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Introduction 

Include Neurodiversity in Foundational and Applied Computational Thinking (INFACT) is a 

Computational Thinking (CT) platform and collection of materials designed to be used in 

grades 3-8 with students across a range of cognitive skills and learning needs. In particular, 

INFACT is intended to help students who struggle with the executive functions of attention, 

working memory, and information processing. The materials offer a variety of online and 

offline activities organized into four modules, allowing teachers to choose the options they 

feel will work best for their class.  

The evaluation of INFACT used a cluster quasi-experimental design at the school level 

(although only one school had multiple teachers enrolled in the study). Teachers in the 

Treatment condition were expected to implement the INFACT program for at least 10 hours 

over the course of a semester. The Comparison group was a business-as-usual condition: 

teachers at the same grade levels spent at least 10 hours teaching CT through other 

activities or programs (such as Hour of Code). For teachers who worked with multiple classes 

(such as elementary school math specialists), all classes were in the same condition 

(Treatment or Comparison).  

Elementary- and middle-school teachers across the US who identified their classes as 

including 20% or more neurodivergent students were recruited for the study, and were non-

randomly assigned to the Treatment or Comparison group. (While researchers attempted to 

keep the groups balanced, not all teachers had capacity to implement a new CT program, 

and not all had an existing business-as-usual curriculum to use.) Recruitment was done by 

reaching out to individual teachers, who then obtained permission from their school/district 

to participate. All students in the classroom participated in CT learning activities, but only 

those with both parental consent and complete assessment data were included in analysis.  

CT practices were assessed at baseline and semester end using a set of puzzles (Interactive 

Assessment of CT, or IACT) previously designed by TERC to measure CT proficiency of 

elementary and middle school students and re-validated prior to the INFACT efficacy study. 

Executive function was assessed at baseline using Adaptive Cognitive Evaluation (developed 

by Neuroscape), a game-like implementation of standard psychological tests designed to be 

accessible for a wide range of ages and abilities. 

Background 

Computational Thinking (CT) is a growing area of STEM education first defined by Wing 

(2006; see also Papert, 1993, although he did not use this term) as a set of skills that 

“involves solving problems, designing systems, and understanding human behavior, by 

drawing on the concepts fundamental to computer science. Computational thinking 

includes a range of mental tools that reflect the breadth of the field of computer science” 

(Wing, 2006). Multiple groups of researchers (e.g., Barr, Harrison, & Conery, 2011; Brennan & 
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Resnick, 2012; Weintrop et al., 2016, Shute et al., 2017) have developed frameworks for 

teaching, assessing, and studying CT, although there is no consensus definition as yet. In 

fact, a recent review article (Kite et al., 2021) found that approximately half the studies they 

examined defined CT as a set of code-centric skills while the other half defined it as a set of 

interdisciplinary practices. The implementation team for INFACT draws from both of these 

viewpoints to create a set of materials that teaches skills such as problem decomposition, 

algorithms, and conditional logic, but encourages drawing connections between these skills 

and situations outside the context of computing. 

Although many CT interventions use block-based programming for robots or on platforms 

such as Scratch to introduce these concepts, CT itself is not inherently tied to computer 

programming (Li et al., 2020), and researchers have argued that it is best incorporated 

across core subjects, especially for younger students (Grover & Pea, 2018).  

Recent reviews have identified a growing number of studies focused on CT interventions for 

K-12 students, especially elementary and middle school students (Merino-Almero et al., 

2021; Tang et al., 2020; Kite, Park, & Wiebe, 2021; Ezeamuzie & Leung, 2022). These 

interventions tend to focus on a set of “CT practices,” often including problem 

decomposition, algorithm design, abstraction, debugging, pattern recognition, 

generalization, and specific programming-related concepts such as the use of conditional 

logic and loops. Interventions which integrate CT into core curriculum (rather than treating it 

as a separate topic) were uncommon and typically limited to STEM subjects when they did 

occur. The majority of interventions, even for young students, focused primarily on 

programming activities, whether through a blocks-based language such as Scratch or the use 

of robots such as Bee Bot (programmed by a series of button presses) or KIBO (programmed 

by inserting physical blocks representing commands into the robot). While the latter are 

sometimes described as “unplugged” (Bati, 2022), they still require access to specialized 

equipment. 

Neurodiversity is a framework which treats individual differences in thinking and learning as 

part of normal human variation, rather than the deficit-based model of “learning disabilities.” 

The label “neurodivergent” encompasses those who differ from the “neurotypical” 

population that deficit-based models would consider default. Some examples of 

neurodivergence are dyslexia, ADHD, and autism. Neurodivergent students often need 

additional support in learning environments designed to a neurotypical standard, so 

resources for differentiated classroom instruction are part of helping these students reach 

their full potential. The National Survey of Children’s Health (2022) reports that around 8.9% 

of children aged 3-17 have been identified as ADHD, and 2.9% are on the autism spectrum, 

meaning millions of students nationwide could benefit from learning materials which better 

accommodate their needs. 

INFACT differs from existing computational thinking interventions in that it is designed for 

use with neurodiverse groups of students and includes embedded support for executive 

function. It also includes a wide range of truly “unplugged” activities which do not require 

access to the Internet or specialized tools, making it suitable for use in a broader range of 

settings. It provides a full but flexible curriculum which teachers can easily start using and 

customize for their classes, and it does not require teachers or students to have a 

background in computer science or computational thinking. 
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Study Description 

Research Questions 

Our evaluation focused on two research questions: 

RQ1: What is the difference in computational thinking proficiency of students in grades 3-8 

who have had one semester of INFACT, compared to equivalent students who have had one 

semester of business-as-usual computational thinking activities? 

RQ2: To what extent does the INFACT program moderate the effects of individual 

differences in executive function on external CT assessments for students in grades 3-8, 

when compared to equivalent students in the business-as-usual condition? 

Intervention Condition 

The INFACT materials are available through a web portal (infact.terc.edu) which allows 

teachers to create “sequences” of lessons chosen from a variety of options. The curriculum is 

broken down into four modules: Introduction to CT, Clear Commands, Conditional Logic, and 

Repeat Loops. (Two additional modules, Variables and Functions, will be added to the final 

product, but were not available during the efficacy study). Each module has a four-part 

structure: activation, foundational activities, applied activities, and wrap-up (often an 

assessment), with multiple options for activities. Teacher-facing materials for each activity 

provide thorough instructions and suggestions for guiding struggling students, and some 

activities include printable worksheets for students or Google Slides for teachers. Students 

also have access to the portal, and student-facing materials include Zoombinis games with 

built-in scaffolding tools, pre- and post-assessments, and module quizzes. (Pre- and post-

assessments were required for the efficacy evaluation study, while Zoombinis games and 

module quizzes were optional.) 

Teachers in the Treatment condition did not receive formal professional development, but 

had access to documents describing use of the portal and curriculum, as well as a member 

of the TERC team who could answer questions via email. They were free to choose any 

combination of activities, and were not required to complete all four modules as long as they 

spent at least 10 hours on INFACT activities over the course of the semester (between 

administration of the pre- and post- assessments). 
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Figure 1. Logic model for INFACT intervention. 

Program Implementation 

Full participation in the program was defined as at least 10 hours spent on INFACT activities 

for each class enrolled in the study. The amount of time spent was estimated by teachers 

during regularly scheduled check-in interviews, which also allowed researchers to ask which 

activities were chosen and how they were used. In past studies, we have seen low 

completion rates and levels of detail when requesting teachers to complete a written log of 

activities. We acknowledged that meeting a 10-hour instructional requirement might not be 

possible in all cases (for instance, if schools were temporarily closed or many students had 

to quarantine for COVID-19), given that many teachers in the study were specialists who only 

saw each class for one period a week. While we required teachers to commit to 10 or more 

hours of instruction at the beginning of the study, we did not drop them for failing to meet 

this standard. 

Both Treatment and Control teachers varied in role. Some were math or computer specialist 

teachers who saw students from each grade in the school 1-2 times per week, while others 

were classroom instructors who worked closely with one group of students (in elementary 

school) or several sections of the same class (in middle school). However, all teachers 

administered the intervention or business-as-usual instruction during normal school hours, 

and none taught it as an elective or selective course. All students in the classroom 

participated in activities, even if their data was not included in the analytic sample. Both 

Treatment and Control classes met in person. No activities involved in INFACT posed any risk 

to students outside what they would encounter in a normal school day.  

Data collection was initially planned to take place over a single semester, with 24 Treatment 

teachers and 24 Control (business-as-usual) teachers. However, this plan was made before 

the COVID-19 pandemic, which placed increased pressure on teachers even after schools 

returned to in-person instruction. The actual efficacy study took place over two semesters, 
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with 6 Treatment and 7 Control teachers participating in Fall 2021 and 8 Treatment and 6 

Control teachers (including one Control teacher who also participated in the fall) in Spring 

2022. Each teacher enrolled between 1 and 5 classes in the study. Teachers did not receive 

training as part of the intervention. The majority of participating teachers were women, and 

while all had taught for several years (many for 10+ years), some Treatment teachers had 

never specifically taught computational thinking before. 

The Fall 2021 cohort participated from October 11 through December 17, and the Spring 

2022 cohort from January 24 through May 13 (a slightly longer time period as schools had at 

least one week of spring vacation). Teachers had 2 weeks in the fall or 3 weeks in the spring 

to complete pre-assessments with their class, with Treatment teachers gaining access to the 

INFACT materials only after completing these assessments. Post-assessments had to be 

completed by the end of the participation period (which coincided with the end of the 

semester for many teachers). We did not observe notable differences in time spent on 

INFACT (for Treatment teachers) or business-as-usual CT education between the two 

semesters. 

Given the above considerations, fidelity was defined by two variables, both at the class level:  

1. Class participation was defined as 75% or more of students engaging in all INFACT 

activities assigned to them, as reported by teachers. 

2. Teacher participation was defined as the teacher assigning 5 or more hours of 

INFACT activities. 

At the program level, fidelity was defined as 50% of classrooms meeting the class 

participation standard and 75% of classrooms meeting the teacher participation standard. 

At the teacher level, 23 teachers out of 25 participating in the study met fidelity criteria, for a 

total of 92.5%. Not all teachers had students included in the analytic sample (see “Study 

Participants” section below); looking at only teachers who had students included, 91.6% met 

fidelity criteria. 

The teachers in our study all taught in person and actively facilitated the INFACT activities, so 

they were able to describe accurately whether or not their students had completed an 

activity. During interviews with teachers, only one mentioned a student choosing not to 

participate in an activity, and all described that their class as a whole was highly engaged 

with the content. We can be confident that fidelity criteria for student-level fidelity were met 

in all classrooms. 

Setting 

Participating classrooms were all located in the US, but not all in a specific district or state as 

teachers were recruited individually. We did not ask teachers whether their school was in an 

urban, suburban, or rural setting, but some mentioned being in a rural area during check-in 

interviews. Public, parochial, private, and charter schools were all eligible for participation in 

the study. Among Comparison teachers, nine taught in public schools and three in private 
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schools. Among Treatment teachers, nine taught in public schools, five in private schools, 

and one in a charter school. 

While there were no requirements for school, location, or setting, we asked all teachers in 

both conditions to confirm that they typically teach classes including at least 20% 

neurodivergent students. Specifically, they were asked to “Confirm that your grade 3-8 

classroom population typically includes at least 20-25% neurodiverse [sic] students (e.g., students 

who have IEP/other classification or teacher/parent designation as needing learning support).” 

This approach was preferable to requesting student IEP status for two reasons: (1) to protect 

individual students’ privacy; (2) because IEP status does not correspond directly to 

neurodivergence. Neurotypical students may have IEPs due to physical disability or injury, 

and not all neurodivergent students will have an IEP, as obtaining one is an extended 

process. 

Comparison Condition 

The Comparison condition was business-as-usual for teachers who committed to teach CT 

using non-INFACT resources of their choice for at least 10 hours over the course of the 

semester. These teachers all had at least some prior knowledge of computational thinking 

(since the study asked them to continue their typical CT instruction). Students would have 

had access to the CT instruction these teachers provided outside the context of the study. 

Each Comparison teacher was free to use any combination of existing CT resources, so the 

specific activities each conducted with their class varied. However, most classes used Scratch 

or other coding environments such as Code.org, often in the context of Hour of Code 

activities. Games or puzzles were also a popular activity, and several classes used robots. 

Like the Treatment condition, the Comparison condition was delivered by a range of 

teachers including subject specialists and classroom teachers. A total of 12 teachers 

participated over two semesters, with one of these participating in both Fall 2021 and Spring 

2022. Teachers were not allowed to participate in the Treatment and Comparison conditions 

during the same semester, or in the Comparison condition after participating as a Treatment 

teacher. However, Comparison teachers in Fall 2021 were given the option to participate as 

Treatment teachers in Spring 2022 if and only if they would be working with a completely 

new cohort of students. One teacher took advantage of this opportunity. All teachers were 

welcome to use INFACT materials once their participation in the study was complete. 

Study Participants 

Participants were invited through advertisements shared in Facebook groups and email lists, 

and through individual outreach to teachers who had been involved in past CT projects 

(unrelated to INFACT) run by the implementation team. Teachers were allowed to participate 

in either the Treatment or Comparison group, although if significantly more teachers were 

interested in one condition than the other, the implementation team member in charge of 

recruitment would focus on recruiting for the smaller condition to obtain a more balanced 
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sample. Additionally, since the business-as-usual condition required teachers to implement a 

CT curriculum not provided to them by the researchers, recruitment for this group targeted 

teachers who had been teaching CT prior to the study. 

Inclusion criteria were: 

• All students enrolled in the study must be at least in 3rd grade and at most in 8th grade. 

• Teachers must confirm that they typically work with at least 20% neurodivergent 

students. 

22 Treatment and 24 Control teachers were recruited across the two semesters, of which 15 

Treatment and 14 Control teachers enrolled classes in the study. One teacher in each 

condition dropped out due to timing-related issues, so a total of 14 Treatment and 13 

Control teachers completed the study. 

However, the analytic sample did not include all of these teachers, as the middle school 

sample was not within a reasonable threshold of baseline equivalence. Accordingly, we 

chose to use only elementary school classrooms in our analytic sample, and performed 

matching to obtain baseline equivalence between conditions (Hedges’ g ≤ |±0.03|). Prior to 

matching, we removed students with incomplete baseline or outcome assessment data from 

the sample. The final analytic sample contained five Treatment and seven Control schools, 

with a total of 182 students per condition. 

Table 1. Number of students, teachers, and schools per condition.  

School Condition Teachers Students 

A Treatment 1 90 

B Treatment 1 27 

C Treatment 1 5 

D Treatment 1 19 

E Treatment 1 41 

Total: 5  5 182 

F Comparison 2 10 

G Comparison 1 16 

H Comparison 1 53 

I Comparison 1 3 

J Comparison 1 29 

K Comparison 1 17 

L Comparison 1 54 

Total: 7  8 182 

The evaluation sample included a non-random sample of the schools, teachers, and 

students offered the intervention over the course of evaluation. As described above, we 

recruited middle school (grades 6-8) classes for the study, but found that the students in 

Control classrooms had much higher scores on the baseline pre-assessment of CT 

proficiency, to the extent that statistical adjustment would not be appropriate according to 
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WWC standards. We therefore excluded teachers who taught only middle-school students 

from the analytic sample (nine Treatment and four Control teachers). Another two Control 

teachers did not have consenting students who completed both the baseline and post-

assessments, and were therefore not part of the analytic sample. 

Study Design and Measures 

Independence of the Impact Evaluation 

The impact evaluation was conducted by Knology independently from the intervention 

development team. As this study used a quasi-experimental design, random assignment was 

not conducted. The electronic system which automatically recorded assessment responses 

was accessible by both Knology and the intervention developers, but these data were read-

only. Knology conducted all data cleaning and analysis without input from the intervention 

developers. 

Pre-registration of the Study Design 

The study was pre-registered in the Registry of Efficacy and Effectiveness Studies (REES) on 

October 12, 2021. At this point, although the pre-assessments were available to the first 

cohort of teachers, no data had yet been collected. The registration number for the project is 

#7820.1v2. 

The research questions registered were: 

1. What is the difference in the proficiency in computational thinking of students in 

grades 3-8 who have one semester of INFACT compared to comparable students who 

have had one semester of business-as-usual computational thinking activities? 

 

2. To what extent does the INFACT program moderate the effects of individual 

differences in executive function on external CT assessments for students in grades 

3-8, when compared to equivalent students in the business-as-usual condition? 

 

The model specified for Research Question 1 was: 

(1) Yij = β0 + β1X1ij + β2X2ij + β3X3ij + β4X4j + u0j + u1jX3j + εij 

Where: 

• Yij is the composite IACT-Adapted score for student i within teacher j 

• β0 is the overall mean composite IACT-Adapted score 

• X1ij is the composite Baseline IACT-Adapted score for student i within teacher j 

• X2ij is the composite Executive Function (ACE) score for student i within teacher j 

• X3ij is the grade level for student i within teacher j 



 

INFACT Efficacy Report 9 

• X4j is the contrast for Treatment vs. Comparison group 

• β1-β4 are the coefficients for the three covariates (X1-X3) and the Treatment contrast (X4) 

• υ0j is the group-level error at level 2, i.e. the random intercept for teacher j 

• υ1j is the group-level error at level 2, i.e. the random slope for teacher j 

• εij is random error at level 1 

 

The model specified for Research Question 2 was: 

(2) Yij = β0 + β1X1ij + β2X2ij + β3X3ij + β5X2ijX4j + u0j + u1jX2ij + εij 

Where: 

• β5 is the coefficient for the interaction term that models the moderation effect of 

individual differences in executive function (X2ij) by Treatment (X4j) 

• All other terms are the same as equation 1 

The model specification for Baseline Equivalence was: 

(3) Y1ij = β0 + β4X4j + u0j + εij 

Where: 

• Y1ij is the composite Baseline IACT-Adapted score for student i within teacher jβ0, β4, X4j, 

u0j, and εij are the same as equation 1 

Design 

The study used a Quasi-Experimental Design. Neither students nor teachers were matched 

at the beginning of the study period, as we planned to compare all Treatment students to all 

Control students. However, we conducted analyses on matched pairs of students once we 

had student data. We used genetic matching (as implemented in the R package MatchIt) on 

pre-test score, grade level, and executive function score. 

The timing of the study was as follows, and did not differ between conditions: 

Table 2. Timing of study milestones in Fall 2021 and Spring 2022 semesters.  

Milestone Fall 2021 Spring 2022 

Assignment At recruitment (prior to 

October 2021) 

At recruitment (prior to mid-

January 2022) 

Consent  October 2021 January 2022 

Baseline Assessment – CT 

proficiency (IACT) and 

executive function (ACE) 

October 2021 Late January – early 

February 2022 

Intervention Start Late October 2021 Late February 2022 

Intervention End December 2021 April 2022 

Outcome Assessment – CT 

proficiency (IACT) 

December 2021 Late April – early May 2022 
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Assignment to conditions was done at the teacher level. Once teachers committed to being 

in the Treatment or Comparison condition, all classes they enrolled in the study became part 

of that condition. As this was a QED, assignment was not random: teachers chose the 

condition they participated in. We anticipated that this could cause issues for baseline 

equivalence of students, and were prepared to drop data for which comparable students in 

the other condition could not be found. 

Measures 

Outcome Measure: IACT 

The outcome (and baseline) measure for CT proficiency was Interactive Assessments of 

Computational Thinking (IACT), which had been used in previous large-cohort computational 

thinking studies by the project implementation team (Rowe et al., 2021). IACT is a game-like 

assessment designed to require minimal reading and no programming experience from 

students. It contains four item types targeting the CT skills of Problem Decomposition, 

Pattern Recognition, Abstraction, and Algorithm Design. It is designed for use with students 

in grades 3-8. There are elementary school (grades 3-5) and middle school (grades 6-8) 

versions of the test, containing the same item structure but with differing difficulty levels; 

results are z-scored to account for this. 

We conducted a re-validation of this measure with a small sample of students (n=167) in the 

summer prior to the efficacy study. This study recruited students in the target age range, 

with a focus on those whose parents or teachers identified them as neurodivergent. As part 

of the study, we also had participants complete the ACE measures of executive function and 

examined the correlation between these and IACT score. A full description of this study is 

available in the Appendix. 

IACT questions take the form of interactive puzzles, which students can experiment with to 

arrive at an answer. Each module begins with a simple, un-scored task to help students 

familiarize themselves with the mechanics and goals. None of the four puzzle types 

corresponds directly to activities in the INFACT curriculum. 

Module 1 

Items in this module ask students to guess which shape from an array is "correct" through 

repeated hypothesis testing. After testing an item, students receive feedback on whether 

each attribute (shape, color, pattern) is correct. Figure 1 shows an easy example problem, 

where the correct answer is “red diamond.” If a student drags the red circle into the test box, 

a green check will appear for “color” and a red X will appear for “shape.” A student taking this 

feedback into account will next try an option which is red, but not a circle, arriving at the 

correct answer. Scoring is based on the number of moves a student takes to solve the 

problem compared to the ideal solution. 
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Figure 2. Example item for IACT Module 1 (problem decomposition).  

 

Module 2 

This module consists of five items from Raven's Progressive Matrices (Raven, 1981). These 

items require students to identify the underlying rules being used, and to choose a response 

which continues the pattern. In the fairly simple example item in Figure 2, the pattern is that 

in each row, the second and third images are the left and right sections of the first (and that 

in each column, the second and third images are the top and bottom sections of the first). 

The correct response is the white square. These items are scored based on whether the 

answer given is correct, and students are not able to change their answer after clicking 

Submit. 
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Figure 3. Example item for IACT Module 2 (pattern recognition).  

Module 3 

This module requires students to infer the underlying rule used to position shapes in a grid. 

They are presented with a partially-filled grid and asked to fill each of the blanks with the 

provided shapes to complete the pattern. Each shape can appear only once in the solution. 

In the example item shown in Figure 3, the pattern is that all items in a row are the same 

shape and all items in a column are the same color. So, for this example, the solution would 

be red triangle (top center), blue diamond (middle left), black diamond (middle right), and 

red circle (bottom center). Later puzzles involve more complex patterns and larger grids. 

Items in this section are scored as the percentage of empty spaces filled correctly. 

 

Figure 4. Example item for IACT Module 3 (abstraction). 

Module 4 

Items in this module involve creating a sequence of arrows that will guide a character along 

a path, which needs to include several specific points in order to avoid obstacles. In the 
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example item in Figure 4, the baby panda in the upper left needs to visit the blue, red, and 

yellow squares in order. Items are scored based on how many moves the student's solution 

takes compared to the optimal solution.  

Some INFACT activities do involve creating a path through a maze, similar to the content of 

this module, but this type of task is also common in other CT programs such as Code.org / 

Hour of Code (which many Comparison classrooms used) and robotics tasks. Furthermore, 

INFACT activities involving path creation do not require students to find the shortest 

solution, or avoid crossing the same square twice—both of which are necessary for the IACT 

puzzle. 

 

Figure 5. Example item for IACT Module 4 (algorithm design).  

 

Our validation revealed that IACT Module1 showed less variation in scores than the other 

three, due to students scoring at or close to maximum. Removing this module increased the 

reliability (Cronbach’s α) of the assessment as a whole. Accordingly, we chose to drop this 

module from the score calculation used in Rowe et al. (2021). This decision was made prior 

to any data collection for the efficacy study, and was reflected in the pre-registration. The 

resulting IACT assessment had internal reliability of α = 0.64 on a data set combining the re-

validation sample and data from a previous project by the TERC team, and α = 0.74 for the 

re-validation sample only. 

IACT data was collected from both Treatment and Comparison groups immediately prior to 

the intervention as a baseline measurement, and again at the end of the intervention period 

to measure outcomes. These two IACT forms ask different questions, so completing the first 

did not give students an advantage on the second.  
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Baseline Covariate Measure: ACE 

Adaptive Cognitive Evaluation (ACE) is a game-like implementation of standard executive 

function measures, developed by Neuroscape at UCSF (Coulanges et al., 2021; Mishra et al., 

2021). For this study, we used the Flanker, Backwards Spatial Span, Task Switching, and 

Go/No-Go tasks. We calculated scores for each task using the aceR package developed by 

Neuroscape and the metrics recommended by the developers for each task (Neuroscape, 

2022). For the final analysis, we z-scored each module and averaged the scores across all 

four to create a single variable. (We experimented with other methods of simplifying the 

data, including principal components analysis and Mahalanobis distance from a theoretical 

student with the top score observed for each task, but did not observe significant 

improvements in model fit.) 

Sample Size 

Due to technical issues with the IACT assessment in some schools, the number of students 

with full pre-assessment and post-assessment data was much lower than the number of 

students who received the intervention. 

The number of students with consent for data collection was 373 elementary and 132 

middle school students in the Comparison condition, and 260 elementary and 298 middle 

school students in the Treatment condition. 

The number of students with complete baseline data was 278 elementary and 116 middle 

school students in the Comparison condition, and 222 elementary and 184 middle school 

students in the Treatment condition. 

The number of students with complete data for both baseline and outcome assessments 

was 257 elementary and 116 middle school students in the Comparison condition, and 190 

elementary and 131 middle school students in the Treatment condition. Establishing 

baseline equivalence further narrowed down the analytic sample, as described in the 

following section. 

 

Data Analysis and Findings 

Baseline Equivalence 

We analyzed baseline equivalence at the individual level. In our analysis, we accounted for 

potential teacher-level effects by including a random effect for Teacher in the model. To test 

baseline equivalence, we examined Hedges’ g for baseline IACT scores. We found that for the 

321 Treatment and 373 Control students with full data, g was 0.38, indicating lack of baseline 
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equivalence and falling outside the range in which statistical adjustment is permitted by the 

WWC. 

Upon further inspection, we found that while the elementary school students had 

comparable baseline scores between conditions, middle school Comparison students 

strongly outperformed their Treatment counterparts on the baseline assessment. Propensity 

score matching did not sufficiently reduce this gap. We therefore chose to analyze the 

effects of INFACT for elementary school students only. After matching Treatment and 

Comparison students using propensity scores which included baseline IACT, grade level, and 

executive function score (ACE), we obtained a final analytic sample of 182 Treatment and 182 

Comparison students. 

Measure Comparison Group Treatment Group Treatment 

– Control 

Difference 

Standardized 

Difference 
n Mean SD n Mean SD 

IACT (pre) 182 0.697 0.647 182 0.680 0.774 -0.017 -0.024 

Grade Level 182 4.190 0.799 182 4.088 0.830 -0.102 -0.125 

ACE 182 -0.033 0.641 182 -0.165 0.582 -0.132 -0.215 

Table 3. Means, standard deviations, and standardized differences for Treatment and 

Control groups at baseline. 

While our preregistered model for baseline equivalence does not require the covariates of 

grade level and ACE score to be equivalent, we note that the between-group differences for 

both are low enough to be considered equivalent if a statistical correction is used. 

The baseline value for pre-intervention CT skills shows a low enough standardized difference 

to be considered baseline equivalent with no adjustment. Grade level and ACE values are 

included in the final model as covariates, as preregistered.      

Program Effects 

Program-level impacts were measured using a multi-level model which accounted for 

potential variation due to differences in instruction at the teacher and school levels. Grade 

level and ACE executive function summary score were included as student-level covariates. 

Although our analytic sample met the criteria for baseline equivalence without statistical 

adjustment, we also included baseline IACT score as a covariate, as in the pre-registered 

model. The analytic model was identical to the pre-registered version except for the addition 

of a school-level random effect, to account for potential similarities between teachers in the 

same context. There was only one case in which two teachers worked at the same school. 

For Research Question 2, we included an interaction term between ACE score and Condition, 

again matching the pre-registered model, and added the school-level random effect. In both 

models, students were compared to their matched counterpart in the opposite condition. 

Models were fit and effects calculated using the lmer and lmerTest packages in R. The model 

for Research Question 1 showed a moderate positive effect on CT proficiency outcomes for 

students in the Treatment condition (0.41 standard deviations, p = 0.024).  
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The model for Research Question 2 showed a comparable effect size for CT proficiency 

outcomes of Treatment students (0.39 standard deviations, p = 0.038). We did not observe a 

statistically significant interaction between ACE executive function score and the Treatment 

condition, so we cannot conclude whether the intervention was more or less effective 

depending on student executive function. 

While post-hoc power analysis should not be used to argue that a completed study was 

adequately powered (Zhang et al., 2019), it can be used to argue that the present study was 

underpowered. Post-hoc analysis indicates that a sample of our size would detect an effect 

only 55% of the time, if an effect were in fact present. 

Table 4. Fixed effects for Research Question 1 Model.  

 Estimate Std. Error df t value p 

(Intercept) 0.291 0.149 33.103 1.945 0.060 

IACT.pre 0.130 0.075 332.309 1.733 0.084 

ACE 0.090 0.094 245.409 0.955 0.340 

Grade4 0.129 0.117 281.228 1.107 0.269 

Grade5 -0.269 0.120 315.115 -2.233 0.026 

Treatment 0.413 0.156 10.108 2.653 0.024 

 

Table 5. Fixed effects for Research Question 2 Model. 

 Estimate Std. Error df t value p 

(Intercept) 0.292 0.152 31.507 1.922 0.064 

IACT.pre 0.135 0.750 337.986 1.799 0.073 

ACE 0.175 0.116 354.541 1.510 0.132 

Grade4 0.119 0.117 285.737 1.017 0.310 

Grade5 -0.274 0.120 317.607 -2.274 0.024 

Treatment 0.387 0.162 10.256 2.385 0.038 

ACE:Treatment -0.186 0.151 233.180 -1.233 0.218 

 

We tested a model which added a Semester variable to account for variation between 

classes participating in the first or second half of the school year, but did not observe 

improved model fit as measured by AIC or BIC. Because of this, we used the simpler model 

(without a Semester variable) for analysis. Given that only one teacher participated during 

both semesters, and was in a different condition for each, it is possible that the random 

effects calculated for Teacher already capture timing-related variation. 
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Table 6. Means, standard deviations, and standardized differences between groups on 

outcome measures. 

Measure Comparison Group Treatment Group Treatment – 

Control 

Difference 

Standardized 

Difference 

p-

value 
n Mean SD n Mean SD 

IACT.post 182 0.319 0.892 183 0.691 0.760 0.372 0.449 <0.01 

Discussion 

INFACT is a flexible Computational Thinking (CT) platform and curriculum aimed at students 

in grades 3-8. Our study addressed two research questions: 

RQ1: What is the difference in computational thinking proficiency of students in grades 3-8 

who have had one semester of INFACT, compared to equivalent students who have had one 

semester of business-as-usual computational thinking activities? 

In our study, we observed a positive effect on CT proficiency for students in grades 3-5 who 

received instruction using INFACT as compared to analogous students receiving alternate 

forms of CT instruction. Due to the underpowered nature of the study, research at a larger 

scale is needed to confirm this effect.  

RQ2: To what extent does the INFACT program moderate the effects of individual differences in 

executive function on external CT assessments for students in grades 3-8, when compared to 

equivalent students in the business-as-usual condition? 

We were not able to statistically identify an interaction between executive function and 

INFACT vs. Comparison instruction. As INFACT was designed to include specific supports for 

students’ executive function, this is an area we would like to explore with a more powerful 

study. We also note that the effect of executive function score on CT performance 

disappeared post-intervention for students in both conditions, which suggests that 

computational thinking instruction regardless of curriculum “evens the playing field” for 

students who score lower on executive function measures. 

We note as a caveat that neurodiversity includes a wide range of differences, not only 

executive function, and that our summary score for executive function cannot capture the 

full range of variation among neurodivergent students.  

Mechanisms and Root Causes 

While this report focuses on the quantitative aspect of our study, we also conducted 

interviews with Treatment teachers and surveys of Comparison teachers, giving us greater 

insight into mechanisms and root causes. Specifically, these interviews shed light on how 

neurodivergent students and teachers benefitted from INFACT and how it compared to 

other CT activities. In particular, we heard that the range of “unplugged” activities available 

through INFACT were more engaging for high-energy students than computer-based work, 

and that the visual-heavy materials were valuable for students who struggled with reading. 

Teachers also reported that the activities were easy to lead, and expressed interest in 
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incorporating INFACT materials into their instruction moving forward. Engagement is 

necessary but not sufficient for learning, and this early data suggests one potential route by 

which INFACT is effective in the inclusion classroom. 

The connection between computational thinking and executive function is only beginning to 

be explored. Arfe et al. (2019) observed increased planning time and response inhibition 

among neurotypical first-grade students who completed coding lessons, and Robertson et 

al. (2020) observed a correlation between performance on CT tasks and teacher ratings of 

executive function. The clearest conceptual overlap is in the areas of goal-setting, planning, 

and staying on task, which in turn overlap with working memory and attention. 

Directions for Future Research & Development 

Why and how does INFACT improve the performance of students on measures of 

computational thinking? Why and how does computational thinking instruction, in general, 

support the equalization of students with varying executive functioning? 

The present study suggests the following directions for future research: 

• developing better assessments of computational thinking;  

• exploring the relationship between computational thinking and executive functioning 

through classroom observation; and 

• developing and conducting a series of interconnected design studies to identify 

pathways through which computational thinking in and of itself may serve as 

scaffolding for executive functioning, and identifying those specific student populations 

it best supports. 

References 

Arfe, B., Vardanega, T., Montuori, C., & Lavanga, M. (2019). Coding in primary grades boosts children’s 

executive functions. Frontiers in Psychology, 10, 2713. 

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age. Learning & Leading with 

Technology, March/April, 20-23. 

Bati, K. (2022). A systematic literature review regarding computational thinking and programming in early 

childhood education. Education and Information Technologies, 27(2), 2059–2082. 

https://doi.org/10.1007/s10639-021-10700-2 

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of 

computational thinking [Paper presentation]. The American Education Researcher Association, Vancouver, 

Canada. 

Child and Adolescent Health Measurement Initiative. (2022). 2020-2021 National Survey of Children’s Health 

(NSCH) data query. Data Resource Center for Child and Adolescent Health supported by the U.S. 

Department of Health and Human Services, Health Resources and Services Administration (HRSA), 

Maternal and Child Health Bureau (MCHB). Retrieved 10/26/2022 from www.childhealthdata.org. 

Coulanges, L., Abreu-Mendoza, R. A., Varma, S., Uncapher, M. R., Gazzaley, A., Anguera, J., & Rosenberg-Lee, M. 

(2021). Linking inhibitory control to math achievement via comparison of conflicting decimal numbers. 

Cognition, 214, 104767. https://doi.org/10.1016/J.COGNITION.2021.104767 

http://www.childhealthdata.org/


 

INFACT Efficacy Report 19 

Ezeamuzie, N. O., & Leung, J. S. C. (2022). Computational thinking through an empirical lens: A systematic 

review of literature. Journal of Educational Computing Research, 60(2), 481–511. 

https://doi.org/10.1177/07356331211033158 

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has come. Computer Science 

Education: Perspectives on Teaching and Learning. 

Kite, V., Park, S., & Wiebe, E. (2021). The code-centric nature of computational thinking education: A review of 

trends and issues in computational thinking education research. SAGE Open. 

https://doi.org/10.1177/21582440211016418 

Li, Y., Schoenfeld, A.H., diSessa, A.A., Graesser, A.C., Benson, L.C., English, L.D., & Duschl, R.A. (2020). 

Computational thinking is more about thinking than computing. Journal for STEM Education Research, 3, 

1-18. 

Merino-Almero, J.M., Gonzales-Calero, J.A., & Cozar-Gutierrez, R. (2022). Computational thinking in K-12 

education. An insight through meta-analysis. Journal of Research on Technology in Education, 54(3), 410-

437. 

Mishra, J., Lowenstein, M., Campusano, R., Hu, Y., Diaz-Delgado, J., Ayyoub, Jain, R., & Gazzaley, A. (2021). 

Closed-loop neurofeedback of α synchrony during goal-directed attention. Journal of Neuroscience, 

41(26), 5699–5710. https://doi.org/10.1523/JNEUROSCI.3235-20.2021 

Neuroscape (2022). ACE Analytics. Retrieved October 26, 2022 from https://neuroscape.ucsf.edu/ace-analytics/. 

Papert, S. A. (1993). Mindstorms: Children, Computers, And Powerful Ideas (2nd ed). Basic Books. 

Robertson, J., Gray, S., Toye, M., & Booth, J. (2020). The relationship between executive functions and 

computational thinking. International Journal of Computer Science Education in Schools, 3(4). 

Raven, J. C. (1981). Manual for Raven’s progressive matrices and vocabulary scales. Research supplement 

No.1: The 1979 British standardisation of the standard progressive matrices and mill hill vocabulary 

scales, together with comparative data from earlier studies in the UK, US, Canada, Germany and Ireland. 

San Antonio, TX: Harcourt Assessment. 

Rowe, E., Asbell-Clarke, J., Almeda, M. V., Gasca, S., Edwards, T., Bardar, E., Shute, V., & Ventura, M. (2021). 

Interactive Assessments of CT (IACT): Digital interactive logic puzzles to assess computational thinking in 

grades 3–8. International Journal of Computer Science Education in Schools, 5(2), 28–73. 

https://doi.org/10.21585/ijcses.v5i1.149 

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research 

Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003 

Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of 

empirical studies. Computers & Education, 148. 

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining 

computational thinking for mathematics and science classrooms. Journal of Science Education and 

Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5 

Wing, J. (2006). Computational thinking. Proceedings of the ACM, 49(3), 33-35. 

  



Knology Publication # EDU.051.602.03 20 

Appendix: Re-Validation of IACT 

Internal Reliability of IACT 

We examined IACT scores from two sources: data collected prior to the INFACT efficacy study 

(N = 167, ACE scores collected for Comparison) and pre-test data from CodePlay (NSF Award 

#1738574), a previous collaboration between TERC and Knology which used IACT as an 

assessment measure (N = 3699, around 25% of students had active IEPs). 

The IACT assessment has four modules, each using a different type of logic puzzle. Scoring is 

done by calculating a raw score for each module (depending on the puzzle type, this could 

be ratio of moves taken to minimum moves required or percent correct answers), then 

converting these raw scores to Z-scores based on the data for the full sample. We combined 

both data sets for these calculations. 

As each set of puzzles has a time limit, an NA score for any given model typically means that 

a student did not interact with that puzzle at all. Lack of interaction with the activity could be 

due to distraction or noncompliance, not necessarily an unsuccessful attempt to solve the 

puzzle (especially given that any interaction with the puzzle, even if an answer was not 

submitted, would be recorded).  

 

Figure 6. Raw scores and standard deviations on IACT modules 1-4, validation study. 

Examining the distribution of scores (Figure 6), we see that Module 1 has notably less 

variation in scores than the other three modules. In fact, 42% of respondents obtained the 

maximum score on Module 1, and 72% scored at least 0.9. This skew means that when the 

module is Z-scored, low scores are heavily penalized. 

Although there are separate assessment forms for elementary (grades 3-5) and middle 

school (grades 6-8), the only difference is that puzzles in the middle-school form are slightly 

more difficult (for instance, a larger set of answer options or more spaces to fill in a grid). 

The skills being tested are identical, so we do not separate analysis into elementary and 

middle school subsets. 
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Reliability 

Initial reliability testing for the combined data set gave a Cohen’s alpha score of only 0.52. 

However, this increases to 0.64 if the Z-score for Module 1 is excluded from analysis. 

Dropping any other module’s score results in a lower alpha. These results are shown in Table 

7. 

Table 7. Cohen’s alpha score when a module is dropped (combined data set)  

Module Dropped n alpha 

none 6470 0.51 

1 6470 0.64 

2 6470 0.41 

3 6470 0.37 

4 6470 0.30 

 

Looking only at the data newly collected for this validity study (Table 8), Cohen’s alpha is 0.54 

when using all module scores and 0.74 when dropping the score for Module 1. 

Table 8. Cohen’s alpha score when a module is dropped (data collected summer/fall 2021) 

Module Dropped n alpha 

none 167 0.54 

1 167 0.74 

2 167 0.41 

3 167 0.37 

4 167 0.28 

 

For the efficacy study, we use IACT modules 2, 3, and 4 for analysis. This measure has an 

internal reliability (Cohen’s alpha) of 0.64 for a large data set and 0.74 for a smaller data set 

more focused on neurodivergent students. 

ACE Measures of Executive Function 

We examine data for 205 students who completed UCSF’s Adaptive Cognitive Assessment 

(ACE). 165 of these students had data for both ACE and IACT. ACE is a validated collection of 

cognitive tests designed for use across age groups, and has been used in studies of math 

achievement and the neuroscience of attention (Coulanges et al. 2021, Mishra et al., 2021). 

The specific tasks used appear in Table 9.  
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Table 9. ACE tasks included in study. 

Task Name Dimension Measured 

BRT Basic Response Time 

Backwards Spatial Span Working Memory 

Flanker Selective Attention 

Task Switch Task Switching 

SAAT Impulsive Response Inhibition 

Scores for each task were calculated using the aceR package in R, developed by UCSF. While 

this package provides a wide assortment of possible metrics for scoring these tasks, we use 

those recommended by the developer: Rate Correct Score (defined as accuracy/mean 

response time) for Task Switch and Flanker, mean response time for BRT and SAAT 

Impulsive, and maximum object span for Backwards Spatial Span. We observed a normal 

distribution of scores for each task (Figure 7): 

 

Figure 7. Distribution of scores on ACE measures, validation study (N = 205). 

We found that scores on the various ACE tasks were weakly to moderately correlated with 

each other. Further, none had a correlation stronger than 0.10 with overall IACT score (mean 

of z-scores for Modules 2-4), indicating that IACT is a suitable measure to use for 

populations with varying executive function proficiencies. These results are shown in 

Table 10. 
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Table 10. Correlation coefficients for ACE and IACT measures, validation study (N=165).  

 BRT SAAT 

Impulsi

ve 

Flanker Task 

Switcher 

Backwards 

Spatial Span 

Overall IACT -

0.07 

0.10 0.00 0.01 0.07 

BRT 1 0.52 -0.23 -0.31 -0.34 

SAAT Impulsive - 1 -0.30 -0.38 -0.20 

Flanker - - 1 0.51 0.09 

Task Switcher - - - 1 0.11 

Backwards Spatial Span - - - - 1 

Linear regression indicates that the only ACE metric with a detectable relationship to the 

IACT score is SAAT Impulsive (p = 0.04), but as with the correlation coefficient (-0.10) the 

effect size is negligibly small (partial eta-squared=0.027).  
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