Supplementary Material:
Neural Lighting Simulation for Urban Scenes

Ava Pun’3*" Gary Sun!3*T Jingkang Wang!2* Yun Chen2> Ze Yang'2

Sivabalan Manivasagam'> Wei-Chiu Ma'* Raquel Urtasun'-2
Waabi! University of Toronto? University of Waterloo® MIT*

Abstract

In this supplementary material, we detail our method, implementation, experi-
mental designs, additional quantitative and qualitative results, limitations, utilized
resources, and broader implications. We first detail how we build the relightable
digital twins from real world data (Sec. @, and then show the network archi-
tecture and training details for neural lighting simulation (Sec.[A.2). In Sec.
we provide details on baseline implementations and how we adapt them to our
scene relighting setting. Next, we provide the experimental details for perceptual
quality evaluation and downstream detection training in Sec. |C| We then report
perception quality evaluation at larger scale with more qualitative comparison with
baselines (Sec. and detailed detection metrics for detection training (Sec.|[E.3),
demonstrate our lighting estimation module yields more accurate sun prediction
(Sec. and show additional scene relighting, shadow editing and controllable
camera simulation results (Sec. [E.5). Finally, we discuss limitations and future
works (Sec. E]) computation resources used in this work (Sec. [G]), license of assets
(Sec.[H) and broader impact (Sec. [I).

A LightSim Implementation Details

A.1 Building Lighting-Aware Digital Twins of the Real-World

Neural Scene Reconstruction: We first perform neural rendering to reconstruct the driving scene
using both front-facing camera images and 360° spinning LiDAR point clouds. We use a modified
version of UniSim [26], a neural sensor simulator, to perform neural rendering to learn the asset
representations. Unisim [26]] incorporates the LiDAR information to perform efficient ray-marching
and adopts a signed distance function (SDF) representation to accurately model the scene geometry.
To ensure a smooth zero level set, the SDF representation is regularized using Eikonal loss [6]]
and occupancy loss. To capture the view-independent base color kq, we make adjustments to the
appearance MLP by taking only grid features as input and omitting the view direction term; all other
configurations remain consistent with [26].

After learning the neural representation, we employ Marching Cubes [[12]] to extract the mesh from
the learned SDF volume. Finally, we obtain the vertex base color kg by querying the appearance
head at the vertex location. We adopt base Blender PBR materials [2] for simplicity. Specifically, we
use a Principled BSDF with vertex color as the base color. We set materials for dynamic assets and
background separately.

Neural Lighting Estimation: We leverage multi-camera data and our extracted geometry to esti-
mate an incomplete panorama LDR image that captures scene context and the available observations

*Equal contributions.
TWork done while a research intern at Waabi.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

umoqg
umog

Jeou0d
AU0D
AU0D

-

sun-pos-enc
LDR Sky Dome sun-int-enc
-) sky-enc
Positional Encoding

\ J
Sky Encoders

—
AUOD

Postional Encoding lll .
rostional ncoditg J
Peak Direction St —
| PeakEncoung =
- T — S—
Intensiy Encodingl
! ety Enee)
Peak Intensity
14—

Sun Mask_
Sky Latent - Sky decoder
|

HDR Sky Dome

o |
umog
umoqg
umog
B
=

=
 —
ﬁ
[n]
[&]
T
dn
azauod

Figure Al: Network architecture of the neural lighting estimation module. Red and blue boxes denote
the sky encoders and HDR sky dome decoder respectively.

of the sky. We then apply an inpainting network to fill in missing sky regions. Finally, we leverage a
sky dome estimator network that lifts the LDR panorama image to an HDR sky dome and fuses it
with GPS data to obtain accurate sun direction and intensity. To inpaint the panorama image from the
stitched multi-camera image, we use the code of the inpainting network DeepFilleE] The network is
unchanged from its implementation on Github, and it is trained using the hinge loss. Holicity’s LDR
panoramas are used for training. Each panorama in the training set is first masked using an intrinsics
mask — a random mask of observed pixels from a PandaSet log. Distortions are then applied to the
mask, including random scaling and the addition of noise. The masked panorama is then fed into the
network and supervised with the unedited Holicity panorama.

Sky dome estimator architecture: After receiving the full LDR output from the inpainting net-
work, the sky dome estimator network converts the incomplete LDR panorama to HDR. This is
achieved by employing GPS and time of day to improve the accuracy of sun direction estimation.
To produce an LDR sky dome, only the top half of the panorama is used, as the bottom half does
not contribute to global lighting from the sky. The network uses an encoder-decoder architecture, as
shown in Fig. The input consists of the LR panorama and the positional encoding map, which
is an equirectangular projection that stores a unit vector pointing towards each pixel direction. The
positional encoding is concatenated channel-wise with the LDR panorama. Three separate encoders
with the same architecture are utilized to estimate the peak direction fg;, and intensity of the sun i,
as well as the latent of the sky zg., € R%. To encode the predicted sun peak intensity fi,; and peak
direction fy;,, five intermediate representations with the same size as the input LDR are explicitly
encoded. The sky decoder is an U-Net which takes the encoded predicted sun peak intensity fi,; and
peak direction f4;, and fuses them with the sky latent vector to produce the HDR sky dome.

Training details: We train the sky dome estimator using 400 HDRs sourced from HDRMaps [7].
Accurately predicting the peak intensity fi,; and direction fy;, is of utmost importance for achieving
realistic rendering. Nevertheless, due to the inherently ill-posed nature of this problem, it is chal-
lenging to predict these parameters precisely, especially for cloudy skies. Therefore, we propose a
dual-encoder architecture, with one encoder trained on HDRs with a clearly visible sun and another
trained on all HDR images to capture peak intensity and sky latent more robustly. We empirically
find that this works better than using a single encoder trained on all HDR images. The model takes
around 12 hours to train with a single RTX A5000.

A.2 Neural Lighting Simulation of Dynamic Urban Scenes

Building augmented reality representation: Given our compositional neural radiance fields, we
can remove actors (Fig. 7), add actors (Fig.[AT4)), modify actor trajectories (Fig. 1 and Fig.[AT4),
and perform neural rendering on the modified scene to generate new camera video in a spatially-
and temporally-consistent manner. Using our estimated lighting representation, we can also insert
synthetic assets such as CAD models [22] into the scenes and composite them with real images in
a 3D- and lighting-aware manner (Fig. 1, 7,[AT4). These scene edits lead to an “augmented reality

"https://github.com/zhaoyuzhi/deepfillv2

https://github.com/zhaoyuzhi/deepfillv2

Latent Fuser

Image
__Image |
Teature

AUOD

Image Encoder

[
5
@
=
=9l s
Source 319 |3 |cele T @)
§ olo ightingfeat | & | 8 | & [T |® S99
llgl9|g 28| Nis|o|o
ERERE X9 (3|3
o | < |2 +Hlelal=z(=
<] = -
[Target = ©
L ~Tightng fear *| 3 —
- - 2 ~- ’
.
\\ 7’ s
. — src Qllollo|ol|lo g
Source image T’ Source shadow S g g g g g % -g 'g 'g 2
F“—’ 8 S(3|3]|3 B

Tyl MR
n%g]
- e i%
Render buffers Ipyffer Target shadow S8
ES©
B m

Lighting Encoder

umog
umog
umo@
umo@

l umoq]

Figure A2: Network architecture of the neural deferred rendering module. Green, red, orange,
and blue boxes denote the image encoder, lighting encoder, latent fuser and rendering decoder,
respectively.

representation” M/, E*" and source image I .. We further explain the details of creating augmented

reality representations for all the examples we have created in this paper. In Fig. 1, we insert a new
CAD vehicle, barriers, and traffic cones and modify the trajectory of the white car. In Fig. 7, we insert
three new CAD vehicles (black, white, gray) and construction items and remove all existing dynamic
vehicles. In Fig.[AT4] (top example), we modify the trajectory of the original white vehicle and insert
construction items. In Fig.[AT4](bottom example), we remove all existing dynamic actors (pedestrians
and vehicles), insert three dynamic actors from another sequence 016 with new trajectories, and
insert construction items.

Neural deferred rendering architecture: The neural deferred rendering architecture is depicted in
Fig.[AZ] It is an image-to-image network adapted from U-Net [18]] that consists of four components:
image encoder, lighting encoder, latent fuser, and rendering decoder. The inputs to the image
encoder comprise a source RGB image I, rendering buffers Ij,,g., (ambient occlusion, normal,
depth, and position), and source/target shadow ratio maps {Sq;c, S¢gt }; ach of these components has
3 channels. In the latent fuser, the output of the image encoder is run through a 2D convolution layer,
then a linear layer that compresses the input into a latent vector. The image latent and two lighting
latent vectors (source and target) are concatenated and upsampled. Finally, the rendering decoder

upsamples the fused latent vectors and produces the final relit image It8° € R#xWx3,

Learning details: We train the relighting network using a weighted sum of the photometric
loss (Lcolor), perceptual loss (Lipips), and edge-based content preserving 10ss (Ledge): Lrelight =
% Zf\il (Leolor + Aipips Lipips + Aedge Ledge) » Where Aipips is set to 1 and Aeqge to 400. Our model
is trained on pairs of PandaSet [25] scenes, lit with Ngpg = 20 HDRs: ten estimated from PandaSet
scenes using our neural lighting estimation module, and ten obtained from the HDRMaps dataset [7].
We apply random intensity and offset changes to the HDRs as data augmentation.

B Implementation Details for Baselines

For each approach, we evaluate on 1,380 images, applying 23 lighting variations to 15 PandaSet
scenes with 4 frames per scene, and report FID/KID scores. To test the diversity and controllability
of each method, 11 of the target lighting variations are estimated from real PandaSet data, while the
remaining 12 are outdoor HDRs sourced from HDRMaps [[7].

B.1 Self-supervised Outdoor Scene Relighting (Self-OSR)

Self-OSR [27] is an image-based inverse-rendering method that utilizes InverseRenderNet [28]] to
decompose an image into albedo, normal, shadow, and lighting. Subsequently, it employs two
generative adversarial networks (GANSs) for neural rendering and sky hallucination, based on the
predicted lighting. We use the official pre-trained modelsE] and perform inference under novel lighting
conditions. If the target lighting originates from PandaSet logs, the model is first applied to a
single front-camera image (first frame) to recover the lighting parameters € R?*3, using an order-2
spherical harmonics model. For outdoor HDRs sourced from HDRMaps, the HDR environment maps
are converted into spherical harmonics. The sky masks for PandaSet images are estimated using
PSPNet [29].

B.2 NeRF for Outdoor Scene Relighting (NeRF-OSR)

We use the official code from NeRF-OSRE] and make several modifications to improve its performance
on the PandaSet dataset. Since the self-driving scenes in the PandaSet dataset are usually larger
than the front-facing scenarios on the NeRF-OSR dataset, more space needs to be sampled, which
presents a challenge. To overcome this, we use LiDAR points as a guide to sample the points
for camera rays by aggregating LiDaR points and creating a surfel mesh. Then, we sample only
the points close to the surface +50cm for each camera ray. By doing so, we significantly reduce
the number of sampled points to eight in the coarse and fine stages. Without these modifications,
NeRF-OSR demonstrates slower convergence rates and struggles to learn reasonable geometry for
relighting. Since our inference HDRs (from PandaSet or HDRMaps) differ greatly from NeRF-OSR
environment maps (indicating inaccurate scene decomposition by the model), directly applying the
environment maps to the scene leads to significant artifacts. Therefore, we retrieve the nearest HDR
in the NeRF-OSR dataset during inference for better perceptual quality. For training, we follow the
original code base for all other settings. Training one log on NeRF-OSR usually takes 15 hours on 4
T4 GPUs.

B.3 Color Transfer

Color Transfer [[15] uses image statistics in (L*, a*, b*) space to adjust the color appearance between
images. We adopt the public Python implementatiorﬂ for our experiments. If the target lighting
originates from PandaSet logs, we use the single front-camera image as the target image for color
transfer. For outdoor HDRs sourced from HDRMaps, we use the rendered synthetic images (using
LightSim digital twins) I cpder|gree as the target image, as it produces much better performance
compared to transferring with the LDR environment map. The latter results in worse performance
since the source environment map and target limited-FoV images are in different content spaces.

B.4 Enhancing Photorealism Enhancement (EPE)

EPE [16] was designed to enhance the realism of synthetic images (e.g., GTA-5 [17]] to CityScapes [3]])
using intermediate rendering buffers and GANs. We adapt EPE to handle lighting simulation with our
established lighting-aware digital twins. Specifically, EPE uses the rendered image I ender|gtst and
rendering buffers I, s, generated by our digital twins to predict the relit image. Note that EPE uses
the same training data as LightSim, with 20 HDR variations. It also takes all PandaSet front-camera
images (103 logs) as the referenced real data. We adopt the official implementationf] and follow the
instructions to compute robust label maps, crop the images, match the crops (5 nearest neighbours)
and obtain 459k sim-real pairs. We train the EPE model until convergence for 60M iterations on one
single RTX A5000 for around six days.

“https://github.com/YeeU/relightinglet
*https://github.com/r00tman/NeRF-0SR
*https://github.com/jrosebri/color_transfer
https://github.com/isl-org/PhotorealismEnhancement

https://github.com/YeeU/relightingNet
https://github.com/r00tman/NeRF-OSR
https://github.com/jrosebr1/color_transfer
https://github.com/isl-org/PhotorealismEnhancement

C LightSim Experiment Details

C.1 Perceptual Quality Evaluation

Following [16} 4, 26], we report Fréchet Inception Distance [§]] (FID) and Kernel Inception
Distance [8] (KID) to measure perceptual quality since ground truth data are not available. Due
to NeRF-OSR’s large computational cost, we select 15 sequences {001, 002, 011, 021, 023,
024, 027, 028, 029, 030, 032, 033, 035, 040, 053} for quantitative evaluation in the
main paper. We also provide Table [AT] for larger-scale evaluation (NeRF-OSR excluded), in which 47
sequences (all city logs in PandaSet excluding the night logs and 004 where the SDV is stationary)
are used for evaluation. The 47 sequences are {001, 002, 003, 004, 005, 006, 008, 011,
012, 013, 014, o015, 016, 017, 018, 019, 020, 021, 023, 024, 027, 028, 029,
030, 032, 033, 034, 035, 037, 038, 039, 040, 041, 042, 043, 044, 045, 046,
047, 048, 050, 051, 052, 053, 054, 055, 056, 139}.

For each sequence, we select four frames {6, 12, 18, 24} and simulate 23 lighting variations (see
Fig.[A3). Note that in 23 lighting variations, 20 HDRs (10 estimated HDRs from PandaSet, 10 real
HDRs sourced from HDRMaps) are used for data generation to train the LightSim models, while
3 HDRs are unseen and only used during inference. Unless stated otherwise, we use all 8240 real
PandaSet images as the reference dataset.

A: 10 training PandaSet HDRs B: 10 training HDRMaps HDRs C: 3 unseen inference HDRs

Figure A3: 23 HDR sky domes used for perceptual quality evaluation.

C.2 Downstream Perception Training

To investigate if realistic lighting simulation can improve the performance of downstream perception
tasks under unseen lighting conditions, we conduct experiments on PandaSet using the SoTA
camera-based 3D vehicle detection model BEVFormer [10]. We use train on 68 snippets collected in
the city and evaluate on 35 snippets in a suburban area, since these two collections are independent
and exposed to different lighting conditions. Specifically, the sequences {080, 084, 085, 086,
088, 089, 090, 091, 092, 093, 094, 095, 097, 098, 099, 100, 101, 102, 103,
104, 105, 106, 109, 110, 112, 113, 115, 116, 117, 119, 120, 122, 123, 124,
158} are selected for the validation set, and the remaining sequences are used for training. For the
experiments, we use all 80 frames for training and evaluation. We report the average precision (AP)
at different IoU thresholds: 0.1, 0.3, and 0.5. The mean average precision (mAP) is calculated as
mAP = (AP@0.1 + AP@0.3 + AP@0.5)/3.0.

As shown in Table 2, the integration of LightSim synthetic simulation significantly enhances the
performance of monocular detection compared to training with other basic augmentation methods.
Further exploration on sufficiently utilizing the simulated data, such as actor behavior simulation or
actor insertion, is left to future work.

BEVFormer Implementation Details: We use the official repositoryﬂ for training and evaluating
our model on PandaSet. We focus on single-frame monocular vehicle detection using the front
camera, disregarding actors outside the camera’s field of view. The models are trained within vehicle
frames using the FLU convention (x: forward, y: left, z: up), with the region of interest defined
asx € [0,80m],y € [-40m,40m],z € [—2m,6m]. Given memory constraints, we adopt the
BEVFormer-small architectureﬂ with a batch size of two per GPU. Models were trained for five
epochs using the AdamW optimizer [13]], coupled with the cosine learning rate scheduleﬂ Training
each model took approximately six hours on 2x RTX A5000 GPUs. We report the best validation
performance across all data augmentation approaches, as models can begin to overfit in the final
training stage.

C.3 Generalization on nuScenes

To evaluate the generalizability of our model, we train the model on PandaSet [25] and evaluate the
pre-trained model on nuScenes [3]]. The nuScenes [3]] dataset contains 1000 driving scenes collected
in Boston and Singapore, each with a duration of ~ 20 seconds (~ 40 frames, sampled at 2 Hz)
acquired by six cameras (Basler acA1600-60gc), one spinning LiDAR (Velodyne HDL32E), and five
long-range RADAR (Continental ARS 408-21) sensors. We curate 10 urban scenes from nuScenes [3]]
characterized by dense traffic and interesting scenarios.

We incorporate front-facing camera and spinning LiDAR and run the neural scene reconstruction
module (Section 3.1) to extract the manipulable digital twins for each scene. Then, we utilize the
neural lighting estimation module (Section 3.2) to recover the HDR sky domes. This enables us to
generate new scenarios and produce the rendering buffers Iy, (Eqn. 4 in the main paper) for scene
relighting.

D Additional Discussions

Challenges of inverse rendering on urban scenes: LightSim assumes several simplifications
when building lighting-aware digital twins, including approximate diffuse-only reconstruction, sepa-
rate lighting prediction, and fixed base materials. Those result in imperfect intrinsic decomposition
and sim/real discrepancies. Recent concurrent works such as FEGR [24]] and UrbanIR [11] make
steps towards better decomposition, but it is still a challenging open problem to recover perfect
decomposition of materials and light sources for large urban scenes. As shown in Fig. [A4] (top right),
the recovered materials bear little semblance to semantic regions in the original scene. These recent
relighting works [[16} 19, 24} [11]] also have shadows baked into the recovered albedo (Fig. @]kft).

We remark that our novelty lies in leveraging neural deferred rendering to overcome the limitations of
purely physically-based rendering when the decomposition is imperfect. This allows us to generate
better relighting results than prior works that have imperfect decompositions. It is an exciting future
direction to incorporate better intrinsic decomposition along with neural deferred rendering for
improved relighting.

Prediction-based vs. optimization-based lighting: We explain our design choices in the follow-
ing two aspects. (a) We use a feed-forward network for lighting estimation, which is more efficient
and can benefit from learning on a larger dataset. In contrast, the optimization paradigm is more
expensive, requiring per-scene optimization, but has the potential to recover more accurate scene light-
ing from partial observations. (b) The ill-posed nature of lighting estimation and extreme intensity
range make inverse rendering challenging for outdoor scenes [24]. Optimization of the environment
map requires a differentiable renderer and high-quality geometry/material to achieve good results.
The existing/concurrent state-of-the-art works [19,[24] cannot solve the problem accurately, as shown
in Fig.[A4]bottom right.

®https://github.com/fundamentalvision/BEVFormer

"https://github. com/fundamentalvision/BEVFormer/blob/master/projects/configs/
bevformer/bevformer_small.py

*https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
CosineAnnealingLR.html

https://github.com/fundamentalvision/BEVFormer
https://github.com/fundamentalvision/BEVFormer/blob/master/projects/configs/bevformer/bevformer_small.py
https://github.com/fundamentalvision/BEVFormer/blob/master/projects/configs/bevformer/bevformer_small.py
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html

Decomposed Material .

FEGR Material

| -

Baked shadow

UrbanIR Albedo NeRF-OSR (top) & Self-OSR (bottom) Albedo NeRF-OSR Env. Map FEGR Env. Map

Figure A4: Challenges of inverse rendering on urban scenes for existing works.

Temporal consistency for neural deferred shading: While we do not guarantee temporal consis-
tency, LightSim can produce temporally-consistent lighting simulation videos in most cases. We
believe this temporal consistency comes from temporally- and multi-view-consistent inputs during
inference (real image, G-buffers), as well as our combination of simulation and real paired relighting
data during training. Explicitly enforcing temporal consistency is an interesting direction for future
work.

Random shadowed triangles when relighting due to mesh artifacts: We noticed that random
shadowed triangles are common in the I cpgergsre due to non-smooth extracted meshes. This is more
obvious for the nuScenes dataset where the LiDAR is sparser (32-beam) and the capture frequency is
lower (2Hz); for this dataset, we notice many holes and random shadowed triangles. However, thanks
to our image-based neural deferred rendering pass trained with mixed sim-real data, our relighting
network takes the original image and modifies the lighting, which removes many of those artifacts in
the final relit images. We show two nuScenes examples in Fig.[A3]

Rerendered RGB

Rerendered RGB

Figure AS: Random shadowed triangles are removed after neural deferred rendering.

E Additional Experiments and Analysis

We provide additional results and analysis for scene relighting, ablation studies, downstream training,
and lighting estimation. We then showcase more simulation examples using LightSim.

E.1 Additional Perception Quality Evaluation

Due to the large computational cost of NeRF-OSR [19], we select 15 PandaSet sequences for
perceptual quality evaluation in Table 1. Here, we supplement the evaluation at larger scale (47
sequences in total) in Table [AT] LightSim achieves perceptual quality (FID and KID) on par with
Color Transfer, while the latter approach only adjusts the color histogram and cannot simulate intricate
lighting effects properly. Self-OSR and EPE suffer from noticeable artifacts, resulting in significantly
worse perception quality and a larger sim-real domain gap.

Method | FID | KID (x10%) |
Self-OSR [27] 97.3 89.7 £11.5
Color Transfer [13]] | 50.1 18.0+4.5
EPE [16] 79.6 50.0 £9.1
Ours 52.3 16.0 £ 4.6

Table Al: Additional perceptual quality evaluation on 47 sequences.

Source Image &Target HDR Self-OSR NeRF-OSR Color Transfer EPE Ours
GRS = L i 2 % > Lt s i

Figure A6: Qualitative comparison against SOTA approaches in scene relighting.

8

We also provide more qualitative comparisons against SOTA scene relighting approaches in Fig.
For each scene, we showcase two different lighting conditions with the inset target HDRs in the
leftmost column. We show more scene relighting results of LightSim in Fig.[A7]and Fig.[A8] We
also show results in Fig.[A9] where we rotate the HDR skydome and render the shadows at different
sun locations, demonstrating controllable outdoor illumination and realistic simulated results. Please
refer to the project page for video examples.

‘ i“],

Figure A7: Qualitative examples of scene relighting for LightSim (Part 1).

9

https://waabi.ai/lightsim

Figure A8: Qualitative examples of scene relighting for LightSim (Part 2).

10

Figure A9: Qualitative examples of scene relighting with shadows edited.
11

E.2 Additional Ablation Study

We provide a more thorough ablation study on the important components of the neural deferred
rendering module. The perception quality metrics and additional qualitative examples are provided in

Table[A2)and Fig.[AT0]

Data Pairs Rendering Buffers Edge loss 3
#D | im-real identity TIpuger {S°¢,St8} Ledge FID | | KID (x10%) |
0 X 60.9 31.1+£4.0
1 X 62.5 32.7+4.0
2 X 50.5 21.44+4.1
3 X 49.8 23.1+£5.0
4 X 109.8 88.7+7.3
5 200 67.1 40.9+4.9
6 800 57.3 31.8+4.3
Ours \ v v v v 400 \ 55.4 \ 27.6 & 3.7

Table A2: Ablation studies on LightSim components. For clarity, we only mark the differences
between our final model and other configurations. Blank components indicate that the setting is
identical to our final model.

Ours (Aedge =400)

w/o sim-real pairs
Tagy

Figure A10: Additional ablation study on neural deferred rendering. LightSim can simulate intricate
lighting effects (highlights, shadows) while maintaining realism.

12

We choose sequence 001 for the quantitative evaluation (FID/KID scores), and all 80 front-camera
images are used as the reference dataset. To sufficiently measure rendering quality, we generate
3 x 80 relit images using the three unseen HDRs in Fig.[A3] We also generate 72 relit images (first
frame) with shadows edited using the first unseen HDR. Then, to test generalization to unknown
lighting conditions, we pick the first frame and generate 92 relit images using other real HDR maps.
Therefore, for each model configuration, there are 404 simulated images used in total for perceptual
quality evaluation. We set kid_subset_size=10 for this experiment.

As shown in Table[A2]and Fig.[AT0} sim-real and identity data pairs provide useful regularization
for the neural deferred rendering module by reducing visual artifacts caused by imperfect geometry.
Removing those data pairs leads to less realistic simulation results and worse FID/KID scores. On the
other hand, the rendering buffers and shadow maps play an important role in realistically simulating
intricate lighting effects such as highlights and shadows. We observe unrealistic color and missing
cast shadows if pre-computed buffers Ipyger and shadow maps {S%'¢, S8t} are removed. Note that
the KID/FID metrics are lower when removing rendering buffers since the reference dataset does
not include the real data under new lighting conditions; this cannot be interpreted as better visual
quality. Finally, we ablate the content-preserving loss Leqge and find that a proper loss weight helps
the model reduce synthetic mesh-like artifacts (compared to Aeqge = 0) while properly simulating
new lighting effects (compared to A¢qge = 800).

E.3 Additional Object Detection Metrics

We report detailed detection metrics for perception training with different data augmentation ap-
proaches for better reference. Specifically, we report the average precision (AP) at different IoU
thresholds: 0.1, 0.3, and 0.5. As shown in Table[A3] using LightSim-simulated data yields the best
performance improvements. Color Transfer and standard color augmentation [10] are also effective
ways to promote the performance of autonomy model under novel lighting conditions. In contrast,
Self-OSR and EPE either harm the detection performance or bring marginal gains due to noticeable
visual artifacts that cause sim-real domain gap between training and validation.

Model mAP (%) AP@0.1 AP@0.3 AP®@0.5
Real 32.1 51.2 29.5 15.7
Real + Color aug. [10] 33.8 (+1.7) 53.9 31.0 16.4
Real + Sim (Self-OSR) 30.3 (—1.8) 45.6 29.4 16.0
Real + Sim (EPE) 32.5 (+0.4) 50.2 30.6 16.7
Real + Sim (Color Transfer) 35.1 (+3.0) 55.3 32.3 17.6
Real + Sim (Ours) 36.6 (+4.5) 57.1 33.8 19.0

Table A3: Data augmentation with simulated lighting variations.

E.4 Comparison with SoTA Lighting Estimation works

We further compare our neural lighting estimation module with the SoTA lighting estimation ap-
proaches SOLDNet [21]] and NLFE [23]. Table [A4]shows the lighting estimation results on PandaSet,
where the GPS-calculated sun position is used as reference in error computation. For SOLDNet,
we use the official pre-trained model to run inference on limited field-of-view (FoV) front-camera
images. For NLFE, we re-implement the sky dome estimation branch without differentiable actor
insertion and local volume lighting since the public implementation is unavailable. We also compare
a variation of NLFE (named NLFE*) that takes our completed LDR panorama image L as input.
For a fair comparison, LightSim uses the predicted sun position during the encoding procedure. For
NLFE and LightSim, the sky dome estimators take the sun intensity and direction explicitly to enable
more human-interpretable lighting control. Therefore, we also evaluate the decoding consistency
error (log-scale for sun intensity and degree for sun direction). The average metrics are reported on
all PandaSet sequences with night logs excluded.

As shown in Table LightSim recovers more accurate HDR sky domes compared to prior SOTA
works, with the lowest angular error. It also produces lower decoding error compared to NLFE.
Interestingly, we also find that using more camera data (panorama vs limited-FoV image) significantly
enhances NLFE’s estimation performance and reduces decoding errors. This verifies our idea of
leveraging real-world data sufficiently to build the lighting-aware digital twins.

13

Method Input Angular Error | Decod.mg Error |
Intensity Angle
SOLDNet Limited-FoV 69.98° - -
NLFE [23] Limited-FoV 78.29° 2.68 12.15°
NLFE* Panorama 47.39° 2.27 8.53°
Ours (no GPS) Panorama 20.01° 1.25 1.78°

Table A4: Comparisons of sky dome estimation on PandaSet. As reference, our model with GPS
leads to 3.78° angular error in sun direction prediction and 1.64° decoding error.

Fig.[ATT|shows more lighting estimation examples on PandaSet, including stitched partial panorama
images Iano, completed LDR panorama L, and HDR sky domes E. LightSim leverages GPS and
time data to get the approximate sun location, enabling recovery of the sun in predicted HDRs even if
not observed in partial panorama images I;,n,, and the surrounding observed sky and scene context
can still be used to approximately estimate the sun intensity.

LDR panorama], HDR Sky dome LDR panorama I, HDR Sky dome Ei

partial panorama Ian0 partial panorama I},ano

sunset noonday

Figure A11: More lighting estimation results on PandaSet.

We further compare virtual actor insertion against SOLDNet and NLFE in Figure [AT2]on PandaSet
sequence 001. We highlight two regions { A, B} for comparison to showcase the importance of
accurate sun intensity and location prediction, as well as the capability to model inter-object lighting
effects. For SOLD-Net and NLFE, we use Poisson surface reconstruction (PSR) [9]] to obtain the
ground mesh as the plane for virtual actor insertion. Specifically, we first only keep the ground points
using semantic segmentation labels, estimate per-point normals from the 200 nearest neighbors within
20cm, and orientate the normals upwards. Then, we conduct PSR with octree depth set as 12 and
remove the 2% lowest density vertices.

Original SOLD-Net

NLFE* (Panorama) Ours

Figure A12: Qualitative comparison of lighting-aware virtual object insertion.

For SOLD-Net, the inserted vehicle looks too bright, with hard shadows cast differently from the other
actors since the predicted sun intensity is too strong and the sun direction is not correctly inferred.
NLFE estimates the sun intensity and direction more reasonably by consuming our completed
LDR panorama image. However, it cannot simulate the shadow cast by the original actor onto the

14

inserted green vehicle due to the lack of 3D digital twins. In contrast, LightSim can perform virtual
actor insertion with inter-object lighting effects simulated accurately thanks to the accurate lighting
estimation and 3D world modelling.

In Fig. [AT3] we show additional lighting-aware actor insertion examples on another PandaSet
sequence 024, where the sun is visible in the front camera. LightSim inserts the new actors seamlessly
and can model lighting effects such as inter-object shadow effects (between real and virtual objects).

Real Camera Simulation with LightSim Real vs Sim

Figure A13: Additional lighting-aware actor insertion examples with LightSim.

E.5 Additional Camera Simulation Examples

Combining all these capabilities results in a controllable, diverse, and realistic camera simulation
with LightSim. In Fig.[AT4] we show additional camera simulation examples similar to Fig. 1 and
Fig. 7 in the main paper. We show the original scenario in the first block. In the second block, we
show simulated scene variations with an actor cutting into the SDV’s lane, along with inserted traffic
barriers, resulting in a completely new scenario with generated video data under multiple lighting
conditions. In the third block, we show another example where we add inserted barriers and replace
all the scene actors with a completely new set of actors reconstructed from another scene. The actors
are seamlessly inserted into the scenario with the new target lighting. Please refer to the project page
for video examples.

15

https://waabi.ai/lightsim

T % 5= = A = F —
T Tw - n & ‘.‘ul'lll;o:m_--!-

SR ——

g EE= i T d [a. L] i., = il
y w i f # - i w“llﬁll_lﬁ

“ IR0 -

Figure A14: Additional controllable camera simulation examples.

E.6 Additional Qualitative Results on nuScenes

We further showcase LightSim’s ability to generalize to driving scenes in nuScenes. We provide
more qualitative scene relighting results in Fig. [AT5]and Fig.[A16] Specifically, we select ten diverse
scenarios that involve traffic participants such as vehicles, pedestrians and construction items. The
sequence IDs are 011, 135, 154, 158, 159, 273, 274, 355, 544, 763. As described in
Sec.[C.3] we conduct neural scene reconstruction and lighting estimation (pre-trained on PandaSet) to
build the lighting-aware digital twins. Then, we apply the neural deferred rendering model pre-trained
on PandaSet to obtain the relit images. Although the nuScenes sensor data are much more sparse
compared to PandaSet (32-beam LiDAR, 2Hz sampling rate), LightSim still produces reasonable
scene relighting results, indicating good generalization and robustness. Please refer to the project
page for video examples.

Occasionally, we observe noticeable black holes (e.g., on log 355 and 763) in the relit images. This
is because the reconstructed meshes are low-quality (non-watertight ground, broken geometry) due
to sparse LiDAR supervision and mis-calibration. While the neural deferred rendering module is
designed to mitigate this issue, it cannot handle large geometry errors perfectly. Stronger smoothness
regularization during the neural scene reconstruction step can potentially improve the model’s
performance.

16

https://waabi.ai/lightsim
https://waabi.ai/lightsim

Original

bz M'M S ""'"!M Rt e |

> q ~, 4

TS a QS

Figure A15: Generalization to nuScenes (Part 1).

17

TR —— -

—_—
F—

Figure A16: Generalization to nuScenes (Part 2).
18

F Limitations and Future Works

While LightSim can simulate diverse outdoor lighting conditions, there are several areas where it
could benefit from further improvements. First, LightSim cannot seamlessly remove shadows, as
shown in Fig.[AT7] particularly in bright, sunny conditions where the original images exhibit distinct
cast shadows. This is because the shadows are mostly baked during neural scene reconstruction
(see view-independent reconstruction in Fig. [AT8), producing flawed synthetic data that confuses
the neural deferred rendering module. Moreover, we specify fixed materials [2] and predict sky
domes that are not ideal for different urban scenes and may cause real-sim discrepancies as shown in
Fig. 9. Those issues can potentially be addressed by better intrinsic decomposition with priors and
joint material/lighting learning [24} [19]. More discussions for inverse rendering on urban scenes are
provided in Sec

Second, LightSim uses an HDR sky dome to model the major light sources for outdoor daytime scenes.
Therefore, LightSim cannot handle nighttime local lighting sources such as street lights, traffic lights,
and vehicle lights. A potential solution is to leverage semantic knowledge and create local lighting
sources (e.g., point/area lights [14] or volumetric local lighting [23])). Moreover, our experiments
also focus on camera simulation for perception models, and we may investigate the performance
of downstream planning tasks in future works. Lastly, our current system implementation relies on
the Blender Cycles rendering engine [1]], which is slow to render complex lighting effects. Faster
rendering techniques can be incorporated to further enhance the efficiency of LightSim [20, [14]].

Apart from the further method improvements mentioned above, it is important to collect extensive
data from real-world urban scenes under diverse lighting conditions (e.g., repeating the same driving
route under varying lighting conditions). Such data collection aids in minimizing the ambiguity
inherent in intrinsic decomposition. Moreover, it paves the way for multi-log training with authentic
data by providing a larger set of real-real pairs for lighting training.

0° 90° 180° 270°

Strong Direction Light

Y Source = Target
.
baked shadow

Sun Glare

baked shadow

lens flare ‘

Figure A17: Failure cases with strong directional lighting. The neural deferred rendering network
cannot fully remove the baked shadows (top row) and other sensor effects (e.g., lens flare — bottom
row). We use green and red arrows to highlight areas where LightSim performs well and not well.

L 3 a o= y .
Original RGB!

Original RGB

- - =Y

Figure A18: View-independent reconstruction results for LightSim. Shadows are baked at this
stage, which are then mitigated by neural deferred rendering. The relighting failure cases for the last
example are shown in Fig.[AT7]

In Fig.[AT7] we highlight two examples of LightSim applied to scenes with strong directional lighting

and high sun intensity. Each row shows the shadow editing/relighting results under four different sun
angles of the target environment map. In the top row, LightSim cannot fully remove source shadows

19

in bright and sunny conditions due to the baked shadows in the view-independent reconstruction.
Moreover, due to inaccurate HDR peak intensity estimation, the brightness of cast shadows cannot
match the original images well. In the bottom row, we depict a source image with high sun intensity
and glare relit to a new target lighting. It is challenging to remove the sun glare and alter the over-
exposed regions in this setting, but we can still apply some relighting effects to the cars and buildings
in the scene (see arrows).

G Computation Resources

In this project, we ran the experiments primarily on NVIDIA Tesla T4s provided by Amazon Web
Services (AWS). For prototype development and small-scale experiments, we used local workstations
with RTX A5000s. Overall, this work used approximately 8,000 GPU hours (a rough estimation
based on internal GPU usage reports), of which 3,000 were used for the final experiments and the rest
for exploration and concept verification during the early stages of the research project. We provide a
rough estimation of GPU hours used for the final experiments in Table[A5] where we convert one
A5000 hour to two T4 hours approximately.

Experiment T4 Hours Comments

Table 1 (perceptual quality validation) 1850 LightSim (100), NeRF-OSR (1500), EPE (150)
Table 2 (downstream training) 150 6x models, each takes 25 GPU hours

Table A4 (lighting estimation) 40 15h NLFE, 25h LightSim

Fig. 5 & Table A2 (ablations) 400 50h each model

Fig. 8 (nuScenes) 40 20h for digital twins, 20h for relighting

Others (data generation & demos) 510 500h lighting data generation + 10h demos

Table A5: Summary of GPU hours used for the final experiments.

H Licenses of Assets

We summarize the licenses and terms of use for all assets (datasets, software, code, pre-trained
models) in Table

Assets License URL

Blender 3.5.0 [1] GNU General Public License (GPL) https://www.blender.org/

HDRMaps [[7] Royally—Fresﬂ https://hdrmaps.com/

HoliCity [30] Non-commercial purpos@ https://holicity.io/

TurboSquid 3D Models Royalty-Fre; https://www.turbosquid. courfl

PandaSet [25] CC BY 4. https://scale.com/open-av-datasets/pandaset
nuScenes [3] Non-commercial (CC BY-NC-SA 4.01]3] https://www.nuscenes.org/

SOLDNet [21] Apache License 2.0 https://github.com/ChemJeff/SOLD-Net/

EPE [16] MIT License https://github.com/isl-org/PhotorealismEnhancement
Self-OSR [16] Apache License 2.0 https://github.com/YeeU/relightingNet
NeRF-OSR [19] Non-commercial puxposﬂ https://github.com/r00tman/NeRF-0SR

Color Transfer [15] MIT License https://github.com/jrosebrl/color_transfer

Table A6: Summary of the licenses of assets.

I Broader Impact

LightSim offers enhancements in camera-based robotic perception, applicable to various domains
such as self-driving vehicles. Its ability to generate controllable camera simulation videos (e.g., actor
insertion, removal, modification, and rendering from new viewpoints) and adapt to varying outdoor
lighting conditions can potentially improve the reliability and safety of intelligent robots for a broad
range of environmental conditions. Additionally, LightSim’s capacity to create lighting-aware digital
twins can improve realism in digital entertainment applications such as augmented reality or virtual
reality. However, as with any technology, the responsible use of LightSim is important. Privacy
concerns may arise when creating digital twins of real-world locations. We also caution that our
system might produce unstable performance or unintended consequences under different datasets,
especially when the sensory data are very sparse and noisy.

20

https://www.blender.org/
https://hdrmaps.com/
https://holicity.io/
https://www.turbosquid.com
https://scale.com/open-av-datasets/pandaset
https://www.nuscenes.org/
https://github.com/ChemJeff/SOLD-Net/
https://github.com/isl-org/PhotorealismEnhancement
https://github.com/YeeU/relightingNet
https://github.com/r00tman/NeRF-OSR
https://github.com/jrosebr1/color_transfer

References
[1] Blender Foundation. Blender, 2021.

[2] Brent Burley and Walt Disney Animation Studios. Physically-based shading at disney. In ACM
SIGGRAPH, 2012.

[3] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu,
Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal
dataset for autonomous driving. CVPR, 2020.

[4] Yun Chen, Frieda Rong, Shivam Duggal, Shenlong Wang, Xinchen Yan, Sivabalan Mani-
vasagam, Shangjie Xue, Ersin Yumer, and Raquel Urtasun. Geosim: Realistic video simulation
via geometry-aware composition for self-driving. CVPR, 2021.

[5] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. CVPR, 2016.

[6] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric
regularization for learning shapes. ICML, 2020.

[7]1 HDRMaps. Hdrmaps. https://hdrmaps.com/, Access date: 2023-05-17.

[8] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS,
2017.

[9] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In
Proceedings of the fourth Eurographics symposium on Geometry processing, volume 7, page 0,
2006.

[10] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Qiao Yu, and
Jifeng Dai. Bevformer: Learning bird’s-eye-view representation from multi-camera images via
spatiotemporal transformers. arXiv, 2022.

[11] Zhi-Hao Lin, Bohan Liu, Yi-Ting Chen, David A. Forsyth, Jia-Bin Huang, Anand Bhattad, and
Shenlong Wang. Urbanir: Large-scale urban scene inverse rendering from a single video. CoRR,
abs/2306.09349, 2023.

[12] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface
construction algorithm. ACM SIGGRAPH computer graphics, 1987.

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv, 2017.

[14] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: A retargetable
forward and inverse renderer. ACM Transactions on Graphics (TOG), 38(6):1-17, 2019.

[15] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter Shirley. Color transfer between
images. IEEE Computer graphics and applications, 2001.

[16] Stephan R Richter, Hassan Abu AlHaija, and Vladlen Koltun. Enhancing photorealism enhance-
ment. PAMI, 2021.

[17] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground
truth from computer games. ECCV, 2016.

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part 111 18, 2015.

[19] Viktor Rudnev, Mohamed Elgharib, William Smith, Lingjie Liu, Vladislav Golyanik, and
Christian Theobalt. Nerf for outdoor scene relighting. In ECCV, 2022.

21

[20] Dave Shreiner, Bill The Khronos OpenGL ARB Working Group, et al. OpenGL programming
guide: the official guide to learning OpenGL, versions 3.0 and 3.1. 2009.

[21] Jiajun Tang, Yongjie Zhu, Haoyu Wang, Jun Hoong Chan, Si Li, and Boxin Shi. Estimating
spatially-varying lighting in urban scenes with disentangled representation. In ECCV, 2022.

[22] TurboSquid. https://www.turbosquid.com, Access date: 2023-05-17.

[23] Zian Wang, Wenzheng Chen, David Acuna, Jan Kautz, and Sanja Fidler. Neural light field
estimation for street scenes with differentiable virtual object insertion. In ECCV, 2022.

[24] Zian Wang, Tianchang Shen, Jun Gao, Shengyu Huang, Jacob Munkberg, Jon Hasselgren, Zan
Gojcic, Wenzheng Chen, and Sanja Fidler. Neural fields meet explicit geometric representations
for inverse rendering of urban scenes. In CVPR, 2023.

[25] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao, Zesong Li,
Jian Wu, Kai Sun, Kun Jiang, et al. Pandaset: Advanced sensor suite dataset for autonomous
driving. In ITSC, 2021.

[26] Ze Yang, Yun Chen, Jingkang Wang, Sivabalan Manivasagam, Wei-Chiu Ma, Anqi Joyce Yang,
and Raquel Urtasun. Unisim: A neural closed-loop sensor simulator. In CVPR, 2023.

[27] Ye Yu, Abhimitra Meka, Mohamed Elgharib, Hans-Peter Seidel, Christian Theobalt, and
William AP Smith. Self-supervised outdoor scene relighting. In ECCV, 2020.

[28] Ye Yu and William AP Smith. Inverserendernet: Learning single image inverse rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3155-3164, 2019.

[29] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene
parsing network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2881-2890, 2017.

[30] Yichao Zhou, Jingwei Huang, Xili Dai, Shichen Liu, Linjie Luo, Zhili Chen, and Yi Ma.
Holicity: A city-scale data platform for learning holistic 3d structures. arXiv, 2020.

22

	LightSim Implementation Details
	Building Lighting-Aware Digital Twins of the Real-World
	Neural Lighting Simulation of Dynamic Urban Scenes

	Implementation Details for Baselines
	Self-supervised Outdoor Scene Relighting (Self-OSR)
	NeRF for Outdoor Scene Relighting (NeRF-OSR)
	Color Transfer
	Enhancing Photorealism Enhancement (EPE)

	LightSim Experiment Details
	Perceptual Quality Evaluation
	Downstream Perception Training
	Generalization on nuScenes

	Additional Discussions
	Additional Experiments and Analysis
	Additional Perception Quality Evaluation
	Additional Ablation Study
	Additional Object Detection Metrics
	Comparison with SoTA Lighting Estimation works
	Additional Camera Simulation Examples
	Additional Qualitative Results on nuScenes

	Limitations and Future Works
	Computation Resources
	Licenses of Assets
	Broader Impact

