CarboStoreUltra: Efficiency of CO₂ storage by ex situ mineralization with Swiss rocks

Anna Harrison, Larryn Diamond, Francesca Piccoli, Daniela van den Heuvel, Vasileios Mavromatis

 u^{t}

Institute of Geological Sciences, University of Bern anna.harrison@unibe.ch

UNIVERSITY OF BERN

Captured CO₂ must be stored

- CO₂ storage in Switzerland's porous geological formations (Chevalier et al., 2010) is still not quantified; needs 5–10 yr and high exploration investment
- What about by carbonation of chemically reactive rocks?

(National Academies of Sciences, Engineering, and Medicine (NASEM), 2019)

Advantages of mineral carbonation

Mineral carbonation offers advantages:

- stable over millennia
- very large capacity
- geologic setting differs from "conventional" Carbon capture and storage (CCS) so there may be opportunities in regions without appropriate sandstone reservoirs

A major drawback?

Reaction rates are slow

Promising rocks identified

Previous project (CarboStore) screened geological formations available in Switzerland that could potentially be suitable for mineral carbonation

<u>Take-home messages:</u>

- Rocks suitable to bind CO₂ through mineral carbonation are present in Switzerland
- Due to low porosity and permeability they are unlikely suitable for in situ carbonation
- The suitability of these materials for ex situ carbonation should be investigated

Funding: BFE + VBSA

Ex situ carbonation

Target rocks for CarboStoreUltra

The most promising rocks in Switzerland for *ex situ* carbonation are Mg-rich rocks termed "ultramafic" by geologists (hence "Ultra" in our project name)

Ultramafic rocks relevant to our study:

Rock types	Peridotite (Earth's mantle)	Serpentinite (hydrated peridotite)
Constituent minerals	Olivine (Mg ₂ SiO ₄) + Enstatite + Diopside + Spinel	Lizardite $[Mg_3Si_2O_5(OH)_4]$ (low 7) or Chrysotile $[Mg_3Si_2O_5(OH)_4]$ or Antigorite $[Mg_3Si_2O_5(OH)_4]$ (high 7) + Magnetite
Theoretical capacity	0.63 t CO ₂ /t olivine	0.48 t CO ₂ /t serpentine

Real rocks are not pure!

- Mineralogical and chemical compositions deviate from ideal
- What is the realistic achievable CO₂ storage capacity given the complexity of natural rocks?
- Material-specific properties will determine suitability, capacity, and efficiency
 - Remains to be determined for Switzerland

Piccoli et al. (in review)

Objective:

Determine whether ex situ carbonation of rocks available in Switzerland (e.g. as powdered feedstock) could be a viable part of the Swiss Climate Strategy based on current knowledge of mineralization reactions.

Task 1:

Characterize the properties of the rocks identified as the most promising in Switzerland for ex situ carbonation.

Lab based characterization

Field based characterization

Zermatt Serpentinite

Piccoli et al. (in review)

Task 2:

Determine by laboratory experiments the rate and capacity of CO₂ storage by ex situ carbonation at process conditions relevant to local industrial CO₂ emitters.

Experimental apparatus (UniBern)

Mg-carbonate Mg₅(CO₃)₄(OH)₂·4H₂O

Harrison et al

Task 3:

Characterize reaction products and fate of trace metals during ex situ carbonation of Swiss rocks as a preliminary assessment of potential valuable byproducts.

What are the products? What are their compositions? Can these products be used for another purpose (e.g., aggregate?)

CarboStoreUltra Team

Anna Harrison (coordinator; carbon mineralization expert)

University of Bern

Daniela van den Heuvel (Swiss geology; mineralfluid interaction)

Vasileios Mavromatis (Carbonate formation; experimental geochemistry)

Funding partners

Robin Quartier (VBSA) (industry requirements)

CemSuisse (industry requirements)

Larryn Diamond (thermodynamics of carbonation)

Francesca Piccoli (Swiss geology and analytics)

Postdoctoral

fellow

(starting in Feb 2025; conducting experiments) Florence Bégué (SFOE)

Stefano Benato (SFOE)

The hunt for peridotite and serpentinite

Two localities visited in Graubünden & Ticino

Reconnaissance sampling: Serpentinite

14 + 15 Oct 2024, Graubünden (Oberhalbstein and Engadine Valley)

Topographic map

Geologic map

Reconnaissance sampling: Serpentinite

14 + 15 Oct 2024, Graubünden (Oberhalbstein and Engadine Valley)

Reconnaissance sampling: Peridotite

Field work: 12 + 13 Nov 2024, Locarno, Ticino

Topographic map

Tectonic map

Peridotite (~20 km²)

Reconnaissance sampling: Peridotite

12 + 13 Nov 2024, Locarno, Ticino

Finero quarry (Italy)

Reconnaissance sampling: Peridotite

12 + 13 Nov 2024, Locarno, Ticino

Work packages (WP)

Phase 1: 2024-2027 (2.5 years)

WP1: Literature review of ex situ carbonation processes and selection of experimental conditions

• In progress

WP 2: Collection and characterization of promising Swiss materials.

• In progress

WP 3. Experiments to determine ex situ carbonation rates and capacity ("efficiency").

• To begin in early 2025 after arrival of post doc

WP 4: Preliminary assessment of valuable by-products produced during ex situ carbonation.

Thanks for your attention

