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Dendritic cells (DCs) play a central role in initiating and shaping the adaptive

immune response, thanks to their ability to uptake antigens and present them

to T cells. Once in the lymph node (LN), DCs can spread the antigen to

other DCs, expanding the pool of cells capable of activating specific T-cell

clones. Additionally, DCs can modulate the dynamics of other immune cells,

by increasing na€ıve T-cell dwell time, thereby facilitating the scanning for

cognate antigens, and by selectively recruiting other leukocytes. Here we dis-

cuss the role of DCs in orchestrating antigen and leukocyte trafficking within

the LN, together with the implications of this trafficking on T-cell activation

and commitment to effector function.
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Dendritic cells: an overview

Dendritic cells (DCs) play a key role in the immune sys-

tem, exhibiting unique functions in sensing, capturing,

and presenting antigens to other immune cells. These

cells are thus fundamental in initiating and regulating

immune responses against pathogens, tumors, and for-

eign entities [1,2]. Positioned strategically throughout

the periphery, DCs act as vigilant sentinels in tissues,

detecting invading pathogens. Moreover, they reside

within lymphoid organs, establishing a network that

facilitates antigen presentation to T cells. Given their

brief lifespan, they undergo continuous replenishment

to keep an effective immune surveillance [3].

Dendritic cells form a highly heterogeneous popula-

tion distinguished by specific surface markers, functional

attributes, and ontogeny. The current classification of

DCs based on ontogeny identifies conventional dendritic

cells (cDCs), monocyte-derived dendritic cells (MoDCs),

plasmacytoid dendritic cells (pDCs), and the recently

described dendritic cells type 3 (DC3) [4–6].
cDCs are characterized by the expression of the tran-

scription factor Zbtb46 and arise from the bone marrow

from the conventional DC progenitor (CDP) [7], for-

merly known as the ‘common DC progenitor’, since it

was initially believed to be the precursor of plasmacy-

toid DCs as well [8]. These cells then differentiate into

pre-dendritic cells (pre-DCs), which exit the bone mar-

row to seed the periphery and are characterized by the

expression of the CD11c marker [9]. Subsequently,

pre-DCs undergo further differentiation into two dis-

tinct subtypes: cDC type 1 (cDC1) and cDC type 2
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(cDC2). cDC1s are identified by the expression of

XCR1 and the transcription factors BATF3 and IRF8

[10,11]. In contrast, cDC2s represent a more abundant

and heterogeneous population, distinguished by the sur-

face markers SIRPa and high levels of CD11b, and

express various transcription factors including IRF4,

KLF4, ESAM, RORcT, and T-bet [12–14].
In line with their distinct classification, these two

cDC subtypes exhibit functional differences in antigen

presentation and T-cell activation. cDC1s excel in

cross-presenting antigens, showing a remarkable ability

to stimulate the CD8+ T-cell response [15,16]; more-

over, the XCR1 marker facilitates the clustering of

cDC1 with CTLs, which secrete its ligand: XCL1. [17].

These characteristics make cDC1s the privileged initia-

tors of cellular immune responses. On the other hand,

cDC2s play a major role in the context of CD4+ T-cell

activation and humoral response, thanks to their effi-

ciency in MHC-II antigen processing pathway [18],

their privileged role in TFH induction [19], and their

anatomical localization (discussed below). However, it

is important to mention that this distinction is more

plastic than initially proposed. For example, it was

shown that interaction with CD4+ T cells is fundamen-

tal for cDC1 to efficiently prime the CD8+ mediated

cytotoxic response [20,21]. Additionally, in defined

inflammatory conditions, cDC2 can develop the ability

to present the antigen directly to CD8+ T cells [22,23].

MoDCs are a hybrid population originating from cir-

culating monocytes under inflammatory conditions

[24,25]. MoDCs are known to be highly proficient in

antigen transport, although their capacity in antigen

processing and antigen presentation is subject of debate

[26–28]. This is in part because the correct identification

of these cells has been particularly challenging due to

their shared markers with cDCs and monocytes/macro-

phages. Recently, some works identified two new

markers, CD26 and CD88, which could help discrimi-

nating MoDCs from cDCs, facilitating a more accurate

detection and study of this population [29,30].

pDCs are a specialized cell subset known for their

ability to produce large amounts of type I interferons

(IFN-I) in response to viral infections; on the other

hand, their role in antigen presentation is not well-

defined [31]. Beyond that, it was shown that they col-

laborate in the cytotoxic-mediated response optimizing

cDC1 maturation and cross-presentation [32,33].

In this In a Nutshell Review, we will discuss the role

of dendritic cells in directing antigen and leukocyte

trafficking within the lymph node. We will focus our

attention on mouse cDCs, since studies carried out on

these processes have been mostly conducted on this

DC type in murine models.

cDC localization in the lymph node

Lymph nodes (LNs) are small bean-shaped lymphoid

organs distributed throughout the body; they have the

fundamental role of concentrating at the same site

antigens from the periphery and different types of

immune cells, serving as a privileged platform for anti-

gen presentation and the initiation of the adaptive

response. LNs are encapsulated organs with a hilum,

entry site of the vascularization of the organ, and ori-

gin of the efferent lymphatic vessel. The lymph reaches

the organ directly through the capsule, entering the

lymphatic sinus that develops underneath: the subcap-

sular sinus (SCS) [34]. This region is patrolled by sub-

capsular sinus macrophages, leukocytes specialized in

the capture of antigens carried in a soluble form by

the lymph [35]. From the capsule, several trabeculae

arise and deepen within the LN, surrounded by trabec-

ular sinuses. The entire architecture of the LN is sup-

ported by a network of Fibroblastic Reticular Cells

(FRCs), specialized fibroblasts that form conduits

facilitating the transport of the lymph deep into the

lymph node parenchyma.

The LN parenchyma can be divided into three dis-

tinct regions: the cortex, the paracortex, and the

medulla. The cortex (or B-cell zone) is the outermost

region of the LN parenchyma, in which B cells are

organized in follicles and are in close contact with Fol-

licular Dendritic Cells (FDCs). These cells, despite

their name, have a mesenchymal origin and do not

have evident phagocytic capacity; nevertheless, they

are particularly proficient in capturing and displaying

on their surface immune complexes [36]. The paracor-

tex (or T-cell zone) is mainly composed of T cells

occupying an area underneath the cortex; additionally,

T cells surround the follicles creating zones called

interfollicular regions (IFRs). In the paracortex, blood

vessels from the hilum give rise to specialized struc-

tures called High Endothelium Venules (HEVs). These

vessels, thanks to their conformation and surface

expression of adhesion molecules, facilitate leukocyte

extravasation from the bloodstream to the LN paren-

chyma. Finally, the medulla is the closest area to the

hilum and contains the branching vessels from arteries

and veins that irrigate the LN. These vessels along all

their path are surrounded by different sheaths of peri-

cytic FRCs and recirculating lymphocytes that

together form structures named cords [37,38].

Activated dendritic cells mostly exert their function

in the paracortex, IFRs, and at the T-B border, i.e.

the interface between T-cell and B-cell zone. Upon

encounter with activation stimuli, cDCs start to

express CCR7, a G protein-coupled receptor (GPCR)
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that binds CCL19 and CCL21, cytokines secreted by

LN stromal cells, creating a chemokine gradient from

the periphery to the lymphoid organ. cDC1s and

cDC2s can localize in distinct areas of the LN [39].

cDC1s, which express higher levels of CCR7, continue

to follow the gradient of CCL21, secreted by the

FRCs. This promotes their migration toward the

T-cell zone, going through the same migration path

followed by the T cells themselves [19,39,40]. cDC2s,

instead, probably due to their heterogeneity, can fol-

low different routes. In specific contexts, they upregu-

late CXCR5 that binds the chemokine CXCL13

secreted by the FDCs. This allows their migration

toward the T-B border and the IFRs (Fig. 1A). cDC2

localization at those sites is crucial for Th2 induction

upon Heligmosomoides polygyrus infection and for TFH

differentiation in response to an inhaled antigen

[19,41]. Additionally, in an allergy model, it has been

shown that penetration of some skin-derived cDC2

(CD301b+, described below in more detail) in the LN

parenchyma relies on CCR8-mediated sensing of

CCL8, a chemokine secreted by interfollicular macro-

phages [42]. Also in this case, cDC2 localization was

crucial for Th2 response. In addition to LN position-

ing, exposure to specific cytokines in a time-dependent

manner strongly influences DC function and T-cell

activation. For instance, it was recently observed that

temporal differences in IFN-I sensing are crucial in

shifting the response toward either Th1 or TFH fates

[43,44].

In the spleen and mucosal-associated lymphoid

organs, DC positioning has been shown to rely on differ-

ent pathways, as the sensing of 7a,25-hydoxycholesterol
[45], CCL9 [46], 5-hydroxyindoleacetic acid [47], and

MIP-3a [48]. Interestingly, perturbations of these path-

ways deeply influence the immune response elicited, sup-

porting the notion that anatomical and microanatomical

DC positioning is an important variable in immune regu-

lation in secondary lymphoid organs.

Migratory DCs contribute to lymph
node functional heterogeneity

Even though LNs share a common spatial organiza-

tion and overall cellular composition, distinct LNs can

steer the immune response toward different outcomes.

Functional heterogeneity between LNs (comprehen-

sively reviewed in [49]) depends on several factors,

including lymph composition as well as identity and

state of migratory DCs reaching the LN from the

periphery. In a seminal paper from 1996, Everson

et al. [50] first observed that DCs display different

stimulatory capacities toward CD4+ T cells depending

on the tissue of origin. Precisely, coculture experiments

with splenic or Peyer’s patches-derived DCs and

T cells demonstrated that the origin of DCs played a

critical role in driving the production of Th1 cytokines

(IL-2, IFN-gamma) or what at the time was consid-

ered a Th2-related cytokines (IL-6). This article paved

the way for the study of how the tissue of origin of

DCs influences the immune environment among differ-

ent lymphoid structures and even between LNs drain-

ing the same district. In this sense, work of Esterh�azy

et al. [51] showed that gut-draining LNs, despite their

anatomical contiguity and continuity, almost exclu-

sively drain a specific tract of the intestine, with no or

small lymph leaking between them. These LNs present

different DC subpopulations which confer them

diverse characteristics, with the duodenal, jejunal, and

ileal LNs expressing a more tolerogenic environment

compared to the inflammatory-prone colonic LN. In a

specular way, Brown et al. [52] showed that DCs

migrating from different organs of the gastrointestinal

tract to the same LNs, maintain a signature that

reflects the tissue of origin. Thus, the crosstalk

between DCs of different origins contributes to define

the delicate balance between immunity and tolerance

typical of the gut. More recently, in a setting of skin

allergy model, it was shown that the same

antigen-adjuvant combination administered at different

sites determines different clustering of DCs in the LN

which led to a different magnitude of Th2 response.

Interestingly however, this difference was not appreci-

ated in a context of Th1 immunization, relating this

phenomenon to the different expression profile of cost-

imulatory molecules between specific skin-derived DCs

in the two compartments [53]. In conclusion, the envi-

ronment in the periphery can lead to distinct func-

tional adaptations and localization patterns of DCs

which, in turn, influence LN immune function.

Role of migratory and resident
dendritic cells in antigen presentation

Hitherto, we described all dendritic cells as cells that,

after activation in the periphery, acquire the capacity

to migrate in the LN. However, both cDC1 and cDC2

can also directly localize in the LN before the encoun-

ter of the antigen. For this reason, besides the previous

classification in cDC1 and cDC2, we can also distin-

guish resident and migratory dendritic cells based on

their relative localization to the LN before activation.

Migratory dendritic cells (migDCs) are the prototype

of the DCs described above: they patrol peripheral

non-lymphoid tissues and upon antigen encounter

move to the draining LN. Resident Dendritic Cells
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(resDCs) instead, directly seed the LN before activa-

tion. They reach the lymphoid organ through the

bloodstream and extravasate across the medullary

cords and the medullary HEVs, as described by a

recent paper by Ugur et al. [54] (Fig. 1A).

In a steady-state condition, resDCs and migDCs can

be distinguished by flow cytometry, thanks to their dif-

ferential expression of the CD11c and the MHC-II

markers. resDCs show high levels of CD11c (CD11chi)

and intermediate expression of MHC-II (MHC-IIint),

while migDCs, since they are already activated when

they reach the LN, are MHC-IIhi and CD11cint. This

distinction, however, is not entirely clear-cut, since once

a resDC undergoes activation, it also upregulates

MHC-II, making its discrimination from a migDC more

complex. To better discriminate between migDCs and

resDCs, both chemical and genetic approaches have

been employed. It was shown that carboxyfluorescein

2051FEBS Letters 599 (2025) 2048–2059 ª 2024 The Author(s). FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

E. Dotta et al. DCs steering antigen and leukocyte traffic

 18733468, 2025, 14, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14982 by C

ochraneItalia, W
iley O

nline L
ibrary on [29/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



succinimidyl ester (CFSE), thanks to its fast cell pene-

tration and reactivity to cytosolic and cell membrane

amines, is a suitable solution to label DCs in the periph-

ery, thus allowing to distinguish them once in the LN

[55,56]. Alternatively, mouse models expressing photo-

convertible reporters were exploited to precisely dis-

criminate the two populations [57,58]. In this approach,

peripheral tissues are beamed with a laser, inducing a

photoconversion so that migDCs, once in the lymph

node, can easily be recognized from their resident

counterpart.

From a functional perspective, resDCs are special-

ized in uptaking and presenting soluble small antigens

(< 70 KDa, < 200 nm) carried by the lymph stream,

while migDCs directly acquire the antigen in the

periphery bringing it to the LN [59–62]. This suggests

that, depending on their physical characteristics, anti-

gens not only follow different paths to reach the LN

(cell-mediated or cell-independent transport) but also

that distinct cell types intervene in their presentation,

giving different contributions in the T-cell priming

(Fig. 1B). In a seminal article Itano et al. [63] showed

that subcutaneously administered soluble antigen

quickly reaches the lymph node through the lymph

stream even 30 min after injection and that 4 h later

the antigen is presented by resDCs. migDCs, instead,

upon antigen capture, need 18 h to reach the draining

LN and subsequently interact with T cells [63,64]. In

the same work, it was observed that resDCs are suffi-

cient to activate CD4+ na€ıve T cells, which start

expressing CD69 and secreting IL-2 already 6 h after

antigen administration. On the other hand, the contri-

bution of migDCs is fundamental for the generation

of a long-lasting immune response, acting as a

reinforcement for T-cell priming and survival. This

indicates that resDCs and migDCs are not working

independently from each other. Still, their contribution

and coordination in the T-cell licensing are necessary

to mount an efficient immune response.

Of note, resDCs and migDCs do not only show dif-

ferences in their CD11c and MHC-II expression but

other markers can be used to discriminate their status

depending on their belonging to the cDC1 or the

cDC2 subtypes. resDC1 expresses univocally

the CD8aa homodimer, while its migratory counter-

part is characterized by the expression of the Integrin

a E (CD103). For the cDC2 population instead, given

its higher heterogeneity, the discrimination between

migratory and resident DCs is more complicated. It

was shown in mice, that most of the skin-draining

DCs are CD301b+ [65] but a common marker of

migratory or resident cDC2 is still lacking. Based on

these markers, Sokol et al. [42] showed that subcutane-

ous Th2 immunization promotes specific migration of

the CD301b+ DCs, while the Th1 immunization

induces a more CD103+ DCs skewed trafficking. This

finding can be partially explained by the different

expression profiles of Pathogen Recognition Receptors

(PRRs) between cDC1 and cDC2 [13,66,67], which can

lead to different likelihood of activation (and migra-

tion) depending on the administered adjuvant. In con-

clusion, these articles report that the type of DCs that

will bring the antigen is dependent on the contextual

information of the periphery. Nevertheless, it must be

taken into account that even if different types of

immune responses are elicited (Th1, Th2, Th17), the

majority of DCs that migrate will still belong to

the cDC2 type [42,68]. This could lead to the hypothe-

sis that even very small variations in the relative num-

ber of migDC subtypes can contribute to substantial

differences in the type of immune response.

Increasing the chances: antigen
spreading

Another fundamental feature of DCs is their capability

to share the antigen with other DCs, other than process

and present it to lymphocytes through MHC. In

Fig. 1. Dendritic cell and antigen trafficking within lymph node. (A) Dendritic cell localization in the lymph node (LN). Upon activation,

migratory dendritic cells (migDCs) upregulate CCR7 expression and migrate toward the LN, guided by the CCL19/21 chemokines secreted

by LN stromal cells. Within the LN, conventional dendritic cells type 1 (cDC1s) primarily localize to the T-cell zone, thanks to their high

expression levels of CCR7. In contrast, conventional dendritic cells type 2 (cDC2s) can express CXCR5 and localize to the T-B-cell border

and interfollicular regions (IFRs), responding to the combined gradients of CXCL13 secreted by follicular dendritic cells (FDCs) and CCL19

secreted by fibroblastic reticular cells (FRCs). Resident dendritic cells type 1 (resDC1s) seed the LN during steady-state conditions via the

medullary high endothelial venules (HEVs), following the bloodstream. Upon maturation, they migrate to the T-cell zone in a CCR7-

dependent manner. Similarly, resDC2s originate from the medullary HEVs, although their precise migration paths and development require

further elucidation (the hypothesized path is represented in the figure). (B) Antigen trafficking within the LN. In the context of a non-lymph-

born antigen, migDCs directly transport the antigen to the LN and then present it to the naive T cells. In this scenario, migDCs can transfer

the antigen to resDCs that, in turn, reinforce the immune response. In this figure, a migDC2 transfers the antigen to a resDC1, which in

turn cross-presents it to a naive CD8+ T cell supported by a previously activated CD4+ T cell. Soluble antigens are transported to the LN by

the lymphatic vessels and disseminate throughout the organ via the subcapsular sinus (SCS). These antigens are subsequently captured by

resident dendritic cells (resDCs), which then preferentially present them to CD4+ (resDC2) and CD8+ T cells (resDC1).
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groundbreaking work, Allan et al. [69] observed that,

in a skin infection model, resDC1s have a privileged

role in activating the CTL response, but at the same

time the blockade of the migration of skin migDCs

drastically reduced CTL activation and expansion. This

corroborated the hypothesis that migDCs can also

transfer the antigen to the resDCs, which, in turn, could

present them to T cells. In a more recent study, Gure-

vich et al. [70] pulsed bone marrow-derived DCs with

ovalbumin and mixed them with unpulsed bone

marrow-derived DCs at a ratio of 1 : 200. After several

hours, these DCs were cocultured with ovalbumin-

specific CD8+ T cells and it was observed that these cells

clustered with both the pulsed and unpulsed DCs. Con-

versely, no clustering was seen with MHC-I lacking

DCs, suggesting that the antigen was transferred from

the original rare antigen-donor DC to be presented on

recipient DCs. In the same work, exploiting an elegant

in vivo setting of replication-defective virus infection, it

was also observed that antigen transfer occurred within

the lymph node in an LFA-1-dependent manner dele-

gating resDCs to present the viral antigen in place of

the viral downregulated-MHC-I migDCs [70]. migDCs

might then need to reach the LN to transfer the antigen

to their resident counterpart in order to propagate the

immune activation. Today, this accepted model is

known as antigen spreading or antigen dissemination,

and it represents a strategy to expand the number of

antigen-bearing dendritic cells, therefore increasing the

possibility of an encounter between the antigen and

the cognate T-cell clone [71].

Several mechanisms were theorized and studied to

explain how the antigen spreading occurs: (a) antigen

transfer by exosomes [72], (b) MHC-II cross-dressing

[73], (c) direct soluble antigen transfer [74], and (d) anti-

gen uptake from apoptotic DCs that reached the LN

[75]. More recent findings, however, are underlying the

role of a fifth path, consisting of direct antigen transfer

during a DC–DC immunological synapse. A recent

work, exploiting a ZsGreen expressing tumor, showed

that tumor antigens are transferred from migDCs to

resDCs in the context of an immunological synapse for-

mation without free exosomes transfer [76]. In a similar

model of lung infection with ‘BrightFlu’ (Influenza A

Virus genetically tagged with ZsGreen), it was also

shown that migDCs not only transfer the antigen to the

resDCs but also the contextual information (e.g.

PAMPs/DAMPs) found at the infection site [77]. This

means that antigen spreading not only allows resDCs to

present peptides of the same antigen that was collected

in the periphery but also that the immune response eli-

cited is coherent with the context of immunization that

was found by migDCs in the peripheral tissue (Fig. 1B).

Dendritic cells dictate leukocyte
trafficking in the lymph node

Immune cells communicate with each other to mount

the most appropriate response toward a given stimu-

lus. DCs are not an exception since they can influence

the effector T-cell response. This modulation could be

accomplished in at least two different ways: directly,

through signals exchanged in the context of DC-T-cell

interactions, and indirectly, through signals arising

from other leucocytes recruited by DCs at the priming

site. Increasing evidences indicate that DCs can drive

the dynamics of cells belonging to both innate and

adaptive immunity coherently with the peripheral per-

turbation, with possible consequences on the induction

of T-cell effector functions. Here, we summarize the

most important findings on the role of DCs in recruit-

ing and regulating specific leukocyte migration in the

LN compartment, listing the type of immune cells

recruited.

NK cell

It is established that NK cells play a fundamental role

in supporting the Th1 response, thanks to the secretion

of IFN-c [78,79]. NK cells reach the LN through

HEVs and can make stable contacts with DCs localiz-

ing at the T-B border and in the medulla [80–82]. In
Leishmania major infection, it was shown that NK

cells are recruited from the bloodstream and localize

in the T-cell zone, starting to secrete IFN-c [81]. In

2004, Mart�ın-Fontecha et al. [83], showed that

in immunization setups with certain Th1-skewing adju-

vants (R848, Ribi, and LPS, but not CpG and CFA)

migDCs reach the dLN and recruit NK cells in a

CXCR3-dependent manner. Here, stimulated by DCs-

secreted IL-12, NK cells start to produce IFN-c
(Fig. 2A). In addition to this, more recently it was

shown that in Th1 immunization settings, activated

CD4+ T cells upregulate CXCR3 which allow them to

reach CCL10 and CCL9-secreting DCs localized more

across the outer LN [84]. Together with previous

observation, this finding suggests that this chemokine

gradient determines the co-clustering of DCs, CXCR3+

T cells, and NK cells at the lymph node border to

reinforce the na€ıve T-cell differentiation toward the

Th1 fate.

Basophils

Despite the role of DCs in driving the T-cell fate deci-

sion, there is no clear evidence supporting their ability

to secrete IL-4, the most potent cytokine for
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promoting Th2 differentiation [85,86]. For this reason,

it was speculated that other cells, such as basophils,

could secrete IL-4 in the context of the LN. In 2010,

Tang et al. [87], observed that migDCs stimulated with

papain, once in the lymph node secrete CCL7, a

strong basophil chemoattractant, tightly regulated by

ROS, TLR4 and TRIF signaling pathways (all present

in an allergy setting). For this reason, it was hypothe-

sized that recruited basophils could provide the lacking

IL-4 to drive the immune response toward the Th2

fate (Fig. 2B). Nevertheless, in more recent works,

even if the capacity of DCs to recruit basophils was

not disproved, the role of these granulocytes in sup-

porting Th2 response has been strongly resized [88,89].

It is important to mention, however, that these

different conclusions were reached based on different

experimental designs and considering different sites of

immunization: a skin immunization for the basophil-

dependent reaction and lung exposure with house dust

mites for the basophil-independent Th2 differentiation.

T helper cells

As discussed above, the encounter of T cells with the

cognate antigen presented by DCs is a rare event. In a

recently published article, Tatsumi et al. [90] showed

that a subset of skin migDCs are capable of regulating

T-cell dynamics in the LN, increasing their chance to

recognize the cognate peptide. In particular, they

observed that once reached the LN, CD301b+ DCs

Fig. 2. Dendritic cells orchestrate leukocyte trafficking in the lymph node to elicit context-appropriate immune responses. (A) Upon

stimulation with a Th1 immunogen, migratory dendritic cells (migDCs) migrate to the lymph node (LN) and recruit natural killer (NK) cells

from both the LN and the bloodstream in a CXCR3-dependent manner. NK cells subsequently produce IFN-c, promoting Th1 differentiation.

(B) In an allergic context, migDCs migrate to the LN and secrete the basophil chemoattractant CCL7. Once basophils reach the LN, they

secrete IL-4, reinforcing the Th2 immune response. (C) Following subcutaneous administration of an antigen, CD301b+ migDC2s reach the

draining LN (dLN) and localize near high endothelial venules (HEVs), forming close MHC-II-dependent antigen-independent interactions with

circulating naive T cells and prolonging their retention within the LN. Moreover, CD301b+ DCs skew the immune response toward the Th2

fate, dampening the Th1 response. In the absence of this DC type, T cells exhibit reduced dwell time and faster recirculation together with

a more Th1-oriented response, probably due to the reduced number of migDCs and the reduced capability of other DCs to perform the

same TCR scanning. (D) After intranasal administration of an immunogen, migDC1s migrate to the mediastinal LN (mLN), where they

induce monocyte chemotaxis through the CCL5-CCR5 axis. Monocytes in turn contribute to Th1 fate determination through two proposed

mechanisms: IL-12 secretion to promote Th1 differentiation and IL-10 production to suppress the Th2 response.
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localize around the HEVs in an S1PR-dependent

mechanism, engaging multiple interactions with

extravasating na€ıve T cells in an MHC-II-dependent,

Ag-independent mechanism. This scanning strategy

prolongs the CD4+ T-cell dwell time in the lymphoid

organ, increasing the likelihood of an interaction with

the cognate T-cell clone. Moreover, they observed that

this specific migDC2 population seems to be required

both during the first immunization and upon re-

challenge in a physiological context of rare antigen-

specific T cells. Lastly, it was also reported that

CD301b+ DCs–na€ıve CD4+ T interactions at early time

point (before 24 h) are critical in driving T-cell differ-

entiation toward the Th2 path while suppressing the

Th1 and Th17, confirming other findings that highlight

the role of CD301b+ DCs in the Th2 differentiation

[91] (Fig. 2C).

Monocytes

DCs also possess the ability to influence the migration

of monocytes within the inflammatory context, as

shown by Rawat et al. [30]. In their study, migDCs,

once in the lymph node, secrete CCL5. This chemo-

kine interacts with the GPCR CCR5 expressed by

monocytes, which lack expression of CCR7. Conse-

quently, this induces monocyte migration toward the

lymph node in an inflammatory condition, thereby

enhancing their capacity to stimulate the T-cell

response. In this sense, this and previous studies also

suggest that inflammatory monocytes can drive Th1

response directly stimulating the Th1 fate-producing

IL-12 [92] and/or suppressing the Th2 fate-secreting

IL-10 [30,93], even if these regulatory mechanisms are

still not completely elucidated (Fig. 2D). These data,

taken together, show the important role of DCs in

modulating LN trafficking in different contexts to effi-

ciently tune the immune response.

Conclusions

In this brief Review, we summarized less known abili-

ties of DCs such as mediating antigen trafficking and

dissemination, and guiding leukocyte trafficking within

the LN coherently with the peripheral insult. The

studies discussed contribute to paving the way for

broadening the knowledge of the mechanisms underly-

ing efficient and targeted immune activation, with

potential applications in various translational

approaches in the vaccinology field.

Nonetheless, much remains to be uncovered. For

instance, while it is established that vaccines incorpo-

rating adjuvants bound to antigens are more effective

in eliciting immune responses [94], the precise mecha-

nisms governing antigen transfer together with its con-

textual information remain elusive. Furthermore, there

is ongoing debate regarding the contributions of differ-

ent DC subtypes in recruiting other leukocytes to initi-

ate or amplify specific immune responses, with a

special point on the resDCs which seem not to be

involved in this fine-tuning. Further research is

required to clarify these aspects, leading to a deeper

understanding of the functioning of the immune sys-

tem with main implications on human health.
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