

Frame 1

Frame T

LabelFormer: Object Trajectory Refinement for Offboard Perception from LiDAR Point Clouds

Anqi Joyce Yang, Sergio Casas, Nikita Dvornik, Sean Segal, Yuwen Xiong, Jordan Sir Kwang Hu, Carter Fang, Raquel Urtasun

What is Offboard Perception?

- Motivation: Modern self-driving systems require a large set of annotated data, but human labelling is slow and costly
- **Task:** Automatically label object trajectories from LiDAR data
- **Setting:** Access to a limited set of human annotations, access to future observations, no real-time constraints
- Goal: Accurate bounding boxes + computationally cheap
- Application: Generate large-scale auto-labelled dataset for training downstream onboard perception models

Two-Stage Auto-labelling Paradigm

First Stage: Coarse Initialization

Detect

Track

Intuition behind LabelFormer Window-based Refinement Sliding Window Init ** Limited Temporal Context ** Redundant Computation Trajectory-level Refinement Init ** Full Temporal Context ** Efficient Computation

Qualitative Results Init Mean IoU: 72.12 3DAL Mean IoU: 81.15 Auto4D Mean IoU: 84.38 Init Mean IoU: 63.06 in the state of th

Object N

Refine Tracks

Initial object-based tracks with

Refine dobject-based tracks

In this work we tackle the second-stage object trajectory refinement.

point observations in global frame

Downstream Evaluation

We apply different auto-labellers to augment the Highway dataset. With a larger annotated dataset, we train a downstream onboard object detector.

Auto-Label	Mean AP	AP@0.5	AP@0.7	AP@0.8
N/A	82.98	91.62	79.17	55.97
Init	83.63	92.67	79.51	55.30
Auto4D	83.42	92.71	79.32	55.07
3DAL	83.64	92.66	79.76	55.79
Ours	84.81	92.91	80.91	59.00