

Learning to Drive via Asymmetric Self-Play

Chris Zhang, Sourav Biswas, Kelvin Wong, Kion Fallah, Lunjun Zhang, Dian Chen, Sergio Casas, Raquel Urtasun

https://waabi.ai/selfplay

Goal: Learn realistic driving policies that handle complex, safety-critical scenarios.

How can we scale training data beyond real-world collection?

Challenges

The problem with relying solely on real data:

- Most nominal driving is boring, with little learning signal.
- Collecting real safety-critical scenarios is dangerous.
- Upsampling existing scenarios lacks diversity.

Existing synthetic data approaches:

- MARL often converges to cooperative, nominal driving.
- Manually designed scenarios are difficult to scale.
- Adversarial optimization might not always discover useful training scenarios; challenging to control difficulty.

Our approach

An asymmetric self-play mechanism in which

- 1) challenging
- 2) solvable
- 3) realistic

scenarios naturally emerge from interactions between teacher and student policies with differing objectives.

Asymmetric Self-Play

Main Idea: The teacher (red, green) learns to generate realistic scenarios where the student (blue) makes a mistake (top) while demonstrating a solution itself (bottom).

Learning: Optimize challenging and solvability terms under realism regularization:

$$R_T(m{s}_1,m{m}) = \underbrace{C(\pi_{TS},\mathcal{S})}_{ ext{Challenging}} - \underbrace{C(\pi_{T},N)}_{ ext{Solvable}} + eta \underbrace{(I_{ ext{data}}(\pi_T) + I_{ ext{data}}(\pi_{TS}))}_{ ext{Realistic}}$$
 $R_S(m{s}_1,m{m}) = -C(\pi_{TS},\mathcal{S}) + eta I_{ ext{data}}(\pi_{TS})$

$$C(\pi, \mathcal{A}) = \mathbb{E}_{\pi | m{s}_1, m{m}} \left[\sum_{i \in \mathcal{A}} c_i(m{s}_{\leq T})
ight]$$
 (collision) $I_{ ext{data}}(\pi) = \mathbb{E}_{\pi | m{s}_1, m{m}} \left[-\log p_{ ext{data}}(m{s}_{\leq T} | m{m})
ight]$ (likelihood)

Example scenarios discovered over the course of training:

Traffic Modeling

The **student** policy achieves SOTA on Argoverse2 motion dataset and synthetic safety-critical scenarios.

	SAFETY	B	A_{RG}	overse2	
Model	Col.	FDE	Col.	Offroad	JS
Closed-loop (IL) [68]	40.41	4.95	1.02	3.14	0.4
TrafficSim $(IL+Prior)$ [68]	26.69	5.13	0.33	3.36	0.4
SMARTS $(MARL)$ [90]	13.65	16.3	8.12	17.2	0.5
Emb. Syn. (Curation) [11]	27.75	6.89	2.02	4.30	0.4
KING (Adversarial) [28]	12.65	6.33	1.16	3.29	0.4
Ours	8.16	5.04	0.24	3.39	0.4

End-to-end Autonomy

Teacher policy can be zero-shot deployed to interact with autonomy in simulation.

These training scenarios result in more robust autonomy policy.

Train Data	Priv	GSR (†)	$\operatorname{Col}(\downarrow)$	mTTC (Δ)	$rac{ ext{Prog}}{(\Delta)}$	$rac{ ext{P2E}}{(\Delta)}$	$egin{array}{c} ext{Accel} \ (\Delta) \end{array}$
Expert	✓	90.6	0.0	5.82	232	0.17	0.85
SAFETY HIGHWAY IL [68] Adv. [28] Ours		80.1 40.2 45.6 83.1 92.6	0.0 58.3 59.7 6.2 0.0	5.83 3.33 3.61 5.54 5.77	236 280 277 253 247	0.35 1.01 0.90 0.45 0.36	0.91 1.41 1.39 0.99 0.88

