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Proximity-dependent labeling identifies dendritic cells 
that drive the tumor-specific CD4+ T cell response
Aleksey Chudnovskiy1*†, Tiago B. R. Castro1, Sandra Nakandakari-Higa1, Ang Cui2,3,4,  
Chia-Hao Lin5,6, Moshe Sade-Feldman2, Brooke K. Phillips1, Juhee Pae1, Luka Mesin1,  
Juliana Bortolatto1, Lawrence D. Schweitzer2, Giulia Pasqual7,8, Li-Fan Lu5,6,  
Nir Hacohen2,9, Gabriel D. Victora1*

Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) 
and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor 
immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partner-
ships by SorTagging Intercellular Contacts)–based single-cell transcriptomics, we identified individual DCs capa-
ble of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar 
hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that 
checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs 
is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor–specific 
T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.

INTRODUCTION
When properly activated, T cells can exert powerful control over 
cancer, as evidenced by decades of work that culminated in check-
point blockade immunotherapies (1–3). As with other adaptive im-
mune processes, the quality of the T cell response toward a tumor is 
heavily dependent on the identity and phenotype of the dendritic 
cells (DCs) that present tumor-derived antigen to T cells in the 
tumor-draining lymph node (tdLN). tdLN DCs are divided into mi-
gratory DCs, capable of transporting antigens acquired in the tumor 
to the tdLN, and resident DCs, which have access only to antigen 
that arrives to the LN through lymphatics or that is carried by their 
migratory counterparts (4–7). Both populations can be further sub-
divided along an orthogonal axis into conventional cDC1 and cDC2 
subsets on the basis of their phenotype and ontogeny (5, 8). In general, 
cDC1s have higher capacity to prime CD8+ T cells, whereas migra-
tory cDC2s are best at priming CD4+ T cells (9–11), although these 
distinctions are not absolute (12).

Both cDC1s and cDC2s have been implicated as drivers of the 
antitumor immune response (9, 13). Mice lacking cDC1s show 
enhanced tumor growth concomitant with reduced tumor-specific 
effector CD8+ T cells (11, 14–17). CD4+ T cell priming by cDC2s 
is suppressed by regulatory T (Treg) cells (18), and Treg depletion 
unleashes a cDC2-driven CD4+ T cell response to the tumor (13). 
Moreover, immune checkpoint inhibitors do not work efficiently in 
the absence of DCs, highlighting the role of antigen presentation as 

a major driver of the response to immunotherapy (11, 15, 19). More 
recent studies have identified a previously undescribed DC state 
termed mature DCs enriched in immunoregulatory molecules 
(mRegDCs) (20). DCs in this state have enhanced capacity to take 
up antigens but reduced ability to prime antitumor T cell responses. 
mRegDCs share many common genes with the cDC3 subset de-
scribed in humans (21, 22), and further work is needed to delineate 
the cDC3 and mRegDC states (23).

DCs are also present in the tumor microenvironment (TME), 
where they can interact with both effector and Treg cells, further 
shaping antitumor immunity. However, given the heterogeneity of 
DC phenotypes in the TME, as well as the presence of other popu-
lations of non-DC antigen-presenting cells (APCs) in the tumor, 
determining which DC populations contribute to antitumor T cell 
responses remains a challenge (24–26). Assessing the contribution 
of specific APC subsets to T cell activity in the tumor is particularly 
challenging because most if not all T cells arriving in the TME have 
already been primed in the tdLN; therefore, the relative contribu-
tion of local TME and distal tdLN APCs to T cell activity is difficult 
to discriminate (24–27). To address these types of questions, we 
previously developed LIPSTIC (Labeling Immune Partnerships 
by SorTagging Intercellular Contacts), a proximity-based labeling 
method based on transfer between interacting cells of a labeled 
substrate detectable by flow cytometry that allows identification 
and isolation of DCs engaged in antigen presentation to T cells 
in vivo (28). By combining LIPSTIC with single-cell RNA sequenc-
ing (scRNA-seq), we performed interaction-based transcriptomic 
profiling of the DCs responsible for presenting tumor-derived anti-
gen to cognate CD4+ T cells in the tdLN and of the myeloid cells that 
engage with any CD4+ T cells in the TME. Our data show that a 
minor population of DCs, characterized by a hyperactivated tran-
scriptional program, accounted for most antigen presentation to 
CD4+ T cells in the tdLN, a phenotype that was shared with the DCs 
that interacted with effector CD4+ T cells in the TME. T cell–DC 
interactions in both sites were increased by checkpoint blockade with 
anti–cytotoxic T lymphocyte associated protein 4 (CTLA-4) antibodies. 
Together, our data indicate that DCs with similar hyperactivated 
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transcriptional phenotypes interact with helper T cells in both tu-
mors and the tdLN and that checkpoint blockade drugs enhance 
these interactions.

RESULTS
LIPSTIC identifies DCs that present tumor antigen to naïve 
CD4+ T cells in vivo
LIPSTIC relies on the Staphylococcus aureus transpeptidase sortase 
A (SrtA) to transfer an injectable biotinylated peptide substrate 
(biotin-LPETG) between pairs of cells interacting by the CD40L-
CD40 pathway. SrtA, fused to the extracellular domain of CD40L 
expressed on CD4+ T cells, captures substrate injected in vivo and 
transfers it onto five N-terminal glycines engineered into the extra-
cellular domain of CD40 (G5-CD40) on interacting DCs (Fig. 1A). 
To apply this system to a solid tumor model, we engineered the B16 
melanoma cell line to express the OVA323-339 (OT-II) peptide (B16OT-II; 
fig. S1A). We then inoculated G5-CD40–expressing mice (Cd40G5/G5) 
subcutaneously with 106 B16OT-II cells in the flank region to gene
rate a response in the tumor-draining inguinal lymph node. At 
9 days postinjection (d.p.i.), we adoptively transferred 3 × 105 SrtA-
expressing OT-II T cells (either carrying the conditional Cd40lgSrtAv1 
allele crossed to Cd4-Cre or carrying a constitutive Cd40lgSrtAv2 
allele; see Materials and Methods) into tumor-bearing mice. We 
performed LIPSTIC labeling of the tdLN by local injection of bioti-
nylated LPETG substrate at 10 to 12 hours after T cell transfer (Fig. 1B), 
a point at which T cell interaction with DCs is exclusively cognate 
(28). This system allows transferred OT-II T cells to serve as “report-
ers” that specifically identify and label the subset of DCs capable of 
presenting antigen to naïve CD4+ T cells at that time point.

This approach revealed that a minor population (approximately 
5 to 10%) of DCs acquired the LIPSTIC label in the tdLNs of mice 
bearing B16OT-II tumors but not in controls inoculated with the pa-
rental B16 line [B16 wild type (WT)] (Fig. 1C). In agreement with 
previous findings (10,  28), LIPSTIC labeling in the tdLN was de-
tected exclusively on migratory (CD11cIntMHC-IIHi) but not resi-
dent (CD11chiMHC-IIint) DCs (Fig. 1D and fig. S1B). The specificity 
of LIPSTIC labeling was confirmed by injection of a blocking anti-
body to CD40L 2 hours before substrate injection, which fully abro-
gated labeling (Fig. 1E). Mixed bone marrow chimera experiments 
in which a fraction of DCs were deficient for major histocompatibil-
ity complex class II (MHC-II) confirmed that LIPSTIC captures 
predominantly interactions driven by antigen presentation in this 
setting (fig. S1C). Thus, LIPSTIC labeling in the B16 system is anti-
gen specific and dependent on the CD40L-CD40 interaction. DCs 
of both XCR1+CD11b− (cDC1) and XCR1−CD11b+ (cDC2) pheno-
types (Fig. 1F) were labeled by OT-II T cells, at a ratio that corre-
sponded roughly to the total cDC2/cDC1 ratio in each tdLN. Thus, 
both subsets of DCs were equally capable of presenting tumor-
derived antigens to specific CD4+ T cells in vivo, a finding supported 
by previous literature (12,  13). Because our B16OT-II cell line also 
expresses green fluorescent protein (GFP; fig. S1A), we were able 
to simultaneously probe DCs for interaction with CD4+ T cells 
and for the extent to which they carry intact tumor-derived pro-
teins. Although there was a statistically significant enrichment in 
biotin+ cells among the GFP+ DC population, GFP and LIPSTIC 
labeling were overall poorly correlated (Fig. 1G). Thus, the storage 
of intact tumor-derived antigen does not overlap substantially with 
the ability to present this antigen to naïve CD4+ T cells in vivo, possibly 

because of the specific kinetics of antigen storage and presentation 
over time.

To ascertain that biotin+ DCs carried the antigen necessary to 
drive proliferation of antigen-specific T cells, we set up a miniatur-
ized assay in which 150 tdLN-derived biotin+ DCs were cocultured 
ex vivo with 750 carboxyfluorescein diacetate succinimidyl ester 
(CFSE)–labeled OT-II CD4+ T cells in the absence of exogenous an-
tigen. This approach showed that biotin+ DCs were exclusively ca-
pable of driving T cell proliferation above the background levels 
obtained with DCs derived from mice carrying parental B16 mela-
nomas that lacked the OT-II peptide (Fig. 1H). An analogous experi-
ment with ovalbumin (OVA)–specific CD8+ (OT-I) T cells (using a 
B16 line that we engineered to express a transmembrane version of 
the full OVA protein, B16mOVA) showed that, again, biotin+ tdLN 
DCs were exclusively capable of driving T cell proliferation (Fig. 1H). 
We conclude that LIPSTIC labeling faithfully identifies DCs in the 
tdLN that are capable of presenting antigen to both CD4+ and CD8+ 
T cells in vivo and that such DCs represent only a minor fraction of 
all DCs available at that site.

DCs that present tumor-derived antigens exhibit a distinct 
hyperactivated state
To understand what distinguishes DCs capable of presenting anti-
gen to CD4+ T cells in tdLNs beyond a population-level analysis, we 
transcriptionally profiled individual biotin+ and biotin− migratory 
DCs obtained from tdLNs at 10 and 15 d.p.i. and control DCs from 
steady-state inguinal LNs (iLNs) using plate-based scRNA-seq. DCs 
fell into five transcriptional clusters (Fig. 2A and data file S1), of 
which two expressed signatures associated with a cDC1 phenotype 
(clusters 1 and 3) and three expressed a cDC2 phenotype (clusters 0, 
2, and 4) (fig. S2A). Few differences were noted when comparing 
biotin− migratory DCs sorted from B16OT-II tdLNs or total migratory 
DCs from steady-state iLNs. Conversely, biotin+ tdLN DCs, espe-
cially those with a cDC2 phenotype, were strongly enriched in clus-
ter 0, which consisted almost exclusively of LIPSTIC-labeled cells 
(Fig. 2, B and C). Similar but less pronounced segregation of biotin+ 
and biotin− phenotypes was observed in cDC1 cluster 3 (Fig. 2B). In 
both cDC1 and cDC2 populations, LIPSTIC labeling correlated 
with expression of CD40 target genes (29), as expected given the 
pathway assayed by the LIPSTIC method (fig. S2B).

Differential gene expression comparing biotin+ and biotin− tdLN 
DCs showed statistically significant modulation of 269 genes (224 
up-regulated and 45 down-regulated). Of these, 136 were commonly 
modulated in biotin+ cDC1 and cDC2 populations, and 66 changed 
exclusively in the biotin+ cDC2 population (fig. S2C and data file S2). 
Changes included up-regulation of genes encoding for classic mark-
ers of DC maturation (Cd80, Cd86, Cd40, and Cd82) and of nuclear 
factor κB activation [Nfkbiz and Tnfaip3 (A20)] (30, 31), typical of an 
activated DC state, as well as strong up-regulation of the inhibitory 
molecules Cd200 and Cd274 [encoding programmed cell death li-
gand 1 (PD-L1)] (Fig. 2D) (20, 32). Genes functionally important for 
T cell priming were also up-regulated, including Cd1d1, the cyto-
kines Tnf and Ebi3, drivers of DC–T cell interactions such as Sema4a 
and Alcam (33–35), and the proteasome activator involved in antigen 
presentation (Psme2b) (36), as were Ifitm3, Tmem39a, and Tmem173 
[stimulator of interferon genes (STING)], genes important for infec-
tious disease and autoimmunity (37–39). LIPSTIC-labeled DCs, es-
pecially cDC2s, up-regulated several genes related to cell migration 
and microanatomical localization of DCs and T cells, including the 
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chemokines Ccl17, Ccl22, Ccl9, and Ccl6 (40–44); Gpr183 [encoding 
the G protein–coupled receptor EBI2, a critical guidance receptor 
that positions DCs at the LN follicle border and splenic bridging 
channels (45–47)]; and cell motility regulators such as Msn (moesin) 
and Cd81 (Fig. 2D). Conversely, biotin+ DCs down-regulated several 

genes expressed in anti-inflammatory DCs and/or associated with 
the induction of T cell tolerance, such as Tbc1d4, Mfge8, and Cblb 
(48–50) (Fig. 2D). Although up-regulation of several of these genes 
was confirmed at the protein level by flow cytometry (fig. S2D), 
none of the molecules we tested was alone capable of unequivocally 
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distinguishing between biotin+ and biotin− DCs. We confirmed find-
ings pertaining to individual genes at the level of entire gene signa-
tures obtained from the Gene Ontology and Hallmark Molecular 
Signatures Database (MSigDB) databases (51, 52). Biotin+ cDC1s 
and especially cDC2s showed higher expression of inflammation/
activation signatures as well as of signatures related to cell migration, 
motility, and regulation of the actin cytoskeleton (Fig. 2E, fig. S2E, 

and data file S3). Last, although biotin+ DCs expressed higher levels 
of the mRegDC and cDC3 (20, 53) signatures, overlap between our 
biotin+ LIPSTIC signature and these two gene sets was only moder-
ate, indicating that both programs are related but not identical to that 
of LIPSTIC-labeled DCs (fig. S2, F and G).

LIPSTIC-labeled DCs in the tdLN at day 15 largely lost expres-
sion of the signature of cluster 0, the cluster most enriched in biotin+ 
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Fig. 2. Biotin+ DCs represent a transcription-
ally distinct DC state. (A) Clustering of DCs 
sorted from a tdLN or steady-state iLN. Cells 
pooled from two steady-state and two tumor-
bearing mice from two independent experi-
ments. (B) Distribution of steady-state iLN, 
biotin− tdLN, and biotin+ tdLN DCs. (C) Propor-
tion of cells in each cluster. (D) Expression of 
genes significantly up-regulated in biotin+ cDC1s 
and cDC2s. (E) Violin plots show the most up-
regulated gene signatures in biotin+ cDC1s and 
cDC2s. GO, Gene Ontology. (F) t-SNE plots show-
ing the distribution of biotin− (left) and biotin+ 
DCs at 10 (center) or 15 (right) d.p.i. in the 
tdLNs of B16OT-II–bearing mice. Dotted circles 
indicate the approximate location of cluster 0. 
(G) Distribution of clusters from Fig. 2A among 
biotin+ and biotin− DCs from 10 and 15 d.p.i. 
(H) Contour plots show the percentage of bio-
tin+ DCs in the tdLNs of B16OT-II tumor-bearing 
mice at 10 (early) or 15 (late) d.p.i. (I) Quantifi-
cation of data as in (H) (n = 10 or 11 mice per 
group from four independent experiments; each 
dot represents one mouse). (J and K) As in (H) 
and (I) but in MC-38OT-II tumor–bearing mice 
(n = 5 or 7 mice per group, with bilateral tumors; 
each dot represents one tdLN; data from one 
experiment). Experiments in (H) to (K) used the 
Cd40lgSrtAv1 allele. (L) t-SNE plot showing cluster-
ing (left) and expression of the LIPSTIC+ gene 
signature (center) among tdLN myeloid cells 
under control conditions or upon Treg cell de-
pletion. Right: Expression of the LIPSTIC+ sig-
nature by cluster. (M) Percentage of DCs from 
control versus Treg-depleted conditions in clus-
ter 6 versus in all cells. (N) Expression of the 
LIPSTIC+ signature in DCs from control or Treg-
depleted mice in cluster 6 among total cDC1s 
and cDC2s. Data in (L) to (N) are from (13). (C, G, 
and M) Pearson's chi-square test, (D, E, and N) 
Wilcoxon signed-rank test, and (I and K) un-
paired t test.
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DCs (Fig. 2, F and G), although they by definition interacted with 
OT-II T cells via the CD40/CD40L axis. Thus, CD40-mediated in-
teraction with T cells is not sufficient to up-regulate the LIPSTIC-
related cluster 0 program in DCs. This finding suggested that tumor 
progression impairs the ability of DCs to prime naïve CD4+ T cells 
in the tdLN. Flow cytometry of LIPSTIC labeling at early (day 10) 
and late (day 15) time points confirmed this notion, because label-
ing of migratory cDC1s and cDC2s fell by roughly one-half between 
10 and 15 d.p.i. (Fig. 2, H and I). To extend this observation to a 
second tumor model, we engineered the MC-38 colon adenocarci-
noma cell line (54) to express the OT-II peptide (MC-38OT-II; fig. 
S1A). As with B16 tumors, LIPSTIC labeling of MC-38OT-II by OT-II 
T cells also decreased with time, again with comparable reduc-
tions in cDC1 and cDC2 populations (Fig. 2, J and K). Thus, DCs 
that present tumor-derived antigens to CD4+ T cells decrease in 
numbers and lose their hyperactivated phenotype as the tumor 
progresses.

To determine whether DCs with a similar hyperactivated pheno-
type could be detected in tdLNs in the absence of exogenous T cell 
transfer, we generated a LIPSTIC+ signature consisting of the 224 genes 
most highly up-regulated in biotin+ compared with biotin− DCs 
(data file S4). We then applied this signature to a previously pub-
lished set of single-cell transcriptomes of tdLN myeloid cells ob-
tained at 14 d.p.i. with B16 melanoma, either in control conditions 
or after depletion of Treg cells using a Foxp3DTR mouse allele. The 
LIPSTIC signature was expressed predominantly by one group of 
cells in this dataset (cluster 6), corresponding to cDC2 phenotype 
DCs (Fig. 2L). Although DCs from control tdLNs were also present, 
the large majority of cells in this group (87.5%) originated from Treg-
depleted mice (Fig. 2M). Conversely, comparison of DCs from con-
trol and Treg-depleted settings showed up-regulation of the LIPSTIC 
signature in cDC2s and to a lesser extent cDC1s, whereas DCs in 
cluster 6 expressed this signature equally regardless of whether they 
originated in control or Treg-depleted mice (Fig. 2N). We conclude 
that DCs with a LIPSTIC-like phenotype can be detected in low 
numbers in the tdLNs of tumor-bearing mice in the absence of T cell 
transfer and increase in abundance on depletion of Treg cells.

Together, our data indicate that DCs actively engaged in antigen 
presentation to CD4+ T cells are in a distinct transcriptional state 
comprising classic features of DC activation, potentially down-
stream of T cell help itself, as well as increased expression of loco-
motion and migration genes. These features suggest that interacting 
DCs have an enhanced ability to colocalize with T cells in LN re-
gions conducive to T cell priming.

IL-27 produced by tumor antigen–presenting DCs promotes 
an effective antitumoral response
Among the most highly up-regulated genes in cluster 0 at 10 d.p.i. 
were Ebi3 and Il27, which encode for EBI3 and p28—the two sub-
units of the cytokine interleukin-27 (IL-27; Fig. 3A and fig. S2C). 
IL-27 is a pleiotropic cytokine that can exert pro- or anti-inflammatory 
roles depending on the setting (55, 56) and has been shown to either 
promote or suppress tumor growth in different experimental models 
(57, 58). To investigate the effects of IL-27 in our setting, we treated 
mice 9 days after subcutaneous inoculation of B16OT-II cells with ei-
ther a blocking antibody to p28 or an isotype control. One day later, 
we adoptively transferred OT-II T cells into tumor-bearing mice 
and followed the fate of these cells as they were primed in the tdLN 
and infiltrated the tumor (Fig. 3B). In the tdLN, blocking p28 reduced 

the ability of OT-II T cells to express CXCR3 and interferon-γ 
(IFN-γ), critical mediators of T helper cell 1 effector function (Fig. 
3C) (59). In agreement with the role of CXCR3 in promoting effec-
tor T cell trafficking to the tumor site (17, 60), p28 blockade reduced 
OT-II T cell recruitment to the tumor, coinciding with a decrease in 
production of IFN-γ by this population (Fig. 3D). Parallel experi-
ments using B16OVA showed that anti-p28 treatment also reduced 
IFN-γ production by OT-I CD8+ T cells in both the tdLN and tu-
mor, although no difference in expression of CXCR3 or tumor infil-
tration was observed (fig. S3, B and C).

To assess the importance to the antitumoral response of the loss 
of T cell effector function upon p28 blockade, we used our engi-
neered B16mOVA, which showed delayed growth kinetics in com-
parison with B16OT-II and was often completely rejected by the host 
(fig. S1A). Treatment of mice inoculated with B16mOVA with p28 
blocking antibody starting at 2 d.p.i. (Fig. 3E) resulted in increased 
tumor size and weight when compared with control treatment (Fig. 
3F). To determine whether IL-27 produced by DCs was required for 
this antitumor immunity, we inoculated B16mOVA cells into CD11c 
(Itgax)-cre Il27flox/flox mice, in which DCs are deficient in produc-
tion of IL-27. Although baseline rejection of B16mOVA tumors was 
less pronounced in control Il27flox/flox mice lacking cre recombinase 
(possibly because of differences in the mouse housing environment 
where these experiments were performed), tumor growth was still 
significantly increased in mice lacking DC production of IL-27 (Fig. 
3G) compared with controls. Thus, IL-27 produced by activated 
DCs is required for full priming of CD4+ T cells and for antitumor 
immunity in this setting.

CD4+ T cells engage in antigen-specific interactions with 
APCs in the TME
Recent studies have shown that DCs can influence antitumor im-
munity locally in the TME through direct interactions with T cells 
(25). In addition, colocalization of APCs and T cells in the TME 
in patients with cancer correlates positively with responsiveness to 
anti–programmed cell death protein 1 (PD-1) immunotherapy (61). 
However, the extent to which different APC subsets engage and 
respond to CD4+ T cells under steady-state and immunotherapy 
conditions is still unclear (24–26). We measured CD40-dependent 
interactions between T cells and myeloid cells in the TME (rather than 
the tdLN) by implanting B16OTII tumors into Cd40G5/+.Cd40lgSrtAv2 
mice, in which all CD40L-expressing endogenous T cells label the 
CD40-expressing APCs with which they interact (Fig. 4A). At 10 d.p.i., 
the TME myeloid compartment comprised classical CD11c+MHC-
II+ cDCs and Ly6C+MHC-IIhi monocytes/monocyte-derived DCs, 
as well as a large population of F4/80+CD11b+ macrophages (fig. S4A). 
All three populations expressed MHC-II and CD40 and, thus, had 
the potential to be labeled by LIPSTIC (fig. S4B); however, labeling 
was evident only in a minority of classical DCs and Ly6C+MHC-IIhi 
APCs, whereas labeling of MHC-IIhiCD40+ macrophages was close 
to background levels (Fig. 4B). As in the tdLN, the cDC1 and cDC2 
subsets were labeled in a ratio mirroring the overall cDC2/cDC1 
ratio in the TME (fig. S4C). Biotin+ TME DCs up-regulated the 
same surface markers as their tdLN counterparts, indicating that T 
cell–engaged DCs are also in a hyperactivated state in the tumor 
(Fig. 4C). CD200 up-regulation in the TME was found almost 
exclusively among biotin+ cDCs and may thus be useful as a marker 
for T cell–engaged DCs in WT mice (Fig. 4C). Treatment with an 
anti–MHC-II blocking antibody completely abrogated labeling, 
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suggesting that T cell–APC interactions in the TME are antigen spe-
cific (Fig. 4D). This was corroborated by coculture experiments, 
which showed that biotin+ DCs from mice carrying B16OT-II or 
B16mOVA tumors were more potent drivers of naïve OT-II and OT-I 
T cell proliferation, respectively, than biotin− DCs from the same 
tumors (Fig. 4E), although TME-resident biotin− DCs were able to 
drive more substantial proliferation than their counterparts in the 
tdLN (Fig. 1H). Although most APCs were loaded with tumor-
derived antigens (as estimated by their GFP fluorescence), there was 

little if any correlation between GFP fluorescence and LIPSTIC la-
beling (fig. S4D), indicating that these two measures cannot substi-
tute for each other. We concluded that tumor-infiltrating CD4+ T 
cells interact with TME DCs in an antigen-specific manner and that 
this interaction is associated with enhanced DC activation.

To better understand the nature of the interactions between my-
eloid cells and CD4+ T cells in the TME, we used droplet-based 
scRNA-seq combined with an antibiotin hashtag oligo (HTO)–
barcoded antibody (62). We first performed LIPSTIC labeling in 
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B16OT-II–bearing mice as in Fig. 4A, except that animals were treated 
with an isotype control antibody for later comparison with anti–
CTLA-4–treated mice (described below). We then sorted TME my-
eloid cells both as total cells (unenriched) or as a biotin+ fraction 
(enriched) (fig. S5A) at 15 d.p.i. and performed scRNA-seq using 
the 10X Genomics Chromium platform. Myeloid cells clustered into 
monocytes/macrophages (Mos/MΦs), cDC1s, cDC2s, and a series 
of clusters of activated DCs expressing the mRegDC/DC3 signature 
(20,  53), which we combined into the mRegDC1 and mRegDC2 
clusters on the basis of their proximity to cDC1s and cDC2s and 
their expression of subtype-specific gene signatures (Fig. 5A; fig. S5, 
B to D; and data file S5). Whereas LIPSTIC labeling was noted in 
a small subset of Mos/MΦs, it was most pronounced in the two 
mRegDC clusters (Fig. 5B). Separating cells on the basis of whether 
they came from the LIPSTIC-enriched or LIPSTIC-unenriched samples 
showed that the large size of the Mo/MΦ and mRegDC clusters in 
the total pool was in part due to the higher abundance of cells with 
this phenotype among the biotin+ population (fig. S5E). Biotin+ 
cells up-regulated genes important for antigen presentation (Psme2, 
Serpinb9, H2-DMb2, and H2-DMa) (36, 63, 64) and DC maturation 

(Traf1 and Stat1) (65, 66), costimulatory molecules (Cd40, Cd1d1, 
Cd70, Cd200, and Cd48) (67), and chemokines and cytokines im-
portant for T cell–mediated antitumor immunity (Cxcl9, Cxcl16, 
and Ebi3) (17, 58, 68, 69) (data file S5). Thus, interaction with T cells 
is associated with an enhanced activation state among myeloid cells 
in the TME, as it was in the tdLN. Accordingly, all major DC clusters 
up-regulated the genes included in the tdLN_LIPSTIC+ signature 
(Fig. 5C), which overlapped substantially, if less than fully, with the 
corresponding TME_LIPSTIC+ signature obtained by comparing 
biotin+ and biotin− TME DCs (fig. S5F). Thus, as in the tdLN, my-
eloid cell interaction with T cells in the TME was associated with 
an enhanced activation state. Plotting trajectories from cDC1 and 
cDC2 to their adjacent mRegDC subclusters showed that the onset 
of LIPSTIC labeling either slightly preceded (cDC1) or closely coin-
cided with (cDC2) up-regulation of the mRegDC signature in pseu-
dotime, suggesting that CD40L-mediated T cell help may play a role in 
establishing the mRegDC phenotype (Fig. 5, E and F). Nevertheless, 
plotting the expression of the mRegDC signature (20) against that of 
CD40 target genes (29) revealed two populations: an mRegDC × 
CD40 diagonal, comprising mostly cDC1s and cDC2s, where expression 
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of both signatures correlated positively, and an mRegDChiCD40hi 
population comprising cells classified as bona fide mRegDCs in our 
clustering (Fig. 5D). Thus, although mRegDCs showed signs of 
CD40-mediated activation, CD40 target genes comprised only part 
of the full mRegDC program, suggesting that other factors, such as 
antigenic uptake or exposure to cytokines (20), may also be involved 
in the acquisition of a full mRegDC state.

To gain insight into which of these TME DC populations was 
most likely to migrate to the tdLN, we used an in situ photoconver-
sion protocol similar to one previously described in the literature 
(70) to directly measure the state of DCs arriving from the tumor to 
the tdLN. We injected mice ubiquitously expressing the photocon-
vertible Kikume green-to-red (KikGR) protein (71,  72) with MC-
38OT-II cells, which allow efficient photoactivation because of the 
lack of the dark pigmentation characteristic of B16 tumors (Fig. 
5G). Photoactivation of tumors under a 415-nm light-emitting di-
ode (LED) source led to the accumulation of photoconverted migra-
tory, but not resident, DCs in the tdLN as early as 16 hours after 
photoconversion (Fig. 5H), allowing us to isolate DCs immediately 
after they arrived at the tdLN from the tumor. We performed 
scRNA-seq profiling of photoconverted DCs sorted from the tdLN 
at 10 and 15 d.p.i. (i.e., 16 hours after photoactivation at 9 and 14 d.p.i., 
respectively; Fig. 5G) and mapped photoconverted tdLN DCs to 
their closest neighbors in the TME dataset (Fig. 5I). We found that 
DCs arriving at the tdLN were most closely related to cells transi-
tioning between the cDC2 and mRegDC2 phenotypes, with fewer 
cells scattered in the more-differentiated mRegDC2 clusters. Plot-
ting the expression of mRegDC and CD40 signatures for photoacti-
vated TME emigrants (fig. S5G) and for all tdLN DCs analyzed in 
the LIPSTIC experiment (Fig. 2, A to G) showed that they lay most-
ly on the mRegDC × CD40 diagonal, with no evidence of an ad-
ditional mRegDChiCD40hi population as found for TME-resident 
cells (compare Fig. 5D and fig. S5G). These findings are consistent 
with a model in which cDC2s exit the TME to migrate to the tdLN 
before fully acquiring the mRegDC signature (73).

Checkpoint inhibition increases CD40-CD40L interactions 
in the TME
Checkpoint inhibitor–blocking antibodies, such as those targeting 
CTLA-4 and PD-1, strongly promote antitumoral T cell responses 
and, as such, have become the key component of tumor immuno-
therapy. Mechanistically, they are thought to work not only by en-
hancing the effectiveness of T cell priming in the tdLN but also by 
reviving exhausted T cells in the TME (74, 75). We first sought to 
determine whether we could rescue late DC dysfunction in the 
tdLN (Fig. 2, F to K) using the same experimental setup but in the 
context of checkpoint blockade (Fig. 6A). Treatment of tumor-bearing 
mice with anti–CTLA-4 led to a marked increase in the number of 
labeled DCs in the tdLN (Fig. 6B) while skewing their composition 
toward the CD11b+ cDC2 subset (Fig. 6C). To search for similar 
effects in the TME, we treated tumor-bearing Cd40G5/+.Cd40lgSrtAv2 
mice with three injections of anti–CTLA-4 or anti–PD-1 blocking 
antibodies (or their respective isotype controls) at days 5, 7, and 
9 after tumor implantation and performed LIPSTIC labeling and 
analysis the following day (Fig. 6D). Treatment increased the num-
ber of biotin+ APCs (Fig. 6, E and F), an effect that was evident 
among both classical DCs and Ly6C+MHC-IIhi APCs. PD-1 block-
ade led to a less-pronounced increase among DCs and possibly also 

Ly6C+MHC-IIhi APCs (fig. S6A), leading us to focus our subsequent 
analysis on anti–CTLA-4 treatment.

Analysis of TME populations by scRNA-seq showed that anti–
CTLA-4 treatment increased biotin labeling not only among cDC2s 
(which showed the largest fold change in biotin levels) and mReg-
DCs (which, given their large numbers, accounted for most of the 
increase in biotin+ DCs upon treatment) but also in the Mo/MΦ 
cluster (Fig. 6, G and H). Most subsets significantly up-regulated the 
expression of the tdLN_LIPSTIC+ signature upon treatment, an in-
crease that was notably more pronounced in cDC populations than 
in their mRegDC counterparts (Fig. 6I). cDC2s additionally up-
regulated CD40 target genes (fig. S6B). This pattern suggests that 
anti–CTLA-4 treatment broadens the acquisition of a hyperacti-
vated state to a larger DC population but does not result in the es-
tablishment of a distinct, checkpoint blockade–specific DC state. 
Consistent with this, an analysis of differential gene expression com-
paring only the biotin+ TME DCs from anti–CTLA-4–and isotype 
control–treated mice revealed few significant differences (Fig. 6J). 
Thus, checkpoint blockade with anti–CTLA-4 appears to amplify 
the extent to which T cells interact with APCs, especially cDC2s, in 
the TME. This interaction, in turn, leads to increased expression 
of both tdLN and TME LIPSTIC signatures, especially in less-
differentiated DC subsets.

DISCUSSION
A challenge in studying the priming capabilities of DCs has been the 
heterogeneity in their phenotypes, even in canonical DC popula-
tions (48, 76). Whereas the literature is plentiful in associations be-
tween the broader populations of DCs (such as cDC1s and cDC2s or 
migratory and resident DCs) and the priming of specific types of T 
cell responses (12, 77), studies that characterize the individual DCs 
directly engaged in T cell priming are rare (78). LIPSTIC provides 
an easy and highly quantitative method to identify and profile T cell–
engaged DCs at the individual cell level. As such, LIPSTIC provides 
a degree of specificity to DC research analogous to that afforded to 
B and T cell studies by antigen tetramers (79, 80).

Our LIPSTIC data revealed that the fraction of all tdLN DCs that 
actively present antigen to CD4+ T cells in response to a subcutane-
ously implanted tumor was relatively small, on the order of 5 to 15% 
of the DCs in the LN even at the early time point peak. These DCs 
were almost entirely of the CD11clowMHC-IIhi migratory phenotype 
and were not enriched in cDC1s or cDC2s when compared with the 
entire LN DC population. In coculture experiments, tdLN biotin+ 
DCs were exclusively able to drive the proliferation of both CD4+ 
and CD8+ T cells. This suggests that the DCs that prime CD8+ T 
cells responses in vivo are included in the DC population labeled by 
CD4+ T cells, indicating substantial overlap between these popula-
tions. Thus, CD40L LIPSTIC is unlikely to be missing any major pop-
ulation of DCs capable of presenting antigen exclusively to CD8+ T 
cells in the tdLN. Further work using CD8+ T cell LIPSTIC (62) will 
be required to assess whether any minor populations of DCs exist 
that are exclusively tasked with priming CD8+ T cells. Our findings 
contribute to a series of active discussions in the field regarding the 
numbers and population-level phenotypes of the DCs that prime 
the antitumoral T cell response (6, 7, 12, 13, 20, 81).

A potential limitation of LIPSTIC is that it identifies only DCs 
that engage T cells through the CD40L-CD40 pathway. Most if not 
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all conventional CD4+ T cells are thought to express CD40L even in 
their naïve state (82) and to up-regulate its expression upon antigen-
driven activation (83). Conversely, most DCs express CD40, al-
though its expression by resident DCs is generally lower than by 
DCs with a migratory phenotype (84). Nevertheless, because the 
CD40L-CD40 axis is critical for DC activation and licensing for 
cross-presentation (85–88), CD40L LIPSTIC is likely to identify 
most or all DCs that are potent presenters of immunogenic tumor 
antigens. This notion is supported by our miniaturized DC culture 
assays, in which LIPSTIC-negative DCs were unable to induce 

proliferation of CD4+ or CD8+ T cells above background levels, in-
dicating that most antigen-presenting capability is concentrated in 
the LIPTSIC+ DC population.

Interaction-based transcriptional profiling of LIPSTIC-labeled 
cells showed that the DCs that present tumor-derived antigens to 
naïve CD4+ T cells in vivo expressed a distinct transcriptional pro-
file that separated them from other DCs in the tdLN. Total DCs 
from tdLN were indistinguishable transcriptionally from DCs ob-
tained from a naïve iLN, implying that this population of DCs, or at 
least their prominent role in driving T cell activation and proliferation, 
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would be difficult to identify without LIPSTIC. The ability to drive T 
cell responses was associated with up-regulation of multiple genes 
important for DC activation and antigen presentation. These in-
cluded classic DC maturation markers, such as Cd80, Cd86, and 
Cd40 itself (89), indicative of partial overlap with the canonical “ma-
ture DC” phenotype (90). However, LIPSTIC-labeled DCs also 
up-regulated multiple genes and signatures associated with cell mi-
gration, adhesion, and T cell chemotaxis (91). Thus, the ability of 
DCs to access specific microanatomical compartments and to re-
cruit T cells to these areas, previously shown to be functionally im-
portant for T cell responses (45–47,  92), is one of the defining 
characteristics of the DCs capable of engaging T cells in vivo. Inter-
secting our transcriptional data with a much larger scRNA-seq data-
set of tdLN myeloid cells (13) revealed a cluster of DCs with strong 
expression of the tdLN_LIPSTIC+ signature. A small fraction of this 
cluster represented DCs found in the tdLN under control nonma-
nipulated conditions, indicating that the tdLN_LIPSTIC+ transcrip-
tional state is not a product of our specific setup (e.g., of the adoptive 
transfer of a relatively large number of tumor antigen–specific T 
cells). However, the large majority of cells in this cluster consisted of 
DCs that appeared upon ablation of Treg cells [using a diphtheria 
toxin receptor (DTR) transgene]. These findings suggest that one of 
the effects of Treg cells, possibly potentiated in the TME, is to prevent 
DCs from acquiring a LIPSTIC+-like state. The cytokine IL-27 was 
among the most up-regulated gene products in biotin+ DCs. IL-27 
is an especially pleiotropic cytokine, which has been shown to prime 
both tolerogenic and immunogenic T cell responses under different 
conditions (55–58, 69, 93–96). In our settings, IL-27 produced by 
DCs was essential for priming IFN-γ production by tumor-specific 
CD4+ and CD8+ T cells, recruitment of effector T cells to the tumor 
site, and control of tumor growth. This result agrees with previous 
reports in the literature and disagrees with others under similar set-
tings (57, 58). The reasons for these discrepancies remain unclear 
and merit further investigation.

In addition to their functions in the tdLN, myeloid cells inter-
act with T cells in the TME, shaping antitumor responses locally 
(6, 24, 25). Quantifying the relative contribution of various APCs to 
CD4+ T cell stimulation in the TME is challenging because of the 
vast heterogeneity of the myeloid compartment in tumors (6, 24, 25, 97). 
Our data show that DCs and, to a lesser extent, Ly6C+ APCs were 
the primary populations interacting with CD4+ T cells in the 
TME. Despite high CD40 and MHC-II expression, macrophages en-
gaged minimally with T cells, indicating that factors beyond the ex-
pression levels of these molecules influence APC–T cell interactions 
in the tumor. However, our examination of APC–T cell interactions 
in the TME was restricted to steady-state and checkpoint blockade 
conditions—scenarios in which CD40-mediated interactions be-
tween APCs and T cells were heavily dominated by mRegDC2s. Fu-
ture studies will be needed to address the extent to which other 
cancer treatments such as chemotherapy, radiotherapy, various Toll-
like receptor and nod-like receptor agonist treatments, or metabolic 
interventions can shift interactions toward macrophages or other 
myeloid populations that can up-regulate CD40 (98).

The ability of DCs to interact with T cells in the TME correlated 
with the expression of classical activation markers, such as Cd80, 
Cd86, and Cd40, as well as with the expression of the tdLN-derived 
LIPSTIC+ signature. Thus, DCs that engage with T cells in the TME 
are in a hyperactivated state similar to that found among interac-
tors in the tdLN. Our scRNA-seq data showed that DC labeling 

correlated strongly with (and possibly preceded in time) expression 
of the mRegDC program in both the cDC1 and cDC2 subsets. This 
suggests the possibility that, in addition to antigenic capture and 
IFN-γ signaling (20), the mRegDC state may be partially induced by 
CD40L-mediated T cell help. Additional work will be required to 
strictly determine whether T cell help drives the mRegDC state or, 
conversely, whether it is the acquisition of the mRegDC state that 
poises DCs to engage with CD4+ T cells. When we overlaid the 
scRNA-seq data from photoconverted DCs to our broader 10X da-
taset, we observed that photoconverted DCs, which emigrated from 
the tumor to the tdLN, did not fall into the fully differentiated 
mRegDC cluster present in TME but rather resembled less mature 
cDC2s. This suggests the existence of additional signals that trigger 
the exit of DCs from the TME to the tdLN before their full matura-
tion. Speculatively, help provided by CD4+ T cells to DCs early after 
their arrival to the TME may drive DC migration to the tdLN, 
whereas DCs that remain in the TME may acquire the fully differen-
tiated mRegDC phenotype.

Checkpoint inhibitors have revolutionized cancer therapy, yet 
the mechanisms underlying their action are not fully resolved 
(74, 99). Our findings corroborate a previous study indicating that 
CTLA-4 treatment increases cDC2 migration to the tdLN (13). Fur-
thermore, we observed that the amount of interaction between 
CD4+ T cells and DCs is markedly enhanced by checkpoint inhibi-
tors in both the tdLN and the tumor itself. The most significant 
increase in expression of tdLN_LIPSTIC+ signature genes upon 
anti–CTLA-4 treatment was found among the cDC2 and cDC1 sub-
sets, suggesting that checkpoint blockade accelerates the acquisition 
of a hyperactivated state in tumor DCs. In addition, we observed a 
significant increase in the CD40 signature exclusively in cDC2s. 
These results suggest that CTLA-4 blockade may exert its effects in 
part by promoting the interaction of CD4+ T cells with incomplete-
ly matured cDC2s in the TME, triggering their activation and mi-
gration to the tdLN. This effect can be aided by increased T cell–cDC 
interactions in the tdLN, as well as by T cell–mRegDC interactions 
directly in the TME.

In conclusion, LIPSTIC allowed us to identify the individual DCs 
capable of presenting tumor-derived antigens to CD4+ T cells in 
tdLNs and engaging with these cells in the TME and to define tran-
scriptional programs associated with these interactions at both sites. 
The in vivo DC activation signature identified in this work has the 
potential to be exploited practically to improve responses to tumor 
antigens by therapeutic targeting of DCs or their products. In addi-
tion, we expect that the LIPSTIC interaction-based transcriptomic 
platform laid out in this study will be useful for immunologists 
wishing to identify the DCs that prime CD4+ T cell responses in 
various settings.

MATERIALS AND METHODS
Study design
DCs have the unique ability to transport tumor-associated antigens 
to tdLNs, where they prime naïve tumor-specific T cells. In addition, 
they engage with effector T cells in the TME, contributing to antitumor 
immunity. Despite the importance of DCs in mediating the antitumor 
immune response, the physical identification of antigen-presenting 
DCs in vivo has been challenging. To address this gap, we aimed to 
identify APCs at the single-cell level in both tdLNs and the TME 
using LIPSTIC. We profiled these cells using interaction-based 
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single-cell transcriptomics and characterized interaction dynamics 
between APCs and T cells at the steady state and upon check-
point blockade.

Mice
Cd40G5 mice were generated as previously described (28) and were 
maintained in our laboratory. Two versions of Cd40lgSrtA mice were 
used, the original conditional version (28) (which we refer to as 
Cd40lgSrtAv1) and a constitutive Cd40lgSrtAv2 version (developed 
as described below). For intratumoral experiments, we generated 
Cd40G5/+.Cd40lgSrtAv2 mice by crossing Cd40G5 with constitutive 
Cd40lgSrtAv2 (this cross is available from the Jackson Laboratory, 
strain #037113). Unless indicated in the figure legend, all experiments 
were done using the constitutive version. C57BL6/J, CD45.1 (B6.SJL 
Ptprca), H2−/− (100), CD4-Cre–transgenic (101), and OT-I T cell 
receptor (TCR)–transgenic (102) mice were purchased from the 
Jackson Laboratory (strains 000664, 002014, 003584, 022071, and 
0003831, respectively). OT-II TCR–transgenic mice (Y chromosome 
version) (103) were bred and maintained in our laboratory. Il27flox 
(69) and Itgax-cre (104) mice were bred and maintained at the Uni-
versity of California, San Diego (UCSD). CAG-KikGR–transgenic 
mice (71) were a gift from A. Hadjantonakis (Memorial Sloan Ketter-
ing Cancer Center). CAG-KikGR–transgenic mice were backcrossed 
to the C57BL6 background for at least 10 generations at Rockefeller 
University. All mice were housed in specific pathogen–free conditions, 
in accordance with institutional guidelines and ethical regulations. 
All protocols were approved by the Rockefeller University or UCSD 
Institutional Animal Care and Use Committees. Male and female 
mice aged 5 to 12 weeks were used in all experiments.

Generation of Cd40lgSrtAv2 mice
Cd40lgSrtAv2 mice were generated in our laboratory using the EASI-
CRISPR method (105). Cas9-crRNA-tracrRNA complexes targeting 
the last exon of the Cd40lg locus (GAGTTGGCTTCTCATCTTT) 
were microinjected along with single-stranded DNA templates en-
coding a C-terminal SrtA fusion flanked by 200-bp homology arms 
into the pronuclei of fertilized C57BL6 embryos, which were then 
implanted into pseudopregnant foster dams. Founder mice were 
backcrossed to WT C57BL6 mice for at least five generations to 
reduce the probability of transmitting CRISPR-induced off-target 
mutations.

Generation of transgenic tumor lines
Constructs were cloned into the pMP71 vector (106), which was 
modified to express a fluorescent reporter [enhanced GFP (eGFP)] 
followed by a sequence encoding amino acids 323 to 339 of chicken 
OVA (eGFP-OT-II) or the Thosea asigna virus self-cleaving 2A pep-
tide (T2A) (107) followed by the full-length OVA protein (eGFP-
OVA). Retroviruses were produced in human embryonic kidney 
(HEK) 293 cells using CaCl2 transfection. Gag-Pol and VSV plas-
mids were used for virus packaging. The virus-containing superna-
tant was harvested 48 hours after transfection, spun down at 252g 
for 5 min, and filtered through a 0.45-μm filter. The B16-OT-II, B16-
OVA, melanoma cell line, and the MC38-OT-II colon adenocarcinoma 
cell line were produced by retroviral transduction with eGFP-OT-II 
or eGFP-OVA constructs. Briefly, the viral supernatant from HEK-
293 cells was added to B16 or MC-38 cells with polybrene (5 mg/ml; 
Sigma-Aldrich, H9268), and cells were spun down at 800g for 90 min 
at 30°. The viral supernatant was replaced with regular medium 

12 hours after transfection; 60 hours after transfection, eGFP+ 
cells were sorted using a FACSAria II, expanded, and frozen in liq-
uid nitrogen.

Murine tumor models
All tumor cell lines were grown in Dulbecco’s modified Eagle medium 
supplemented with 1% l-glutamine and 1% penicillin/streptomycin. 
On the day of tumor injection, tumor cells were trypsinized with 
TrypLE express, washed twice, and resuspended in sterile phosphate-
buffered saline (PBS). Mice were anesthetized and shaved on one 
or both flanks, and one million tumor cells were injected in 50 μl of 
PBS subcutaneously (unilaterally or bilaterally) at a site adjacent to 
the iLN. Tumor growth was assessed two or three times per week by 
caliper measurements. Tumor area was calculated by multiplying 
tumor length by tumor width.

Adoptive cell transfer
To isolate CD4+ or CD8+ T cells, spleens were forced through 70-μm 
filters, red blood cells were lysed with ammonium-chloride-potassium 
(ACK) lysing buffer (Lonza), and CD4+ or CD8+ T cells were iso-
lated using CD4+ or CD8+ T cell isolation kits (Miltenyi Biotec) as 
described in the manufacturer’s protocols. Purified cells were in-
jected intravenously in 100 μl of PBS.

LIPSTIC in vivo
Biotin-aminohexanoic acid-LPETGS, C-terminal amide, 95% purity 
(biotin-LPTEG) was purchased from LifeTein (custom synthesis), and 
stock solutions were prepared in PBS at 20 mM. For LIPSTIC labeling 
in vivo, biotin-LPETG was injected subcutaneously into the flank 
(shaved area proximal to tumor and iLN); 50 μl of 20 mM substrate 
dissolved in PBS (equivalent to 1 μM per injection) was injected a total 
of six times (6 μM total) 20 min apart, and iLNs were collected 20 min 
after the last injection, as described previously (28). Mice were briefly 
anaesthetized with isoflurane before each injection. For labeling intra-
tumoral APC–T cell interactions, everything was done as above except 
that substrate (same amount) was injected intratumorally.

Antibody treatment
For IL-27 blocking experiments, animals were injected intraperitoneally 
with 300 μg of p28 blocking antibody clone (BioXCell, MM27.7B1) or 
isotype control clone (BioXCell, C1.18.4). The regimen for each ex-
periment is described in the corresponding figure legend. For CD40L-
blockade experiments, mice were injected intravenously with 200 μg 
of CD40L blocking antibody (clone MR-1, BioXCell) 2 hours before 
the first injection of substrate. For anti–CTLA-4 treatment, animals 
were injected as shown in the figure with 200 μg of clone 9H10 (BioX-
Cell) or corresponding isotype control Syrian hamster immunoglob-
ulin G (IgG; BioXCell). For anti–PD-1 treatment, animals were 
injected as shown in the figure with 200 μg of clone RMP1-14 (BioX-
Cell) or corresponding isotype control rat IgG2a clone 2A3 (BioX-
Cell). For the MHC-II blocking experiment, mice were injected 
intratumorally with 200 μg of anti–MHC-II blocking antibody (I-A/
I-E; clone M5/114, BioXCell) 2 hours before the first substrate admin-
istration or isotype rat IgG2b (clone LTF-2, BioXCell).

Surgery and KikGR photoconversion
Tumor-bearing animals were anaesthetized with isoflurane, shaved, 
and washed with ethanol and 0.005 M iodine solution. The tumor 
was completely exposed by an incision made on the side distal to 
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the iLN. Photoactivation was performed by exposing the tumor to 
415-nm light for 3 min using a custom-built Prizmatix LED source. 
The incision was then closed using autoclips (Fine Science Tools).

Bone marrow chimeras
WT C57BL6/J mice were lethally irradiated with two doses of 4.5 
gray (Gy) from an x-ray source, administered 5 hours apart. Ani-
mals were reconstituted by intravenous injection of hematopoietic 
cells obtained from bone marrow samples of donor mice. Chimeric 
mice were used in experiments 7 to 12 weeks after irradiation.

Flow cytometry and cell sorting
iLNs were collected and cut into small pieces in microfuge tubes. 
For digestion, iLNs were incubated for 30 min at 37°C in Hanks’ 
balanced salt solution (HBSS; Gibco) supplemented with CaCl2, 
MgCl2, and collagenase D (Roche). After digestion, tissue was forced 
five times through a 21-gauge needle (BD Biosciences) and filtered 
through a 70-μm strainer into a 15-ml Falcon tube. Tumors were 
excised, cut into small pieces, and digested with collagenase D and 
deoxyribonuclease I for 1 hour at 37 °C in HBSS (Gibco). After di-
gestion, tumors were forced 10 times through a 21-gauge needle 
(BD Biosciences) and filtered through a 70-μm strainer into a 50-ml 
Falcon tube. Tumors were spun down and resuspended in 3 ml of 
10% Percoll/RPMI, which was layered on top of 90% Percoll/
RPMI. Cells were spun down for 25 min at 615g at 20°C with brakes 
off. The gradient interface containing leukocytes was collected and 
washed with 15 ml of PBS 0.5% bovine serum albumin 1 mM EDTA 
(PBE) buffer. Single-cell suspensions were washed with PBE and in-
cubated at room temperature for 5 min with anti-CD16/32 (1 μg/ml; 
2.4G2, BioXCell). Cells were stained for surface markers on ice in 
96-well plates for 15 min in PBE using the reagents listed in table S1. 
Cells were washed with PBE and stained with Zombie fixable viabil-
ity dyes (BioLegend) at room temperature for 15 min and then fixed 
with Cytofix (BD Biosciences). For biotin–LPETG SrtA substrate 
staining, an antibiotin-phycoerythrin antibody (Miltenyi Biotec) 
was exclusively used as previously described (28). Samples were ac-
quired on Symphony, Fortessa, or LSR-II flow cytometers or sorted 
on FACSAria II or FACSAria III cell sorters (BD Biosciences). Data 
were analyzed using FlowJo v.10.6.2 software.

In vitro lymph node DC–T cell coculture
Mice were injected with the indicated tumors. On day 10, animals 
were injected with substrate as described above, and biotin+, bio-
tin−, or total migratory DCs from OVA− tumors (150 DCs for OT-II 
and 500 DCs for OT-I cultures) were sorted into U-bottom 96-well 
plates; 750 CD4+ OT-II and 2500 CD8+ OT-I CFSE-labeled splenic 
T cells were sorted in the corresponding wells. All wells contained 
RPMI supplemented with 1% penicillin/streptomycin, 1% sodium 
pyruvate, 1% nonessential amino acids, and 1% Hepes. For OT-II 
cell cultures, RPMI medium was supplemented with 2% T-stim 
medium with ConA (Avantor). All cells were transferred into 
fluorescence-activated cell sorting tubes, and the entire sample was 
recorded to determine cell numbers.

In vitro tumor DC–T cell coculture
Mice were injected with the indicated tumors. On day 10, animals 
were injected with the substrate intratumorally as described above, 
and biotin+, biotin−, or total migDCs from OVA− (700 DCs for OT-II 
and 700 DCs for OT-I cultures) were sorted into U-bottom 96-well 

plates; 3500 CD4+ OT-II and 3500 CD8+ OT-I CFSE-labeled splenic 
T cells were sorted in the corresponding wells. All wells contained 
RPMI supplemented with 1% penicillin/streptomycin, 1% sodium 
pyruvate, 1% nonessential amino acids, and 1% Hepes.

Library preparation for scRNA-seq and bulk RNA sequencing
Libraries were prepared using the Smart-Seq2 method, as previously 
described (108). Briefly, RNA from single-sorted cells was extracted us-
ing RNAClean XP solid-phase reversible immobilization (SPRI) beads 
(Beckman Coulter). Extracted RNA was first hybridized using a reverse 
transcription (RT) primer (/5BiosG/AAGCAGTGGTATCAACG-
CAGAGTACTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN) 
and then reverse-transcribed into cDNA using a template-switch 
oligo (TSO) primer (59-AAGCAGTGGTATCAACGCAGAGTACAT-
rGrGrG-39) and RT maxima reverse transcriptase (Thermo Fisher 
Scientific). Amplification of cDNA was performed using an ISPCR 
primer (59-AAGCAGTGGTATCAACGCAGAGT39) and KAPA HiFi 
HotStart ReadyMix (Thermo Fisher Scientific). Amplified cDNA was 
cleaned up three times using RNAClean XP SPRI beads. cDNA 
was tagmented using the Nextera XT DNA Library Preparation Kit 
(Illumina). For each sequencing run, up to four plates were barcod-
ed at a time with Nextera XT Index Kit v2 Sets A to D (Illumina). Dual-
barcoded libraries were pooled and sequenced using the Illumina 
NextSeq 550 platform.

Library preparation for scRNA-seq of tumor APCs
scRNA-seq libraries of tumor APCs were prepared by staining cells 
with oligonucleotide-conjugated antibodies to CD45, MHC-I, and 
antibiotin for the LIPSTIC signal detection. After sorting, cells were 
gathered in a microfuge tube containing PBS 0.4% bovine serum 
albumin, concentrated by centrifugation, and adjusted to a final vol-
ume of 35 to 40 μl. Viability counts were performed, and cells were 
immediately processed for library construction using the Chromi-
um platform (10X Genomics), following the manufacturer’s guide-
lines. The Genomics Core at Rockefeller University carried out the 
sequencing on an Illumina NovaSeq SP flowcell, aiming for at least 
30,000 reads per cell with specific read lengths for each segment of 
the sequencing process.

Smart-seq2 transcriptomic analysis
Plate-based scRNA-seq libraries were processed by applying the 
STAR aligner for transcriptome alignment, using the GRCm38.p6 
mouse genome assembly and GENCODE M20 mouse annotations. 
Quantification matrices were produced using RNA-seq by expecta-
tion maximization (RSEM). For our single-cell studies, quantifica-
tion matrices were loaded into the R environment and processed 
using the Seurat package pipelines (109). Briefly, cells containing 
more than 10% of their reads mapped to mitochondrial DNA were 
filtered out. In addition, we removed single-cell contaminants that 
expressed known markers of B cells, T cells, and macrophages. In 
total, 552 cells were selected for downstream analysis for our LIP-
STIC experiment and 303 cells for our photoactivation experiment. 
For both experiments, cells were log-normalized, and the top 2000 
variable genes were selected for data scaling and principal compo-
nents analysis (PCA) construction. During data scaling, the library 
size and the mitochondrial percent variables were regressed out 
from the postnormalized data. After PCA construction, the JackStraw 
algorithm available in Seurat was used to select the most significant 
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principal components. Last, cells were clustered and visualized 
in t-distributed stochastic neighbor embedding (t-SNE) space. For 
signature analysis, the AddModuleScore function was used to deter-
mine the average expression of a gene list compared with a back-
ground control. Gene set enrichment analysis was performed in the 
R environment using the fgsea package (110) to determine pathway 
enrichment. Briefly, fgsea was run using signature sets obtained 
from MSigDB and used as an input with a preranked list based on 
the log2 fold change calculated from different pairwise comparisons. 
Signatures were considered enriched if the adjusted P value was at 
least 0.05. To determine commonly activated genes in LIPSTIC-
positive cDC1s and cDC2s, we used a LIPSTIC signature as a path-
way and the preranked comparison between cDC1s (positive × 
negative) and cDC2s (positive × negative). We then compared the 
two LIPSTIC-positive leading edges for matching and exclusive 
genes. For external data analysis, data were downloaded from the Gene 
Expression Omnibus (GEO) database, accession code GSE125680 
(13). To apply our LIPSTIC signature, we used the AddModuleScore 
function available with the Seurat package. We used the top 20 genes 
enriched in biotin-positive DCs compared with biotin-negative DCs 
or the top 20 genes enriched in cluster 0 compared with the remainder 
of the cells (111, 112).

10X Genomics analysis
The raw fastq files obtained from tumor APC libraries were aligned 
to the mouse genome (mm39) using the cellranger (v. 7.0.1) pipe-
line. The quantification matrices were processed in the Seurat (v. 4.0.3) 
package for R. Briefly, cells containing more than 5% of their tran-
scriptome mapped to mitochondrial reads were removed from 
downstream analysis. Hashtag counts and biotin antibodies were 
log-normalized using the NormalizeData function. Cells were clas-
sified into their biological conditions on the basis of hashtag quanti-
fication using the HTODemux function. Cells containing two or 
more hashtags were marked as doublets and removed. The enrichR 
package was used along with the Panglao database (PanglaoDB_
Augmented_2021) for identifying non-APCs. Last, the working da-
taset was generated by normalizing the raw matrix of counts using 
the SCTransform function. We used the Wilcoxon rank test to gen-
erate differentially expressed genes, with only those with Bonferroni-
adjusted P values of 0.05 or less and log2 fold changes of 0.3 or 
more considered as significantly expressed. Signature scores were 
produced by running the AddModuleScore function available in 
Seurat. The database containing signature lists was obtained from the 
MSigDB. Pseudotime trajectories were calculated using the Sling-
Shot (v. 2.7.0) package for R. Last, to classify cells from our photoac-
tivation experiment produced using smart-seq2 libraries into our 
10X Genomics experiment, we used the MapQuery function avail-
able in Seurat (5.0.2).

Statistical analysis
All statistical analyses were performed using data from at least three 
biological replicates, with the exact number of replicates stated in 
each figure legend. Unless stated otherwise, all statistical analyses 
were performed using GraphPad Prism v.8 software. Unpaired Stu-
dent’s t test was used for most pairwise comparisons, except instances 
indicated in figure legends where paired Student’s t test or Wilcoxon 
signed-rank test was used. For experiments involving more than two 
groups of animals, one-way analysis of variance (ANOVA) was used 
with Tukey’s test comparing the means of every treatment to the 

means of every other treatment. Differences with P values < 0.05 
were considered statistically significant.

Supplementary Materials
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Figs. S1 to S6
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