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In this supplementary material, we first describe the implementation details including the Memory Refinement Module
(in Sec. 1.1) and the added motion header (in Sec. 1.2) for separating moving and static actors in SemanticKITTI [2].
Subsequently, we show the addition results of the following:

* MEMORYSEG compared against state-of-the-art methods on test and validation set of SemanticKITTI [2] single-scan
benchmark in Sec. 2.1

* MEMORYSEG compared against our baseline on validation set of SemanticKITTI [2] multi-scan benchmark in Sec. 2.2

* MEMORYSEG compared against state-of-the-art and our baselines on validation set of nuScenes [3] in Sec. 2.3

ablation analysis of memory voxel size, padding neighbourhood size, instance cutMix and test-time augmentation in
Sec. 2.4

visualization of the latent memory in Sec. 2.5

* additional qualitative results of MEMORYSEG compared with our baseline in Sec. 2.6

1. Implementation Details
1.1. Details on Memory Refinement Module

Memory Refinement Module (MRM) is an improved version of ConvGRU [1] that updates the latent memory with the
current observation embeddings as follows,

Ty = sigmoid[\IlT(X}’t,H}’tfl)],

2y = Singid[‘I’z(X;{t, H/F,tfl)]v
Hpy = tanh[V, (Xfy, 7o - Hpy 1)),
Hp; = HF,t zp+ Hpy - (1= 2),

ey

where X, is the current observation embeddings at time ¢, Hy, , is the latent memory embeddings at ¢ — 1, and Hp
is the updated latent memory. ¥,, W, W, are a single sparse 3D convolutional layer in the vanilla sparse ConvGRU [1].
However, we introduce a new design where they are implemented as sparse 3D convolutional blocks. These blocks integrate
downsampling layers to expand the receptive field and upsampling layers to restore the embeddings to their original size. We
provide a more detailed illustration of this design in Fig. 2.

1.2. Details on Motion Header

In this section, we explain how we implemented the motion header in the decoder to classify movable actors as either
moving or non-moving in the SemanticKITTI dataset [2]. We observed that there are no static motorcyclists or bicyclists
in the training set. This means that using separate logits for moving and non-moving classes, as conventionally designed,
will fail to identify any static bicyclists or motorcyclists, as there is no training data to learn from. To address this issue,



Motion { o T, 0., T,
Header /+\
SC [3x3x3], 1

Encoder T — BN
Features = MLP —> = 0-0-0 LR
.+ =|
Memory : : | Movable SC [2x2x2], 2
Features Classes BN
+.=. R
Decoder * 1 SC [3x3x3], 1
BN
, Background LR
‘| Classes SC [3x3x3], 1
. — BN
: LR
) STC [2x2x2], 2
Semantic BN
Header
. LR
. v
SC [3x3x3], 1
Figure 1. Illustration of the modification of the decoder for the V
multi-scan benchmark of SemanticKITTI [2]. o denotes the Log- Figure 2. Illustration of the sparse convolutional blocks
SoftMax operation to normalize the motion features. The motion (V,,¥,,¥,) in MRM. SC: sparse 3D convolution [kenel size],
logits are broadcasted and added to the movable logtis from the se- stride. STC: 3D sparse transpose convolution [kernel size], stride.
mantic header in the Log space. BN: BatchNorm. LR: LeakyReLU.

we added a motion header to perform binary segmentation of moving and non-moving objects, and later fused it with the
semantic header. By training the network to distinguish between moving and non-moving objects, such as pedestrians and
vehicles, we aim to enable the network to recognize static and moving bicyclists and motorcyclists, even in the absence of
any training data for those classes. Specifically, we apply LogSoftMax to normalize the motion logits and add them to each of
the semantic logits that belong to movable classes. Consequently, we form moving and static logits for each of the movable
logit. The implementation details are illustrated in Fig. 1. The network is supervised by applying segmentation loss (i.e.
weighted combination of cross entropy, Lovasz softmax, and the proposed regularizer) on the motion logits, semantic logits
and the final logits.

2. Additional Results
2.1. SemanticKITTI single-scan results

Tab. 1 compares MEMORY SEG with state-of-the-art approaches on the test set of SemanticKITTI single-scan benchmark.
This is a more competitive benchmark focusing on single-scan semantic segmentation where previous research has focused
on proposing various architectures [4, 16, 20] or knowledge distillation techniques [8]. Our results show that MEMORYSEG
can still outperform these methods, which are highly optimized for this benchmark. Tab. 2 compares our apporach with the
others on the validation set of the same benchmark. Please note that most prior works have only reported the mloU metric
on the validation set. Therefore, we only included comparison of mloU in this table but presented detailed class-wise IoUs
of our approach in Tab. 5.

2.2. SemanticKITTI multi-scan validation results

Tab.3 compares MEMORYSEG with the 5-frame-baseline (SFB). The SFB uses the same network architecture of MEMO-
RYSEG but without the memory update module. Additionally, the input is 5 consecutive LiDAR scans projected to the most
recent ego vehicle frame. In contrast, our approach processes only one scan at a time. The results indicate that MEMORYSEG
significantly outperforms 5FB in almost all categories. The improvement is most prominent in the case of movable objects
such as moving bicyclist and other vehicle. The SFB can only reason about motion over a short time interval (i.e., 5 frames
of data or approximately 0.5 seconds), as processing longer sequences all at once is computationally infeasible. However,
MEMORYSEG employs a latent 3D memory to encode information from a more extended period, enabling the network to
better comprehend the motion of moving actors.

2.3. nuScenes validation results

In Tab.4, we compare against state-of-the-art methods and our baseline on the validation set of nuScenes [3]. MEMORY-
SEGagain outperforms all methods with the largest gains observed in smaller objects such as bicycle, pedestrian, and traffic
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PointNet [11] 146 | 463 1.3 03 01 08 02 02 00 6.6 158 357 1.4 414 129 31.0 46 176 24 3.7
RangeNet++ [10] 52.2 | 91.4 25,7 344 25,7 23.0 383 388 4.8 91.8 65.0 752 27.8 874 586 80.5 551 64.6 479 559
RandLANet [9] 53.9 | 942 26.0 258 40.1 389 49.2 482 7.2 90.7 603 73.7 204 869 563 814 61.3 668 49.2 47.7
PolarNet [ 18] 54.3 | 93.8 40.3 30.1 229 285 432 40.2 5.6 90.8 61.7 744 21.7 90.0 61.3 84.0 655 678 51.8 57.5
SqueezeSegv3 [15] 55.9 | 925 387 36.5 296 33.0 456 46.2 20.1 91.7 634 748 264 8.0 594 820 587 654 496 58.9
TemporalLidarSeg[6] | 58.2 | 94.1 50.0 45.7 281 37.1 56.8 47.3 9.2 91.7 60.1 759 27.0 894 633 839 646 668 53.6 60.5
KPConv [13] 58.8 | 96.0 30.2 425 334 443 615 616 11.8 888 61.3 727 31.6 905 642 848 69.2 69.1 564 474
SalsaNext [5] 59.5 | 91.9 483 386 389 319 60.2 590 194 91.7 63.7 758 29.1 902 642 81.8 63.6 66.5 543 62.1
Meta-RangeSeg [ 14] 61.0 | 939 50.1 438 439 432 63.7 53.1 187 90.6 643 746 292 91.1 647 826 655 655 563 642
FusionNet [17] 61.3 | 95.3 475 37.7 418 345 59.5 56.8 119 91.8 688 77.1 30.8 925 694 845 69.8 685 604 66.5
TornadoNet [7] 63.1 | 94.2 557 481 40.0 382 63.6 60.1 349 89.7 663 745 287 913 656 8.6 67.0 715 580 659
SPVNAS [12] 67.0 | 97.2 50.6 504 56.6 58.0 674 671 50.3 90.2 676 754 21.8 91.6 669 8.1 734 T71.0 643 67.3
Cylinder3D [20] 67.8 | 97.1 676 64.0 59.0 586 739 679 36.0 914 651 755 323 91.0 66.5 8.4 7.8 685 626 65.6
(AF)283-Net [4] 69.7 | 945 654 86.8 392 41.1 80.7 804 743 91.3 688 725 53.5 879 632 702 685 53.7 615 71.0
RPVNet [16] 70.3 | 97.6 684 68.7 442 61.1 759 744 734 934 703 807 333 935 721 865 751 717 648 614
PVKD [8] 71.2 | 97.0 679 693 535 602 751 735 505 91.8 709 775 41.0 924 694 86.5 73.8 719 649 658

MEMORYSEG [ours] | 71.3 | 97.4 68.1 69.1 587 65.7 752 764 562 898 656 748 321 O19 678 852 737 705 66.4 70.1
Table 1. Comparison to the state-of-the-art methods on the test set of SemanticKITTI [2] single-scan benchmark. We include LiDAR-only
published approaches at the time of submission. Metrics are provided in [%]. Top two entries of each classes are bolded.

Method [ mIoU
RandLANet [9] 57.1
PolarNet [ 18] 54.9
TornadoNet [7] 64.5
SPVNAS [12] 64.7
Cylinder3D [20] 65.9
PVKD [8] 66.4
RPVNet [16] 69.6
MEMORY SEG [ours] 70.8
MEMORYSEG [ours] + TTA | 71.5

Table 2. Comparison to the state-of-the-art methods on the validation set of SemanticKITTI [2]. Metrics are provided in [%].
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SFB 535 | 954 560 756 745 535 255 00 00 927 466 788 05 90.1 586 892 728 753 662 537 786 872 646 00 34 00
MEMORYSEG | 58.5 | 95.9 64.8 86.2 963 664 237 00 00 955 557 839 50 914 627 89.7 739 781 667 521 727 944 720 00 357 0.0

Table 3. Comparison to our 5-frame baseline (SFB) on the validation set of SemanticKITTI [2]. Movable actors are further divided into
moving and static. Metrics are provided in [%].
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RangeNet++ [10] 65.5 - 66.0 21.3 772 80.9 302 668 69.6 521 542 723 941 66.6 635 70.1 831 798
PolarNet [ 18] 71.0 — 747 282 8.3 909 351 775 713 588 574 761 965 71.1 747 740 87.3 85.7
Salsanext [5] 72.2 — 748 34.1 859 884 422 724 722 631 613 765 960 70.8 712 715 86.7 844
Cylinder3D [20] 76.1 - 76.4 403 91.2 938 51.3 780 789 649 62.1 844 968 71.6 764 754 90.5 874
RPVNet [16] 77.6 — 782 434 927 932 490 8.7 80.5 660 669 84.0 969 735 759 76.0 90.6 889
SFB 7677 892 | 77.6 420 927 925 447 838 79.1 651 662 8l.6 967 759 751 752 902 88.7
MEMORYSEG [ours] | 81.1 90.0 | 788 57.0 952 929 600 893 863 708 738 872 969 764 758 753 915 898

Table 4. Comparison to the state-of-the-art methods on the validation set of nuScenes [3] LIDAR semantic segmentation benchmark. We
include LiDAR-only published approaches that report their validation mloU. Metrics are provided in [%].

cone. Those are particularly challenging for semantic segmentation networks due to the sparsity of the point clouds in this
dataset. Nonetheless, our method overcomes this limitation by leveraging a 3D latent memory to enhance semantic reasoning
of the sparse points.
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SFB w/o cutMix 66.2 | 96.0 542 7677 785 535 712 920 0.7 945 493 822 38 910 638 887 712 760 646 494
SFB 672 | 969 600 795 769 670 740 912 16 945 494 820 6.1 906 610 830 690 744 648 50.8
M1 69.5 | 97.5 624 880 79.1 744 837 932 25 953 557 835 33 904 61.8 881 69.5 747 649 522
M2 69.7 | 97.6 584 862 945 77.8 831 940 00 949 545 830 39 909 635 873 688 71.5 651 500
M3 69.7 | 973 594 849 825 737 831 937 89 949 50.1 824 46 908 616 892 708 772 66.0 52.6
M4 [ours] 70.8 | 974 615 89.1 930 762 836 950 03 953 524 830 7.5 914 641 893 736 772 656 504
M4 [ours] + TTA | 71.5 | 979 64.6 89.3 954 819 84.6 952 0.0 956 529 839 29 91.3 629 89.7 744 778 66.5 518

Table 5. Class-wise IoUs of our ablated methods on the validation set of SemanticKITTI [2]. Metrics are provided in [%].
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Uy = 0.25m 702 | 97.1 654 894 903 692 781 949 24 952 539 831 49 913 632 8.3 698 77.1 653 537
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Uy, =2.0m 679 | 972 551 763 798 73.6 743 920 14 946 534 820 73 908 619 879 71.1 744 654 523

Table 6. Ablation results of different memory voxel size v,, on the validation set of SemanticKITTI [2]. Metrics are provided in [%].
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k=3 69.7 | 97.2 613 848 908 735 745 928 35 952 522 829 6.1 916 642 884 734 750 652 521
k=5 70.8 | 974 615 89.1 930 762 836 950 03 953 524 830 75 914 64.1 893 736 772 656 504
k=8 70.0 | 97.3 59.7 848 937 751 799 940 04 949 542 826 64 914 63.0 887 720 758 649 517

Table 7. Ablation results of different padding neighbourhood sizes k in APM on the validation set of SemanticKITTI [2]. Metrics are
provided in [%].

2.4. Ablations

Tab.5 presents the detailed class-wise IoUs of the model for ablation presented in the main text. Please note that we follow
the semantic class mapping of the single-scan benchmark while conducting ablation analysis on SemanticKITTI. This is due
to the significant class imbalance that arises when attempting to separate all movable actors into moving and static classes.
For instance, the validation set will not include any moving trucks or moving motorcyclists, and there will be less than 1000
points of static bicyclists. This can lead to increased noise in the ablation results. Therefore, we maintain the 19 semantic
classes during the ablation process to ensure more robust results.

Influence of memory voxel size Tab. 6 shows the results of our ablation experiments using different voxel sizes (v,,) to
retain latent memory. We found that smaller object classes, such as bicycle and motorcycle, benefited from using smaller
voxel sizes. However, using a large voxel size, such as 2m, resulted in much worse performance for these classes, possibly
because it mixed different objects within the same voxel. Overall, using a memory voxel size of 0.5m produced the best
results.

Influence of padding neighbourhood size in APM We present the results of our experiment on using different neigh-
borhood sizes to aggregate embeddings for padding, as shown in Tab. 7. Specifically, we tested neighborhood sizes of 3, 5,
and 8 entries. We found that changing the padding neighborhood size had only a minimal effect on the background classes,
which are typically static and do not move. This is because the closest entries usually have the most influence, so varying the
neighborhood size had little impact. However, we observed more significant differences in the movable actors. For example,
increasing the padding neighborhood size was most beneficial for the truck class, where larger receptive fields are needed to
aggregate potentially moving trucks. Overall, aggregating the closest 5 entries (k=5) produced the most favorable results.
Influence of instance cutMix The SemanticKITTI [2] dataset contains many frames without movable actors, such as
pedestrians and riders. The training set, on average, has only 0.63 pedestrians and 0.18 riders per frame. To address this
significant class imbalance, we created an instance library that includes movable instances from the training sequences similar
to [19]. In each training iteration, we randomly select 5 instances from the library and add them to the scene. The sampling
weight is determined by the inverse frequency of the class. This approach has been effective, as shown in Tab. 5, resulting



in an improvement from 66.2% to 67.2%, with the most significant gains coming from the movable actors added during
training.

Influence of test-time augmentation We follow existing works [20, 8] to apply test-time augmentation (TTA) for further
improving the segmentation results. Specifically, we randomly sample an augmentation that includes rotation on the Z axis
from —7 to 7 and a global scaling factor ranging from 0.95 to 1.05. We apply this same augmentation to the entire sequence
during inference and repeat the process 10 times, each with a different augmentation. We then average the prediction results
from each of the 10 passes to obtain the final prediction. Our experiments demonstrate that TTA improves the mIoU by 0.7%,
with a slight improvement observed in every class IoU, as shown in the last row of Tab. 5.

2.5. Visualization of memory

We present a visualization of the 3D latent memory in Fig. 3, where PCA is used to reduce the embedding dimension to
RGB. On the right side of the memory, we display the prediction generated by our network on the single scan. It is difficult to
identify objects in a single scan due to the lack of semantic information and sparse observations, and occluded regions have
no observations at all. In contrast, our latent memory is much denser, contains rich semantics that help separate different
classes, and provides contextual details in occluded areas.

2.6. Qualitative comparison

Fig. 4 shows a qualitative comparison with our baseline. Please focus your attention to the two vehicles parked on the far
left, highlighted with red circles. These scenarios are difficult for semantic segmentation because of the limited observations
and partial occlusions. Despite these challenges, MemorySeg consistently segments the object accurately without any flick-
ering. Conversely, the single-frame baseline fails to identify the parked vehicle in some frames, and the segmentation results
fluctuate over time.

Furthermore, we present another qualitative example from the nuScenes [3] dataset in Fig. 5, where we demonstrate
substantial improvements in the background classes. Those classes often require an understanding of the surrounding envi-
ronment to be segmented correctly. Our method improves contextual reasoning by accumulating past observations using a
latent memory representation. Hence, while the single-frame baseline (SFB) is prone to errors, our approach yields accurate
and reliable results.
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Figure 3. Illustration of the latent memory and prediction when unrolling the LiDAR sequence.
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Figure 4. Qualitative comparison with single-frame baseline (SFB). Our approach is able to generate robust segmentation predictions
throughout the interval where the SFB produces flickering results. See the vehicle highlighted in red circle.
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