨ x = 1 ∨ x = 2) ∧ y = 3, x ≤ 4 ∧ x ≥ 0). This is also
successful and returns reachable states (x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4) ∧
y = 3. These are states reachable from Init within 4 steps and they are reported
to level 2. There, the second part of the counterexample is found in a similar way
and the procedure concludes that Bad is truly reachable from Init within 8 steps.

The behaviour of the algorithm on these examples can be generalized for the
system of Figure 1 for larger values of N . The length of the counterexample is 2N
and let l denote blog2(2N)c. The bounded safety will be quickly determined up
to 2l steps with l calls to IsReachable which all return ∅ in their first iteration.
On the next iteration, for n = l, IsReachable will find the real counterexample,
but it requires O(2l) recursive calls to find the counterexample of length in the
interval (2l, 2l+1].

4.3 Correctness and termination

We first prove correctness and termination of Algorithm 2 which then entails
correctness of Algorithm 1 and its termination for unsafe systems. We prove the
correctness of procedure IsReachable separately for the unreachable and the
reachable case.

Lemma 1. If IsReachable(n, Source, Target) returns ∅, then no state from
Target can be reached from Source within 2n+1 steps.

Proof. The proof relies on the invariant that S is always a TPA sequence, i.e.,
its elements satisfy the property of Eq. (1). This is obviously true when S is
initialized in Algorithm 1. The only update of S happens in Algorithm 2 on line 7.

532 M. Blicha et al.

Consider an update on any level k ≤ n. From the properties of interpolation, we
know that I(x, x′′) (on line 6) over-approximates ATr≤k(x, x′) ∧ ATr≤k(x′, x′′),
which represents two steps of the relation ATr≤k. Since ATr≤k over-approximates
≤2k steps of Tr , it follows that I(x, x′′) over-approximates ≤2k+1 steps of Tr .
Thus, conjoining it to ATr≤k+1 preserves the condition of Eq. (1).

It follows from Eq. (1) that when the query on line 4 is unsatisfiable, there
exists no path of length ≤ 2 × 2n = 2n+1 from any source state to any target
state. ut
Lemma 2. If IsReachable(n, Source, Target) returns a non-empty set Res,
then Res ⊆ Target and every state in Res can be reached from some state in
Source in ≤2n+1 steps.

Proof. The proof is by induction on n.
Base case: For n = 0 ATr≤0 represents precise reachability in 0 or 1 step.

It follows that if the query on line 4 is satisfiable, some target states are truly
reachable from the set of source states in ≤2 steps. Moreover, the properties
of QE guarantee that Res = QE (∃x, x′ query)[x′′ 7→ x] is a subset of Target(x)
that are reachable from Source using ATr≤0 ◦ATr≤0.

Inductive case: Suppose the claim holds for n− 1. If at level n the procedure
returned a non-empty set, it must have been the case that the first recursive
call (line 12) returned a non-empty set IntermediateReached of states truly
reachable from Source in ≤2n steps, by our induction hypothesis. Additionally,
the second recursive call (line 14) also returned a non-empty set TargetReached
that, according to our induction hypothesis, is a subset of Target truly reachable
from IntermediateReached in ≤2n steps. It follows that TargetReached is a subset
of Target truly reachable from Source in ≤2n+1 steps. ut

The correctness of procedure IsReachable extends naturally to the correct-
ness of our main procedure.

Theorem 1 (Correctness). If Algorithm 1 returns UNSAFE, then the system
S is unsafe, i.e., some bad state is reachable from some initial state.

Proof. The satisfiablity query on line 2 of Algorithm 1 checks reachability in
0 and 1 step. If this query is satisfiable, there exists a counterexample path of
length 0 or 1 from some initial state to a bad state.

Otherwise, it enters the loop where UNSAFE is returned only if IsReachable
returns non-empty set of states for some n. From the correctness of IsReachable
it follows that the returned set is a subset of Bad that is reachable from Init in
≤2n+1 steps. Thus there exists a counterexample path in the system. ut

Next, we want to show that if there exists a counterexample path in the
system, our procedure will eventually report it. This boils down to the question
of termination of a single call to IsReachable.

Lemma 3. Assume that the satisfiability check (line 4) terminates, i.e., that the
background theory T is decidable, and that T has procedures for interpolation and
quantifier elimination.5 Then a single call to IsReachable always terminates.
5 The linear arithmetic theories of our experiments satisfy these assumptions.

Transition Power Abstractions for Deep Counterexample Detection 533

Proof. The proof proceeds by induction on level n. The base case (n = 0) trivially
terminates after a single satisfiability query on line 4.

For the inductive case, consider the first iteration of the loop. If the query is
unsatisfiable, the procedure terminates. If it is satisfiable, quantifier elimination
yields a set of states Intermediate = {m | ∃s ∈ Source, ∃t ∈ Target : (s,m) ∈
ATr≤n ∧ (m, t) ∈ ATr≤n}. Now consider the first recursive call (line 12). By
induction, it terminates. If it returns ∅, then, by properties of the interpolation,
ATr≤n has been strengthened such that ∀s ∈ Source, ∀m ∈ Intermediate :
(s,m) /∈ ATr≤n now holds. Consequently, in the second iteration the query
on line 4 must be unsatisfiable and the procedure terminates.

Now consider the situation where the recursive call on line 12 returned a
non-empty set IntermediateReached . The procedure continues to the second
recursive call (line 14), which also terminates, by induction. If the returned set
TargetReached is non-empty, the procedure terminates (line 16). If it is empty,
then no state reachable from Source in ≤2n steps of Tr can reach any state in
Target in another ≤2n steps. Moreover, ATr≤n has been strengthened so that
now it does not relate any state from IntermediateReached with a state in Target .
In the second iteration, the query on line 4 could still be satisfiable. However,
the extracted Intermediate (of the second iteration) cannot contain states that
are reachable from Source in ≤2n steps. Thus first recursive call (line 12) in the
second iteration must return ∅ and this is followed by an unsatisfiable query
(line 4) in the third iteration and termination. ut

The immediate consequence of Lemma 3 is that our main procedure will find
a counterexample if one exists.

Theorem 2. If there exists a counterexample in the system, Algorithm 1 termi-
nates with UNSAFE result.

4.4 Under-approximating QE with model-based projection

Model-based projection (MBP) [30] is a recent technique for under-approximating
quantifier elimination for existentially quantified formulas. In short, given an
existentially quantified formula ∃xφ(x, y), MBP is a function that maps each
model of φ to a quantifier-free formula that implies ∃xφ(x, y) and is true in the
model. Moreover, it is required that the function has a finite image (it produces
only finitely many quantifier-free under-approximations) and the disjunction of
the image is equal to the quantified formula. Efficient MBP for linear real and
integer arithmetic was given in [30,10]. MBP has also been designed for algebraic
datatypes [10], arithmetic signature of bit-vectors [23] and arrays6 [29].

Quantifier elimination in Algorithm 2 can be replaced by MBP in a straight-
forward way. On line 4, if the query is satisfiable, we obtain from the SMT solver
a model witnessing the satisfiability. Then, on lines 10 and 11 we replace QE with
MBP using the obtained model. It is easy to check that the proof of Lemma 2
remains valid with this change, and thus also the result of Theorem 1. In Section 5
we experimentally demonstrate the practical advantage of MBP over QE.

6 MBP for arrays does not satisfy the finite image condition

534 M. Blicha et al.

4.5 Proving safety

Even though the main purpose of the TPA sequence is to help to quickly rule out
bounded reachability queries, it can also be useful in another way. Specifically,
an element of the TPA sequence may turn out to be a transition invariant with
respect to transition relation Tr .

Definition 1 (transition invariant). We say that R(x, x′) is a transition
invariant if Tr∗ ⊆ R, i.e., ∀x, x′ Tr∗(x, x′) =⇒ R(x, x′), where Tr∗ is the
reflexive transitive closure of Tr.

Note that our definition is slightly simpler than that of [40], as it only depends
on the transition relation and not, for example, on the initial states of the system.

If we find a transition invariant that does not relate any initial state with a
bad state, we can immediately conclude that the system is safe. We show one
way how to detect if a member of the TPA sequence is a transition invariant
using SMT query.

Lemma 4. Assume that for some n, ATr≤n◦Tr ⊆ ATr≤n or that Tr ◦ATr≤n ⊆
ATr≤n. Then ATr≤n is a transition invariant.

Proof. We consider the case ATr≤n ◦ Tr ⊆ ATr≤n and show that Tr∗ ⊆ ATr≤n.
The other case is analogous. Take any two states s, s′ such that s′ is reachable
from s, i.e., (s, s′) ∈ Tr∗. We show that (s, s′) ∈ ATr≤n by induction on d, the
length of the path from s to s′. If d ≤ 2n then (s, s′) ∈ ATr≤n by Eq. (1). Assume
now that d > 2n. Then there exists a state t such that t can be reached from s
in d − 1 steps and (t, s′) ∈ Tr . By induction, we have that (s, t) ∈ ATr≤n and
(s, s′) ∈ ATr≤n ◦ Tr . By our assumption it follows that (s, s′) ∈ ATr≤n. ut

Note that when a call to IsReachable on line 5 in Algorithm 1 returns ∅, the
n+1st element of TPA sequence ATr≤n+1 does not relate any initial and bad
state. Thus we can check at this point for the conditions of Lemma 4, and, if
satisfied, we can immediately conclude that no counterexample (of any length)
exists in the system and report safety.

In fact, to detect that no counterexample exists, the assumptions of Lemma 4
can be relaxed a bit. We can consider the restriction of these relations to only
initial or bad states. The notation A /R denotes a domain restriction of a binary
relation R to a set A, i.e., (x, y) ∈ A / R iff (x, y) ∈ R ∧ x ∈ A. Similarly R . B
denotes the codomain restriction, i.e., (x, y) ∈ R . B iff (x, y) ∈ R ∧ y ∈ B.

Lemma 5. Assume that for some n Init / ATr≤n ◦ Tr ⊆ Init / ATr≤n. Then
Init / Tr∗ ⊆ Init /ATr≤n. Similarly, if Tr ◦ATr≤n . Bad ⊆ ATr≤n . Bad, then
Tr∗ . Bad ⊆ ATr≤n . Bad.

Proof. Same as the proof of Lemma 4, with appropriate restrictions.

Lemma 5 represents a weaker form of Lemma 4: it has a weaker assumption
and a weaker conclusion. Nevertheless, the conclusion is still strong enough to
ensure that no counterexample exists and conclude safety.

Transition Power Abstractions for Deep Counterexample Detection 535

5 Experiments

We have implemented our TPA-based procedure (Algorithm 1) in our new
CHC solver Golem7. Golem is built on top of the interpolating SMT solver
OpenSMT [26]. In our experiments we used version 2.2.0 of OpenSMT8.

To gauge the feasibility of our algorithm we performed a set of experiments.
All experiments were conducted on a machine with AMD EPYC 7452 32-core
processor and 8x32 GiB of memory. We compared our approach to the current
state-of-the-art tools Eldarica 2.0.6 [25], IC3-IA 20.04.1 [15] and Z3 4.8.12 [39]
(using both its BMC [9] and Spacer [30] engines), which were the top competitors
in CHC-COMP 2020 and 2021 [43,21]. We used both versions of our algorithm
in the experiments: using MBP (TPA-MBP) and QE (TPA-QE). The format
of all the benchmarks is that of the constrained Horn clauses (CHCs) used in
the CHC-COMP. Since IC3-IA’s input format differs, all CHC benchmarks were
translated to VMT format using the automated tool packaged with IC3-IA.9

The goal of the first experiment was to investigate the scalability of our
algorithm with respect to the length of the counterexample and compare its
performance to the state-of-the-art tools. We used the parametrized transition
system from our motivating example in Section 3. The counterexample in this
system has length 2N and we ran the tools on instances for N ranging from 1
to 511. The timeout was set to 300 seconds. Figure 2 shows the runtime of the
tools for the given value of N .

TPA-MBP was able to report all instances as unsafe, needing less than two
seconds for each instance. Eldarica, IC3-IA and Z3-BMC exhibit relatively stable
pattern where the performance decreases rapidly with increasing N . Z3-Spacer,
on the other hand, exhibits a curious behaviour where it is able to solve most of
the instances (even though it is slower than TPA-MBP by at least an order of
magnitude), but on a relatively large number of instances it times out, and we
were not able to understand the pattern on which instances this happens. Quick
look at the instances for N < 100 suggests that on some instances its behaviour
is much closer to that of IC3-IA. Finally, TPA-QE also shows an interesting
pattern in its runtime where its performance drops considerably on every power
of two, and then it slowly improves for larger N until the next power of two.

This first experiment showed very promising results for TPA-MBP which
benefited from the fact that the reason why shorter counterexamples do not exist
can be summarized relatively easily. It scaled exceptionally well compared to the
state-of-the-art tools, as well as TPA-QE.

To confirm the results from the first experiment, we continued with the second
set of benchmarks representing instances of our targeted type of problems. They
represent assertions over multi-phase loops, which are known to be difficult to
analyze by state-of-the-art techniques. We took 54 safe multi-phase benchmarks

7 https://github.com/usi-verification-and-security/golem; commit 4ea1a53
8 https://github.com/usi-verification-and-security/opensmt
9 Full results of the experiments available at http://verify.inf.usi.ch/horn-clauses/tpa/

experiments. Artifact available at https://doi.org/10.5281/zenodo.5815911

536 M. Blicha et al.

https://github.com/usi-verification-and-security/golem
https://github.com/usi-verification-and-security/golem/commit/4ea1a531a59575a9c0c0254201d90d52547152ff
https://github.com/usi-verification-and-security/opensmt
http://verify.inf.usi.ch/horn-clauses/tpa/experiments
http://verify.inf.usi.ch/horn-clauses/tpa/experiments
https://doi.org/10.5281/zenodo.5815911

0.01

0.1

1

10

100

0 100 200 300 400 500

ru
n
ti

m
e

(s
)

N

Eldarica

IC3-IA

TPA-QE

TPA-MBP

Z3-BMC

Z3-Spacer

Fig. 2: Runtime for motivating example for N from 1 to 511 (log y-axis)

from CHC-COMP repository10 and then for each benchmark created its unsafe
version with a minor modification of the safety property.11 In most cases this was
done by negating one of the conjuncts of the property. In a few cases this resulted
in a simple benchmark with a very short CEX (< 10 steps), but in most cases,
the minimal counterexample is much larger, ranging from a few hundreds to a
few tens of thousands of steps. There are even a few extremes where the minimal
counterexample requires hundreds of thousands or even millions of steps.

With the timeout of 300 seconds, out of 54 benchmarks, TPA-QE solved 20
and TPA-MBP solved 35 benchmarks, beating the other tools among which Z3-
Spacer performed the best, solving 20 benchmarks. The results are summarized in
Figure 3 where the number of solved benchmarks by each tool is plotted against
the time needed for their solving.

Overall, our tool solved 15 benchmarks that none of the other tools was able
to solve and in general could be one or two orders of magnitude faster. There
were two noticeable exceptions: benchmark 24 was uniquely solved by Z3 and
benchmark 39 was uniquely solved by IC3-IA (for benchmark numbering, see the
link in footnote 11). We found out that in the latter case our tool suffered from
incompleteness in the decision procedure of OpenSMT for integer arithmetic,
while in the former case the interpolation used by our algorithm was not producing
good abstractions and we suffered from the need for frequent refinements.

We also examined the solved benchmarks for the length of the minimal
counterexample they admit. The results are in line with the observations from our
first experiments: Other tools could only solve benchmarks with a counterexample

10 https://github.com/chc-comp/aeval-benchmarks
11 Benchmarks available at https://github.com/blishko/chc-benchmarks.

Transition Power Abstractions for Deep Counterexample Detection 537

https://github.com/chc-comp/aeval-benchmarks
https://github.com/blishko/chc-benchmarks

0.01

0.1

1

10

100

0 5 10 15 20 25 30 35 40

ru
n
ti

m
e

(s
)

Eldarica

IC3-IA

TPA-QE

TPA-MBP

Z3-BMC

Z3-Spacer

Fig. 3: Results on 54 multi-phase unsafe benchmarks

of up to a thousand steps (1001 steps in benchmark 17 solved by Z3-Spacer).
TPA-QE matched this performance (1001 steps in benchmark 27), but TPA-MBP
managed to solve benchmarks with a counterexample of more than ten thousand
steps (17650 in benchmark 42). Thus, our technique significantly improves upon
state-of-the-art with respect to the length of the counterexample it can detect.

Finally, we successfully tested our implementation on the safe version of
the 54 multi-phase benchmarks and on the general set of 498 benchmarks from
CHC-COMP’21, the category of transition systems over linear real arithmetic.
TPA-MBP managed to prove 10 of the multi-phase benchmarks safe. Z3-Spacer,
IC3-IA and Eldarica proved safe 9, 20 and 26 of these benchmarks, respectively.
On the CHC-COMP LRA-TS benchmark set, TPA-MBP was able to solve 70
unsafe benchmarks (from 90+ known unsafe benchmarks in the set) and 67 safe
benchmarks.

6 Related work

Loop acceleration [5,12,22] is a related approach for loop analysis that enables
both proving safety and detection of deep bugs. It transforms the loop to a single
quantifier-free formula representing all possible executions of the loop. While
offering significant improvement for a limited types of integer loops, it is not
applicable for code with control-flow divergence and/or data structures. Accelera-
tion has also been combined with interpolation-based model-checking [13,24]. In
contrast, our technique does not accelerate paths but builds over-approximations
of bounded number of iterations. It is not restricted to any specific type of loops,
and it works over any theory supporting interpolation and quantifier elimination.

Another technique for fast detection of deep counterexamples for C programs
was proposed in [32]. Given a path through a loop, it computes a new path that

538 M. Blicha et al.

under-approximates an arbitrary number of iterations of the original path. In
contrast to loop acceleration, this technique only under-approximates the loop
behaviour, but it can handle conditionals and richer background theories. Our
approach targets the same goal but it is over-approximating, which allows for
detecting (transition) invariants and proving safety. Their prototype aims at C
programs only (and does not seem to be maintained anymore). Our implementa-
tion works on transition systems in the form of constrained Horn clauses (CHC)
and thus is agnostic to the programming language.

Abstracting transition relation using interpolation has been employed in [27].
They use interpolation to compute and refine abstract version of the transition
relation. However, they abstract only a single step of the transition relation.
Instead, we use interpolation to compute relations that over-approximate multiple
(and increasingly larger number of) steps of the transition relation.

Transition invariants [40] have been successfully employed for proving liveness
properties, especially termination [33,41]. Our technique can discover transition
invariants and use them to prove safety. However, in this paper we focused on find-
ing counterexamples and the directed search for invariants is left for future work.

Our technique can find a possible application in automating test-case genera-
tion. A given program can be automatically annotated with assertions representing
the reachability of all the branches. Having the goal to detect a set of input values
for maximizing the test coverage [46], our technique would be called repeatedly
to find many counterexamples for a subset of assertions (including deep ones)
and prove the unreachability of the remaining ones.

7 Conclusion and Future Work

This paper introduces a novel model-checking algorithm for safety properties
of transition systems with a focus on finding deep counterexamples. The idea
is based on maintaining a sequence of transition formulas, called the transition
power abstraction (TPA) sequence, where each element over-approximates a
sequence of transition steps twice as long as its predecessor. The sequence is
used in answering bounded reachability queries, which in turn results in new
information that further refines the sequence. We proved the correctness of this
algorithm and showed that it eventually finds a counterexample if one exists,
assuming the background theory admits interpolation and quantifier elimination.
For performance reasons, our implementation applies quantifier elimination lazily
using model-based projection that lets the approach to outperform state-of-the-
art on a class of problems with multi-phase loops. The experiments confirmed
that it is able to detect counterexamples of much greater depth than existing
tools within the same time constraints.

As future work, we plan to investigate possible improvements of the algorithm
and tailor it for finding transition invariants. This would contribute to its ability
to prove programs safety and enable the modular reasoning to support arbitrary
systems of constrained Horn clauses.

Transition Power Abstractions for Deep Counterexample Detection 539

References

1. Alt, L., Asadi, S., Chockler, H., Even Mendoza, K., Fedyukovich, G., Hyvärinen,
A.E.J., Sharygina, N.: Hifrog: SMT-based function summarization for software
verification. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. pp. 207–213. Springer Berlin Heidelberg, Berlin,
Heidelberg (2017)

2. Alt, L., Hyvärinen, A.E.J., Sharygina, N.: LRA interpolants from no man’s land.
In: Strichman, O., Tzoref-Brill, R. (eds.) HVC 2017. LNCS, vol. 10629, pp. 195–210.
Springer, Cham (2017)

3. Asadi, S., Blicha, M., Fedyukovich, G., Hyv\”arinen, A., Even-Mendoza, K., Shary-
gina, N., Chockler, H.: Function summarization modulo theories. In: Barthe, G.,
Sutcliffe, G., Veanes, M. (eds.) LPAR-22. 22nd International Conference on Logic
for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing,
vol. 57, pp. 56–75. EasyChair (2018)

4. Asadi, S., Blicha, M., Hyvärinen, A.E.J., Fedyukovich, G., Sharygina, N.: Incre-
mental verification by SMT-based summary repair. In: 2020 Formal Methods in
Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24, 2020. pp.
77–82. IEEE (2020)

5. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: Acceleration from theory to
practice. International Journal on Software Tools for Technology Transfer 10(5),
401–424 (2008)

6. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available at
http://smtlib.cs.uiowa.edu

7. Barrett, C., de Moura, L., Ranise, S., Stump, A., Tinelli, C.: The SMT-LIB initiative
and the rise of SMT. In: Barner, S., Harris, I., Kroening, D., Raz, O. (eds.) Hardware
and Software: Verification and Testing. pp. 3–3. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

8. Beyer, D., Dangl, M., Wendler, P.: A unifying view on SMT-based software verifi-
cation. Journal of Automated Reasoning 60(3), 299–335 (Mar 2018)

9. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Tools and Alg. for the Const. and Anal. of Systems (TACAS ’99). LNCS,
vol. 1579, pp. 193–207 (1999)

10. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: Fehnker, A., McIver,
A., Sutcliffe, G., Voronkov, A. (eds.) LPAR-20. 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presentations.
EPiC Series in Computing, vol. 35, pp. 15–27. EasyChair (2015)

11. Blicha, M., Hyvärinen, A.E.J., Kofroň, J., Sharygina, N.: Decomposing Farkas
interpolants. In: Vojnar, T., Zhang, L. (eds.) Proc. TACAS 2019. LNCS, vol. 11427,
pp. 3–20. Springer (2019)

12. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) Computer Aided Verification. pp. 227–242.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

13. Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based
model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 428–442. Springer Berlin Heidelberg,
Berlin, Heidelberg (2008)

14. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) Computer Aided Verification. pp. 277–293. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

540 M. Blicha et al.

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems. pp. 46–61. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

16. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Logic 12(1), 7:1–7:54 (Nov
2010)

17. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018)

18. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. The Journal of Symbolic Logic 22(3), 269–285 (1957)

19. D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength.
In: VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer (2010)

20. Fedyukovich, G., Bod́ık, R.: Accelerating syntax-guided invariant synthesis. In:
TACAS, Part I. LNCS, vol. 10805, pp. 251–269. Springer (2018)

21. Fedyukovich, G., Rümmer, P.: Competition report: CHC-COMP-21. In: Hojjat, H.,
Kafle, B. (eds.) Proceedings 8th Workshop on Horn Clauses for Verification and
Synthesis, HCVS@ETAPS 2021, Virtual, 28th March 2021. EPTCS, vol. 344, pp.
91–108 (2021)

22. Frohn, F.: A calculus for modular loop acceleration. In: Biere, A., Parker, D. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 58–76.
Springer International Publishing, Cham (2020)

23. Govind, H., Fedyukovich, G., Gurfinkel, A.: Word level property directed reachability.
In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD).
pp. 1–9 (2020)

24. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating interpolants.
In: Chakraborty, S., Mukund, M. (eds.) Automated Technology for Verification and
Analysis. pp. 187–202. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

25. Hojjat, H., Rümmer, P.: The ELDARICA Horn Solver. In: FMCAD. pp. 158–164.
IEEE (2018)

26. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
solver for multi-core and cloud computing. In: Creignou, N., Le Berre, D. (eds.)
SAT 2016. LNCS, vol. 9710, pp. 547–553. Springer, Cham (2016)

27. Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation.
In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided Verification. pp. 39–51.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

28. Jovanovic, D., Dutertre, B.: Property-directed k-induction. In: Piskac, R., Talupur,
M. (eds.) Proc. FMCAD 2016. pp. 85–92. IEEE (2016)

29. Komuravelli, A., Bjørner, N., Gurfinkel, A., McMillan, K.L.: Compositional verifi-
cation of procedural programs using Horn clauses over integers and arrays. In: 2015
Formal Methods in Computer-Aided Design (FMCAD). pp. 89–96 (2015)

30. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Formal Methods in System Design 48(3), 175–205 (Jun 2016)

31. Kraj́ıček, J.: Interpolation theorems, lower bounds for proof systems, and inde-
pendence results for bounded arithmetic. The Journal of Symbolic Logic 62(2),
457–486 (1997)

32. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C
programs for fast counterexample detection. Formal Methods in System Design
47(1), 75–92 (2015)

Transition Power Abstractions for Deep Counterexample Detection 541

33. Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson,
P. (eds.) Computer Aided Verification. pp. 89–103. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

34. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2013. pp. 1–13. Springer, Heidelberg (2003)

35. McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halbwachs,
N., Zuck, L.D. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 1–12. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

36. McMillan, K.L.: An interpolating theorem prover. Theoretical Computer Science
345(1), 101–121 (2005)

37. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verification
(CAV ’06). LNCS, vol. 4144, pp. 123–136 (2006)

38. McMillan, K.L.: Lazy annotation revisited. In: Proc. CAV 2014. LNCS, vol. 8559,
pp. 243–259. Springer (2014)

39. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. pp. 337–340. Springer, Heidelberg (2008)

40. Podelski, A., Rybalchenko, A.: Transition invariants. In: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science, 2004. pp. 32–41 (2004)

41. Podelski, A., Rybalchenko, A.: Transition invariants and transition predicate ab-
straction for program termination. In: Abdulla, P.A., Leino, K.R.M. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems. pp. 3–10. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

42. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

43. Rümmer, P.: Competition report: CHC-COMP-20. Electronic Proceedings in Theo-
retical Computer Science 320, 197–219 (Aug 2020)

44. Sharma, R., Dillig, I., Dillig, T., Aiken, A.: Simplifying loop invariant generation
using splitter predicates. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification. pp. 703–719. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

45. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: Proc.
FMCAD 2014. pp. 1–8. IEEE (2009)

46. Zlatkin, I., Fedyukovich, G.: Maximizing branch coverage with constrained horn
clauses. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems. Springer Berlin Heidelberg (2022)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

542 M. Blicha et al.

http://creativecommons.org/licenses/by/4.0/

Searching for Ribbon-Shaped Paths
in Fair Transition Systems

Marco Bozzano , Alessandro Cimatti , Stefano Tonetta ,
Viktoria Vozarova(�)

Fondazione Bruno Kessler (FBK)
via Sommarive, 18
Trento 38123, Italy

{bozzano,cimatti,tonettas,vvozarova}@fbk.eu

Abstract. Diagnosability is a fundamental problem of partial observ-
able systems in safety-critical design. Diagnosability verification checks
if the observable part of system is sufficient to detect some faults. A
counterexample to diagnosability may consist of infinitely many indis-
tinguishable traces that differ in the occurrence of the fault. When the
system under analysis is modeled as a Büchi automaton or finite-state
Fair Transition System, this problem reduces to look for ribbon-shaped
paths, i.e., fair paths with a loop in the middle.
In this paper, we propose to solve the problem by extending the liveness-
to-safety approach to look for lasso-shaped paths. The algorithm can be
applied to various diagnosability conditions in a uniform way by changing
the conditions on the loops. We implemented and evaluated the approach
on various diagnosability benchmarks.

Keywords: Diagnosability· Model checking · Liveness to safety

1 Introduction

The design of fault detection mechanisms is a standard part of the design of
safety-critical systems. Faults are usually not directly observable. They are di-
agnosed by observing a sequence of observations and inferring the value of un-
observable variables based on a system model. A fundamental question for the
design of such partially observable systems is to determine if it always possible
to detect a fault. Diagnosability verification is the problem of checking whether
the available sensors are sufficient to determine the occurrence of a fault.

Historically, diagnosability verification is reduced to a model checking prob-
lem looking for a critical pair of indistinguishable traces that differ with respect
to the fault. This pair witnesses the impossibility to detect the fault along such
sequence of observations.

When considering fair transition systems, critical pairs are not sufficient and
it is necessary to look for infinitely many indistinguishable traces. In case of
finite state systems, such set of infinite traces can be represented by ribbon-
shaped paths, i.e., paths with a loop in the middle. Previous solutions, hinted

c© The Author(s) 2022

https://doi.org/10.1007/978-3-030-99524-9_30
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 543–560, 2022.

http://orcid.org/0000-0002-4135-103X
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0001-9091-7899
http://orcid.org/0000-0001-8506-8212
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_30

M. Bozzano et al.

in [16], were based on either bounded model checking, so not able to prove diag-
nosability (absence of the critical ribbon-shaped paths) or BDD-based fixpoint
computation, which suffers from the problem of precomputing the fair states.

In this paper, we propose a new approach based on the liveness-to-safety
construction [3], where the search for a (single) lasso shaped path is reduced
to an invariant property. Like in liveness-to-safety, we use additional variables
to guess the loopback states, which in the case of ribbon-shaped paths are used
twice, the first time for the loop in the middle, the second time for the final lasso.
Additional constraints are added to encode the looping conditions that must hold
in the two loops for encoding the diagnosability problem. The algorithm can
be applied to various diagnosability conditions in a uniform way by changing
the conditions on the loops. We implemented and evaluated the approach on
various diagnosability benchmarks. Different algorithms have tested to solve the
resulting invariant model checking problem, showing better performance with
respect to the fixpoint-based approach.

The main contribution of the paper is the extension of liveness-to-safety
to generate an infinite number of traces. The set is in the form of a ribbon
shape (in other words, in the form a; b∗; c; dω) and may have applications beyond
the diagnosability problem, e.g., to solve non-interference problems requiring
infinitely many different traces [13] or to counterexample-guided abstraction
refinement.

The rest of the paper is organized as follows. In Section 2, we give an overview
of related work. Section 3 defines the necessary formal background. The main
problem along with the original solution is presented in Section 4. Our main
contribution is introduced in Section 5, where we present the novel solution and
prove its correctness. Section 6 contains the experimental evaluation comparing
our solution with the original one. Finally, in Section 7 we give conclusions and
directions for future work.

2 Related Work

The problem of diagnosability [17] refers to the possibility of inferring some
desired information (e.g., the occurrence of a fault) during the execution of
a system, in a partially observable environment. Hence, diagnosability can be
phrased using hyperproperties, namely as a property of the traces representing
the execution of the system [5,16].

In [16] it has been shown that the problem of diagnosability under fairness
can be reduced to the search for ribbon-shaped paths, i.e. paths with a loop in
the middle, where specific conditions on the occurrence of faults are imposed.
Historically, diagnosability has been defined in the context of Discrete-Event
Systems [17], without taking fairness into account. In [14] fairness is considered
only in the context of live systems, i.e. under the hypothesis that every finite trace
can be extended to an infinite fair trace, and fair diagnosability is introduced
only informally. In this context, our ribbon-shaped fair critical pair corresponds

544

Searching for Ribbon-Shaped Paths in Fair Transition Systems

to the critical pair of [14], where the faulty trace must be fair while the nominal
trace may be unfair.

A construction similar to ribbon-shaped paths, called doubly pumped lasso,
is used in [13] as a building block to address the problem of model checking
a class of quantitative hyperproperties, as in the problem of quantitative non-
interference (i.e., bound the amount of information about some secret inputs
that may be leaked through the observable outputs of the system).

In [13] the problem of verifying quantitative hyperproperties is addressed us-
ing a model checking algorithm based on model counting, which is shown to have
a better complexity than using an HyperLTL model checker, and a Max#SAT-
based implementation. In [16], the authors address the problem of checking diag-
nosability using an extension of the classical twin-plant construction [15] and an
LTL model checker. The approach we use in this paper builds upon the approach
of [16], but uses an extension of the liveness-to-safety approach [3], instead. The
extension omits the computation of fair states and keeps the representation of
the system symbolic, which is more space efficient. The problem is reduced to the
reachability problem. The problem is well-studied, thus we may take advantage
of already developed algorithms for checking reachability.

3 Background

3.1 Symbolic Fair Transition Systems

The plant under analysis is represented as a finite-state symbolic fair transi-
tion system (SFTS). An SFTS is a tuple 〈V, I, T, F 〉, where V is a finite set of
Boolean state variables; I is a formula over V defining the initial states, T is
a formula over V , V ′ (with V ′ being the next version of the state variables)
defining the transition relation, and F is a set of formulas over V defining the
fairness conditions. If F = ∅, we call it a symbolic transition system (STS) and
write 〈V, I, T 〉.

We remark that the choice of representing the plant in form of an SFTS
does not restrict the generality of the framework. In fact, it is possible to encode
labeled transition systems and discrete event systems.

A state s is an assignment to the state variables V . We denote with s′ the
corresponding assignment to V ′. Given an assignment to a set V of Boolean
variables, we also represent the assignment as the set of variables that are as-
signed to true. Given a state s and a subset of variables U , we denote with s|U
the restriction of s to the variables in U .

In the following we assume that an SFTS P =̇ 〈V, I, T, F 〉 is given.
Given a sequence of states σ, we denote with σk the sequence obtained by

repeating σ for k times, and σω the sequence obtained by repeating σ for an
infinite number of times.

Given a state s0 of P , a trace of P starting from s0 is an infinite sequence
π =̇ s0, s1, s2, . . . of states starting from s0 such that, for each k ≥ 0, 〈sk, sk+1〉
satisfies T , and for all f ∈ F , for infinitely many i ≥ 0, the formula f is true in

545

si. If s0 is initial, i.e., it satisfies I, then we say that π is a trace of P . We write
ΠP for the set of traces of P .

We denote with π[k] the k+ 1-th state sk of π. We say that s is reachable (in
k steps) in P iff there exists a sequence π = s0s1 . . . sk, where sk = s, s0 satisfies
I and every 〈si, si+1〉 satisfies T . A state s is fair if there exists a trace starting
from s.

Given a trace π =̇ s0, s1, s2, . . . and a subset of variables U ⊆ V , we denote
by π|U =̇ s0|U , s1|U , s2|U , . . . the projection over the variables in U .

Let S1 = 〈V 1, I1, T 1, F1〉 and S2 = 〈V 2, I2, T 2, F2〉 be two SFTSs. We define
a synchronous product S1×S2 as the SFTS 〈V 1 ∪ V 2, I1 ∧ I2, T 1 ∧ T 2, F1 ∪ F2〉.
Every state s of S1 × S2 is an assignment to the two sets of state variables V 1

and V 2 such that s1 = s|V 1 is a state of S1 and s2 = s|V 2 is a state of S2.
Let p be a propositional formula over V . We write s |= p iff s satisfies p, and

π, i |= p if π[i] satisfies p. We write P |= p iff for all reachable s in P it holds
that s |= p. Let ϕ be a formula over an infinite trace expressed in LTL [12]. We
write π |= ϕ iff ϕ is true on the trace π. We write P |= ϕ iff for all traces π in
ΠP it holds that π |= ϕ.

In the rest of the presentation, we sometimes use a context, which we express
as an LTL formula Ψ , to restrict the set of traces of the plant. This is useful to
address the problem of diagnosability under assumptions. Note that, since our
framework supports plants with fairness constraints, the incorporation of the
context can be done (see, e.g., [10]) by converting the context into an SFTS SΨ
(representing the monitor automaton for the LTL formula) and replacing the
plant P with P × SΨ (the synchronous product of the plant with the monitor
automaton).

The Twin Plant Construction The twin plant construction of a plant P over
a subset Y ⊆ V of variables (the observable variables), denoted Twin(P, Y) and
originally proposed by [15], is based on two copies of P , such that a trace in
the twin plant corresponds to a pair of traces of P . In the security domain, two
copies of a system used for verification are known as a self-composition [2].

The twin plant can be defined as the synchronous product of two copies of
the SFTS corresponding to the plant. Formally, given a plant P = 〈V, I, T, F 〉,
we denote with PL =̇ 〈VL, IL, TL, FL〉 and PR =̇ 〈VR, IR, TR, FR〉 the (‘left’ and
‘right’) copies of P , obtained by renaming each variable v as vL or vR, respec-
tively (i.e., if � ∈ {L,R}, then V� stands for the set of variables {v� | v ∈ V }.
Moreover, we define a formula ObsEq stating that the sets of observable vari-
ables of the two copies are equal at the given point. The twin plant of P is
defined as follows.

Definition 1 (Twin Plant). Given a set of variables Y ⊆ V , the twin plant
of P = 〈V, I, T, F 〉 is the SFTS Twin(P, Y) =̇ PL × PR. Moreover, we define
the formula ObsEq =̇

∧
v∈Y vL = vR.

There is a one-to-one correspondence between ΠP ×ΠP (pairs of traces of P)
and ΠTwin(P,Y) (traces of Twin(P, Y)). A trace of Twin(P, Y): π =̇ (s0,L, s0,R),

M. Bozzano et al.546

(s1,L, s1,R), . . . can be decomposed into two traces of P : Left(π) =̇ s0,L, s1,L, . . .
and Right(π) =̇ s0,R, s1,R, Conversely, given two traces πL and πR in ΠP ,
there is a corresponding trace in ΠTwin(P,Y), denoted by πL × πR.

3.2 Liveness to Safety (L2S).

The liveness-to-safety reduction (L2S) [3] is a technique for reducing an LTL
model checking problem on a finite-state transition system to an invariant model
checking problem. The idea is to encode the absence of a lasso-shaped path
violating the LTL property FG¬f as an invariant property.

The encoding is achieved by transforming the original transition system S to
the transition system SL2S, introducing a set X of variables containing a copy x
for each state variable x of the original system, plus additional variables seen,
triggered and loop. Let S =̇ 〈X, I, T 〉. L2S transforms the transition system in
SL2S =̇ 〈XL2S, IL2S, TL2S〉 so that S |= FG¬f if and only if SL2S |= ¬badL2S,
where:

XL2S =̇ X ∪X ∪ {seen, triggered, loop}
IL2S =̇ I ∧ ¬seen ∧ ¬triggered ∧ ¬loop
TL2S =̇ T ∧

[∧
X x ⇐⇒ x′

]
∧
[
seen′ ⇐⇒ (seen ∨

∧
X(x ⇐⇒ x))

]
∧
[
triggered′ ⇐⇒ (triggered ∨ (f ∧ seen′))

]
∧
[
loop′ ⇐⇒ (triggered′ ∧

∧
X(x′ ⇐⇒ x′))

]
badL2S =̇ loop

The variables X are used to non-deterministically guess a state of the system
from which a reachable fair loop starts. The additional variables are used to
remember that the guessed state was seen once and that the signal f was true
at least once afterwards.

4 The Problem of Ribbon-Shaped Paths

4.1 The Diagnosability Problem

The observable part obs(s) of a state s is the projection of s on the subset
Y of observable state variables. Thus, obs(s) =̇ s|Y . The observable part of π
is obs(π) =̇ obs(s0), obs(s1), obs(s2), . . . = π|Y . Given two traces π1 and π2, we
denote by ObsEqUpTo(π1, π2, k) the condition saying that, for all i, 0 ≤ i ≤ k,
obs(π1[i]) = obs(π2[i]).

Let β be a formula over V representing the fault condition to be diagnosed.
We call β a diagnosis condition. A system is diagnosable for β if there exists
a bound d such that after the occurrence of β, an observer can infer within d
steps that β indeed occurred. This means that any other trace with the same
observable part contains β as well. Formally, it was first defined in [17] as follows.

Searching for Ribbon-Shaped Paths in Fair Transition Systems 547

OFF
OK

ON
OK

OFF
KO

ON
KO

(a) light bulb

ON
OK

ON
OK

ON
KO

ON
OK

OFF
OK

OFF
KO

ON
OK

OFF
KO

π1

π2

l = 2

(b) RCP

Fig. 1: The light bulb example and an example of a ribbon-shaped critical pair
in the light bulb.

Definition 2 (Diagnosability). Let P be a plant and β a diagnosis condition.
P is diagnosable for β iff there exists d ≥ 0 such that for every trace π1 and
index i ≥ 0 such that π1, i |= β, it holds:

(∃j ∈ N i ≤ j ≤ i+d·(∀π2 ·ObsEqUpTo(π1, π2, j)⇒ ∃k ∈ N k ≤ j ·π2, k |= β)).

The above definition requires a global bound, while when considering fair
transition systems it is possible that the occurrence of β can be inferred eventu-
ally, but without a fixed bound. That is the motivation of extending the definition
to fair diagnosability [16].

Definition 3 (Fair Diagnosability). Let P be a plant and β a diagnosis con-
dition. P is fair-diagnosable for β iff for every trace π1, there exists d ≥ 0 such
that for every index i ≥ 0 such that π1, i |= β, it holds:

(∃j ∈ N i ≤ j ≤ i+d·(∀π2 ·ObsEqUpTo(π1, π2, j)⇒ ∃k ∈ N k ≤ j ·π2, k |= β)).

Example 1. Consider the state machine of a light bulb as shown in Figure 1a,
with the observable value OFF/ON and the diagnosis condition β =̇ KO. Con-
sider the following context: G(KO → F OFF)∧G(OK → F ON). Intuitively, the
LTL formula states that globally a state where KO holds is followed eventually
by a state where OFF holds, and similarly a state where OK holds is followed
eventually by a state where ON holds. Therefore, if the execution reaches KO, it
will eventually go into state OFF/KO and remain there forever. If an execution
is instead always OK, then it will visit infinitely often the state ON/OK. We
can prove that condition β is not fair-diagnosable according to Def. 3. In fact, for
every j, there exists a trace without β that is observationally equivalent up to
j to the trace with β. Notice how the fairness condition causes the observations
after a failure to always diverge eventually, but that this event can be delayed
indefinitely.

4.2 Ribbon-Shaped Critical Pairs

Figure 2 illustrates the concept of ribbon-shaped paths. The formal definition is
as follows.

M. Bozzano et al.548

π1

s0 s1 sk sk+1
. sl sl+1

∃β

ObsEqUpTo(π1, π2, l)

π2

t0 t1 tk tk+1
.

tl tl+1

∀!β

Fig. 2: Ribbon-shaped critical pair

Definition 4 (Ribbon-Shaped Critical Pairs (RCP)). Let P be a plant and
β a diagnosis condition. We say that π1, π2 ∈ ΠP are a ribbon-shaped critical
pair for the diagnosability of β iff there exist k, l such that 0 ≤ k ≤ l and:

1. π1[l] = π1[k] and π2[l] = π2[k];
2. ObsEqUpTo(π1, π2, l);
3. π1, i |= β for some i, 0 ≤ i ≤ l;
4. π2, i 6|= β for all i, 0 ≤ i ≤ l.

For fair diagnosability, the definition is similar:

Definition 5 (Ribbon-Shaped Fair Critical Pairs (RFCP)). Let P be a
plant and β a diagnosis condition. We say that π1, π2 ∈ ΠP are a ribbon-shaped
fair critical pair for the diagnosability of β iff there exist k, l such that 0 ≤ k ≤ l
and:

1. π1[l] = π1[k] and π2[l] = π2[k];
2. π1 is in the form s0, s1, . . . sk, (sk+1, . . . sl)

ω;
3. ObsEqUpTo(π1, π2, l);
4. π1, i |= β for some i ≥ 0;
5. π2, i 6|= β for all i, 0 ≤ i ≤ l.

In this paper, we use a slightly different definition than the one given in [16].
Definition 5 includes an additional constraint on π1 by requiring a loop shape.
However, these two definitions are equivalent and the proof of it can be found
in the extended version of the paper.

Example 2. Fig. 1b shows an example of a ribbon-shaped critical pair for the
light bulb of Example 1.

We can prove that, in the general case, β is not diagnosable if and only if there
exists a ribbon-shaped critical pair. In other words, ribbon-shaped critical pairs
are necessary and sufficient for diagnosability violation. The following theorem
is adapted and extended from [16] and can be proved in a similar way.

Searching for Ribbon-Shaped Paths in Fair Transition Systems 549

Theorem 1 (RCP necessary and sufficient for diagnosability). Let P
be a plant. P is not diagnosable for β iff there exists a ribbon-shaped critical
pair for the diagnosability of β. P is not fair diagnosable for β iff there exists a
ribbon-shaped fair critical pair for the fair diagnosability of β.

The proof can be done similarly as in [16]. The theorem in [16] is proved for
asynchronous systems while here we assume that the plants in the twin plant
are synchronized on the observable part.

4.3 Fixpoint-based Algorithm

The ribbon-shaped structure requires to eventually reach a loop (the ribbon),
from which it is possible to branch with a fair suffix (the final lasso). Therefore,
it combines path and branching conditions, and can be encoded into a CTL*
formula [16] over variables of the twin plant. We can verify whether the formula
holds in the twin plant using a fixpoint-based algorithm. Actually, the specific
structure allows for a simple implementation on top of standard BDD-based
model checking [16]: it is sufficient first to compute the set of fair states, then
to compute the set of fair states staying forever in the looping condition, and
finally to look for an initial state reaching such loop.

The main issue of this approach is the computation of fair states, which is
performed independently from the diagnosis condition and may be a bottleneck
in case of complex fairness conditions.

5 Extended Liveness to Safety

In this section, we propose a novel algorithm for finding RCPs and RFCPs in fair
symbolic transition systems. The algorithm extends L2S such that it searches
for two consequent loops instead of one. We define a ribbon structure, which is
constructed from the twin plant. The ribbon structure is parametrized, thus it
can be used for finding both RCPs and RFCPs with only a slight modification.
We prove that a certain state is reachable in the ribbon structure if and only if
there exists an RCP/RFCP in the original structure.

The ribbon structure extends the twin plant of the original structure with a
new copy of state variables, new flags, and new transitions that constrain the
behaviour of the new variables and the flags. In the following, we describe how
the twin plant is extended and we formally define the ribbon structure.

5.1 Definition of the L2S Extension

The ribbon structure is parametrized by SFTS P , two propositional formulas
p and q and two sets of propositional fairness conditions F1 and F2. These
parameters are later instantiated depending on the specific ribbon-shaped path
that is considered. In particular, p represents the diagnosis condition β in the
left copy of the twin plant and q represents the negation of β in the right copy
conjoined with the constraint to force the same observations on the two copies.

M. Bozzano et al.550

The ribbon structure P∼ and the propositional formula ϕ∼ are defined such
that any path ρ of P∼ on which ϕ∼ is reached satisfies the following conditions:

– ρ contains two consequent loops L1 and L2 that satisfy fairness conditions
F1 and F2 respectively;

– p is satisfied in some state of ρ before the end of the first loop;
– q is satisfied in all states of ρ before the end of the first loop.

In the rest of this section, we formally define the set of variables, the initial
formula and the transition formula using the parameters described above.

Variables Similarly as in the original liveness-to-safety reduction, we create a
copy of all state variables of the twin plant. The copy variables serve as a guess
of the state representing a loopback. The variables are denoted by overline and
defined as V = {v | v ∈ V }, where V is the set of variables of the twin plant
P . The variables are reused both for the first and the second loop, where the
second loop is a fair loop.

The flags are auxiliary variables used to monitor whether a loop was found
and whether all loop conditions were satisfied. The set of flags is defined as
Vm = {mseen,mL1 ,mp,mq} ∪

⋃
fi∈F1

m1,i ∪
⋃
fi∈F2

m2,i. The intuition
behind each flag is as follows:

mseen is true ⇐⇒ the loopback (either the first or the second one) was already
seen and is saved in V ;

mL1 is true ⇐⇒ the first loop was already found;
mp is true ⇐⇒ p was true;
mq is true ⇐⇒ q was true in all previous states;

m1,i is true ⇐⇒ fi ∈ F1 was true in the first loop;
m2,i is true ⇐⇒ fi ∈ F2 was true in the second loop.

In addition, when mseen is true, the current state is in a loop. If mL1
is false,

it is in the first loop. Otherwise, the first loop was already found and the current
state is in the second loop.

Auxiliary Formula The following formula ϕL1
states requirements for find-

ing the loopback of the first loop L1. We need that the conditions on p and q
are satisfied and that L1 was yet not found. In addition, we need that the fair-
ness conditions were true and that the current state is the same as the guessed
loopback.

ϕL1
:= mp ∧mq ∧ ¬mL1

∧mseen ∧
∧
fi∈F1

m1,i ∧
∧
v∈V

v = v

Initial Formula All flags besides mq are initialized to false, mq is initialized
to true:

¬mseen ∧ ¬mL1
∧ ¬mp ∧mq ∧

∧
fi∈F1

¬m1,i ∧
∧
fi∈F2

¬m2,i (I1)

Searching for Ribbon-Shaped Paths in Fair Transition Systems 551

Transition Formulas We define transitions (T1)–(T8) to ensure the correct
behaviour of the introduced variables such that the conditions mentioned above
are satisfied. The transitions and their intuitive descriptions are as follows.

– Anytime mseen is set to true, in the next state the copied variables are set
to the state variables of the current state:

¬mseen ∧mseen
′ =⇒

∧
v∈V

v′ = v (T1)

– If mseen is true, the values of the copy variables are preserved also in the
next state:

mseen =⇒
∧
v∈V

v′ = v (T2)

– The flags mx,i can change to true only when fi ∈ Fx is true and the current
state is in Lx:∧

fi∈F1

(
(m1,i

′ = m1,i) ∨ (mi,1
′ ∧mseen ∧ ¬mL1

∧ fi)
)

(T3)

∧
fi∈F2

(
(m2,i

′ = m2,i) ∨ (m2,i
′ ∧mseen ∧mL1

∧ fi)
)

(T4)

– mL1
can change to true only when the first loop was found, as specified

above by ϕL1
, and it forces mseen to be set to false:

(mL1

′ = mL1
) ∨ (ϕL1

∧ ¬mseen
′ ∧mL1

′) (T5)

– mseen can change to false only when L1 was just found:

mseen =⇒ (mseen
′ ∨ (¬mseen

′ ∧ ¬mL1
∧mL1

′)) (T6)

– mp can change to true only when p is true:

(mp
′ = mp) ∨ (p ∧mp

′) (T7)

– Anytime q is false, mq goes to false and stays false:

(¬mq ∨ ¬q) =⇒ ¬mq
′ (T8)

Note that the transitions (T3), (T4), (T5) and (T7) imply that flags mx,i,
mL1

, mp can change their value from false to true only once and then they stay
true. The transition (T8) implies that mq can change its value from true to
false only once and then it stays false. Finally, (T6) implies that mseen is set to
false exactly once, when L1 is found, and thus set to true exactly twice, when a
loopback of either L1 or L2 is guessed.

M. Bozzano et al.552

Ribbon Structure Putting together the variables and formulas defined above,
we give the following definition of the ribbon structure.

Definition 6. For the plant P = 〈V, I, T, F 〉, the propositional formulas p, q and
the sets of propositional formulas F1, F2 over V , let 〈V∼, I∼, T∼〉 be a symbolic
transition system where:

– V∼ = V ∪ V ∪ Vm;
– I∼ = I ∧ (I1);
– T∼ = T ∧ (T1) ∧ (T2) ∧ (T3) ∧ (T4) ∧ (T5) ∧ (T6) ∧ (T7) ∧ (T8).

We call this STS a ribbon structure and denote it by Ribbon(P, p, q, F1, F2).

To finish the reduction, we define the reachability condition. Intuitively, the
condition should express that the second loop was found. This means that the
first loop was already found, all fairness conditions in F2 were true and the
current state is the same as the guessed loopback:

ϕ∼ := mL1 ∧mseen ∧
∧
fi∈F2

m2,i ∧
∧
v∈V

v = v.

In the next section, we show how the reachability in a ribbon structure is
used to find RCPs and RFCPs and we prove that our construction is correct.

5.2 Correctness

The ribbon structure and the reachability condition are defined such that any
satisfiable trace contains two consecutive loops. The definitions of RCP and
RFCP describe only the first loop. Not all critical pairs contain the second
loop. However, using the following propositions, we claim that the existence of
a critical pair implies existence of a critical pair with two loops, where the first
loop is as in the original pair and the second loop is fair. This fact is necessary
to prove that if P contains a critical pair, we can find a critical pair with two
loops in the ribbon structure.

Proposition 1. Let π be a trace of an SFTS P . Then, any prefix of π can be
extended to a trace πF that ends with a fair loop.

Proposition 2. Let π1 = s1, s2, s3 . . ., π2 = t1, t2, t3 . . . be traces of SFTS P
that end with a fair loop. Then, the path (s1, t1), (s2, t2), (s3, t3) . . . is a trace of
P × P that ends with a fair loop.

The first proposition is true because we consider only finite systems. In a
finite system, any infinite fair suffix contains a state that is repeated infinitely
many times. Thus, there must be two occurrences of the state in between which
all fairness conditions are true at least once. The second proposition is true
because we can unroll the fair loops of π1 and π2 until both of them are in loop
and then we match the period of the new fair loop in π1×π2 by taking the least
common multiple of periods of the fair loops.

Searching for Ribbon-Shaped Paths in Fair Transition Systems 553

Theorem 2. Let P be a plant and P∼ = Ribbon(Twin(P, Y), p, q, F1, F2) is a
ribbon structure where p = βL, q = ¬βR∧ObsEq, F1 = ∅, F2 = FL∪FR. There
exists a ribbon-shaped critical pair in P for the diagnosability of β iff P∼ |= ϕ∼.

Proof. Here, we sketch the proof of the theorem. The full proof is given in the
extended version of the paper. We separately prove both directions of the equiv-
alence:

=⇒ We have π1, π2 ∈ ΠP satisfying Definition 4. We prove that there is a trace
ρ ∈ ΠP∼ such that ρ |= ϕ∼. At first, we show what the trace looks like and
then we prove it is a trace of P∼. Let π1,F , π2,F be a critical pair with two
loops, where the first loop is equal to the loop in π1, π2 and the second loop
is fair. We construct the path ρ as symbolized in Figure 3. The main idea is
to set ρ|V to π1,F ×π2,F . The existence of loop bounds k, l, k′, l′ follows from
the definition of RCP. In the copy variables ρ|V , we keep (π1,F × π2,F)[k]

until the first loop is found and then we switch to (π1,F × π2,F)[k′]. Flags
mseen and mL1 are set accordingly to the bounds of the loops. Flags mp

and m2,i are set to true after conditions βL and fi respectively were true.
The existence of such states where the conditions are satisfied follows from
the definition of RCP. Flag mq is true until the first loop is found, because
from the definition of RCP we know that ¬βR and ObsEq are true.
The formal definition of ρ and the full proof that ρ ∈ ΠP∼ and ρ |= ϕ∼ is
given in the appendix.

⇐= We have P∼ |= ϕ∼, thus there is ρ ∈ ΠP∼ such that ρ |= ϕ∼. Assume we
have such ρ. We show how to construct π1 and π2 from ρ and then we prove
that π1, π2 are an RCP for P and β. Let us set π1 = ρ|VL

and π2 = ρ|VR
.

Let the bounds k, l, k′, l′ of the loops in π1 and π2 be the indices:
– l′ is such that ρ, l′ |= ϕL2

;
– k′ < l′ is the greatest index such that ρ, k′ |= ¬mseen;
– l < k′+ 1 such that ρ, l |= ¬mL1

∧mL1
′, from the construction we know

there is only one such l;
– k < l is the greatest index such that ρ, k |= ¬mseen.

In Appendix A, we finish the prove by showing that π1 and π2 are an RCP.

Theorem 3. Let P be a plant and P∼ = Ribbon(Twin(P, Y), p, q, F1, F2) is a
ribbon structure where p = βL, q = ¬βR ∧ ObsEq, F1 = FL, F2 = FL ∪ FR.
There exists a ribbon-shaped critical pair in P for the fair diagnosability of β iff
P∼ |= ϕ∼.

The proof is very similar to the previous one. The only difference is the
necessity to verify the fairness of the first loop, which is done the same way as
the fairness of the second loop and thus straightforward.

6 Experimental Evaluation

We compared the proposed technique based on L2S and the technique based on
the computation of fixpoints using BDD proposed in [16] and briefly described

M. Bozzano et al.554

ρ|V
s0 sk+1 sl = sk sk′+1 sl′ = sk′

ρ|V
sk sk′

mseen

mL1

mp

∃j ≤ l.sj |= βL
mq

∀j ≤ l.sj |= ¬βR ∧ObsEq

m2,i

∃j, k′ < j ≤ l′.sj |= fi

Fig. 3: The trace ρ as constructed in proof of Theorem 2. For each m ∈ Vm,
a dashed line means ρ, i |= ¬m, a full line and a full circle mean ρ, i |= m,
an empty circle means ρ, i+ 1 |= m.

in Section 4.3. We implemented both algorithms in the xSAP platform [4] and
tested them on benchmarks. The benchmarks, the tool and the scripts required
to test it can be found online1. In this section, we at first introduce the imple-
mentation of the proposed technique and we describe the benchmarks. Then, we
show comparison of the two techniques and we comment on their performance.

6.1 Implementation

We have implemented both the L2S algorithm and the BDD-based algorithm
inside of the xSAP tool [4]. The algorithms make use of various procedures
already implemented in nuXmv [8] and integrated in xSAP, mainly computation
of fixpoint with BDDs [7] and different invariant model checking algorithms. The
fair states are computed with the Emerson-Lei doubly-fixpoint algorithm [1].
The invariant model checking is implemented using engines based on standard
verification algorithms IC3 [6], k-induction [18] and BDD-based fixpoint [11].

The input of each algorithm is a model in an SMV language2, a list of ob-
servable variables of the model, a propositional diagnosis condition and an LTL
formula representing the context. Both the model and the context are translated
into Büchi automata and their parallel composition with the union of their ac-
cepting states is computed. The resulting set of accepting states is the set of
fairness conditions. Then, a twin plant is constructed. The fixpoint-based algo-
rithm is described in Section 4.

1 http://es.fbk.eu/people/vvozarova/diag-rcp-search.zip
2 see nuXmv manual htpps://nuxmv.fbk.eu)

Searching for Ribbon-Shaped Paths in Fair Transition Systems 555

http://es.fbk.eu/people/vvozarova/diag-rcp-search.zip
htpps://nuxmv.fbk.eu

Table 1: Properties of the used models.
model #bool var #reach diam #obs #fairness

acex 31 219.4 96 5-21 1
autogen 99 212.0 20 4-20 1-4
cassini 176 244.2 8 5-58 1
guidance 98 247.5 70 5-62 1
pdist 83 211.0 31 5-41 1-4

In the L2S algorithm, we get the ribbon structure P∼ and the propositional
formula ϕ∼ by extending the twin plant with new variables and transitions as
defined in Section 6. The parameters p and q are constructed from the diagnosis
condition and the set of observable variables. Finally, an arbitrary reachability
algorithm is used to solve the reachability of ϕ∼ in the resulting system.

6.2 Benchmarks

We selected several benchmarks modelling industrial use cases. The models are
finite with boolean variables. For each model, we have specified a fault condition
and possibly more sets of fairness conditions. Both the fault condition and the
fairness conditions are given as propositional formulas. In Table 1, we give for
each model the number of variables, the number of reachable states, the diameter
of the state space, the sizes of sets of observable variables and the sizes of fairness
condition sets.

Each benchmark was tested with more sets of observable variables and some
were tested with more sets of fairness conditions. In sum, we have 72 examples
for diagnosability and fair diagnosability problems and each instance was solved
by BDD-based fixpoint approach and L2S approach with IC3, k-induction and
BDD engines. This gives the total of 576 individual invocations of the xSAP
tool. The experiments were run in parallel on a cluster with nodes with Intel
Xeon CPU running at 2.27GHz with 8CPU, 48GB. The timeout for each run
was two hours and the memory cap was set to 8GB.

6.3 Results

The results for selected examples are given in Table 2 and all results are plotted
in Figure 4a for diagnosability and in Figure 4b for fair diagnosability. We com-
pare the BDD-based fixpoint algorithm (FP-BDD) with L2S with IC3 engine
algorithm (L2S-IC3). The k-induction engine was unable to prove diagnosabil-
ity with the given bound on k (150), time and memory. In general, it performs
better on cases where a counterexample exists, which are not of concern in this
paper. The runs for L2S with BDD engine reached timeout in 127 out of 144
cases and for this reason we do not include it in the analysis.

As both figures and the table show, the approach using L2S extension is in
most cases more effective than the BDD-based approach proposed in the previous

M. Bozzano et al.556

(a) diagnosability (b) fair diagnosability

Fig. 4: Results for the diagnosability (a) and the fair diagnosability (b) comparing
L2S approach with IC3 engine and BDD-based fixpoint computation approach.
The axes represent time in seconds on a logarithmic scale.

literature. The novel technique manages to outperform the previous one in most
cases, as is shown by the cases plotted below the diagonal line on each figure.
Moreover, it manages to solve some cases in which the fixpoint-based algorithm
timed out. For the acex model, FP-BDD performs better than L2S-IC3. This
is because the model has few boolean variables, thus BDDs are smaller and
operations on them are faster. In addition, IC3 needs 56-116 frames to prove
non-reachability on acex, compared to 3-62 frames in other cases.

7 Conclusions and Future Work

In this paper, we considered the problem of proving the absence of a ribbon-
shaped path, which is a core issue in proving diagnosability of fair transition
systems. We conceived a new encoding extending the liveness-to-safety paradigm
in order to search for two consecutive loops. We implemented the algorithm in the
xSAP tool and evaluated it on various diagnosability benchmarks in comparison
with a fixpoint-based solution.

The directions for future work are manifold: first, generalize the looping
conditions to consider also problems different from diagnosability such as non-
interference properties (as in [13]); second, exploit the generation of infinite sets
of traces in counterexample-guided abstraction refinement, reducing the number
of refinement iterations; finally, extend the approach to infinite-state systems,
taking into account data variables that are updated in the loop (as in [9]).

Searching for Ribbon-Shaped Paths in Fair Transition Systems 557

Table 2: Results comparing L2S with IC3 engine and BDD-based algorithm. The
times are given in seconds, TO stands for the timeout of 7200 seconds. All cases
are diagnosable.

model #obs #fairness
diagnosability fair diagnosability

L2S-IC3 FP-BDD L2S-IC3 FP-BDD

acex 5 1 TO 29.59 3114.25 30.58
9 1 4385.18 22.25 1493.26 23.22
13 1 992.60 24.25 1203.87 21.94
17 1 1450.14 24.65 1754.44 25.35
21 1 1328.43 27.22 1996.66 30.39

autogen 4 1 676.89 657.07 179.27 809.45
2 300.14 968.09 994.24 840.69
3 415.00 741.83 756.72 988.33
4 228.62 5638.46 800.11 5457.23

16 1 2231.98 5188.65 420.75 5318.42
2 379.31 TO 586.94 TO
3 411.57 6300.83 274.74 5459.99
4 771.76 TO 574.25 TO

20 1 482.92 4741.88 522.16 5573.37
2 548.96 6016.29 943.53 6043.12
3 426.54 5728.60 945.79 5768.85
4 1134.01 TO 568.33 TO

cassini 5 1 31.85 TO 51.11 TO
10 1 82.48 TO 60.35 TO
15 1 90.62 TO 71.00 TO
20 1 41.50 TO 61.95 TO
25 1 62.39 TO 64.06 TO
58 1 58.36 TO 64.65 TO

guidance 5 1 425.76 349.59 196.27 370.38
10 1 173.75 1663.83 245.50 1727.08
15 1 250.78 4616.18 128.19 4678.15
20 1 271.89 2928.52 300.66 3598.55
25 1 224.58 TO 507.58 TO
62 1 278.82 TO 95.00 TO

pdist 5 1 95.19 458.85 96.81 350.6
2 46.33 511.33 46.72 435.57
3 48.09 424.51 40.19 419.86
4 80.44 420.94 29.07 388.84

20 1 36.72 32.96 1635.52 35.92
2 22.47 28.86 35.54 34.19
3 71.29 34.42 34.19 35.74
4 33.86 33.65 28.98 31.97

25 1 773.29 246.48 285.85 280.56
2 54.20 215.76 38.83 279.42
3 35.06 216.55 25.86 219.13
4 24.75 217.05 16.75 217.25

41 1 23.82 818.28 38.74 859.25
2 31.33 643.03 50.58 759.50
3 41.38 633.24 14.40 782.73
4 22.21 750.93 18.93 818.21

M. Bozzano et al.558

References

1. Allen Emerson, E., Lei, C.L.: Temporal reasoning under generalized fairness con-
straints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 86. pp. 21–36. Springer
Berlin Heidelberg, Berlin, Heidelberg (1986)

2. BARTHE, G., D’ARGENIO, P.R., REZK, T.: Secure information flow by self-
composition. Mathematical Structures in Computer Science 21(6), 1207–1252
(2011). https://doi.org/10.1017/S0960129511000193

3. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety check-
ing. Electronic Notes in Theoretical Computer Science 66(2), 160–177
(2002). https://doi.org/https://doi.org/10.1016/S1571-0661(04)80410-9, https://
www.sciencedirect.com/science/article/pii/S1571066104804109, fMICS’02, 7th In-
ternational ERCIM Workshop in Formal Methods for Industrial Critical Systems
(ICALP 2002 Satellite Workshop)

4. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP Safety Analysis Platform. In: TACAS.
Lecture Notes in Computer Science, vol. 9636, pp. 533–539. Springer (2016)

5. Bozzano, M., Cimatti, A., Gario, M., Tonetta, S.: Formal Design of Asyn-
chronous Fault Detection and Identification Components using Temporal
Epistemic Logic. Logical Methods in Computer Science 11(4), (2015).
https://doi.org/10.2168/LMCS-11(4:4)2015, https://doi.org/10.2168/LMCS-11(4:
4)2015

6. Bradley, A.R.: SAT-Based Model Checking without Unrolling. In: VMCAI. Lecture
Notes in Computer Science, vol. 6538, pp. 70–87. Springer (2011)

7. Bryant, R.E.: Binary Decision Diagrams. In: Handbook of Model Checking, pp.
191–217. Springer (2018)

8. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv Symbolic Model Checker. In: CAV.
Lecture Notes in Computer Science, vol. 8559, pp. 334–342. Springer (2014)

9. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending nuXmv
with Timed Transition Systems and Timed Temporal Properties. In: CAV (1).
Lecture Notes in Computer Science, vol. 11561, pp. 376–386. Springer (2019)

10. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model Check-
ing. Formal Methods in System Design 10(1), 47–71 (1997)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (2001)

12. Emerson, E.: Temporal and Modal Logic. Handbook of theoretical computer sci-
ence 2, 995–1072 (1990)

13. Finkbeiner, B., Hahn, C., Torfah, H.: Model checking quantitative hyperprop-
erties. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verifica-
tion - 30th International Conference, CAV 2018, Held as Part of the Feder-
ated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 10981, pp. 144–163.
Springer (2018). https://doi.org/10.1007/978-3-319-96145-3 8, https://doi.org/10.
1007/978-3-319-96145-3 8

14. Grastien, A.: Symbolic testing of diagnosability. In: International Workshop on
Principles of Diagnosis (DX). pp. 131–138 (2009)

15. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A Polynomial-time Algorithm for
Diagnosability of Discrete Event Systems. IEEE Transactions on Automatic Con-
trol 46(8), 1318–1321 (2001)

Searching for Ribbon-Shaped Paths in Fair Transition Systems 559

https://doi.org/10.1017/S0960129511000193
https://doi.org/https://doi.org/10.1016/S1571-0661(04)80410-9
https://www.sciencedirect.com/science/article/pii/S1571066104804109
https://www.sciencedirect.com/science/article/pii/S1571066104804109
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.2168/LMCS-11(4:4)2015
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8
https://doi.org/10.1007/978-3-319-96145-3_8

16. M. Bozzano and A. Cimatti and S. Tonetta: Testing Diagnosability of Fair Discrete-
Event Systems. In: Proc. International Workshop on Principles of Diagnosis (DX-
19) (2019)

17. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.: Di-
agnosability of Discrete-event Systems. IEEE Transactions on Automatic Control
40(9), 1555–1575 (1995)

18. Sheeran, M., Singh, S., St̊almarck, G.: Checking Safety Properties Using Induction
and a SAT-Solver. In: FMCAD. Lecture Notes in Computer Science, vol. 1954, pp.
108–125. Springer (2000)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the

material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright holder.

M. Bozzano et al.560

http://creativecommons.org/licenses/by/4.0/

CoVeriTeam: On-Demand Composition of
Cooperative Verification Systems

Dirk Beyer � and Sudeep Kanav

LMU Munich, Munich, Germany

Abstract. There is no silver bullet for software verification: Different
techniques have different strengths. Thus, it is imperative to combine
the strengths of verification tools via combinations and cooperation.
CoVeriTeam is a language and tool for on-demand composition of cooper-
ative approaches. It provides a systematic and modular way to combine
existing tools (without changing them) in order to leverage their full
potential. The idea of cooperative verification is that different tools help
each other to achieve the goal of correctly solving verification tasks.
The language is based on verification artifacts (programs, specifications,
witnesses) as basic objects and verification actors (verifiers, validators,
testers) as basic operations. We define composition operators that make it
possible to easily describe new compositions. Verification artifacts are the
interface between the different verification actors. CoVeriTeam consists
of a language for composition of verification actors, and its interpreter.
As a result of viewing tools as components, we can now create powerful
verification engines that are beyond the possibilities of single tools, avoid-
ing to develop certain components repeatedly. We illustrate the abilities
of CoVeriTeam on a few case studies. We expect that CoVeriTeam will
help verification researchers and practitioners to easily experiment with
new tools, and assist them in rapid prototyping of tool combinations.

Keywords: Cooperative Verification · Tool Development · Software Verification
· Automatic Verification · Verification Tools · Tool Composition · Tool Reuse

1 Introduction

As research in the field of formal verification advanced, the complexity of the
programs under verification also kept on increasing. As a result, despite its
successful application to the source code of large industrial and open-source
projects [2, 3, 23, 27, 36], the current techniques fall short on solving many im-
portant verification tasks. It seems essential to combine the strengths of dif-
ferent verification techniques and tools to solve these tasks.

The verification community successfully applies different approaches to com-
bine ideas: integrated approaches (source-code-based), where different pieces
of source code are integrated into one tool [28], and off-the-shelf approaches
(executable-based), where different executables from existing tools are combined

c© The Author(s) 2022

https://doi.org/10.1007/978-3-030-99524-9_31
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 561–579, 2022.

https://orcid.org/0000-0003-4832-7662
https://www.sosy-lab.org/people/beyer/
https://orcid.org/0000-0001-6078-4175
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_31&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_31

Dirk Beyer and Sudeep Kanav

without changing them. The latter can be further classified into sequential and
parallel portfolio [33], algorithm selection [37], and cooperative approaches [22].

The integrated approaches require development effort for adaptation or im-
plementation of integrated components instead of building on existing mature
implementations—the combination is very tight. On the other hand, the standard
off-the-shelf approaches (portfolio [33] and selection [37]) let the tools run in
isolation and the individual tools do not cooperate at all. The components do not
benefit from the knowledge that is produced by other tools in the combination—
the combination is very loose. In this work, we focus on cooperative verification,
which is neither as tight as source-code integration nor as loose as portfolio
and selection approaches—somewhere in between the two extremes.

Cooperative verification [22] is an approach to combine different tools for
verification in such a way that they help each other solving a verification task,
where the combinations are neither too tight nor too loose. Implementations
include using a shared data base to exchange information (e.g., there are co-
operative SAT solvers that use a shared set of learned clauses [34], and coop-
erative software verifiers that use a shared set of reached abstract states [14])
or pass information from one tool to the other (e.g., conditional model check-
ers [13, 25]). Cooperative verification aims to combine the individual strengths
of these technologies to achieve better results. Our thesis is that programming
(meta) verification systems based on combination and cooperation could be a
promising solution. CoVeriTeam provides a framework to achieve this.

Developing such a tool is not straightforward. Various concerns that need
to be addressed for developing a robust solution can be broadly divided in
two categories: concepts and execution. (1) Concepts deal with defining the
interfaces for tools, and with the mechanism for their combination. Before tools
can cooperate, we need a common definition of tools based on their behavior.
We need to categorize what a tool does, what inputs it consumes, and what
outputs it produces, before we can use it in a cooperative framework with ease.
In CoVeriTeam, we categorize tools in various types of verification actors, and
the inputs and outputs produced by these actors in verification artifacts. The
actors can be combined with the help of composition operators that define the
mechanism of cooperation. (2) Execution is concerned with all issues during
the execution of a tool. Actors first need to execute to cooperate. This opens
another dimension of challenges and opportunities to improve the cooperation.
To give two examples: a tool might have a too high resource consumption, thus,
resources must be controlled and limited, and tools might interfere with other
executing processes, thus, tools must be executed in isolated containers.

This paper presents CoVeriTeam, a language and tool for on-demand com-
position of cooperative verification systems that solves the above mentioned
challenges. We contribute a domain-specific language and an execution engine. In
the CoVeriTeam language, we can compose new actors based on existing ones
using built-in composition operators. The existing components are not changed,
but taken off-the-shelf from actor providers (technically: tool archives). We do
not change existing software components: the composition is done on-demand

562

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems

(when needed by the user) and on-the-fly (it does not compile a new tool from the
components). In other words, existing verification tools are viewed as off-the-shelf
components, and can be used in a larger context to construct more powerful
verification compositions. Our approach does not require writing code in program-
ming languages used to develop the underlying components. In the CoVeriTeam
language, the user can execute tools without fearing that they interact with the
host system or with other tools in an unspecified way. The execution environment,
as well as input and output, are controlled using the Linux features cgroups,
name spaces, and overlay file systems. We use the BenchExec [20] system as
library for convenient access to those OS features via a Python API.
Contributions. We make the following contributions:

1. a language to compose new verification tools based on existing ones,
2. an execution engine for on-the-fly execution of these compositions,
3. case studies implementing combinations in CoVeriTeam that were previously

achieved only via hard-wired combinations, and
4. an open-source implementation and an artifact for reproduction.

In addition to the above mentioned contributions, CoVeriTeam provides the
following features to the end user: (1) CoVeriTeam takes care of downloading
and installing specified verification tools on the host system. (2) There is no need
to learn command-line parameters of a verification tool because CoVeriTeam
takes care of translating the input to the arguments for the underlying tool. This
provides a uniform interface to a number of similar tools. (3) The off-the-shelf
components (i.e., tools) are executed in a container, with resource limits, such
that the execution cannot change (or even damage) the host system.

These features in turn enable a researcher or practitioner to easily exper-
iment with new tools, and rapidly prototype new verification combinations.
CoVeriTeam liberates the researcher who uses tool combinations from main-
taining scripts that combine tools executions, and worrying about downloading,
installing, and figuring out the command to execute a verification tool.
Impact. CoVeriTeam has already found use cases in the verification community:
(1) It was used in a modular implementation of CEGAR [26] using off-the-shelf
components [12]. (2) It was used for construction and evaluation of various veri-
fier combinations [17]. (3) CoVeriTeam (wrapped in a service) was used in the
software-verification competition 2021 and 2022 to help the participants debug is-
sues with their tools (see Sect. 3 in [7]). Also, according to SV-COMP rules, a team
is granted points only for those tasks whose result can be validated using a valida-
tor. Thus, a verifier-validator combination might be interesting for participants.
With the help of CoVeriTeam such combinations can be easily constructed.

Also, the advent of many high-quality verifiers should lead to a certain
level of standardization of the API and provided features. For example, tools
for SMT or SAT solving are easy to use because of their standardized input
language (e.g., SMTLIB for SMT solvers [4]). Consequently, such tools can be
easily integrated into larger architectures as components. Our vision is that soon
verifiers will be seen also as components that can be used in larger architectures
just like SMT solvers are now integrated into verification tools.

563

Example 1 Witness Validation
Input: Program p, Specification s
Output: Verdict
1: verifier := Verifier(“Ultimate Automizer”)
2: validator := Validator(“CPAchecker”)
3: result := verifier.verify(p, s)
4: if result.verdict ∈ {True, False} then
5: result = validator.validate (p, s, result.witness)
6: return (result.verdict, result.witness)

2 Running Example

We explain the idea of CoVeriTeam using a short example. Verifiers are complex
software systems and might have bugs. Therefore, for more assurance a user
might want to validate the result of a verifier based on the verification witness
that the verifier produces [10]. Such a procedure is sketched in Example 1.

The user wanting to execute the procedure sketched in Example 1 would
need to download the tools (verifier and validator), execute the verifier, check
the result of the verifier, and then if needed connect the outputs of the verifier
with the inputs of the validator. The user would quite possibly write a shell
script to do this, which is cumbersome and difficult to maintain.

CoVeriTeam takes care of all the above issues. In the next section, we discuss
the types, namely artifacts and actors, that are used in the CoVeriTeam language.
After this, we explain the design and usage of the CoVeriTeam execution engine,
and discuss the CoVeriTeam program for our validating verifier in Listing 1.

3 Design and Implementation of CoVeriTeam

We now explain details about the design and implementation of CoVeriTeam.
First we discuss conceptual notions of actors, artifacts, and compositions; then
we discuss execution concerns that a cooperative verification tool needs to
handle. Then we delve deeper into implementation details where we discuss
how an actor is created and executed. Last, we briefly explain the API that
CoVeriTeam exposes and extensibility of this API.

3.1 Concepts

This section describes the language that we have designed for cooperative verifica-
tion and on-demand composition. At first we describe the notion of artifacts and
actors, and then the composition language to compose components to new actors.
Artifacts and Actors. Verification artifacts provide the means of information
(and knowledge) exchange between the verification actors (tools). Figure 1 shows
a hierarchy of artifacts, restricted to those that we have used in the case stud-
ies for evaluating our work. On a high level we divide verification artifacts in

Dirk Beyer and Sudeep Kanav564

Artifact

Program SpecificationVerdictJustification

ConditionTestSuite Witness BehaviorSpec TestSpec

CoveredGoals CoveredSpace SafetyTermination Overflow CoverageCriterionTestGoal

Fig. 1: Hierachy of Artifacts (arrows indicate an is-a relation)
Actor

Analyzer Transformer

Verifier ValidatorTester ReducerTestGoalExtractor Instrumentor WitnessToTest

ConditionalVerifier ConditionalTester WitnessValidator TestValidator Pruner Annotator WitnessIns TestSpecIns

Fig. 2: Hierachy of Actors (arrows indicate an is-a relation)

the following kinds: Programs, Specifications, Verdicts, and Justifications. Pro-
grams are behavior models (can be further classified into programs, control-flow
graphs, timed automata, etc.). Specifications include behavioral specifications
(for formal verification) and test specifications (coverage criteria for test-case
generation). Verdicts are produced by actors signifying the class of result ob-
tained (True, False, Unknown, Timeout, Error). Justifications for the
verdict are produced by an actor; they include test suites to justify an obtained
coverage, or verification witnesses to justify a verification result.

Verification actors act on the artifacts and as a result either produce new arti-
facts or transform a given artifact for consumption by some other actor. Figure 2
shows a hierarchy of actors, restricted to those that we have used in the case stud-
ies for evaluating our work. We divide verification actors in the following types:
Analyzers and Transformers. Analyzers create new knowledge, e.g., verifiers, val-
idators, and test generators. Transformers instrument, refine, or abstract artifacts.

Composition. Actors can be composed to create new actors. Our language
supports the following compositions: sequence, parallel, if-then-else, and repeat.

CoVeriTeam infers types and type-checks the compositions, and then either
constructs a new actor or throws a type error. In the following, we use the nota-
tion Ia for the input parameter set of an actor a and Oa for the output parameter
set of a. A parameter is a pair of name and artifact type. A name clash between
two sets A and B exists if there is a name in A that is mapped to a different
artifact type in B, more formally: ∃(a, t1) ∈ A, (a, t2) ∈ B : t1 6= t2. The actor
type is a mapping from input parameter set to output parameter set (Ia → Oa).

Sequential. Given two actors a1 and a2, the sequential composition SEQUENCE
(a1, a2) (Fig. 3a) constructs an actor that executes a1 and a2 in sequence,
i.e., one after another. The composition is well-typed if there is no name clash
between Ia1 and (Ia2 \ Oa1). This means that we allow same artifact to be
passed to the second actor in sequence, but disallow the confusing scenario

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 565

Actor a1 Actor a2

(a) SEQUENCE

Actor a1

Actor a2

(b) PARALLEL

Actor a1

Actor a2

?

true

false

(c) ITE

Actor a ?

(d) REPEAT

Fig. 3: Compositions in CoVeriTeam

where both actors expect an artifact with the same name but different type.
The inferred type of the composition is Ia1 ∪ (Ia2 \ Oa1) → Oa2.
Parallel. Given two actors a1 and a2, the parallel composition PARALLEL (a1,
a2) (Fig. 3b) constructs an actor that executes the actors a1 and a2 in par-
allel. The composition is well-typed if (a) there is no name clash between
Ia1 and Ia2 and (b) the names of Oa1 and Oa2 are disjoint. The inferred
type of the composition is Ia1 ∪ Ia2 → Oa1 ∪ Oa2.
ITE. Given a predicate cond and two actors a1 and a2, the if-then-else com-
position ITE (cond, a1, a2) (Fig. 3c) constructs an actor that executes the
actor a1 if predicate cond evaluates to true, and the actor a2 otherwise. The
composition is well-typed if (a) there is no name clash between cond, Ia1, and
Ia2, and (b) the output parameters are the same (Oa1 = Oa2). The inferred
type of the composition is Ia1 ∪ Ia2 ∪ vars(cond) → Oa1, where vars maps the
variables used in a predicate to their artifact types. This allows us to define the
condition cond using artifacts other than the inputs of Ia1 and Ia2.

There are situations where a2 is not required and its explicit specification only
increases complexity. So, we have relaxed the type checker and made a2 optional.
Repeat. Given a set fp and an actor a, the repeat composition REPEAT(fp, a)
(Fig. 3d) constructs an actor that repeatedly executes actor a until a fixed-
point of set fp is reached, that is, fp did not change in the last execution
of a. The repeat composition feeds back the output of a from iteration n to a
for iteration n + 1. Let us partition Ia ∪ Oa into three sets: Ia \ Oa, Oa \ Ia,
and Ia ∩ Oa. The parameters in Ia \ Oa do not change their value and the
parameters in Oa \ Ia are accumulated if accumulatable, otherwise their value
after the execution of the composition is the value from the last iteration. The
composition is well-typed if fp ⊆ dom(Ia ∩ Oa), where dom returns the names
of a parameter set. The inferred type of the composition is Ia → Oa.

Dirk Beyer and Sudeep Kanav566

verifier validator?
true

false

Fig. 4: CoVeriTeam implementation of the validating verifier from Example 1

Figure 4 shows the pictorial representation of our running example using
these compositions. First a verifier is executed, then the validator is executed if
the verifier returned True or False, otherwise (in case of Unknown, Timeout,
Error) the validator is not executed and the output of the verifier is forwarded.

3.2 Execution Concerns

A tool for cooperative verification orchestrates the execution of verification tools.
This means it needs to assemble the command for the tool, as well as handle the
output produced by the tool. A verification tool might consume a lot of resources
and a user might want to limit this. It might crash during execution, might
interfere with other processes. CoVeriTeam needs to handle all these concerns.

Instead of developing our own infrastructure to handle these concerns, we
reuse some of the features provided by BenchExec [20]: we use tool-info modules
to assemble command lines and parse log output, RunExec (a component of
BenchExec) to execute tools in a container and limit resource consumption.

Tool-Info modules are integration modules of the benchmarking framework
BenchExec [20]. A typical tool-info module is a few lines of code used for
assembling a command line and parsing the log output produced by the tool. It
takes only a few hours to create one.1 CoVeriTeam uses tool-info modules to
pass artifacts to atomic actors (assemble command-line) and extract artifacts
from the output produced by the atomic actor. Using tool-info modules gave
us integration of more than 80 tools without effort, because such integration
modules exist for most well-known verifiers, validators, and testers (as many
researchers use BenchExec and provide such integration modules for their tools).

CoVeriTeam uses runexec to isolate tool execution to prevent interference
with the execution environment and enforce resource limits. We also report back to
the user the resources consumed by the tool execution as measured by runexec.

3.3 CoVeriTeam

Figure 5 provides an abstract view of the system. CoVeriTeam takes as input
a program written in the CoVeriTeam language and artifacts. At first, the
code generator converts this input program to Python code. This transformed
1 We claim this based on our experience with tool developers creating their tool-info
modules, which is a prerequisite for participating in SV-COMP or Test-Comp.

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 567

CoVeriTeam

CoVeriTeam

program
and inputs

Code
Generator

Actor
Executor

Output
Artifacts

Fig. 5: Abstract view of the CoVeriTeam tool

1 verifier = ActorFactory.create(ProgramVerifier,
"actors/uautomizer.yml");

2 validator = ActorFactory.create(ProgramValidator,
"actors/cpa-validate -violation -witnesses.yml");

3

4 // Use validator if verdict is true or false
5 condition = ELEMENTOF(verdict, {TRUE, FALSE});
6 second_component = ITE(condition, validator);
7 // Verifier and second component to be executed in sequence
8 validating_verifier = SEQUENCE(verifier, second_component);
9

10 // Prepare example inputs
11 prog = ArtifactFactory.create(CProgram, prog_path);
12 spec = ArtifactFactory.create(BehaviorSpecification, spec_path);
13 inputs = {’program’:prog, ’spec’:spec};
14 // Execute the new component on the inputs
15 res = execute(validating_verifier, inputs);
16 print(res);

Listing 1: CoVeriTeam implementation of the validating verifier from Example 1

code uses the internal API of CoVeriTeam. Then this Python code is executed,
which means the actor executor is called on the specified actor. This in turn
produces output artifacts on successful execution of the actor.

There are four key parts of executing a CoVeriTeam program: creation of
atomic actors, composition of actors (atomic or composite), creation of arti-
facts, and execution of the actors. We now give a brief explanation of these
parts with the help of our running example. Listing 1 shows a CoVeriTeam
implementation of the running example (Example 1).

Creation of an Atomic Actor. Atomic actors in CoVeriTeam provide an in-
terface for external tools. CoVeriTeam uses the information provided in an actor-
definition file to construct an atomic actor. Lines 1 and 2 in Listing 1 show the cre-
ation of atomic actors verifier and validator using the ActorFactory by provid-
ing the ActorType and the actor-definition file. Once constructed, this actor can be
executed.

An actor definition is specified in a file in YAML format. It contains the
information necessary for executing the actor: location from where to download
the tool, the name of the tool-info module to assemble the command line and parse
tool output, additional command-line parameters for the tool, resource limitations
to enforce, etc. Listing 2 shows the actor definition file for UAutomizer [32]: the
actor name is uautomizer, the identifier for the BenchExec tool-info module is

Dirk Beyer and Sudeep Kanav568

1 actor_name: uautomizer
2 toolinfo_module: "ultimateautomizer.py"
3 archive:
4 doi: "10.5281/zenodo.3813788"
5 spdx_license_identifier: "LGPL -3.0-or-later"
6 options: [’--full-output’, ’--architecture’, ’32bit’]
7 resourcelimits:
8 memlimit: "15 GB"
9 timelimit: "15 min"

10 cpuCores: "8"
11 format_version: ’1.1’

Listing 2: Definition of atomic actor in YAML format

ultimateautomizer, the DOI of the tool archive (or the URL for obtaining the
tool archive), the SPDX license identifier, the options passed by CoVeriTeam to
UAutomizer, and resource limits for the execution of the actor. Once an atomic
actor has been constructed using an actor definition, CoVeriTeam has all the
information necessary to execute the underlying tool with the provided artifacts.
Composition of an Actor. The second key part is the composition of an actor.
Lines 6 and 8 in Listing 1 create composite actors using ITE and SEQUENCE,
respectively. It is these compositions that create the validating verifier of our
running example. Verification actors in CoVeriTeam can exchange information
(artifacts) with other actors and cooperate through compositions.
Creation of an Artifact. The notion of artifact in CoVeriTeam is a file
wrapped in an artifact type. The underlying files are the basis of an artifact—
exchangeable information. Lines 11 and 12 in Listing 1 create artifacts using the
ArtifactFactory by providing the ArtifactType and the artifact file. These artifacts
would then be provided to the executor that then executes the actors on them.
Code Generation. The code generator of CoVeriTeam translates the input pro-
gram to Python code that uses the internal API of CoVeriTeam. It is a canonical
transformation in which the statements for creation of actors and artifacts are
converted to Python statements instantiating corresponding classes from the API.
Similarly, statements for composition and execution of actors are also transformed.
Execution. Analogously to the construction of actors, the execution of an actor
in CoVeriTeam is also divided in two: atomic and composition. Line 15 in
Listing 1 executes the actor validating_verifier on the given input artifacts.

Figure 6 shows the actor executor for both atomic and composite actors. It
executes an actor on the provided artifacts. At first it type checks the inputs, i.e.,
check if the input types provided to actor comply with the expected input types of
the actor. It then calls the executor for atomic or composite actor depending on the
actor type. Thereafter, it type checks the outputs, and at last returns the artifacts.

Execution of an atomic actor means the execution of the underlying tool
on the provided artifacts. At first, the executor downloads the tool if necessary.
CoVeriTeam downloads and unzips the archive that contains the tool on the
first execution of an atomic actor. It keeps the tool available in cache for later

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 569

Type
check
input

Type
check
output

input
artifacts

output
artifacts

download
if

needed

prepare
tool

command

execute
tool

process
tool
output

Atomic Actor Executor

select next
child actor

prepare
input

artifacts

execute
child
actor

process
actor
output

Composite Actor Executor

Actor Executor

Fig. 6: Abstract view of an actor execution in CoVeriTeam

executions. After this step, the command line for the tool is prepared using the
tool-info module. It then executes the tool in a container, and then processes the
tool output, i.e., extracts the artifacts from the tool output and saves them.

Execution of a composition means executing the composed actors—making
information produced by one available to other during the execution—as per
the rules of composition. The composite-actor executor at first selects the next
child actor to execute. It then computes the inputs for this selected actor. Then
it executes this actor, which can be atomic or another composite actor, on
these inputs. It then processes the outputs produced by the execution of the
selected child actor. This processing could be temporarily saving, filtering, or
modifying the produced artifacts. If needed, it then proceeds to execute the
next child actor, otherwise exits the composition execution.

Output. CoVeriTeam collects all the artifacts produced during the execution of
an actor, and saves them. The output can be divided into three parts: execution
trace, artifacts, and log files. An execution trace is an XML file containing infor-
mation about the artifacts consumed and produced by each actor, and also the
resources consumed by atomic actors (as measured by BenchExec) during the ex-
ecution. CoVeriTeam also saves the artifacts produced during the execution of an
actor. Additionally, for each atomic actor execution, it also saves a log file contain-
ing the command which was actually executed and the messages printed on stdout.

3.4 API

In addition to the above described features, CoVeriTeam exposes an API that is
extensible. We expose actors, artifacts, utility actors, and compositions through
Python packages. In this section, we briefly discuss this API.

Library of Actors and Compositions. CoVeriTeam provides a library of
some actors and a few compositions that can be instantiated with suitable

Dirk Beyer and Sudeep Kanav570

actors. We considered actors based on the tools participating in the compe-
titions on software verification and testing [5, 6] (available in the replication
archives), because those are known to be mature and stable.

The library of compositions contains a validating verifier, an execution-based
validator [11], a reducer-based construction of a conditional model checker [15],
CondTest [18], and MetaVal [21]. These are present in the examples/ directory
of the CoVeriTeam repository. We discuss some of these constructions in Sect. 4.1.
New Actors, Artifacts, and Tools. New actors, artifacts, and tools can be
integrated easily in CoVeriTeam. The integration of a new atomic actor requires
only creating a YAML actor definition and, if not already available, implementing
a tool-info module. The integration of a new actor type in the language requires
(1) creating a class for the actor specifying its input and output artifact types,
(2) preparing the parameters to be passed to tool-info module, that in turn
would create a command line for the tool execution, using the options from
the YAML actor definition, and (3) creating output artifacts from the output
files produced by the execution of an atomic actor of that type.

Integration of a new artifact requires creating a new class for the artifact.
A basic artifact requires a path containing the artifact. Some artifacts support
special features, for example, a test suite is a mergeable artifact (i.e., two test
suites for a given input program can be merged into one test suite).

Integrating a new tool in the framework requires: (1) creating the tool-info
module for it, (2) creating an actor definition for the tool, (3) providing a
self-contained archive that can be executed on a Ubuntu machine.

At present, CoVeriTeam supports all verifiers and validators that are listed
on the 2021 competition web sites of SV-COMP2 and Test-Comp3. One needs
only a few hours to create a new tool-info module and an actor-definition
file. Within a couple of hours we were able to create the actor definitions for
about 40 tools participating in SV-COMP and Test-Comp.

4 Evaluation

We now present our evaluation of CoVeriTeam. It consists of a few case studies,
and insights from the experiments to measure performance overhead.

4.1 Case Studies

We evaluated CoVeriTeam on four more case studies, as indicated in the fourth
column of Table 1. We now explain two of these case studies using figures for
compositions. The programs and explanations for all of the case studies are also
available in our project repository (linked from the last column of Table 1).
Conditional Testing à la CondTest. Conditional testing [18] allows coop-
eration between different test generators (testers) by sharing the details of the
2 https://sv-comp.sosy-lab.org/2021/systems.php
3 https://test-comp.sosy-lab.org/2021/systems.php

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 571

https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples
https://sv-comp.sosy-lab.org/2021/systems.php
https://test-comp.sosy-lab.org/2021/systems.php

Table 1: Examples of cooperative techniques in the literature
Technique Year Reference Case Study More Info

Counterexample Checking [38] 2012 Sect. 5
Conditional Model Checking [13] 2012 Sect. 5

Precision Reuse [19] 2013 Sect. 5
Witness Validation [8, 10] 2015, 2016 Figure 4 3 Sect. 3.3

Execution-Based Validation [11] 2018 Sect. 5 3 More info
Reducer [15] 2018 Sect. 5 3 More info

CoVeriTest [14] 2019 Sect. 5
CondTest [18] 2019 Figures 7 and 8 3 More info
MetaVal [21] 2020 Figure 9 3 More info

already covered test goals. A conditional tester outputs a condition, in addition to
the generated test suite, representing the work already done. Then this condition
is passed as an input to another conditional tester, in addition to the program
and test specification. This tester can then focus on only the uncovered goals.

Condional Tester

Instrumentor Pruning
Reducer Tester Extractor Joiner

Fig. 7: Design of a conditional tester in CoVeriTeam

Conditional testers can be constructed from off-the-shelf testers [18] with
the help of three tools: a reducer, an extractor, and a joiner. A reducer used
in conditional testing (Program× Specification× Condition→ Program) produces
a residual program with the same behavior as the input program with respect
to the remaining test goals. A set of test goals represents the condition. An
extractor (Program×Specification×TestSuite→ Condition) extracts the condition
—a set of test goals— covered by the provided test suite.

Figure 7 shows the composition of a conditional tester. First, the reducer
produces the reduced program. The composition here uses a pruning reducer,
which prunes the program according to the covered goals. Second, the tester
generates the test cases. Third, the extractor extracts the goals covered in these
test cases. Forth, the joiner merges the previously and newly covered goals. The
reducer that we used expects the input program to be in a format containing
certain labels for the purpose of tracking test goals. So, we put an instrumentor
that instruments the test specification into the program, by adding these labels.

The conditional-testing concept can also be used iteratively to generate a test
suite using a tester based on a verifier [18]. Such a composition uses a verifier as a
backend and transforms a counterexample generated by the verifier to a test case.

Figure 8 shows the construction of a cyclic conditional tester. In this case, the
tester itself is a composition of a verifier and a tool, Witness2Test, which generates
test cases based on a witness produced by a verifier. This tester, in composition

Dirk Beyer and Sudeep Kanav572

https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/README.md#execution-based-validation
https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/README.md#reducer-based-construction-of-a-conditional-model-checker
https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/CondTest/README.md
https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/MetaVal/README.md

Conditional Tester

Tester

Instrumentor Annotating
Reducer Verifier

Witness
2Test Extractor Joiner ?

Fig. 8: Design of a cyclic conditional tester in CoVeriTeam

with a reducer, extractor, and a joiner is our conditional tester. This construction
uses an annotating reducer, which (i) annotates the program with error labels
for the verifier to find the path to and (ii) filters out the already covered goals,
i.e., the condition, from the list of goals to be annotated. We put the conditional
tester in the REPEAT composition to execute iteratively. The composition tracks
the set ‘covered_goals’ to detect the fixed point to decide termination of the
iteration. This composition will keep on accumulating the test suite generated in
each iteration and finally output the union of all the generated test suites (see
Sect. 3.1). As above, an instrumentor is placed before the conditional tester.

Verification-Based Validation à la MetaVal. MetaVal [21] uses off-the-
shelf verifiers to perform validation tasks. A validator (Program× Specification×
Verdict×Witness→ Verdict×Witness) validates the result produced by a verifier.
MetaVal employs a three-stage process for validation. In the first stage, MetaVal
instruments the input program with the input witness. The instrumented program
—a product of the witness and the original program— is equivalent to the original
program modulo the provided witness. This means that the instrumented program
can be given to an off-the-shelf verifier for verification; and this verification
functions as validation. In the second stage, MetaVal selects the verifier to use
based on the specification. It chooses CPAchecker for reachability, UAutomizer
for integer overflow and termination, and Symbiotic for memory safety.4 In
the third stage, the instrumented program is fed to a verifier along with the
specification for verification. If the verification produces the expected result,
then the result is confirmed and the witness valid, otherwise not.

Selector
Witness

Instrumentor Verifier

Fig. 9: Design of MetaVal in CoVeriTeam

Figure 9 shows the construction of MetaVal. First, the selector is executed
that selects the backend verifier to execute. After this step, the program is

4 These were the best performing tools for a property according to SV-COMP results.

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 573

instrumented with the witness, and then the instrumented program is given
to the selected verifier for checking the specification.

4.2 Performance

CoVeriTeam is a lightweight tool. Its container mode causes an overhead of
around 0.8 s for each actor execution in the composition, and the tool needs
about 44MB memory. This means that if we run a tool 10 times in a sequence
in a shell script unprotected and compare this to using the sequence composition
in CoVeriTeam in protected container mode on the same input, the execution
using CoVeriTeam will take 8 s longer and requires 44MB more memory. In our
experience, this overhead is not an issue for verification as, in general, the time
taken for verification dominates the total execution time. For short-running, high-
performance needs, the container mode can be switched off. We have conducted
extensive experiments for performance evaluation of CoVeriTeam and point the
reader to the supplementary webpage for this article for more details.

5 Related Work

We divide our literature overview into two parts: approaches for tool combinations,
and cooperative verification approaches.

Approaches for Tool Combinations. Evidential Tool Bus (ETB) [29, 30, 39]
is a distributed framework for integration of tools based on a variant of Data-
log [1, 24]. It stores the established claims along with the corresponding files and
their versions. This allows the reuse of partial results in regression verification.
ETB orchestrates tool interaction through scripts, queries, and claims.

Our work seems close to ETB on a quick glance, but on a closer look there
are profound differences. Conceptually, ETB is a query engine that uses claims,
facts, and rules to define and execute a workflow. Whereas, CoVeriTeam has
been designed to create and execute actors based on tools and their compositions.
We give some semantic meaning, arguably simplistic, to the tools using (i)
wrapper types of artifacts for the files produced and consumed by a tool and
(ii) the notion of verification actors that allows us to see a tool as a function.
This allows us to type-check tool compositions and allow only well-defined
compositions. On the implementation side, we support more tools. This task was
simplified by our design choice to use the integration mechanisms provided by
BenchExec (as used in SV-COMP and Test-Comp). Most well known automated
verification tools already have been integrated in CoVeriTeam.

Electronic Tools Integration platform (ETI) [40] was envisioned as a “one stop
shop” for the experimentation and evaluation of tools from the formal-methods
community. It was intended to serve as a tool presentation, tool evaluation,
and benchmarking site. The idea was to allow users to access tools through the
internet without the need to install them. An ETI user is expected to provide an
LTL based specification, based on which an execution scheme is synthesized.

Dirk Beyer and Sudeep Kanav574

https://www.sosy-lab.org/research/coveriteam/

The key focus of ETI and its incarnations has been remote tool execution,
and their integration over internet. The tools are viewed agnostic to their func-
tion. We, in contrast, (i) have tackled local execution concerns and (ii) see a
tool in its function as an actor that consumes and produces certain kinds of
artifacts. The semantic meaning of a tool is given by this role.

Cooperative Verification Approaches. Our work targets developing a frame-
work to express and execute cooperative verification approaches. In this section
we describe some of these approaches from literature. We have implemented some
of these combinations in CoVeriTeam, some of which are described in Sect. 4.

A reduction of the input program using the counterexample produced by
a verifier was discussed [38], where the key idea is to use the counterxam-
ple to provide the variable assignments to the program.

Conditional model checking (CMC) [13] outputs a condition —a summary
of the knowledge gained— if the model checker fails to produce a verdict. The
condition allows another model checker to save the effort of looking into already
explored state space. Reducers [15] can turn any off-the-shelf model checker into
a conditional model checker. Reducers take a source program and a condition
and produce a residual program whose paths cover the unverified state space
(negation of the condition). Conditional testing [18] applies the principle of
conditional model checking to testing. A conditional tester outputs, in addition
to the generated test cases, the goals for which test cases have been generated.

The idea of reusing the knowledge about already done work to reduce the
workload of another tool was also applied to combine program analysis and
testing [25, 31, 35]. One of these approaches [31] is based on conditional model
checking [13]. In this case, the condition is used to construct a residual program,
which is then fed to a test-case generator. Another approach [25] instruments
the program with assumptions and assertions describing the already completed
verification work. Then a testing tool is used to test the assumptions. Program par-
titioning [35] first performs the testing and then removes the satisfactorily tested
paths and verifies the rest. CoVeriTest [14], cooperative verifier-based testing, is
a tester based on cooperation between different verification-based test-generation
techniques. CoVeriTest uses conditional model checkers [13] as verifier backends.

Precision reuse [19] is based on the use of abstraction precisions. The precision
of an abstract domain is a good candidate for cooperation because it is small
in size, and represents important information, i.e., the level of abstraction at
which the analysis works. A model checker in addition to producing a verdict
also produces a file containing information specifying precision, e.g., predicates.

Model checkers can also produce a witness, in addition to the verdict, as
a justification of the verdict. These witnesses could be counterexamples for
violations of a safety property, invariants as a proof of a safety property, a lasso
for non-termination, a ranking function for termination, etc. These witnesses can
be used later to help validate the result produced by a verifier [8, 9, 10].

Execution-based result validation [11] uses violation witnesses to generate
test cases. A violation witness of a safety specification is refined to a test case.
The test case is then used to validate the result of the verification.

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 575

6 Conclusion

Due to the free availability of many excellent verifiers, the time is ripe to view
verification tools as components. It is necessary to have standardized interfaces,
in order to define the inputs and outputs of verification components. We have
identified a set of verification artifacts and verification actors, and a programming
language for on-demand construction of new, combined verification systems.

So far, the architectural hierarchy ends mostly at the verifiers: verifiers are
based on SMT solvers, which are based on SAT solvers, which are based on
data-structure libraries. CoVeriTeam wants to change this and use verification
artifacts as first-class objects in specifying new verifiers. We show on a few
selected examples how easy it is to construct some verification systems that
were so far hard-coded using glue code and wrapper scripts. We hope that many
researchers and practitioners in the verification community find it interesting
and stimulating to experiment on a high level with verification technology.
Future Work. The approach of CoVeriTeam opens up a whole new area of
possibilities that yet needs to be explored. We have identified three key areas
for the further work: (i) remote execution of tools, (ii) policy specification
and enforcement, and (iii) more compositions and combinations. CoVeriTeam
provides an interface for a verification tool based on its behavior. A web service
wrapped around CoVeriTeam can be used to delegate execution of an actor,
hence verification work, to the host of the service. The client for such a service can
be transparently integrated in CoVeriTeam. In fact, we already provide client
integration for a restricted and experimental version of such a service. Also, a user
executing a combination of tools might want to have some restrictions on which
tools should be allowed to execute. For example, a user might want to execute
only those tools that comply with a certain license, or only those tools that are
downloaded from a trusted source. A cooperative verification tool should support
the specification and enforcement of such user policies. Further, we plan to support
more compositions for cooperative verification in CoVeriTeam as we come across
them. Recently, we were working on a parallel-portfolio composition [17].

Declarations

Data Availability Statement. CoVeriTeam is publicly available under the
Apache 2 license.5 The data from our performance evaluation is available at
the supplementary webpage of the paper.6 A replication package including
all evaluated external tools is available at Zenodo [16].
Funding Statement. This work was funded in part by the Deutsche Forschungs-
gesellschaft (DFG) — 418257054 (Coop).
Acknowledgement. We thank Thomas Lemberger and Philipp Wendler for
their valuable feedback on this article, and the SV-COMP community for their
valuable feedback on experimenting with CoVeriTeam.
5 https://gitlab.com/sosy-lab/software/coveriteam/
6 https://www.sosy-lab.org/research/coveriteam/

Dirk Beyer and Sudeep Kanav576

http://gepris.dfg.de/gepris/projekt/418257054
https://gitlab.com/sosy-lab/software/coveriteam/
https://www.sosy-lab.org/research/coveriteam/

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In: Proc. IFM. pp. 1–20.
LNCS 2999, Springer (2004). https://doi.org/10.1007/978-3-540-24756-2_1

3. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with Slam.
Commun. ACM 54(7), 68–76 (2011). https://doi.org/10.1145/1965724.1965743

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Tech.
rep., University of Iowa (2015), available at www.smt-lib.org

5. Beyer, D.: Advances in automatic software verification: SV-COMP 2020. In: Proc.
TACAS (2). pp. 347–367. LNCS 12079, Springer (2020). https://doi.org/10.1007/
978-3-030-45237-7_21

6. Beyer, D.: Second competition on software testing: Test-Comp 2020. In: Proc.
FASE. pp. 505–519. LNCS 12076, Springer (2020). https://doi.org/10.1007/
978-3-030-45234-6_25

7. Beyer, D.: Progress on software verification: SV-COMP 2022. In: Proc. TACAS.
LNCS 13244, Springer (2022)

8. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: Exchanging
verification results between verifiers. In: Proc. FSE. pp. 326–337. ACM (2016).
https://doi.org/10.1145/2950290.2950351

9. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Lemberger, T., Tautschnig, M.:
Verification witnesses. ACM Trans. Softw. Eng. Methodol. (2022)

10. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M., Stahlbauer, A.: Witness validation
and stepwise testification across software verifiers. In: Proc. FSE. pp. 721–733. ACM
(2015). https://doi.org/10.1145/2786805.2786867

11. Beyer, D., Dangl, M., Lemberger, T., Tautschnig, M.: Tests from witnesses:
Execution-based validation of verification results. In: Proc. TAP. pp. 3–23.
LNCS 10889, Springer (2018). https://doi.org/10.1007/978-3-319-92994-1_1

12. Beyer, D., Haltermann, J., Lemberger, T., Wehrheim, H.: Decomposing Software
Verification into Off-the-Shelf Components: An Application to CEGAR. In: Proc.
ICSE. ACM (2022)

13. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: A technique to pass information between verifiers. In: Proc. FSE. ACM
(2012). https://doi.org/10.1145/2393596.2393664

14. Beyer, D., Jakobs, M.C.: CoVeriTest: Cooperative verifier-based testing. In:
Proc. FASE. pp. 389–408. LNCS 11424, Springer (2019). https://doi.org/10.1007/
978-3-030-16722-6_23

15. Beyer, D., Jakobs, M.C., Lemberger, T., Wehrheim, H.: Reducer-based construction
of conditional verifiers. In: Proc. ICSE. pp. 1182–1193. ACM (2018). https://doi.
org/10.1145/3180155.3180259

16. Beyer, D., Kanav, S.: Reproduction package for article ‘CoVeriTeam: On-demand
composition of cooperative verification systems’. Zenodo (2021). https://doi.org/10.
5281/zenodo.5644953

17. Beyer, D., Kanav, S., Richter, C.: Construction of Verifier Combinations Based on
Off-the-Shelf Verifiers. In: Proc. FASE. Springer (2022)

18. Beyer, D., Lemberger, T.: Conditional testing: Off-the-shelf combination of test-
case generators. In: Proc. ATVA. pp. 189–208. LNCS 11781, Springer (2019).
https://doi.org/10.1007/978-3-030-31784-3_11

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 577

https://doi.org/10.1007/978-3-540-24756-2_1
https://doi.org/10.1145/1965724.1965743
http://www.smt-lib.org
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1007/978-3-030-45234-6_25
https://doi.org/10.1145/2950290.2950351
https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.1145/3180155.3180259
https://doi.org/10.5281/zenodo.5644953
https://doi.org/10.5281/zenodo.5644953
https://doi.org/10.1007/978-3-030-31784-3_11

19. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proc. FSE. pp. 389–399. ACM (2013). https:
//doi.org/10.1145/2491411.2491429

20. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: Requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019). https://doi.org/10.
1007/s10009-017-0469-y

21. Beyer, D., Spiessl, M.: MetaVal: Witness validation via verification. In: Proc.
CAV. pp. 165–177. LNCS 12225, Springer (2020). https://doi.org/10.1007/
978-3-030-53291-8_10

22. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey
and unifying component framework. In: Proc. ISoLA (1). pp. 143–167. LNCS 12476,
Springer (2020). https://doi.org/10.1007/978-3-030-61362-4_8

23. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., O’Hearn,
P.W., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with software
verification. In: Proc. NFM. pp. 3–11. LNCS 9058, Springer (2015). https://doi.
org/10.1007/978-3-319-17524-9_1

24. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog
(and never dared to ask). IEEE Trans. Knowledge and Data Eng. 1(1), 146–166
(1989). https://doi.org/10.1109/69.43410

25. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: Proc. FM. pp. 132–146. LNCS 7436, Springer (2012).
https://doi.org/10.1007/978-3-642-32759-9_13

26. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Proc. CAV. pp. 154–169. LNCS 1855, Springer (2000).
https://doi.org/10.1007/10722167_15

27. Cook, B.: Formal reasoning about the security of Amazon web services. In:
Proc. CAV (2). pp. 38–47. LNCS 10981, Springer (2018). https://doi.org/10.1007/
978-3-319-96145-3_3

28. Cousot, P., Cousot, R.: Systematic design of program-analysis frameworks. In: Proc.
POPL. pp. 269–282. ACM (1979). https://doi.org/10.1145/567752.567778

29. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool integration with the Evidential
Tool Bus. In: Proc. VMCAI. pp. 275–294. LNCS 7737, Springer (2013). https:
//doi.org/10.1007/978-3-642-35873-9_18

30. Cruanes, S., Heymans, S., Mason, I., Owre, S., Shankar, N.: The semantics of
Datalog for the Evidential Tool Bus. In: Specification, Algebra, and Software. pp.
256–275. Springer (2014). https://doi.org/10.1007/978-3-642-54624-2_13

31. Czech, M., Jakobs, M., Wehrheim, H.: Just test what you cannot verify! In:
Proc. FASE. pp. 100–114. LNCS 9033, Springer (2015). https://doi.org/10.1007/
978-3-662-46675-9_7

32. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people
who love automata. In: Proc. CAV. pp. 36–52. LNCS 8044, Springer (2013). https:
//doi.org/10.1007/978-3-642-39799-8_2

33. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard compu-
tational problems. Science 275(7), 51–54 (1997). https://doi.org/10.1126/science.
275.5296.51

34. Inoue, K., Soh, T., Ueda, S., Sasaura, Y., Banbara, M., Tamura, N.: A competitive
and cooperative approach to propositional satisfiability. Discrete Applied Mathe-
matics 154(16), 2291–2306 (2006). https://doi.org/10.1016/j.dam.2006.04.015

35. Jalote, P., Vangala, V., Singh, T., Jain, P.: Program partitioning: A framework for
combining static and dynamic analysis. In: Proc. WODA. pp. 11–16. ACM (2006).
https://doi.org/10.1145/1138912.1138916

Dirk Beyer and Sudeep Kanav578

https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-61362-4_8
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1109/69.43410
https://doi.org/10.1007/978-3-642-32759-9_13
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-35873-9_18
https://doi.org/10.1007/978-3-642-54624-2_13
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-662-46675-9_7
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1126/science.275.5296.51
https://doi.org/10.1126/science.275.5296.51
https://doi.org/10.1016/j.dam.2006.04.015
https://doi.org/10.1145/1138912.1138916

36. Khoroshilov, A.V., Mutilin, V.S., Petrenko, A.K., Zakharov, V.: Establishing Linux
driver verification process. In: Proc. Ershov Memorial Conference. pp. 165–176.
LNCS 5947, Springer (2009). https://doi.org/10.1007/978-3-642-11486-1_14

37. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976). https://doi.org/10.1016/S0065-2458(08)60520-3

38. Rocha, H.O., Barreto, R.S., Cordeiro, L.C., Neto, A.D.: Understanding programming
bugs in ANSI-C software using bounded model checking counter-examples. In:
Proc. IFM. pp. 128–142. LNCS 7321, Springer (2012). https://doi.org/10.1007/
978-3-642-30729-4_10

39. Rushby, J.M.: An Evidential Tool Bus. In: Proc. ICFEM. pp. 36–36. LNCS 3785,
Springer (2005). https://doi.org/10.1007/11576280_3

40. Steffen, B., Margaria, T., Braun, V.: The Electronic Tool Integration platform: Con-
cepts and design. STTT 1(1-2), 9–30 (1997). https://doi.org/10.1007/s100090050003

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

CoVeriTeam: On-Demand Composition of Cooperative Verification Systems 579

https://doi.org/10.1007/978-3-642-11486-1_14
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/11576280_3
https://doi.org/10.1007/s100090050003
http://creativecommons.org/licenses/by/4.0/

Author Index

Ádám, Zsófia II-474
Aiken, Alex I-338
Aizawa, Akiko I-87
Albert, Elvira I-201
Alur, Rajeev II-353
Amat, Nicolas I-505
Amendola, Arturo I-125
Asgaonkar, Aditya I-167
Ayaziová, Paulína II-468

Bainczyk, Alexander II-314
Bajczi, Levente II-474
Banerjee, Tamajit II-81
Barbosa, Haniel I-415
Barrett, Clark I-143, I-415
Becchi, Anna I-125
Beyer, Dirk I-561, II-375, II-429
Biere, Armin I-443
Birkmann, Fabian II-159
Blatter, Lionel I-303
Blicha, Martin I-524
Bork, Alexander II-22
Bortolussi, Luca I-281
Bozzano, Marco I-543, II-273
Brain, Martin I-415
Bromberger, Martin I-480
Bruyère, Véronique I-244
Bryant, Randal E. I-443, I-462
Bu, Lei II-408

Casares, Antonio II-99
Cassez, Franck I-167
Castro, Pablo F. I-396
Cavada, Roberto I-125
Chakarov, Aleksandar I-404
Chalupa, Marek II-462, II-468
Cimatti, Alessandro I-125, I-543, II-273
Cohl, Howard S. I-87
Cordeiro, Lucas C. II-484
Coto, Alex II-413

D’Argenio, Pedro R. I-396
Darulova, Eva I-303
de Pol, Jaco van II-295

Deifel, Hans-Peter II-159
Demasi, Ramiro I-396
Dey, Rajen I-87
Dietsch, Daniel II-479
Dill, David I-183
Dobos-Kovács, Mihály II-474
Dragoste, Irina I-480
Duret-Lutz, Alexandre II-99
Dwyer, Matthew B. II-440

Ebbinghaus, Marcel II-479

Fan, Hongyu II-424
Faqeh, Rasha I-480
Farzan, Azadeh II-479
Fedchin, Aleksandr I-404
Fedyukovich, Grigory I-524, II-254
Ferrando, Andrea I-125
Fetzer, Christof I-480
Fijalkow, Nathanaël I-263
Fuller, Joanne I-167

Gallo, Giuseppe Maria I-281
Garhewal, Bharat I-223
Giannakopoulou, Dimitra I-387
Giesl, Jürgen II-403
Gipp, Bela I-87
González, Larry I-480
Goodloe, Alwyn I-387
Gordillo, Pablo I-201
Greiner-Petter, André I-87
Grieskamp, Wolfgang I-183
Griggio, Alberto II-273
Guan, Ji II-3
Guilloud, Simon II-196
Guo, Xiao II-408

Haas, Thomas II-418
Hajdu, Ákos II-474
Hartmanns, Arnd II-41
Havlena, Vojtěch II-118
He, Fei II-424
Heizmann, Matthias II-479
Hensel, Jera II-403

582 Author Index

Hernández-Cerezo, Alejandro I-201
Heule, Marijn J. H. I-443, I-462
Hovland, Paul D. I-106
Howar, Falk II-435, II-446
Hückelheim, Jan I-106
Huisman, Marieke II-332
Hujsa, Thomas I-505
Hyvärinen, Antti E. J. I-524

Imai, Keigo I-379
Inverso, Omar II-413

Jakobsen, Anna Blume II-295
Jonáš, Martin II-273

Kanav, Sudeep I-561
Karri, Ramesh I-3
Katoen, Joost-Pieter II-22
Katz, Guy I-143
Kettl, Matthias II-451
Klumpp, Dominik II-479
Koenig, Jason R. I-338
Koutavas, Vasileios II-178
Krämer, Jonas I-303
Kremer, Gereon I-415
Křetínský, Jan I-281
Krötzsch, Markus I-480
Krstić, Sr -dan II-236
Kunčak, Viktor II-196
Kupferman, Orna I-25
Kwiatkowska, Marta II-60

Lachnitt, Hanna I-415
Lam, Wing II-217
Lange, Julien I-379
Lauko, Henrich II-457
Laveaux, Maurice II-137
Leeson, Will II-440
Lemberger, Thomas II-451
Lengál, Ondřej II-118
Li, Xuandong II-408
Li, Yichao II-408
Lin, Yi I-64
Lin, Yu-Yang II-178
Loo, Boon Thau II-353
Lyu, Lecheng II-408

Majumdar, Rupak II-81
Mallik, Kaushik II-81
Mann, Makai I-415

Marinov, Darko II-217
Marx, Maximilian I-480
Mavridou, Anastasia I-387
Mensendiek, Constantin II-403
Meyer, Klara J. II-99
Meyer, Roland II-418
Mihalkovič, Vincent II-462
Milius, Stefan II-159
Mitra, Sayan I-322
Mohamed, Abdalrhman I-415
Mohamed, Mudathir I-415
Molnár, Vince II-474
Mues, Malte II-435, II-446
Murali, Harish K I-480
Murtovi, Alnis II-314

Namjoshi, Kedar S. I-46
Neider, Daniel I-263
Nenzi, Laura I-281
Neykova, Rumyana I-379
Niemetz, Aina I-415
Norman, Gethin II-60
Nötzli, Andres I-415

Ozdemir, Alex I-415

Padon, Oded I-338
Park, Junkil I-183
Parker, David II-60
Patel, Nisarg I-46
Paulsen, Brandon I-357
Pérez, Guillermo A. I-244
Perez, Ivan I-387
Pilati, Lorenzo I-125
Pilato, Christian I-3
Podelski, Andreas II-479
Ponce-de-León, Hernán II-418
Preiner, Mathias I-415
Pressburger, Tom I-387
Putruele, Luciano I-396

Qadeer, Shaz I-183
Quatmann, Tim II-22

Raha, Ritam I-263
Rakamarić, Zvonimir I-404
Raszyk, Martin II-236
Řechtáčková, Anna II-462
Reeves, Joseph E. I-462
Renkin, Florian II-99

Author Index 583

Reynolds, Andrew I-415
Ročkai, Petr II-457
Rot, Jurriaan I-223
Roy, Rajarshi I-263
Roy, Subhajit I-3
Rubio, Albert I-201
Rungta, Neha I-404

Safari, Mohsen II-332
Şakar, Ömer II-332
Sales, Emerson II-413
Santos, Gabriel II-60
Scaglione, Giuseppe I-125
Schmuck, Anne-Kathrin II-81
Schneider, Joshua II-236
Schrammel, Peter II-484
Schubotz, Moritz I-87
Schüssele, Frank II-479
Sharygina, Natasha I-524
Sheng, Ying I-415
Shenwald, Noam I-25
Shi, Lei II-353
Shoham, Sharon I-338
Sickert, Salomon II-99
Siegel, Stephen F. I-106
Šmahlíková, Barbora II-118
Sølvsten, Steffan Christ II-295
Soudjani, Sadegh II-81
Spiessl, Martin II-429
Staquet, Gaëtan I-244
Steffen, Bernhard II-314
Strejček, Jan II-462, II-468
Sun, Dawei I-322
Sun, Zhihang II-424

Tabajara, Lucas M. I-64
Tacchella, Alberto I-125
Takhar, Gourav I-3
Thomasen, Mathias Weller Berg II-295
Tinelli, Cesare I-415

Tonetta, Stefano I-543
Traytel, Dmitriy II-236
Trost, Avi I-87
Tuosto, Emilio II-413
Tzevelekos, Nikos II-178

Ulbrich, Mattias I-303

Vaandrager, Frits I-223
Vardi, Moshe Y. I-64
Vozarova, Viktoria I-543

Wang, Chao I-357
Wang, Hao II-217
Wang, Yuepeng II-353
Weidenbach, Christoph I-480
Wesselink, Wieger II-137
Wijs, Anton II-332
Willemse, Tim A. C. II-137
Wißmann, Thorsten I-223
Wu, Haoze I-143
Wu, Tong II-484
Wu, Wenhao I-106

Xie, Tao II-217
Xie, Zhunyi II-408
Xu, Meng I-183

Yi, Pu II-217
Youssef, Abdou I-87
Yu, Nengkun II-3

Zamboni, Marco I-125
Zaoral, Lukáš II-462
Zeljić, Aleksandar I-143
Zhao, Jianhua II-408
Zhong, Emma I-183
Zilio, Silvano Dal I-505
Zingg, Sheila II-236
Zlatkin, Ilia II-254
Zohar, Yoni I-415

	ETAPS Foreword
	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Synthesis
	HOLL: Program Synthesis for Higher Order Logic Locking
	1 Introduction
	2 HOLL Overview
	2.1 Threat Model: the Untrusted Foundry
	2.2 Defending with HOLL
	2.3 Attacking with SynthAttack

	3 Program Synthesis to Infer Key Relations
	3.1 Lock and Key Inference
	3.2 Expression Selection

	4 HOLL: Implementation and Optimization
	5 SynthAttack: Attacking HOLL with Program Synthesis
	5.1 The SynthAttack Algorithm

	6 Experimental Evaluation
	6.1 Attack Resilience
	6.2 Impact of Expression Selection on Attack Resilience
	6.3 Hardware cost

	7 Related Work
	8 Discussion
	References

	The Complexity of LTL Rational Synthesis
	1 Introduction
	2 Preliminaries
	2.1 LTL, trees, and automata
	2.2 Concurrent multiplayer games

	3 Rational Synthesis
	4 The Complexity of Cooperative Rational Synthesis
	5 The Complexity of Non-Cooperative Rational Synthesis
	5.1 Turn-based games
	5.2 Concurrent games
	5.3 General rational synthesis
	References

	Synthesis of Compact Strategies for Coordination Programs
	1 Introduction
	2 Background
	3 Compactness
	3.1 Effective Minimality Constructions for LTL
	3.2 Relationship to Quantitative Synthesis
	3.3 Approximating Compactness

	4 Evaluation
	4.1 Multi-Robot Coordination
	4.2 Compactness for LTL

	5 Related Work
	References

	ZDD Boolean Synthesis
	1 Introduction
	2 Preliminaries
	3 Realizability Using ZDDs
	3.1 Realizable Set R
	3.2 Full and Partial Realizability

	4 Synthesis Using ZDDs
	4.1 Witnesses for Single-Dimension Output Variable
	4.2 Preserve CNF by Equivalent Witnesses
	4.3 Algorithm for Constructing Witnesses

	5 Experimental Evaluations
	5.1 Experimental Methodology and and Setting
	5.2 Compilation Time and Size of Diagram Representing Original Formula
	5.3 Realizability Time
	5.4 End-to-End Time and Peak Memory
	5.5 Scalable Benchmarks Show ZDD has Slower Growing Demands of Time and Space
	5.6 Overall Comparison

	6 Conclusion
	References

	Verification
	Comparative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems
	1 Introduction
	1.1 Related Work

	2 The DLMF dataset
	3 Semantic LATEX to CAS translation
	3.1 Parse sums, products, integrals, and limits
	3.2 Lagrange’s notation for differentiation and derivatives

	4 Evaluation of the DLMF using CAS
	4.1 Symbolic Evaluation
	4.2 Numerical Evaluation

	5 Results
	5.1 Error Analysis

	6 Conclusion
	6.1 Future Work

	References

	Verifying Fortran Programs with CIVL
	1 Introduction
	2 Overview of CIVL Extension
	3 Defect-Preserving Translation
	3.1 Translation from Source to Source
	3.2 Translation for Compilation
	3.3 Translation for Verification

	4 Fortran Array Modeling
	4.1 Fortran Array Semantics
	4.2 Modeling Fortran Arrays for Verification

	5 Evaluation
	5.1 Compute Environment and Experimental Artifacts
	5.2 Specification and Verification Approach
	5.3 Fortran Verification Benchmark Suites
	5.4 Verifying Nek5000 Components

	6 Related Work
	7 Conclusion and Future Work
	References

	NORMA: a tool for the analysis of Relay-based Railway Interlocking Systems
	1 Introduction
	2 Relay-based Railway Interlocking Systems
	3 Norma: overview
	4 Graphical modeling of RRIS
	5 Compilation in Timed SMV
	6 Simplification of RRIS models
	6.1 Equivalence propagation
	6.2 Abstracting electrical variables

	7 Software architecture
	8 Experimental Evaluation
	9 Conclusions
	References

	Efficient Neural Network Analysis with Sum-of-Infeasibilities
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Sum of Infeasibilities in Neural Network Analysis
	4.1 The Sum of Infeasibilities
	4.2 Stochastically Minimizing the SoI with MCMC Sampling

	5 The DeepSoI Algorithm
	5.1 DeepSoI
	5.2 Complete Analysis and Pseudo-impact Branching

	6 Experimental Evaluation
	6.1 Implementation.
	6.2 Benchmarks.
	6.3 Experimental Setup.
	6.4 Ablation study of the proposed techniques.
	6.5 Comparison with other complete analyzers.
	6.6 Incremental Solving and the Rejection Threshold T
	6.7 Improving the perturbation bounds found by AutoAttack

	7 Conclusions and Future Work
	References

	Blockchain
	Formal Verification of the Ethereum 2.0 Beacon Chain
	1 Introduction
	2 The Beacon Chain Reference Implementation
	2.1 System Description and Scope of the Study
	2.2 The Beacon Chain Reference Implementation
	2.3 Motivation for Formal Verification
	2.4 Objectives of the Study

	3 Formal Specification and Verification
	3.1 Challenges
	3.2 Methodologies
	3.3 Results

	4 Findings and Lessons Learned
	4.1 Array-out-of-bounds Runtime Error
	4.2 Beyond Runtime Errors
	4.3 Finalisation and Justification
	4.4 Reection

	5 Conclusion
	References

	Fast and Reliable Formal Verification of Smart Contracts with the Move Prover
	1 Introduction
	2 Move and the Prover
	3 Move Prover Design
	3.1 Reference Elimination
	3.2 Global Invariant Injection
	3.3 Monomorphization

	4 Analysis
	5 Conclusion
	References

	A Max-SMT Superoptimizer for EVM handling Memory and Storage
	1 Introduction and Related Work
	2 The Architecture of GASOL
	3 Synthesis of Stack and Memory Specifications
	3.1 Initial Stack and Memory/Storage Specification
	3.2 Memory/Storage Simplifications
	3.4 Bounding the Operations Position

	4 Max-SMT Superoptimization
	4.1 Stack Representation in the SMT Encoding
	4.2 Encoding the Pre-order Relation
	4.3 Optimization using Max-SMT

	5 Implementation and Experiments
	6 Conclusions and Future Work
	References

	Grammatical Inference
	A New Approach for Active Automata Learning Based on Apartness
	1 Introduction
	2 Partial Mealy Machines and Apartness
	3 Learning Algorithm
	3.1 Hypothesis construction
	3.2 Main loop of the algorithm
	3.3 Consistency checking
	3.4 Counterexample processing
	3.5 Adaptive distinguishing sequences
	3.6 Complexity

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References

	Learning Realtime One-Counter Automata
	1 Introduction
	2 Preliminaries
	3 Learning ROCAs
	4 Experiments
	4.1 Random ROCAs
	4.2 JSON Documents and JSON Schemas

	5 Future Work
	References

	Scalable Anytime Algorithms for Learning Fragments of Linear Temporal Logic
	1 Introduction
	2 Preliminaries
	3 High-level view of the algorithm
	4 Searching for directed formulas
	5 Boolean combinations of formulas
	6 Theoretical guarantees
	7 Experimental evaluation
	7.1 RQ1: Performance Comparison
	7.2 RQ2: Scalability
	7.3 RQ3: Anytime Property

	8 Conclusion
	References

	Learning Model Checking and the Kernel Trick for Signal Temporal Logic on Stochastic Processes
	1 Introduction
	1.1 Related Work

	2 Background
	2.1 Signal Temporal Logic
	2.2 Kernel Crash Course

	3 Overview of Our Approach and Results
	4 A Kernel for Signal Temporal Logic
	4.1 Definition of STL Kernel
	4.2 The Base Measure �0
	4.3 Normalized Robustness
	4.4 PAC Bounds for the STL Kernel

	5 Experiments
	5.1 Setting
	5.2 Robustness and Satisfaction on Single Trajectories
	5.3 Expected Robustness and Satisfaction Probability
	5.4 Kernel Regression on Other Stochastic Processes

	6 Conclusions
	References

	Verification Inference
	Inferring Interval-Valued Floating-Point Preconditions
	1 Introduction
	2 Overview
	3 Precondition Inference by Subdivision
	3.1 Extracting a Verified Precondition from Subdivisions
	3.2 Precondition Optimization

	4 Precondition Inference by Decision Tree Learning
	4.1 Extracting Candidates from a Classification Tree
	4.2 Refining Candidates by Growing Regions
	4.3 Refining Candidates by Recursive Subdivision

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	NeuReach: Learning Reachability Functions from Simulations
	1 Introduction
	2 Related work
	3 Problem setup and an overview of the tool
	4 Design of NeuReach: Learning reachability functions
	4.1 Reachability with Empirical Risk Minimization
	4.2 Probabilistic Correctness of NeuReach

	5 Experimental evaluation
	5.1 Benchmark systems
	5.2 Experimental results

	6 Conclusion
	References

	Inferring Invariants with Quantifier Alternations: Taming the Search Space Explosion
	1 Introduction
	2 Background
	3 Breadth-First Inductive Generalization with Separation
	3.1 Naive Inductive Generalization with Separation
	3.2 Prefix Search at the Inductive Generalization Level
	3.3 Algorithm for Inductive Generalization

	4 k-Term Pseudo-DNF
	5 An Algorithm for Invariant Inference
	5.1 May-proof-obligations
	5.2 Multi-block Generalization
	5.3 Enforcing EPR
	5.4 SMT Robustness
	5.5 Complete Algorithm

	6 Evaluation
	6.1 Invariant Inference Benchmark
	6.2 Experimental Setup
	6.3 Results and Discussion
	6.4 Ablation Study

	7 Related Work
	8 Conclusion
	References

	LinSyn: Synthesizing Tight Linear Bounds for Arbitrary Neural Network Activation Functions
	1 Introduction
	2 Preliminaries
	2.1 Neural Networks
	2.2 Neural Network Verification
	2.3 Existing Methods
	2.4 Limitations of Existing Methods

	3 Synthesizing the Candidate Linear Bounds
	3.1 Problem Statement and Challenges
	3.2 Synthesizing Candidate Bounds

	4 Making the Bound Sound
	4.1 Problem Statement and Challenges
	4.2 Verifying the Bound
	4.3 Computing υl
	4.4 On the Correctness and Generality of LinSyn

	5 Evaluation
	5.1 Benchmarks
	5.2 Experimental Results

	6 Related Work
	7 Conclusions
	References

	Short papers
	Kmclib: Automated Inference and Verification of Session Types from OCaml Programs
	1 Introduction
	2 Safe Concurrent Programming in Multicore OCaml
	3 Inference of Session Types in kmclib
	4 Conclusion
	References

	Automated Translation of Natural Language Requirements to Runtime Monitors
	1 Introduction
	2 Step-by-step Framework Workflow
	3 FRET Steps
	4 Ogma Steps
	5 Copilot Steps
	6 Preliminary Results
	7 Conclusion
	References

	MaskD: A Tool for Measuring Masking Fault-Tolerance
	1 Introduction
	2 The MaskD Tool
	2.1 Architecture
	2.2 Usage

	3 Experiments
	References

	Better Counterexamples for Dafny
	1 Introduction
	2 Motivation
	3 Design and Implementation
	4 Conclusions and Future Work
	References

	Constraint Solving
	cvc5: A Versatile and Industrial-Strength SMT Solver
	1 Introduction
	2 Architecture and Core Components
	2.1 The SMT Solver Module
	2.2 Proof Module
	2.3 Node Manager
	2.4 Context-Dependent Data Structures

	3 Highlighted Features
	4 Evaluation
	5 Future Work
	References

	Clausal Proofs for Pseudo-Boolean Reasoning
	1 Introduction
	2 Pseudo-Boolean Constraints
	2.1 BDD Representations
	2.2 Solving Systems of Equations with Gaussian Elimination
	2.3 Solving Systems of Ordering Constraints with Fourier-Motzkin Elimination

	3 Overall Operation
	3.1 Constraint Extraction
	3.2 Solver Operation

	4 Experimental Results
	4.1 Urquhart Parity Formulas
	4.2 Other Parity Constraint Benchmarks
	4.3 Variants of the Mutilated Chessboard
	4.4 Pigeonhole Problem
	4.5 Other Cardinality Constraint Problems

	5 Conclusions
	References

	Moving Definition Variables in Quantified Boolean Formulas
	1 Introduction
	2 Preliminaries
	2.1 Quantified Boolean Formulas
	2.2 Inference Techniques in QBF
	2.3 Definitions

	3 Definition Detection
	3.1 Hierarchical Definition Detection in CNFTOOLS
	3.2 Independent Definition Detection in KISSAT

	4 Moving Variables
	4.1 Moving in Order
	4.2 XOR Processing
	4.3 Proving Variable Movement

	5 Evaluation
	5.1 Evaluating Definition Detection
	5.2 Evaluating Solvers

	6 PGBDDQ Case Study
	7 Conclusion and Future Work
	8 Acknowledgements
	References

	A Sorted Datalog Hammer for Supervisor Verification Conditions Modulo Simple Linear Arithmetic
	1 Introduction
	2 Preliminaries
	3 The Sorted Datalog Hammer
	4 Implementation and Experiments
	5 Conclusion
	References

	Model Checking and Verification
	Property Directed Reachability for Generalized Petri Nets
	1 Introduction
	2 Petri Nets and Linear Reachability Constraints
	3 Property Directed Reachability
	4 Experimental Results
	5 Conclusion and Related Works
	References

	Transition Power Abstractions for Deep Counterexample Detection
	1 Introduction
	2 Background
	3 Motivating example
	4 Finding deep counterexamples with transition power abstractions
	4.1 TPA sequence for bounded reachability queries
	4.2 Algorithm for bounded reachability checks
	4.3 Correctness and termination
	4.4 Under-approximating QE with model-based projection
	4.5 Proving safety

	5 Experiments
	6 Related work
	7 Conclusion and Future Work
	References

	Searching for Ribbon-Shaped Paths in Fair Transition Systems
	1 Introduction
	2 Related Work
	3 Background
	3.1 Symbolic Fair Transition Systems
	3.2 Liveness to Safety (L2S).

	4 The Problem of Ribbon-Shaped Paths
	4.1 The Diagnosability Problem
	4.2 Ribbon-Shaped Critical Pairs
	4.3 Fixpoint-based Algorithm

	5 Extended Liveness to Safety
	5.1 Definition of the L2S Extension
	5.2 Correctness

	6 Experimental Evaluation
	6.1 Implementation
	6.2 Benchmarks
	6.3 Results

	7 Conclusions and Future Work
	References

	CoVeriTeam: On-Demand Composition of Cooperative Verification Systems
	1 Introduction
	2 Running Example
	3 Design and Implementation of CoVeriTeam
	3.1 Concepts
	3.2 Execution Concerns
	3.3 CoVeriTeam
	3.4 API

	4 Evaluation
	4.1 Case Studies
	4.2 Performance

	5 Related Work
	6 Conclusion
	References

	Author Index

