Learning Realistic Traffic Agents in Closed-loop
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Realism and Infraction Avoidance

Traffic Simulation for Self-driving

Reinforcing Traffic Rules (RTR)
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Challenges and Existing Work
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RTR achieves the best tradeoff, outperforming the Pareto frontier of
baselines which vary between IL, RL and IL + RL
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Downstream evaluation
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X Manual reward design lacks realism extract features | | | | R 1542 + 121 032 & 0.02
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We model the problem with an MDP M = (S, A, R, P, P
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