
The Computational Twin Engine:

POWERING INTELLIGENT 
DECISION MAKING



The transition into the era of Artificial Intelligence (AI) will create huge opportunities to change the way 
organisations make decisions. 

As more organisations make this transition, the deployment of AI to automate and enrich decision making will become increasingly 
necessary to remain competitive. But for organisations and society at large to actually realise the benefits of AI, maintaining human 
oversight, governance, and compliance, and ensuring decision making remains safe, connected and intrinsically human-centric will be 
essential. 

However, today’s approach to data and AI-led decision making has not provided what is needed to make the necessary shift to 
increasingly intelligent, connected, and governable decision making.  

To address these challenges a new discipline known as Decision Intelligence (DI) has emerged that provides decision makers 
with the technology needed for making informed decisions. It allows them to understand:

 ◆ What is happening?: up to date information detailing the current situation, with the ability to dynamically cut the data into the 
appropriate context to understand what is driving the situation

 ◆ What will happen?: predictive technology to forecast likely outcomes, risks, or bottlenecks

 ◆ What should I do about it?: scenario analysis of potential actions, so that the quickest and most effective measures can be 
implemented to achieve organisational objectives, enabling decision makers to respond proactively to optimise their key business 
metrics

 

The Computational Twin Engine (CTE) is a general purpose technology for connecting AI models and implementing DI at scale. 
The CTE abstracts away significant complexity by combining cutting edge advancements in AI, simulation, optimisation, and causal 
inference, all framed around a decision-oriented method, into a unified package. 

It provides the following four foundational technical capabilities:

1. Simulation: a powerful discrete-event simulator that connects AI models and provides outputs that are coherent, probabilistic, 
causally accurate, and explainable.

2. Decision optimisation: compare decisions in terms of downstream business KPIs, and a Bayesian optimisation module that 
allows end-users to find optimal scenarios, as well as allowing configurers of the CTE to shape reward functions for decisions in 
terms of downstream KPIs.

3. Decision governance: a governance framework allowing end-users to set bounds within which they expect the system to 
operate. The CTE can monitor violations of these bounds, influence decisions to try and remain within them, or block decisions 
that would cross them whilst escalating the decision to the end-user.

4.	 Decision	deployment: integrate optimised decisions directly into the operational decision-making systems.

 

These capabilities allow for realistic interactive models of an organisation and for representing decision making in software. The CTE 
makes it possible for decisions to be coherently and globally optimised against meaningful downstream KPIs.

The architecture that powers the CTE is both modular and extensible, thereby providing the flexibility to serve a wide range of 
decisions without compromising on performance, scalability, or fault tolerance. There are three primary architectural components: 
an Entity Component System which provides an scalable pattern for managing simulation state, numerous CT Modules that handle 
system behaviour, and a Message Bus to transfer information during a simulation.

The CTE is a major advancement in state-of-the-art Decision Intelligence. In this document, we introduce concepts surrounding the 
CTE and detail its high-level capabilities, structure, and architecture.

01. Introduction

1 of 9



02. Definition and concepts
02.1. Computational Twin Object Model
The Computational Twin (CT) Object Model is a comprehensive set of objects that provide the core building blocks for representing 
decisions in software. The objects come in two types: structural and simulation objects. 

02.1.1. Structural objects

Structural objects make it possible to specify the full connected structure of a system:

The following objects generate events:

Elements - units that flow around the system. Their flow through the system will be the key determinant of 
the organisations or system’s performance. Elements can have nested data attached to them in the form of 
attributes made up of one or more properties.

Processes - emulate a real-world part of the system which cannot necessarily be directly controlled. They 
are used to generate events for things we are not looking to optimise, either because we don’t have control 
over them or we are just not interested in doing so.

Stages - collections of elements that share a certain state. Membership of a stage is defined in terms 
of a finite collection of boolean selectors on the attributes of elements. These selectors are combined 
conjunctionally with AND statements.

Decisions - used to model something the organisation has control over and is looking to optimise. They 
are prescriptive deterministic models that generate events within the CT. Unlike processes, Decisions are 
architected to facilitate their deployment in the real world.

Resources - objects that are used by Elements while they are in certain stages: i.e whilst an element is in 
the associated stage the resource will be depleted by a certain amount.

Metrics - a quantitative description of an aspect of the system’s state: for example the number of 
elements in a certain stage. Metrics should contain all of the business/system KPIs you care about when 
making decisions.

02.1.2. Simulation objects

Simulation objects govern the generation of events when a CT is run by the CTE. Events mutate the state of the CT by either creating/
destroying elements, or adding/removing/amending attributes. During a simulation, synthetic events are generated and are then used 
to change the CT’s state. This allows the simulation of possible futures subject to certain input parameters. Historical data can also be 
used to create events: running these in order through the CT can recreate what the system looked like at a particular point in the past.

Elements

Resource

Stage

Process

Metric

Decision

LLM

LLMs - integrates LLMs into the CT to automate routine business processes and generative tasks within 
the context of a wider decision optimisation. This leads to optimised decisions while ensuring adherence to 
governance and compliance policies.

Processes, Decisions, and LLMs can be arbitrarily complex, from simple rules to predictive probabilistic models,  
and can be coded from scratch, or simply be calling an external API. 

2 of 9



How they work is governed by Policies and Levers:

02.2. An example: patient flow in a hospital
In this section we give an example of a patient’s flow through a hospital. The CT diagram is below:

The objects in this example are defined as follows:

 ◆ Elements: patients with attributes, including their sex and their medical issue (a categorical variable)

 ◆ Stages: emergency department (where patients go on arrival), Waiting for a bed (patients who have been admitted and are 
waiting for a bed), Ward Stages (a collection of stages, each one representing a ward)

 ◆ Resources: ward “X” beds - the beds associated with ward “X”

 ◆ Metrics: occupancy (the number of people across all of the ward stages)

 ◆ Processes: patient arrivals (generates patients in line with historic admissions), Decision to admit (decides which patients to 
admit), Discharge (discharges patients according to attributes, and ward assignment)

 ◆ Decisions: bed allocation that decides which patients to allocate to a ward

Levers - parameters which can be passed to any of the above three objects and used to modify their 
behaviour. These are often defined in the language of the decision, so an external user will understand 
what they do.

Policies - monitor the value of metrics by checking whether they are defined within boundaries. In historical 
mode these function like boolean metrics, but in simulation mode they can be used to regulate the outputs 
of decisions and LLMs, preventing events they generate from causing a policy violation.

Patient

Patient arrivals DTA Discharge

Emergency department Waiting for a bed
Ward stages

Ward stages

Ward ‘Xʼ
Beds

Bed
Allocation

Occupancy

Lever

Policy

3 of 9



The CTE has four foundational technical capabilities, (1) Simulation, providing coherent, probabilistic, causally 
accurate, explainable outputs, (2) Decision Optimisation, (3) Decision Governance, and  
(4) Decision Deployment.

03.1. Simulation
The key benefit of the CTE is its ability to help users answer the following questions:

◆ What will likely happen in the future?

◆ Why did, or will something happen?

◆ What can I do about it?

These benefits are provided by the simulation mode of the CTE, which is a discrete-event simulator. 
The way simulation mode runs is described by the diagram below.

Note that simulation objects decide when and what events to generate based on their observations - these can be any part of the 
CT’s state and are essentially analogous to features in machine learning.

The above diagram describes how the simulation logic in the CTE is able to evolve the CTE’s state. One of these runs is called a 
trajectory, and it describes one possible future of the system being modelled. When the CTE is run in simulation mode multiple 
trajectories are in fact created, thus producing many possible futures for the system. How these are used is described in more detail in 
section 3.1.2.

What makes the CTE so valuable as a simulation tool for making business decisions is that its outputs are coherent, probabilistic, 
causally accurate, and explainable. 

03.1.1. Coherent outputs

All metrics derived from CTE simulations are coherent with each other: i.e. any structural relationships between metrics are preserved. 
This is because all metrics are by construction functions of the same underlying data.The prediction of any metric at any time in the 
horizon is calculated from the data which makes up the CT state at that time, and possibly data from previous states. 

03. Core capabilities

This data can be divided up into multiple levels of aggregation, following a tree-like structure. In the hospital example, the top level 
may refer to all patients, the subsequent level to patients in each ward, and the subsequent level to patients in each age group in each 
ward. Of course, data does not need to disaggregate in a unique hierarchical manner.

Since each metric is associated with a specific subset of the common upstream data, relationships between different metrics within 
the hierarchy are automatically preserved. In the above example, the prediction for the total number of patients is by construction the 
sum of the predictions for number of patients in the individual wards, since both refer to the same patient population.

Step 1: simulation objects are 
asked which events they want 
to generate next

Step 2: simulation objects 
output an ordered list of events 
they’d like to generate

Step 3: the earliest events are 
picked and then executed, 
with the CTE’s internal clock 
advancing to this time

Event x - 7:39am
Event y - 7:39am

Event x
Event y
Event m

Event a - 7:50am Event m - 7:39am

Current system 
time: 7.20am

Current system 
time: 7.20am

Current system 
time: 7.39am

Process i Decision j LLM kProcess i LLM iDecision i

4 of 9



03.1.2. Probabilistic outputs

A key advantage provided by CTE simulations is that it provides probabilistic predictions with expressed uncertainty. This is achieved 
by any process that has inherent uncertainty being modelled using probabilistic methods, often probabilistic ML models.

In each simulation the CTE propagates individual 
realisations of predictions from probabilistic processes 
through the system, thereby generating a single sample 
of a CT trajectory representing one possible future. 
Generating multiple such CT trajectories allows the user to 
access the distribution of any metric at a given point over 
the possible futures. Specifically, it allows us to calculate 
statistics over metrics, e.g. histograms, credibility bands, 
error bands, or point estimates of most likely outcomes.

The picture above shows a probabilistic forecast from the CTE. The space to the left of the vertical dotted line  
represents the past, whereas the space to the right represents the future. The shaded confidence interval shows a range 
of possible outcomes.

There are two benefits of the CTE’s probabilistic forecasts to a business user:

 ◆ The CTE doesn’t show just the most likely outcome, it shows a range of possible outcomes. This means that users can 
produce plans which take into account the uncertainty within the system, and have the ability to compute the risk of something 
unwanted happening.

 ◆ Even if a user is only ultimately interested in an expected outcome, having access to probabilistic models for the underlying 
processes is crucial for calculating this accurately. Non-probabilistic ML algorithms are often optimised using maximum 
likelihood estimation, but if a chain of these models simply passed its estimate downstream, its composite generally would not 
be the maximum likelihood estimate of the whole chain.

0

1 2 3 4 5 (Today) 6 7

Date       8 Nov 2022, 22:00

Value      19

Nov

5

10

15

20

Metric

03.1.3. Causally accurate outputs

The CTE allows the user to specify causal representations of the underlying system being modelled. Any simulation outputs are faithful 
to the specified cause-and-effect relationships.

When run in simulation mode, the CTE is fundamentally a data generating process, modelled according to the substructure of the 
business process in question. As such, any data generated by the CTE – whether a simulation of the future, a playback of the past, or a 
hypothetical alternative history – has an inherent causal structure that is implicitly contained within the CTE program that generated it.

Rather than having to learn the system’s causal structure from data, and being left at the mercy of any spurious correlations that may 
lie within it, it derives much of its causal structure from its definition. 

This gives the CT two big advantages compared to isolated point ML models:

 ◆ Generalisability: robust inference is possible even for unseen scenarios since their downstream effects can be derived by 
accessing the cause-and-effect relations encoded in the CTE. In the hospital example, the CTE  
would be able to simulate the effect of changing the number of beds available in the hospital, or the effect of a different bed 
allocation strategy. An attempt to enable the former via an ML approach would be to expose available beds as model features, 
though this approach would be vulnerable to only being able to produce reliable outputs for bed configurations that had been 
observed previously. In the latter case of changing bed allocation strategy, traditional ML cannot cope with this at all as the ML 
can only (at best) learn the previously used bed allocation strategy from data.

 ◆ Data efficiency: having access to causal relationships from its definition allows for better predictions at the same volume of 
data by adding the right causal knowledge (i.e. inductive bias). In the hospital example, imagine our goal is to predict how many 
patients have to be deferred to other hospitals, like in an emergency situation due to full occupancy. If this either has not or has 
rarely happened before, an isolated ML model trained on historical data is unlikely to predict deferred patients accurately; the CT, 
however, has the right causal knowledge, knowing that any patient arriving during full occupancy is a deferred patient.

5 of 9



03.1.4. Explainable outputs

Outputs of the CT are explainable. The CT offers two methods which enable explanations of outputs: the first one is intrinsic to metrics of 
the CT, while the other is a dedicated root cause analysis technology.

The first is explainability through metrics queries. The CT 
enables filtering metrics on various properties such as metric 
type, tags, time, or sub-populations, which provides insight 
on what makes up unexpected changes in KPIs. Since each 
filter with respect to a specific attribute is associated with a 
unique subset of the common upstream data which makes 
up a CT trajectory, it is possible to understand which subset 
is associated with an unusual behaviour. 

The second is explainability through Shapley 
values. The CT provides technology that can explain 
discrepancies between CT simulations and reference 
outcomes, e.g. from a real-world actual past or other 
simulations. The technology is enabled by Asymmetric 
Shapley values (ASVs), an explainability framework 
developed by Faculty which incorporates causality into 
explanations of machine learning models [Frye et al., 
2020].

The Shapley value technology in the CTE can explain which time intervals or processes are 
responsible for discrepancies between CT simulations and reference outcomes.

Predicted

An
y 

qu
an

tit
y 

of
 in

te
re

st

L1 L2 LN Actual

The CTE can utilise Shapley value-based explainability techniques for two different use cases. The first is Time-ASVs. These allow 
a user to understand when discrepancy in the KPI of interest between simulation and reference is generated, with a temporal 
resolution set by the user. This is achieved by dividing the simulation time window up into time steps (specified by the user) and 
running simulations from each time step, starting from the corresponding reference state, to the end of the simulation horizon, and 
deriving the KPI for each resulting trajectory. The difference between KPIs associated to two subsequent time steps states how 
much discrepancy in simulation vs. reference is due to events happening between these two time periods. 

Process-SVs provide insight into which processes generated the discrepancy in the KPI of interest between simulation and 
reference. This technology is enabled by considering the processes as players in the classic Shapley value paradigm, that is, the 
contribution of each process is calculated as if in a cooperative game by considering the average marginal contributions across all 
possible process permutations.

03.2. Decision optimisation
The CTE is designed to help find more optimal decisions. Optimisation techniques are used to determine the best decisions to be 
performed within the system, given the data available at decision time and the projected downstream KPIs that decisions should be 
tuned to optimise.

03.2.1. Quantifying the downstream effect of decisions

Part of the CTE’s benefit lies in its ability to understand the impact of (locally optimal) decisions on the wider system in terms of 
downstream KPIs. For example, a particular decision in the CTE might simply be a greedy optimisation algorithm which, each time it is 
called, makes a decision that is optimal at the moment in time based on the available input parameters and the specified cost function. 
This would still be possible without the CTE, but by plugging this into the CTE a user can understand what effect this will have on 
the wider system rather than just in terms of the locally-defined cost function. Additionally if this decision has configurable input 
parameters (e.g. levers, resources) that are controllable, then a decision can be made on which values to pick based on the effect 
on the downstream business KPIs. This means the CTE is able to make decisions more globally optimal, by allowing an end-user to 
customise them with respect to the KPIs that are important at a system level.

6 of 9

https://proceedings.neurips.cc/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0d770c496aa3da6d2c3f2bd19e7b9d6b-Paper.pdf


03.2.2. Simulation-based optimisation 
with the CTE

The CTE has the capability to do simulation-based 
optimisation, specifically Bayesian Optimisation. Bayesian 
Optimisation is a sequential model-based optimisation 
technique that leverages Bayesian statistics to efficiently 
search for the optimal solution within a given parameter 
space. It builds a probabilistic surrogate model of the 
objective function, iteratively suggesting new points for 
evaluation based on the model’s predictions, ultimately 
converging to the best possible outcome.

Some initial 
input-output pairs

Train the 
surrogate model on the 

available data

Select a new point to 
evaluate using the 
trained model and 

acquisition function

Add the new 
point to the available 

training data

Evaluate the suggested 
point using the black 

box function

The CTE uses this for:

 ◆ Reward-shaping for greedy-optimal decision making: one can define a greedy reward function to be a linear combination of 
metrics that can each be computed locally in terms of the observation and candidate action. Each of these metrics is multiplied 
by a coefficient that can be considered a hyperparameter of the optimisation algorithm. Bayesian optimisation is then used to 
tune these hyperparameters under CTE simulations to determine which values of the hyperparameters will lead to the most 
preferable downstream KPIs. This offers something in between basic greedy optimisation and full longer-term (i.e. downstream 
outcome) optimisation. In particular, it offers the safety, transparency, and efficiency of greedy optimisation along with the 
performance upside of longer term optimisation.

 ◆ Optimal scenario discovery: the Bayesian optimisation module can find the optimal input parameters for a CT with respect to 
some downstream KPI, for example finding the optimal lever values or capacity of resources. When these input parameters are 
something that the organisation controls, this can allow decision managers to find which scenarios are (more) globally optimal for 
their organisation.

03.3. Decision governance
Another core capability of the CTE is its ability to govern decisions. This capability is critical to meet the needs of decision intelligence 
at scale, and is the core function of the policy object.

In the CTE, the Policy object is designed to observe if the values of metrics are <, ≤, >, ≥ a certain value.  
They have two modes of operating:

◆ Policies have the ability to monitor metrics; essentially in this mode policies act as a metric, where the metric in question is a time 
series of binary variables. Any breaches of policies can then be flagged to end users.

◆ Policies are able to regulate the output of decisions and LLMs, i.e. to potentially alter the events they generate if these events will 
cause a policy to be breached. In practice, the CTE supports this through two types of policy regulation:

◆ Influence: here, policies acting in regulation mode are passed to the decision. It is then up to the engineer defining the CT to 
decide how the policy regulation should work by including it in the decision function logic.

◆ Enforce: in this mode, events emitted by a decision are checked by a policy which is acting in regulation mode. If the events 
cause the policy to be violated then the events are not triggered, and in the case of a deployed decision it is then escalated 
to an end-user.

One common way to implement the influence type of policy regulation is by passing the policy as a constraint to the optimisation 
algorithm in the decision function. Doing this ensures that the decision function will only produce events that don’t violate the policy. 
Allowing flexibility in terms of how policies regulate decisions ensures that this regulation is sensitive to the specific problem at hand.

7 of 9



03.4. Decision deployment
The CTE provides powerful technology to integrate predictive models into a powerful causal simulation framework that helps 
organisations get a deep understanding of what’s happened up to now, why, what’s likely to happen, and what is best to do to achieve 
their objectives. However, improving decisions requires that any optimised decisions are integrated directly into the operational decision 
making systems. The CTE provides this capability. 

A Decision in the CT Definition is a deployable object that informs an action in the system being considered. In general, a Decision can 
contain any kind of algorithm, from ML and optimisation algorithms, to simple rules. Every Decision developed using the CT Object Model 
is deployable independently of the CTE and can be integrated into an external system as a Decision Point. Deployed decisions can be 
implemented through either:

 ◆ Decision Automation: enacting the action suggested automatically, or

 ◆ Decision Augmentation: suggesting action(s) to be taken that are executed by a human operator.

The CTE exposes a function that allows for a Decision Object to be exported as a Decision Point. To ensure the same decision logic is 
used during simulation, decision optimisation, and when deployed, the decision is defined in the CT Definition in two independent code 
locations: 

 ◆ Decision function: the logic and model that encodes the decision algorithm itself. It has arbitrary inputs and outputs, and is used 
both in simulation and in production.

 ◆ Decision wrapper: an adaptor around the Decision Function that allows it to operate within the context of a CTE simulation. It 
translates the CT state into the language of the decision function.

The CTE Decision Point deployment system is designed with the flexibility required to be able to integrate with any operational system. In 
addition to the Decision Function, a Decision Point includes:

◆ The supporting Lever and Policy values that make up the optimised Decision

◆ A Monitoring Wrapper that wraps the Decision Function, sending each decision to a Monitoring system

◆ Adaptors for operational systems and Decision Functions. These are custom code made up of three parts:

◆ A data ingestion function that reads the current state of the system from operational databases or from an HTTP request, and 
transforms it into a format acceptable to the Decision Function

◆ A result serving function that takes the output of the Decision Function and transforms it to something that makes sense for 
the operational system it is deployed into

◆ Custom infrastructure where the deployed Decision Point runs

Whilst the specifics of decision deployment are custom to the operational system, the CTE allows for the logic and models that underpin 
the decision-making process to be shared between production systems and the CTE simulation, ensuring there is coherence between 
decision planning and decision execution.

8 of 9



The architecture of the 
Computational Twin Engine is 
designed to be both modular and 
extensible, thereby providing 
the flexibility to serve a wide 
range of decisions without 
compromising on performance, 
scalability, or fault tolerance. 

There are three primary architectural components:

01. 
Entity Component System (ECS): serves as the foundational piece that governs the representation of the entire system.  
ECS is a software architectural pattern predominantly used in complex system simulations and real-time computer games. 

An ECS architecture consists of three primary elements:

 ◆ Entities: a thin container for objects that populate your system. Every top level object in a CT definition are represented by an 
entity in the state.

 ◆ Components: Collections of data and logic attached to an entity, designed to process, store and update information as the 
system evolves.

 ◆ Systems: higher level functionality that instantiates and orchestrates runs of “trajectories” of the overall system,  
for example evolving the state of a given CT in historical mode over some time window.

02.  
CT Modules, handling different aspects of system functionality and CT behaviour. Some of these manage core functionalities 
like data ingestion, state management, and orchestration of CTs, with others focussing on the specific behaviours, simulations, 
and decision-making capabilities associated with individual CTs. Important examples of modules include the kernel, which serves 
as the central management unit of the CTE, and the event source, which is responsible for ingesting data into the CTE. Custom 
modules can be developed independently and plugged into the CTE.

03. 
Message Bus: the mechanism through which information is passed between parts of the CTE, and between modules. This serves 
as the communication channel within the CTE, allowing different modules to exchange information and events without being 
directly connected to each other. It acts as a centralised broker that routes messages between the senders and the receivers.

To interface with the CTE there are two main APIs, python and HTTP. The python API exposes functions that can be called 
from other python code, and the HTTP API provides RESTful endpoints for the deployment, management, and monitoring of 
Computational Twins. 

By adopting this architectural pattern, the CTE is able to tackle complex simulations and optimisations while  
maintaining high performance, flexibility, and extensibility, making it a groundbreaking tool in the AI and Decision Intelligence space.

CTE API

Computational Twin Engine

Entity Component System

CT Modules
External 

data

Message Bus

Event source State update Optimisation Explainability Simulation LLM CustomKernel

04. CTE architecture

9 of 9


