
Reconstructing Objects in-the-wild for Realistic Sensor Simulation
Supplementary Material

Ze Yang1,2, Sivabalan Manivasagam1,2, Yun Chen1,2, Jingkang Wang1,2, Rui Hu1, Raquel Urtasun1,2

Waabi1, University of Toronto2

{zeyang, manivasagam, yun, wangjk, urtasun}@cs.toronto.edu, rhu@waabi.ai

Training frames Testing frames
Fig. 1. Example training and testing frames of the PandaVehicle dataset.

In the supplementary material, we provide implementation
details about our method and the experiments, additional
qualitative visualizations, and limitations of our method. We
first describe the details of our dataset in Sec. I. Then we
describe the implementation details of our model in Sec. II.
Next, we show additional details of the baseline models in
Sec. III. After that, we showcase additional visualizations
and results on downstream applications in Sec. IV. Finally,
we analyze the limitations of our model in Sec. V.

I. DATASET AND EXPERIMENTAL SETTINGS

The PandaVehicle dataset contains 10 vehicles curated
from PandaSet [1] with diverse shape and appearance under
complex illumination and occlusion. The data was captured
by a self-driving vehicle platform equipped with six cameras
(front, front-left camera, left, front-right, right and back
cameras) and two LiDARs (a 360◦ mechanical spinning
LiDAR and a forward-facing LiDAR). All the sensors are
calibrated. Each asset is captured when the self-driving
vehicle (SDV) passes by. We employ the left camera for
training and the front-left camera for evaluation, and we
also use the 360◦ mechanical spinning LiDAR to train the
model. Each asset has on average ∼24 views for training.
Please refer to Fig. 1 and supplementary video for example
frames. Since we focus on foreground vehicles, we use an
off-the-shelf [2] algorithm to estimate the segmentation mask
for each frame in the camera video. In addition to using
the inferred segmentation masks as supervision for NeuSim,
they are also used for evaluation to filter foreground pixels in
the quantitative comparison. Please see Table I for detailed

information for all 10 selected vehicles.

II. IMPLEMENTATION DETAILS

Our network architecture is similar to IDR [3] and consists
of three MLPs to encode the SDF, albedo, and material
shininess. The SDF network fSDF is a 8-layer MLP with a
hidden size of 256 and Softplus activation. A skip connection
is used to connect the input with the output of the fourth
layer in the SDF MLP. We initialize the SDF MLP so it
produces an approximate SDF of a sphere [4]. We initialize
the learnable parameter β = 20 in the sigmoid-like function
for conversion from SDF to α (Eqn. (3) in the main paper).
The reflectance network freflectance are implemented as 4-layer
MLPs with a hidden size of 256 and ReLU activation. Both
MLPs take as input the point location x, normal n and
the feature output of the last layer fSDF. We use the Adam
optimizer with learning rate of 5e−4. The coefficients used
for computing running averages are left at default values of
β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. During training,
the loss weights are λlidar = 0.1, λmask = 0.1, λEik = 0.1
for SDF regularizer and λsym = 1.0 for structural symmetry
prior, respectively.

1) Background Model: Outdoor scenes contain back-
grounds (buildings, trees, sky, etc.) that are arbitrarily far
away, which leads to resolution issues in volume rendering
(Eqn. (1) in the main paper). NeRF [5] addresses this
issue by utilizing Normalized Device Coordinates (NDC)
parametrization, but it cannot cover the space outside
the reference view’s frustrum. To address this limitation,
NeRF++ [6] propose to use an inverted sphere parameter-



Ground-truth View-warping NeRF++ NeRS Ours

Fig. 2. Novel view synthesis results on challenging data.

ization [6] to participate space into an inner sphere volume
and outer volume, where the foreground objects and all the
cameras are normalized inside the inner sphere volume. This
works well for 360◦ captures centered on close objects.
However, this can be problematic when the foreground
objects are far from the sensors or the sensors move along a
long trajectory path. This formulation would require a large
inner sphere volume to cover the space of foreground objects
and all sensors, and this hurts the sampling resolution. In
our scene representation, we assume the rendered ray r(t)
intersects with the object’s region of interests (acquired from
an annotation or an automatic detection output) at tnear and
tfar. We divide the traversed space into foreground ({tnear <
t < tfar}) and background. To compute the background scene
radiance, we sample the ray’s intersections with Multiple-
Sphere Images (MPI) surrounding the object of interest. We
generate the radii for MSI by linearly interpolating inverse
depths.

III. BASELINE DETAILS

We compare our model with the state-of-the-art baselines:
the volume rendering method NeRF++ [6], NeuS [7] and the
inverse graphics model NeRS [8], NVDiffRec [9]. We choose
these baselines as they model reflectance and work well in
our outdoor setting. We also compare against geometry-based
method LiDAR-guided view-warping [10] and SAMP [11].
Next, we next provide the implementation details of these
baseline models.

A. Volume Rendering-based Baselines

1) NeRF++: For NeRF++ [6], we do scene normalization
to move the camera’s trajectory within the unit sphere. We
adopt the same hyperparameters from the original code1,
except we train 100k iterations because the PandaVehicle
dataset has sparser views and the model converges faster.

1https://github.com/Kai-46/nerfplusplus

2) NeuS: For NeuS [7], we follow the official code repos-
itory2 to perform scene normalization to make the asset’s
region of interest fall inside the unit sphere, and model the
background by a separate model similar to NeRF++ [6]. We
train each asset for 200k iterations.

B. Inverse Graphics-based Baselines

1) NeRS: For NeRS3 baseline, we downscale the input
images 4× (in contrast to 2× in NeRSDF and NeRF++)
due to GPU memory limitations. We initialized the cuboid
template with the assets’ coarse 3D dimensions and set the
level of unit ico-sphere as 6. As the precise camera poses are
given, we employ a three-stage training process: sequentially
optimizing the shape, texture, and illumination parameters.
To ensure better visual quality and semantic metrics, we
increased the weights of the chamfer loss and perceptual loss
to 0.04 and 1.0, respectively. We also removed off-screen loss
as not all input views contain the complete vehicle shapes.
Moreover, we increased the training iterations on the three
stages to 3k, 12k, 3k since more input views are provided in
the PandaVehicle dataset and it takes longer to converge. To
reconstruct missing parts and obtain better evaluation results
on extrapolated views, we also applied symmetry constraints
to the deformed textured meshes along the heading axis. The
learning rate of Adam optimizer in the three stages is 1e−4.

2) NVDiffRec: NVDiffRec [9] is an efficient differentiable
rendering-based 3D reconstruction approach that combines
differentiable marching tetrahedrons and split-sum environ-
ment lighting. It achieves SotA performance on a wide
variety of synthetic datasets with dense camera views. We
follow the official code repository4 and set the tetrahedron
grid resolution as 64 and the mesh scale as 5.0 (real vehicle
scale). The model is trained for 5k iterations (batch size

2https://github.com/Totoro97/NeuS
3https://github.com/jasonyzhang/ners
4https://github.com/NVlabs/nvdiffrec

https://github.com/Kai-46/nerfplusplus
https://github.com/Totoro97/NeuS
https://github.com/jasonyzhang/ners
https://github.com/NVlabs/nvdiffrec


Original scene Actor injection Original scene Actor injection

Original scene Actor injection Original scene Actor injection

Original scene Actor injection Original scene Actor injection

Injected actor Injected actor

Injected actor Injected actor

Injected actor Injected actor

Fig. 3. We can generate consistent multi-sensor simulation using our reconstructed assets. The reconstructed asset performs a right turn and merges into
the main road. We visualized LiDAR and camera data for sampled frames with/without the added actor. Time increases going from left to right and from
top to bottom.

volume rendering

mesh rendering

Fig. 4. Visual comparison of mesh rendering and volume rendering. From left to right we show the rotation of the asset from different viewpoints.

8) with a learning rate exponentially decayed from 0.03 to
0.003.

C. Geometry-based Baselines

1) LiDAR-guided View-warping: We first aggregate Li-
DAR points with the Iterative Closest Points (ICP) algorithm



neural rendered shadow rasterization-based shadow neural rendered shadow rasterization-based shadow

Fig. 5. Visualization of shadows generated by different approaches. We render shadows for the added actor at two different poses. For neural rendered
shadow (left image in each pair), we extract the shadow weight from NeuSim’s rendered results with the ground. For rasterization-based shadow (right
image in each pair), we use a rasterization engine to generate the shadow based on the geometry of the inserted actor, assuming a top-down light.

Fig. 6. Relighting results when rotating the environmental lighting map E . Top: Asset example 1. Bottom: Asset example 2. From left to right we show
the change in environmental lighting rotation.

to create a surfel representation for the asset. Given a testing
viewpoint, we render the surfel asset to this viewpoint and
generate the corresponding depth map. Using the rendered
depth map, the source camera image and the camera cali-
bration, we generate the object’s texture using the inverse
warping operation as in [12]. To choose which source image
to warp to the target frame, we warp all available source
images to the target view and choose the one with the highest
overlap with the rendered surfels.

2) SAMP: For SAMP [11], we first processe the CAD
library and make each mesh watertight and simplified, we
compute volumetric SDFs for each vehicle in metric space
(volume dimension 100 × 100 × 100). Following [11], we
apply PCA on the SDF volumes and set the embedding
dimension as 25. In the inference time, we jointly optimize
the shape latent code, a scaling factor on the SDF (handle
difference shapes) and relative vehicle pose (handle rotation,
translation) to fit the LiDAR points. We adopt a L1 loss on
the SDF value and a total variation loss on the scale factor
to penalize abrupt local SDF changes. The weights of data
and regularization terms are 1 and 0.1. We use the Adam
optimizer with a learning rate of 0.01. We use marching
cubes to extract the mesh from the optimized SDF volume.
We then use a differentiable renderer to optimize the 2D UV
texture for each asset.

IV. ADDITIONAL RESULTS

We now provide more results and details of our model on
in-the-wild data.

A. Novel View Synthesis
We show additional novel view synthesis results in Fig. 2.

Since the recorded vehicles are far away from the cameras,
we enlarge the images. Our model captures more fine-grained
details and generalizes better.

B. Efficient Rendering

We can also render the baked asset efficiently using off-
the shelf rasterization engines. Mesh rendering is on average
three orders of magnitude faster than volume rendering
(76.79 frames per second (FPS) vs 0.03 FPS for a 960 x
540 image resolution) and still provides good visual quality.
Table II shows an image metrics comparison between the
volume rendering result and mesh rendering result. The
quantitative metrics show that the performance is competitive
with other neural volume rendering baseline methods, while
being much faster to render. Fig. 4 shows a visual comparison
between volume rendering and mesh rendering. They look
close to indistinguishable.

C. Sensor Simulation

Importantly, we can use our reconstructed assets to gen-
erate consistent multi-sensor simulation for self-driving. In
Fig. 3, the injected NeRSDF vehicle asset performs a right
turn and merges into the main road. We render the image
segment using the NeuSim baked asset and a rasterization
engine. Additionally, we render the asset’s shadow to ensure
the inserted actor region looks realistic. We experiment
with two approaches. In the “neural rendered” approach, we
extract the shadow weight from NeuSim’s rendered results
with the ground, and apply it to the background in the
target scene. In the “rasterization-based approach,” we use
a rasterization engine and performed shadow mapping to
generate the shadow mask for the inserted actor, assum-
ing a top-down light (Fig. 3). Finally, a neural network
is applied to blend the rendered actor and shadow with
the background [12]. Fig. 5 shows a comparison between
shadows generated by the neural-rendered approach and the
rasterization-based approach. To render the simulated LiDAR
we use the asset’s mesh geometry and perform raycasting



Actor UUID Log ID Train frames (Left camera) Test frames (Front-left camera)

1be68ce6-68c5-467f-abb1-fa5e03d1db7a 053 33-36, 40-49 25-41

1d79eded-2fb0-4f89-ba35-323926f45ade 139 46-63 44-55

2160d735-3fda-49f8-9bd9-e2cba3b51faa 038 34-47 27-41

2ee4d8f8-af0a-48f3-bb6c-ed479a7829e7 039 47-67 28, 31-59

526e2f5e-e294-415c-aad6-578d27921465 030 38-78 35-55

56e10a51-35ed-43b0-837c-cea8aff216cc 139 26-52 25-46

5ce5fb69-038d-4f82-8c64-90b73c6f6681 030 17-62 0-45

94c06b25-d17a-4ee7-a2df-7faa619bee89 035 49-58, 60-61 47-51

ba222d39-2f13-4849-8ff4-91e247d5cedf 120 12-37 0-25

f7bd1486-1fbe-4f33-ba28-f00dae3e0298 139 57-77 54-69

TABLE I
ASSET ID, LOG ID AND CAMERA IMAGE ID FOR THE 10 SELECTED ASSETS FROM PANDASET [1].

Rendering FPS ↑ PSNR↑ SSIM↑ LPIPS↓

Volume Rendering 0.03 22.44 0.692 0.202
Mesh Rendering 76.79 19.87 0.609 0.239

TABLE II
COMPARISONS OF VOLUME RENDERING AND MESH RENDERING.

according to the LiDAR sensor’s extrinsics and intrinsics. We
then convert the simulated LiDAR point cloud and real point
cloud into a spherical depth-image representation and merge
the point clouds to ensure realistic occlusion and LiDAR
shadows [13], [14]. By using the same baked asset for both
camera and LiDAR simulation, we ensure that the simulated
data for both sensors match.

1) Control over appearance and illumination: We rotate
the environmental lighting map E and show the rendering re-
sults under novel lighting conditions for two different assets
in Fig. 6. Please see our video for additional visualizations.
With the asset’s texture and material properties constant, we
can generate realistic variations of the asset views.

V. LIMITATIONS

Our model has difficulties reconstructing certain glass
materials that reflect camera rays while LiDAR rays pen-
etrate. This inconsistency of the sensor observations will
cause artifacts on the surface. Additionally, our Phong-
based reflectance model cannot handle complex reflection
and refraction well, or infer shadows casted on the observed
view. Given sparse sensor data, we plan to explore how
to leverage more complex reflectance and lighting models
that better handle these effects in future work. Our model
also require good camera and LiDAR calibration to ensure
alignment of observations across sensors.

REFERENCES

[1] P. Xiao, Z. Shao, S. Hao, Z. Zhang, X. Chai, J. Jiao, Z. Li, J. Wu,
K. Sun, K. Jiang, et al., “Pandaset: Advanced sensor suite dataset for
autonomous driving,” in ITSC, 2021. 1, 5

[2] A. Kirillov, Y. Wu, K. He, and R. Girshick, “Pointrend: Image
segmentation as rendering,” in CVPR, 2020. 1

[3] L. Yariv, Y. Kasten, D. Moran, M. Galun, M. Atzmon, R. Basri, and
Y. Lipman, “Multiview neural surface reconstruction by disentangling
geometry and appearance,” in NeurIPS, 2020. 1

[4] M. Atzmon and Y. Lipman, “SAL: Sign agnostic learning of shapes
from raw data,” in CVPR, 2020. 1

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoor-
thi, and R. Ng, “NeRF: Representing scenes as neural radiance fields
for view synthesis,” in ECCV, 2020. 1

[6] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “NeRF++: Analyzing
and improving neural radiance fields,” arXiv, 2020. 1, 2

[7] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “Neus:
Learning neural implicit surfaces by volume rendering for multi-view
reconstruction,” 2021. 2

[8] J. Y. Zhang, G. Yang, S. Tulsiani, and D. Ramanan, “Ners: Neural
reflectance surfaces for sparse-view 3d reconstruction in the wild,” in
NeurIPS, 2021. 2

[9] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans,
T. Müller, and S. Fidler, “Extracting triangular 3d models, materials,
and lighting from images,” in CVPR, 2022, pp. 8280–8290. 2

[10] S. Tulsiani, R. Tucker, and N. Snavely, “Layer-structured 3d scene
inference via view synthesis,” in ECCV, 2018, pp. 302–317. 2

[11] F. Engelmann, J. Stückler, and B. Leibe, “Samp: shape and motion
priors for 4d vehicle reconstruction,” in WACV. IEEE, 2017, pp.
400–408. 2, 4

[12] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam,
S. Xue, E. Yumer, and R. Urtasun, “Geosim: Realistic video simulation
via geometry-aware composition for self-driving,” in CVPR, 2021. 4

[13] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren,
and R. Urtasun, “Advsim: Generating safety-critical scenarios for self-
driving vehicles,” in CVPR, 2021. 5

[14] J. Fang, X. Zuo, D. Zhou, S. Jin, S. Wang, and L. Zhang, “Lidar-
aug: A general rendering-based augmentation framework for 3d object
detection,” in CVPR, 2021. 5


	Dataset and Experimental Settings
	Implementation Details
	Background Model

	Baseline Details
	Volume Rendering-based Baselines
	NeRF++
	NeuS

	Inverse Graphics-based Baselines
	NeRS
	NVDiffRec

	Geometry-based Baselines
	LiDAR-guided View-warping
	SAMP


	Additional Results
	Novel View Synthesis
	Efficient Rendering
	Sensor Simulation
	Control over appearance and illumination


	Limitations
	References

