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In this supplementary material, we provide details about the implementa-
tion of our method and benchmark, as well as more experimental analysis. In
the following, we introduce the backbone architecture and trajectory sampler
in Section 1. We then provide implementation details of learning in Section 2.1
and reward functions in Section 2.2. The proof of our theoretical analysis is pre-
sented in Section 3. We also explain our benchmark construction in more details
in Section 4. We show some additional quantitative and qualitative analysis of
TRAVL in Section 5 and Section 6 respectively. Finally, a high level overview
this work can be found in the video rethinking_clt.mp4.

1 Technical Details of TRAVL

1.1 Backbone Architecture

Given an input rasterization tensor, our backbone network first performs three
layers of 3⇥ 3 convolution with 64 channels. It then applies 4 consecutive Res-
Block units. Each block consists of a 1⇥1, 3⇥3 and 1⇥1 convolutional layer as
well as a skip-connection between input and output features. The input channels
of these 4 units are (64, 256, 1024, 4096) respectively and the convolution kernels
for each layer has the same number of channels as the inputs, except for the
last 1 ⇥ 1 layer that upsamples channels for the next stage. Besides, the 3 ⇥ 3
layer in each unit has a stride of 2 to downsample the feature map. Finally, we
use two additional 3 ⇥ 3 convolutional layers to reduce the channel number to
C = 512 without further downsampling. This produces a final backbone feature
map F 2 H

8 ⇥ W

8 ⇥ 512.

1.2 Trajectory Sampler

As stated in the main paper, we use a trajectory sampler which samples lon-
gitudinal and lateral trajectories with respect to reference lanes. In Figure 1
we show a visualization of a trajectory sample set. As our trajectory sampler
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considers map priors through the Frenet frame, it can produce smooth trajecto-
ries compatible with the lane shapes. This introduces inductive biases to driving
maneuvers and is expected to ease the learning.

1.3 Planned vs. executed trajectory mismatch during MPC

Because our method plans in an MPC fashion, an entire trajectory is selected
as the action but only the initial segment is executed, resulting in a mismatch.
One way we have tried to address this mismatch is through executing an entire
trajectory during rollout (instead of replanning in an MPC fashion) to collect
experience into the replay bu↵er, yet we didn’t notice significant gains over our
current approach. One potential reason for this is that, even though using the
entire trajectory is less theoretically complex, it also significantly reduces the
number of simulated (state, action) pairs since an action now takes longer sim-
ulation time to execute. With limited computation resources, such an approach
might degrade the performance due to less data.

2 Learning

2.1 Learning Objective

Recall that our learning process alternates between the policy evaluation and
policy improvement step. The policy evaluation step we use is described in Eq. 3
in the main paper, as well as below

Qk+1  argmin
Q✓

ED

2

64
�
Q✓(s, ⌧)� Bk

⇡
Qk(s, ⌧)

�2
| {z }

Q-learning

+↵k E⌧ 0⇠µ(⌧ 0|s) (R✓(s, ⌧
0)� r0)

2

| {z }
Counterfactual Reward Loss

3

75 ,

s.t. Q✓ = R✓ + V✓, V✓ = �Pk

⇡
Qk. (1)

The policy improvement step is described in Eq. 1 in the main paper, as well as
below

⇡k+1  (1� ✏) argmax
⇡

Es⇠D,a⇠⇡[Q
k+1(s, a)] + ✏U(a), (2)

For the policy evaluation step, we use SGD to optimize an empirical objective
(i.e., a mini-batch estimation) of Eq. 1. Note that Eq. 1 can be converted as a
Lagrangian term. Essentially, we take gradient steps of the following loss function
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L over parameter ✓ to obtain the optimal solution for Eq. 1,
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However, this involves an expensive double loop optimization, i.e., outer loop
for iterating Qk and inner loop for minimizing L. We hence simply apply one
gradient step for the inner loop updating Qk to Qk+1. In practice, we also found
using a cross-entropy loss to minimize the KL-divergence between e�R✓ and e�r

0

helps stabilize training compared to using `2 loss for the counterfactual term,
possibly because the former one is less prone to outlier estimation of r0 which
is caused by our approximated world modeling. Our overall learning process is
summarized in Algorithm 1.

Implementation Details: We train our method using the Adam optimizer [3].
We use a batch size of 10 and learning rate of 0.0001. To accelerate training,
we collect simulation data asynchronously with 9 instances of the simulator and
store them in a prioritized replay bu↵er. We initialize the ✏ as 0.1 and linearly
decay it to 0.01 in the first 200k steps, and terminate learning at 1 million steps
as the model converges. Besides, we use � = 0.95, ↵ = 1.0 and � = 0.01.

Our imitation learning baselines use the same input representation and net-
work as our model. We replace the learning loss with `2 loss for the control based
model and max-margin for the trajectory sampling based model [7]. We use a
well-tuned auto-pilot model as our expert demonstration, which has access to all
ground-truth world states in the simulation. Note that we use rasterization of
detection boxes as inputs for all approaches. Therefore the baselines are similar
to the privileged agent in LBC [1].
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Fig. 1: Example samples from our trajectory sampler which uses map informa-
tion.

2.2 Reward Function

Our reward function R is a linear combination of progress, collision, and lane
following terms:

R(st, ⌧ t, st+1) = Cp ·Rp(s
t, ⌧ t, st+1) + Cc ·Rc(s

t, ⌧ t, st+1) + Cl ·Rl(s
t, ⌧ t, st+1),

where Cp = 0.6, Cc = 40.0, Cl = 1.0 are constants designed to balance the
relative scale between the reward terms. Rp is the progress term, and rewards
the agent for distance traveled along the goal lane. Here, a goal lane is defined by
an external router and we assume to have access to it. We use Dtravel to denote
the traveled distance between the projections of st and st+1 on the goal lane, and
Dlane to denote the distance between st and its projection. The progress reward
is defined as Rp = e�0.2⇥DlaneDtravel, where the term e�0.2⇥Dlane penalizes the
agent for driving further from the goal lane (Dlane). Rc is a term penalizing the
agent for collisions, and is defined as:

Rc(s
t, ⌧ t, st+1) =

⇢
�1.0 if the agent has collided at st+1,
0.0 otherwise.

Finally, Rl is a lane following term penalizing the agent for deviating from the
goal lane. For an action ⌧ = {(x0, y0), (x1, y1), · · · (xT , yT )}, Rl is defined as the
sum of the negative distances between each (xi, yi) and its projection on the
goal lane.

3 Theoretical Analysis

Lemma 1. Assuming R is bounded by a constant Rmax and ↵k satisfies

↵k <

✓
1

�kC
� 1

◆�1 ✓⇡k

µ

◆

min

, (4)

with C an arbitrary constant, iteratively applying Eq. 1 and the policy update
step in Eq. 2 converges to a fixed point.
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Algorithm 1 TRAVL: TRAjectory Value Learning

Require: Simulator, Training Scenario Set
Initialization: D  ;, ⇡(⌧ |s) Uniform(⌧), TRAVL network  random weights.
Asynchoronous Experience Collection:
1: while Learning has not ended do
2: Sample a scenario variation from the training scenario set.
3: Produce (st, ⌧ t, rt, st+1) by interacting the policy ⇡ and the simulator on the

sampled scenario.
4: Store (st, ⌧ t, rt, st+1) to the replay bu↵er D.
5: end while
Learning:
6: for k = 0, · · · , max iter do
7: Draw (mini-batch) samples (st, ⌧ t, rt, st+1) from D.
8: Draw a set of trajectory samples T given st.
9: Compute R✓(s

t, ⌧ t), V✓(s
t, ⌧ t) and R✓(s

t, ⌧ 0), V✓(s
t, ⌧ 0) for ⌧ 0 2 T using TRAVL

network.
10: Evaluate r0 = R(st, ⌧ 0, s0) for ⌧ 0 2 T using reward functions.
11: Compute L using Eq. 3.
12: Update network parameter ✓ using gradients of L.
13: Q✓  R✓ + V✓.

14: ⇡(⌧ |s) 
⇢
argmax⌧ Q✓(s, ⌧), with probability 1� ✏
randomly sample ⌧ , with probability ✏.

15: end for

Proof. To prove lemma 1 is correct, it su�ces to show that the updating rule in
Eq. 1 leads to limk=1||Qk+1�Qk||1= 0. To find out the optimal Q✓ at iteration
k, we take the derivative of the R.H.S. and set it to 0 as follows
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Now we will interchange ⌧ and ⌧ 0 in the second term of the equation above
(↵kE⌧ 0⇠µ[· · ·]) and use the fact that Eµ[· · ·] = E⇡[

µ

⇡
· · ·] to obtain.
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Thus by definition of Qk+1 in Eq. 1, we have

) Qk+1(s, ⌧) = Q✓(s, ⌧)

=
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Note that Bk

⇡
= R+ �Pk

⇡
, and we can further simplify Qk+1 as

Qk+1 = Bk
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Now, we only need to show Eq. 6 leads to ||Qk+1 �Qk||1! 0. First, it can be
shown that ||Bk

⇡
Qk � Bk�1

⇡
Qk�1||1 �||Qk � Qk�1||1 following [4]. Therefore

we have
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Therefore, we have
lim
k!1

||Qk+1 �Qk||1= 0.

⇤.

Theorem 1. Under the same conditions as Lemma 1, our learning procedure
converges to Q⇤.

Proof. To show the sequence of Qk converges to Q⇤, we first show that Qk+1 is
su�ciently close to the following value Q̂k+1 when k is large,

Qk+1 ! Q̂k+1 :=
�
I � �Pk

⇡

��1


⇡k

⇡k + ↵kµ
R+

↵kµ

⇡k + ↵kµ
E⇡kr0

�
. (11)

To see this, we take a subtraction between (I � �Pk

⇡
)Qk+1 and (I � �Pk

⇡
)Q̂k+1.
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Note that Pk

⇡
is the transition matrix coupled with policy ⇡. This means that

for arbitrary matrix A, ||P⇡A||1 ||A||1. Therefore, we have
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Besides, it is also easy to see that
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Again, since Pk
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is the transition probability matrix, we know (1� ||�Pk
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Hence, we have
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) Qk+1 ! Q̂k+1. (15)

When k ! 1, given this fact and ↵k ! 0, we have

Q1 = (I � �P1)R.

Note that this is exactly the fixed point of the standard Bellman operator, i.e.,
Q⇤ = BQ⇤ = R+ �P⇤Q⇤. Therefore, we know Q1 = Q⇤. ⇤.

4 Benchmark Dataset

This section provides additional details about the free-flow and targeted sce-
narios we use for our benchmark datasets, including how we generate and split
scenarios into train, validation and test sets.

Free-flow Scenarios: Our free-flow dataset aims to model nominal tra�c con-
ditions, and consists of 7 scenario types. Di↵erences in these scenario types
include having more or less aggressive actors, actors making fewer lane changes,
a larger proportion of large vehicles (e.g., trucks), faster actors, and larger vari-
ations in actor speed. Each scenario type is defined by specifying a distribution
over the ego-vehicle’s initial state (e.g., speed, location), actor speeds, actor
classes (e.g., car, bus, truck), actor IDM [6] profile (e.g., aggressive, cautious),
and actor MOBIL [2] profile (e.g., selfish, altruistic). Additional parameters con-
figure actor density and the map (e.g., map layout, number of lanes). Sampling
a free-flow scenario amounts to first uniformly sampling a scenario type and
then sampling the scenario-defining parameters from the aforementioned distri-
butions.

Targeted Scenarios: Our targeted scenario set consists of 24 distinct scenario
types covering 3 common ego-routing intentions for highway driving. Scenarios
corresponding to di↵erent ego intentions have di↵erent success criteria:

1. Lane Follow: Ego-vehicle must reach a goal point in the lane without devi-
ating from the lane.
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2. Lane Change: Ego-vehicle must make a lane change towards a target lane
and then reach a goal point on the target lane.

3. Lane Merge: Ego-vehicle is driving on a lane that is ending and must merge
into another lane.

Besides, any collision or speed limit violation happens during the scenario also
accounts as a failure. To generate diverse tra�c scenarios, the 3 aforementioned
scenes can be combined with zero or more actors, where each actor can be
scripted with 1 of 5 behavior patterns (braking, accelerating, blocking lane, cut
into lane, negotiating lane change). A concrete example of a scenario type is a
lane follow scenario where an actor is cutting in front of the ego-vehicle from
another lane. Through varying the ego-routing intention, actor behaviors, and
actor placements, we designed 24 scenario types for our targeted scenario set,
which aim to cover the space of tra�c interactions that would be encountered
during driving.

Each scenario type is parameterized by a set of behavioral and map param-
eters, and an endless amount of scenario variations can be generated through
varying these parameters. Behavioral parameters control the details of the inter-
action between the ego-vehicle and other actors, such as initial relative speeds,
initial relative distances, and how an actor performs a maneuver (e.g., aggres-
siveness of cut-in). Map parameters control the layout of the map such as the
curvature of the roads, the geometry of a merging lane, and the number of lanes.

Note that while the process manually designing scenarios require human ef-
fort (e.g . compared to learned or adversarial-based approaches,) we’d like to
highlight that such a creation process encodes prior knowledge and makes the
created scenarios more semantically meaningful, as each type of scenario targets
a specific capability or requirement of autonomous driving. This ensures we have
a good coverage of real-world tra�c situations. Our scenarios can also adapt to
di↵erent AV policies since we use intelligent actors and smart triggers which can
adjust automatically depending on the AV’s maneuvers.

Creating Dataset Splits: As described in the benchmark section of the main
text (Section 4), we use the all-pairs methodology to construct our test set for
targeted scenarios. While enumerating all possible parameter combinations thor-
oughly covers the scenario space, it is too expensive as the number of combina-
tions grows exponentially with the number of configurable parameters. All-pairs
produces a much smaller set by carefully selecting the combinations of parameter
variations [5], i.e. a set that ensures all possible combinations of variations for
any pair of parameters are presented. The assumption behind this approach is
that many interesting behaviors can be triggered by changing a single parameter
or a pair of parameters. As a result, a test set with this property provides good
coverage of the input space.

However, the standard all-pairs approach assumes that all parameters are
discrete, whereas many of our scenario parameters are continuous. To this end,
we partition each of our continuous scenario parameters into non-overlapping
buckets (a contiguous range of values). For example, the time an actor takes
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to cut in front of the ego-vehicle is a continuous parameter. We can bucket the
values for this parameter into [1, 2] seconds, [3, 4] seconds and [5, 6] seconds,
changing the semantics of the cut-in behavior from aggressive to mild. This
essentially discretizes continuous variables into coarse-grained discrete variables,
upon which the all-pairs approach can be applied. Once the discrete choice of
which bucket to use has been made for a scenario’s continuous parameters, we
generate the exact value of each such parameter by uniform sampling within the
selected bucket.

5 Metrics Breakdown

In this section we show the metrics in Table 1 of the main paper broken down by
scenario types to provide more fine-grained analysis. Specifically, we categorize
scenarios in our targeted set into normal, negotiating and reacting scenarios.
Normal scenarios are those nominal scenarios such as lane following with normal-
behaving actors (driving in their lane without any extra maneuvers) in the scene.
Negotiating scenarios require negotiations with other actors, such as squeeze-in
lane changes and merges. Finally, reacting scenarios are those where the ego-
vehicle must react to another actor, e.g . an actor cutting in.

From Figure 2, we see that most methods are able to achieve low collision rate
and satisfactory progress on the normal scenarios. However, for more complex
negotiating and reacting scenarios, baseline methods have di�culty exhibiting
safe and e�cient driving maneuvers. Specifically, we can see that control sig-
nal based methods have very high collision rate on di�cult scenarios, possibly
due to the lack of long-term reasoning. Second, on-policy RL techniques such as
PPO and A3C cannot achieve good performance. Note that although the policy
learned by A3C+T has low collision, it is too conservative and does not progress
very much compared to other methods. Finally, combining our trajectory based
formulation and o↵-policy learning achieves better performance, e.g ., RAIN-
BOW+T, and our TRAVL is even better with the proposed e�cient learning
paradigm.

6 Qualitative Results

In this section, we show several qualitative results of our learned TRAVL agent
navigating in closed loop simulation. The agent is controlling the center pink
vehicle. Beside each actor is the velocity in m/s. Below velocity, acceleration in
m/s2 is shown.

In Figure 3, the agent is driving in scenario where it must merge onto the
highway while taking into account other actors in the scene. We see that our
agent has learned to drive in complex free-flow tra�c situations which mimic
the real world.

In Figure 4, we see our agent in a targeted scenario which tests the ability
to react to actors cutting in. We see our agent performs the correct maneuver
by reacting quickly and slowing down.
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Fig. 2: Metrics broken down by scenario types. Top row shows metrics for Normal
scenarios. Middle row shows metrics for Negotiating scenarios. Bottom row shows
metrics for Reacting scenarios. We see that while control based methods can
avoid collision for Normal scenarios, Reacting scenarios prove more challenging.

In Figure 5, the agent is tasked to squeeze between the two actors. We see
the agent has learned to slow down in order to make this lane change.

In Figure 6, this scenario stress tests the agent by initializing it at a very
low velocity and requiring it to merge into a crowded lane. We see the agent has
learned to speed up to in order to merge into the tra�c.

In Figure 7, we see a failure case of our model. In this lane change scenario,
we see a fast-travelling actor decelerating. The ego-vehicle mistakenly initiates
a lane change in front of that actor when that actor is still going much too fast.
Once our agent realizes that the actor cannot slow down in time and that this
will cause a collision, it makes a last minute adjustment to avoid collision. While
collision is avoided, this is still an unsafe behavior.

Fig. 3: Our agent successfully navigates a free-flow scenario where it must merge.
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Fig. 4: Our agent reacts to an actor cutting in during a targeted scenario.

Fig. 5: Our agent slows down in order to lane change between two actors.

Fig. 6: Our agent is initiated with very low velocity. It has learned that it must
speed up in order to merge into tra�c.
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Fig. 7: Here we see a failure case of our model. The agent makes a bad decision to
initiate a lane change before making a last minute adjustment to avoid collision.
While collision is avoided, this is still unsafe behavior.
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