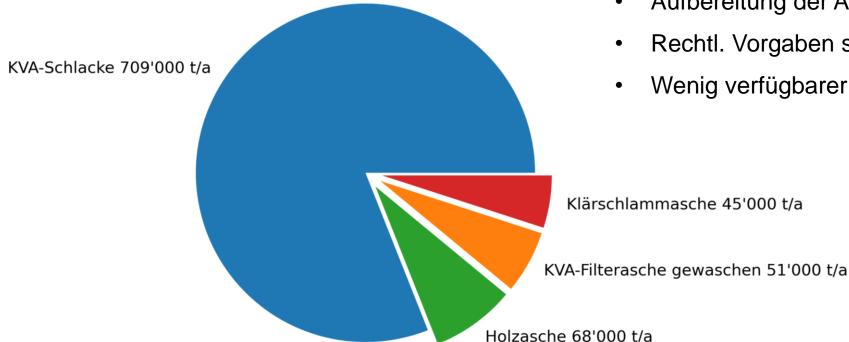







# Neue Wege beim Einbau von Verbrennungsrückständen auf Deponien – was ist der Nutzen?

Gisela Weibel, Fachstelle Sekundärrohstoffe, Universität Bern






## Warum Fokus Verbrennungsrückstände?



#### Verbrennungsrückstände zur Deponie

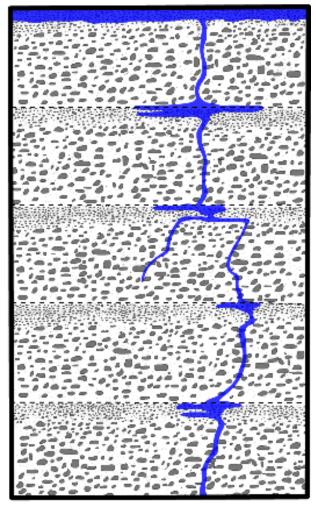


- Art der Abfälle ist bekannt
- Mengen bekannt, aber nicht harmonisiert
- Aufbereitung der Abfälle ist bekannt
- Rechtl. Vorgaben sind bekannt (VVEA)
- Wenig verfügbarer Typ-D Deponieraum





## Heutige Ablagerung von Verbrennungsrückständen




#### Eigenschaften eines Typ D-Deponiekörpers

- Horizontale Einbausequenzen durch alternierende Ablagerung der Verbrennungsrückstände und Verdichtungshorizonte
- Skelettgestützte Schüttung
- Heterogenes Fliessfeld des Wassers
- Mittlerer Wassergehalt: w = 17.2 Gew.-%
- Mittlere Einbaudichte:  $\rho_{trocken} = 1.50 \text{ t/m}^3$
- Mittlere Porosität: φ = 50 Vol.-%

#### Optimale Einbaudichte und Stabilität des Deponiekörpers

- Schlacken 2-40 mm: Skelett des Deponiekörpers
- Feinkörnige Schlacken und Aschen <2 mm: Füller für Porenraum und Beitrag an Verfestigung



Ingold et al., 2024



### Deponie Typ D der Zukunft



Ziel: Optimale Volumennutzung, minimale Emissionen

Umsetzung: Angaben zu Materialmischungen für die bau- und emissions-

technisch optimale Ablagerung

#### Projekt Senkato@FSSR

Durchführung von Versuchen mit heutigen Abfällen

Verbrennungsrückstände: Nassschlacke, Trockenschlacke, Gewaschene Filterasche, Klärschlammasche, Holzasche

- Ausarbeitung von Grundsätzen für den Deponiebau, Deponietyp unabhängig (Korngrössen, Wassergehalte, Art des Einbaus etc.)
- Testen der Umsetzung an Deponiestandorten





## Deponie Typ D der Zukunft



## **Untersuchte Deponiestandorte**









## Varianten für Ablagerung

- A: Direkter Einbau der Abfälle (heutige Situation)
- **B**: Konditionierung und Einbau (Mischen und Befeuchten der Abfälle)





UNIVERSITÄT

## **Optimale Volumennutzung - Einfluss Mischung**



#### **Beispiel:**

Schlacke 73% / gewaschene Filterasche 27%

#### **Durchführung Proctorversuche**



Feldproctor mit 25 Liter Einbau in 50-60 cm Schicht

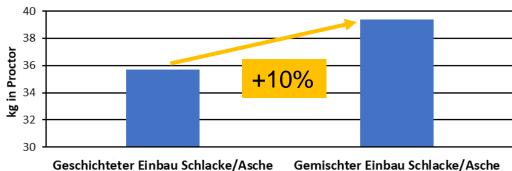


Verdichtung mit Vibroplatte (620 kg)



Verdichtung von 6-10 cm

→ ca. 10% höhere Einbaudichte bei vermischtem Einbau von Schlacke und Asche verglichen zu geschichtetem Einbau


A: Geschichteter Einbau



**B: Vermischter Einbau** 



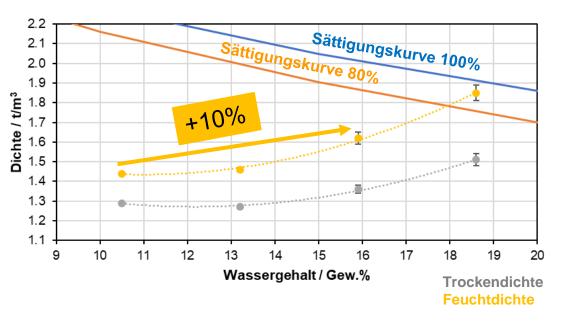
**Einbau mit Feldproctor** 







## **Optimale Volumennutzung - Einfluss Wassergehalt**




#### Wasserzugabe via gewaschene Filterasche









| Versuch | Schlacke<br>(Gew.%) | Gewaschene<br>Filterasche<br>(Gew.%) | Wasserzugabe<br>via Filterasche<br>(Gew.%) | Wassergehalt<br>Filterasche<br>(Gew.%) | Wassergehalt<br>Mischung<br>(Gew.%) |
|---------|---------------------|--------------------------------------|--------------------------------------------|----------------------------------------|-------------------------------------|
| 1       | 73                  | 27                                   | -                                          | 39                                     | 10.5                                |
| 2       | 73                  | 27                                   | 10                                         | 49                                     | 13.2                                |
| 3       | 73                  | 27                                   | 20                                         | 59                                     | 15.9                                |
| 4       | 73                  | 27                                   | 30                                         | 69                                     | 18.6                                |

Ca. 10% höhere Einbaudichte bei Wassersättigung der Schlacke/Asche-Mischung





## Feststoffcharakterisierung und Emissionsverhalten



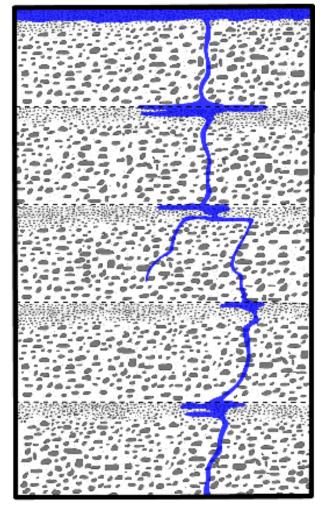
**Schadstoffpotential** 

Bindungsformen/Reaktivität

Totalkonzentrationen

Hauptmineralogie

Säurepufferkapazität


Schadstofffreisetzungspotential

Eluattests

- Batcheluattests
- Säuleneluattests

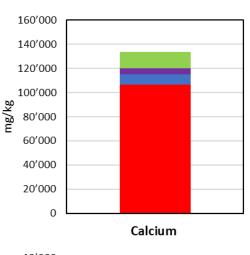


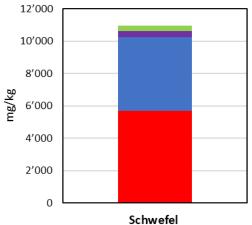




Ingold et al., 2024





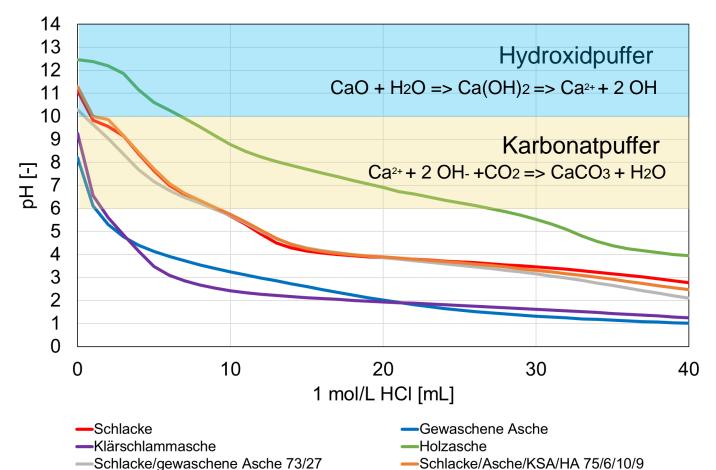


## Schadstoffpotential der Verbrennungsrückstände



| Parameter       | Einheit | Schlacke | Gewaschene<br>Filterasche | Klärschlamm-<br>asche | Holzasche |
|-----------------|---------|----------|---------------------------|-----------------------|-----------|
| Mengen pro Jahr | t/a     | 709'000  | 51'000                    | 45'000                | 68'000    |
| Antimon         | mg/kg   | 140      | 4'000                     | 15                    | 15        |
| Arsen           | mg/kg   | 20       | 100                       | 15                    | 10        |
| Blei            | mg/kg   | 1'000    | 4'000                     | 120                   | 600       |
| Cadmium         | mg/kg   | 5        | 50                        | 2                     | 1         |
| Kupfer          | mg/kg   | 4'500    | 1'000                     | 1'000                 | 500       |
| Zink            | mg/kg   | 3'500    | 20'000                    | 2'000                 | 1'000     |
| Aluminium       | mg/kg   | 55'000   | 30'000                    | 40'000                | 35'000    |
| Calcium         | mg/kg   | 150'000  | 170'000                   | 110'000               | 200'000   |
| Eisen           | mg/kg   | 70'000   | 20'000                    | 160'000               | 30'000    |
| Schwefel        | mg/kg   | 8'000    | 90'000                    | 8'000                 | 5'000     |

#### **Fracht zur Deponie**










## Reaktivität der Verbrennungsrückstände

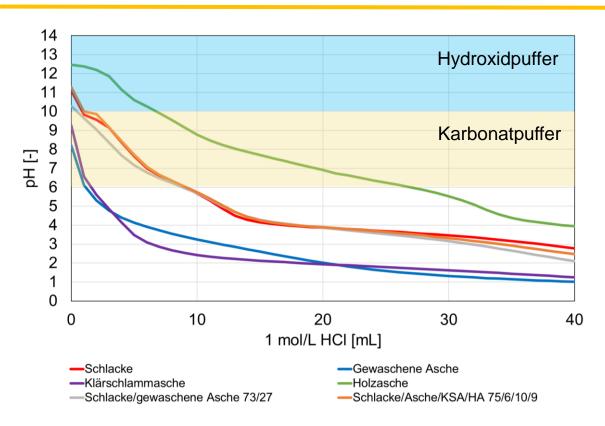




- Säurepufferkapazität: Fähigkeit des Abfalls dem atmosphärischen Eintrag von Säure entgegenzuwirken.
- Säurepufferkapazität hängt von der mineralogischen Zusammensetzung der Abfälle ab.
- Unbehandelte Verbrennungsrückstände sind meist Gemische verschiedener Puffersubstanzen, die in bestimmten pH-Bereichen wirksam sind.

Schlacke und Holzasche nicht ausreagiert Vor- oder Nachteil?

Säurepufferkapazität dominiert von Schlacke


→ kaum Einfluss der diversen Aschen

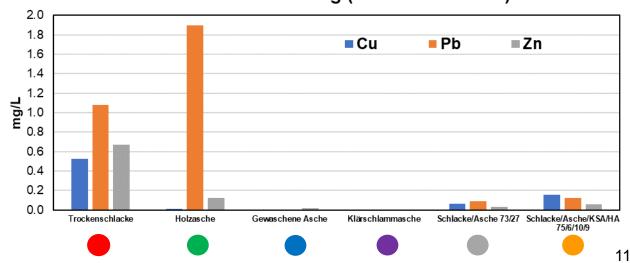


UNIVERSITÄT BERN

## Minimale Emissionen – Einfluss Mischung






Deutlich reduzierte Mobilisierung von Cu, Pb und Zn aus der Trockenschlacke bei der Mischung mit Aschen

→ Generierung von Metall-Rückhalteeffekten beim Mischen der Abfälle

#### VVEA-Eluattest 2 (Wasser, 24h)



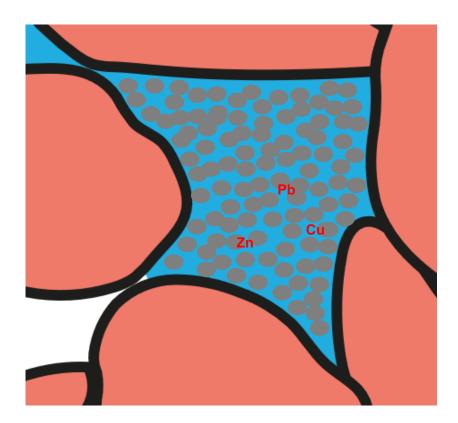
#### **Metallmobilisierung (VVEA-Eluattest 2)**





#### **Fazit**




## Eine Konditionierung der Abfälle hat Vorteile gegenüber der direkten Ablagerung bezüglich Volumen- und Emissionsverhalten

#### Mehr verfügbares Deponievolumen

- Gewaschene Filterasche, Holzasche und Klärschlammasche sind porenfüllende Materialien
- > Wasser hilft bei der Anordnung der Körner

#### Weniger Emissionen ins Sickerwasser

- Generierung von Metall-Rückhalteeffekten beim Mischen der Abfälle -> Vermutung:
  - Sorption an den Oberflächen der feinkörnigen Aschen
  - Mineralphasenneubildungen die Metalle einbinden (Karbonate/Sulfate)





#### **Ausblick**



- Tests auf Deponie sinnvoll → Machbarkeitsstudie: Konzept erstellt, Start 2024
- Ausarbeitung von Grundsätzen für den Deponiebau

#### Stoffstromentwicklungen bis 2030 zur Deponie

• **KVA-Schlacken:** Teilverwertung von mineralischen Fraktionen → Schlacken feinkörniger

• KVA-Filteraschen: Metall-Rückgewinnungspflicht → ca. 30% mehr gewaschene Aschen

• Holzaschen: Förderung von Holzfeuerungen → mehr Holzaschen

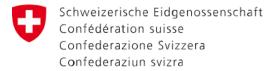
• Klärschlammaschen: P-Rückgewinnungspflicht → neue mineralische Abfallströme

→ Resultate aus dieser Studie dienen als Grundlage für die Beurteilung der Ablagerung der neuen Abfallströme





#### Vielen Dank für ihre Aufmerksamkeit




## **Projektgruppe**









Bundesamt für Umwelt BAFU



Kanton Bern Canton de Berne



AMT FÜR UMWELTSCHUTZ UND ENERGIE







Sauber entsorgt.









#### **Kontakt**

Gisela Weibel, Dr. phil. nat. Geologin Bereichsleiterin Verbrennungsrückstände und Deponien

#### Fachstelle Sekundärrohstoffe

Universität Bern Institut für Geologie Baltzerstrasse 1+3 3012 Bern

Mobil: +41 79 588 61 80

Telefon: +41 31 684 89 53

gisela.weibel@unibe.ch

www.fachstelle-sekundaerrohstoffe.unibe.ch



b UNIVERSITÄT BERN

