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Reinforcing Traffic Rules (RTR)

Motivation: Developing self-driving in simulation is safer 
and more scalable than driving purely in the real world.

Goal: Learn models of how humans drive in order to 
use them as actor models in simulation.  

Task: Given environmental information (e.g. high 
definition map, current actor positions and velocity), 
control how each actor should behave subsequently.
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RTR (ours)Baseline Imitation Learning

RTR learns to 
avoid infractions 
while still capturing 
human-like driving.

Architecture:

We use an efficient 
multi-agent 
architecture to 
extract features 
and jointly predict 
all agent actions.

Downstream evaluation

We train a prediction model on 
actor-simulated data and 
evaluate them on real data. 

RTR simulations have lower 
domain gap vs. baselines

We combine RL and IL to learn robust policies in closed-loop.

Realistic actor models must:
1. Capture nuances of human driving
2. Avoid infractions like collisions or driving off-road

Existing approaches have shortcomings which can 
result in a trade-off between the two.

Imitation Learning:
✓   Leverages offline data for realism
✘   No explicit knowledge of infractions

Reinforcement Learning:
✓   Explicit reward signal
✘   Manual reward design lacks realism

Learning Objective

We model the problem with an MDP

A trajectory                                                      is a state 
action sequence for all agents in the scene. 

We aim to recover the expert distribution while satisfying 
an infraction-based constraint:

Taking the Lagrangian decomposes the objective into a 
combination of imitation and reinforcement learning:

RTR achieves the best tradeoff, outperforming the Pareto frontier of 
baselines which vary between IL, RL and IL + RL

Value network design is the same as policy network 
but regresses value targets instead.

Scan for 
project page 
and more 
results!


