Supplementary Materials for
GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting

Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, Raquel Urtasun
Waabi, University of Toronto
{acui, sergio, kwong, ssuo, urtasun}@waabi .ai

This document presents additional experiments in Section
I that support the claims in the main paper: improved
robustness to rare SDV states, improved sample efficiency,
improved runtime as well as providing additional insights
via qualitative comparisons on both urban and highway
scenarios. Additionally, implementation details are provided
in Section II for improved reproducibility.

I. ADDITIONAL EXPERIMENTS

Viewpoint sensitivity analysis: Self-driving is a safety-
critical application. As such, it is important to evaluate the
robustness of autonomy components with respect to rarely
seen vehicle states. In this experiment, we simulate the self-
driving vehicle (SDV) in rare states by shifting its heading
from its original pose recorded in the log (i.e., rotating
the scene around the ego vehicle centroid). We divide the
scenarios in the validation set of Argoverse 2 into 8 rotation
buckets {[0°,45°),[45°,90°),...,[315°,360°)} In particu-
lar, Fig. 1-Left shows the bucketed BrierMinFDE@K=6. We
can observe that GORELA’s performance is almost constant
across buckets. We believe the small offsets are due to
different scenarios being on every bucket. On the other
hand, the baselines (MultiPath[1], LaneGCNJ[2], MTP[3],
Multipath [1], SceneTransformer[4]) have a much higher
variability over different rotation buckets. To make sure this
effect comes from the rotation invariance of our method
and not our high-level architecture, we include the ablation
of GORELA without PairPose, which preserves the same
architecture but doesn’t use relative positional encoding on
the edges of the graphs. We include a box plot in Fig. 1-
Right, which directly displays the variance across buckets.
Finally, we showcase this qualitatively in Fig. 2. It is obvious
that the baselines’ predictions when performing inference on
the original vs. the rotated scenarios are very inconsistent. In
contrast, GORELA’s predictions are exactly the same thanks
to its viewpoint invariance.

Sample efficiency curves: Fig. 3 showcases the sample
efficiency of the different methods. In this experiment, we
train GORELA and some interesting baselines for different
training set sizes (we do not train all of them as these
experiments are computationally costly). We can observe
that GORELA converges much faster than the baselines,
attaining better performance than the baselines even when
using 90% less data (only 20,000 examples). In other words,

the baselines are a lot more data hungry, and it seems that
they would greatly benefit from using more than 200,000
examples. Sample efficiency in motion forecasting is very
important since labeling these datasets for supervised learn-
ing is very costly. We also ablate the importance of PairPose
by removing it from our model, which makes it very clear
that our viewpoint-invariant approach with pair-wise relative
positional encodings is really the key to this improvement
in sample efficiency. Intuitively, this result aligns with our
expectations, since the rotation and translation invariance
of our method shrinks the input space quite a bit, making
scenarios in the validation set look more similar to those in
the training set.

Runtime analysis: In this experiment, we measure the
benefit of a shared scene encoding for all agents as achieved
by GORELA against processing the scene separately for
each agent (batched in GPU). We measure how the encoder
runtime scales with number of agents in Fig. 4 as well as map
nodes in the graph in Fig. 5. The encoder here includes all
up to the heterogeneous scene encoder (inclusive). We can
see that our model has nearly constant runtime regardless
of the number of actors due to our shared scene encoding.
This is because the number of agents and their inbound
and outbound connections in the graph is relatively low
compared to the map nodes. On the other hand, the per-
actor scene encoding increases the runtime linearly to 7x
with 40x more actors. We can see that both models scale
relatively slowly with the number of lane graph nodes, with
per-actor inference starting with a much higher fixed cost.
Overall, these results demonstrate the runtime benefits of
using a shared scene encoding. We do not compare the
decoder runtime between the two approaches as it would
be the same given that GORELA’s decoder acts on a graph
composed of one connected component per agent.

Graph layer ablation: Table I shows the results of the
ablation of heterogeneous message passing (HMP) as our
graph convolutional layer. This layer is used in the hetero-
geneous scene encoder and per-actor goal decoder. We based
our experiment on the public HEAT [5] and the GATV2 [6]
implementations in [7]. We show that our model outperforms
these state-of-the-art layers in both multimodal (X = 6) and
unimodal error.

Qualitative comparisons in Argoverse 2: Fig. 6 shows

3.5
3.5

3.0
3.0

5 e
© Il
JL —— GoRela w/o PairPose X< .

w 2.5
w 2.5 GoRela [a)
o [¢+
' —— LaneGCN 5 é
k3 M — TP = ===
o m 2.0
@ 20 M —— MultiPath ?

—— SceneTransformer
1.5 1.5
=
0 100 200 300 GoRela w/o PairPose GoRela LaneGCN MTP MultiPath SceneTransformer
Degree Model

Fig. 1: Quantitative analysis on viewpoint sensitivity by randomly rotating scenes around the SDV. Left: error bucketed
by rotation bins. Right: boxplot of error (variance measures the variability across different rotation bins.)

Graph layer T | BrierFDE K=6 FDE K=6 FDE K=1
GATV2 [6] 1.68 1.32 3.42
HEAT [5] 1.52 1.17 2.98
HMP (ours) 1.45 1.08 2.77

TABLE I: Ablation study of graph convolutional layers on
Argoverse 2 (val). We ablate HMP with other state-of-the-
art graph convolution layers. ¥ Models trained on 25% of the
training set.

a qualitative comparison between GORELA and the base-
lines for 8 different scenarios. We can clearly see that our
model achieves a much better map understanding, showcased
by predictions that follow the lanes well. In contrast, the
baselines predict some unrealistic modes for most scenarios
that are not compliant with the traffic rules and do not
align well with typical driving behavior. As shown by the
quantitative experiments in the main paper, our model’s best
mode attains lower error than the baselines. The qualitative
results show that our model is able to achieve this while
predicting lower diversity modes. Given the analysis carried
out by [8], which highlights the importance of precision for
downstream motion planning, we hypothesize this would be
an important characteristic for safe and comfortable driving.

Qualitative comparisons in HighwaySim: Fig. 7 displays
predictions in highway environments. In the first scenario,
the highlighted agent is taking the fork lane on its left as
shown by the ground truth trajectory in gray. All baselines
predict the agent is going to continue straight on its original
lane. In contrast, GORELA is able to predict a bi-modal
distribution where we believe the agent might lane change
or continue straight. The second scenario highlights an agent
on an on-ramp (i.e., a lane merging into the highway), that is
following another agent which is yielding to highway traffic.
All baselines do not understand this interaction well enough,
and they predict trajectories that collide with the ground truth
future motion of the lead vehicle. Our model understands this
interaction and is able to predict that the highlighted agent
will brake and stay behind its lead vehicle.

II. IMPLEMENTATION DETAILS

In this section we provide implementation details for
improved reproducibility.

Input features: For the pair-wise relative positional encod-
ing (PairPose), we use 16 frequencies for each of sine and
cosine. For each timestep ¢ in agent history encoder inputs,
we calculate the PairPose using the pose at ¢ and the pose at
the present timestep. We also include the finite difference of
the PairPose between ¢ and ¢ — 1, the velocity, bounding box
size and boolean for whether the timestep is observed. For
each map node input in the map encoder, we include the node
length, curvature, degree for each edge type, and boolean
of whether it’s in an intersection and whether it’s part of
a crosswalk. We also include left and right lane boundary
color, type, and distance from the centerline.

Training: For our multi-task objective, we use an equal
weight of 1.0 for goal classification, goal regression and
trajectory completion. We use v = 2.0 for the goal clas-
sification focal loss, and only supervise the closest node
to the ground-truth goal in terms of goal regression. For
the goal classification and regression, our loss ignores those
agents which ground-truth goal is not present in the data
(labeled track is shorter than the prediction horizon). For
trajectory completion we use the ground-truth goal during
training when this is available (teacher forcing). When it is
not available in the data, we find it beneficial to use the
most likely predicted goal as a weak teacher. For our multi-
task loss, we do not supervise agents which trajectory does
not stay within 10 meters of the lane-graph boundaries at
all time steps within the prediction horizon. Agents outside
this region are still taken into account in our heterogeneous
graphs, but their corresponding predictions do not contribute
to the loss. All agents are weighted equally in the loss, in-
cluding the focal, scored and unscored agents in Argoverse 2.
Since our model is invariant to rotations and translations, we
do not require such augmentations during training. However,
we find useful to perform a scale augmentation by uniformly
sampling the scaling factor between 0.8 and 1.2. Our model
was trained for 17 epochs, using 16 GPUs for a total batch
size of 64. We use Adam optimizer with a learning rate le-5,
with a step-wise scheduler with 0.25 decay and 15 step-size.

Greedy goal sampler: We use hard threshold radius v = 2,
downweight radius v = 4, and downweight factor ¢ = 10.

LaneGCN MTP

SceneTransformer

GoRela

SN
o SSEN

Fig. 2: Qualitative results on viewpoint sensitivity. Over-
laid predictions when performing inference with the original
scenario vs. rotated scenario by 90°.

3.5

Model

—— GoRela w/o PairPose
© 3.0 GoRela
1 — MTP
x —— SceneTransformer
w25
[a
[T
pes
0
@ 2.0

15

4000 20000

50000
Number of samples in train set (log scale)

200000

Fig. 3: Sample efficiency analysis. We evaluate the per-
formance of GORELA and the baselines when training with
different data scales.

<’ Model
£ —— GoRela
JG'J’ 6 Per-Actor Inference
>
T 5
2
v 4
—
S
z3
[}
=z
o 2
o°
S
21 co=— < ° o
58]

0

0 10 20 30 40
Actors

Fig. 4: Runtime scaling with actors analysis. We measure
how the encoder runtime scales with actors where we share
a scene encoding across all actors (GORELA) and where the
scene-context is encoded per actor (batched across actors).
The runtime is measured relative to the runtime with a single
actor. The number of lane graph nodes (250) is held constant.

8

7

6

5 Model
—— GoRela

Per-Actor Inference

N W

Encoder Network (relative time)
Sy

1

o
o

50 100 150 200 250
Nodes

Fig. 5: Runtime scaling with lane graph nodes analysis.
We measure how the encoder runtime scales with the number
of lane graph nodes, where we share a scene encoding across
all actors (GORELA) and where the scene-context is encoded
per actor (batched across actors). The runtime is measured
relative to the runtime with 10 nodes using shared scene
encoding. The number of actors (40) is held constant.

MTP LaneGCN

SceneTransformer

Gorela

Fig. 6: Qualitative comparison in Argoverse 2. 6 seconds long multi-modal motion forecasts for focal and scored agents.

Ground-truth plotted in gray. Every row showcases a different scenario.

MTP

Z

O] — P
@}

0

g —_—

—

5

E

<

2 = oo o
=]

s

= e

Q

=

[

3]

70!

GoRela

LaneGCN

SceneTransformer

GoRela

Fig. 7: Qualitative comparison in HighwaySim. 6 seconds long multi-modal motion forecasts. We only showcase predictions
for 1 randomly sampled agent in each scenario since otherwise the visualization is very cluttered due to highway high speeds.
Ground-truth plotted in gray. Rows 1-4 correspond to one scenario, and rows 5-8 to another.

(1]

(2]

(3]

(4]

(5]

(6]
(71

(8l

REFERENCES

Y. Chai, B. Sapp, M. Bansal, and D. Anguelov, “Multipath: Multiple
probabilistic anchor trajectory hypotheses for behavior prediction,”
arXiv preprint arXiv:1910.05449, 2019. 1

M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning lane graph representations for motion forecasting,” in ECCV,
2020. 1

H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin, T. Nguyen, T.-K.
Huang, J. Schneider, and N. Djuric, “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks,” arXiv
preprint arXiv:1809.10732, 2018. 1

J. Ngiam, V. Vasudevan, B. Caine, Z. Zhang, H.-T. L. Chiang, J. Ling,
R. Roelofs, A. Bewley, C. Liu, A. Venugopal, et al., “Scene transformer:
A unified architecture for predicting future trajectories of multiple
agents,” in International Conference on Learning Representations,
2021. 1

X. Mo, Z. Huang, Y. Xing, and C. Lv, “Multi-agent trajectory prediction
with heterogeneous edge-enhanced graph attention network,” [EEE
Transactions on Intelligent Transportation Systems, 2022. 1, 2

S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?” arXiv preprint arXiv:2105.14491, 2021. 1, 2

M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019. 1

S. Casas, C. Gulino, S. Suo, and R. Urtasun, “The importance of
prior knowledge in precise multimodal prediction,” arXiv preprint
arXiv:2006.02636, 2020. 2

	Additional experiments
	Implementation details
	References

