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Abstract— We consider the task of traffic scene generation. A
common approach in the self-driving industry is to use manual
creation to generate scenes with specific characteristics and
automatic generation to generate canonical scenes at scale.
However, manual creation is not scalable, and automatic gen-
eration typically use rules-based algorithms that lack realism.
In this paper, we propose SceneControl, a framework for
controllable traffic scene generation. To capture the complexity
of real traffic, SceneControl learns an expressive diffusion
model from data. Then, using guided sampling, we can flexibly
control the sampling process to generate scenes that exhibit de-
sired characteristics. Our experiments show that SceneControl
achieves greater realism and controllability than the existing
state-of-the-art. We also illustrate how SceneControl can be
used as a tool for interactive traffic scene generation.

I. INTRODUCTION

Simulation is an essential tool to safely and scalably
develop and deploy self-driving vehicles (SDVs). A core
component of simulation is the ability to simulate realistic
traffic scenarios. This is typically decomposed into two tasks:
(1) specifying the initial placement and attributes (e.g., size,
speed, efc.) of the actors in a scene; and (2) unrolling a policy
to simulate their behaviors. We focus on the first task—traffic
scene generation. This task is challenging because we need
to generate scenes that capture the nuanced interactions be-
tween actors in the real world. We also need to do so scalably,
across a diversity of road topologies, and realistically, so that
the simulation accurately reflects what may occur in the real
world; e.g., the actors’ initial kinematics should not induce
inevitable collisions when unrolling the simulation.

A common solution is to ask human experts to manually
create specific traffic scenes and use automated algorithms
to generate canonical traffic scenes at scale. For manual cre-
ation, test engineers manually specify each actor’s placement
and attributes by hand. This granular level of editing allows
them to create scenes with specific interactions between
actors. However, it is tedious and time-consuming to create
realistic scenes in this way, limiting its scalability. For
automatic generation, rules-based methods [33], [32], [15],
[22] are used to generate scenes at scale with heuristics
like “vehicles drive on lane centerlines”; but designing these
rules requires significant time and expertise, and their rigidity
makes it challenging to generate realistic scenes that cover
the diversity of situations that can occur in the real world.

To address the limitations of rules-based methods, recent
work [29], [8], [2], [37] use generative modeling to learn to
generate traffic scenes instead. By learning the distribution
of traffic scenes from data, these methods avoid the need
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Fig. 1. SceneControl is a framework for controllable traffic scene
generation that can generate realistic, constraint-satisfying traffic scenes.

to design complex heuristics, enabling them to better model
the diversity and complexity of real traffic. However, these
methods still generate scenes that defy common sense;
e.g., frequently generating scenes with colliding or off-road
actors. Moreover, they focus on generating unconditional
scenes and neglect the use case of generating scenes with
specific semantic characteristics. This limits the scope of
their usefulness to generating canonical traffic scenes.

In this paper, we aim to bridge the gap between manual
creation of specific scenes and automatic generation of
canonical scenes. We want a framework for controllable
traffic scene generation, where engineers or machines could
generate unconditional scenes from scratch or use high-level
constraints to create scenes that exhibit specific characteris-
tics; e.g. adding dense traffic to an intersection. This would
enable us to controllably generate diverse scene variations
at scale. At the same time, it would greatly improve the
efficiency and realism of human-in-the-loop scene creation.

Towards this goal, we propose SceneControl, a framework
for controllable traffic scene generation. SceneControl first
learns a diffusion model [26], [11] of traffic scenes. Specif-
ically, SceneControl combines a transformer decoder [31]
with a lane graph neural network [18], [4] to efficiently
model actor-to-actor/map interactions. Then, at generation
time, we represent high-level constraints with guidance
functions and use guided sampling [6] to sample realistic,
constraint-satisfying traffic scenes from the diffusion model.
Notably, this approach allows us to flexibly incorporate
any constraints (which may be unknown during training)
into the sampling process without re-training. We leverage
this controllability for two purposes: (1) to generate scenes
that exhibit common sense realism (e.g., collision-free); and
(2) to generate scenes that satisfy user-specified high-level
constraints (e.g., on the actors’ locations, speeds, efc.).

We evaluate SceneControl’s realism and controllability on
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Fig. 2. SceneControl is a framework for controllable traffic scene generation. To generate a traffic scene, we first sample a random noise vector per actor
and then iteratively refine them into a realistic traffic scene over 7" diffusion steps. At each diffusion step, we combine a learned diffusion model with a
guidance function to de-noise the input scene into one that is more realistic and better satisfies our desired constraints.

two datasets consisting of urban and high traffic scenes.
Our experiments show that SceneControl generates more
realistic traffic scenes than prior work. At the same time,
SceneControl can generate traffic scenes that better satisfy
high-level constraints on location, size, and speed, achieving
a greater degree of realism and controllability than prior work
evaluated in this setting. Finally, leveraging these properties,
we illustrate how SceneControl can be used to build a tool
for interactive traffic scene generation (see Fig. 1).

II. RELATED WORK

Traffic scenes for self-driving simulation: A core compo-
nent of simulation is the ability to simulate realistic traffic
scenarios. Traffic scenes specify the initial placement and
attributes for each actor in these scenarios; e.g., its pose,
bounding box, speed, etc. In the self-driving industry, traffic
scenes are typically manually created by test engineers
using tools like domain specific languages [9], [25], [10]
or graphical editors [19], [13], [7]. This low-level approach
gives them control to create specific scenes but it is also
inefficient and not scalable. In this work, we aim to improve
scalability through controllable traffic scene generation, en-
abling engineers or machines to use high-level constraints to
generate realistic scenes that exhibit desired characteristics.

Generative models of traffic scenes: Learning generative
models of traffic scenes from data is a promising approach
to scalable traffic scene generation. Early work use Bayesian
networks to model the distribution of traffic scenes in
highway [33], [32] and urban [15] maps. Recent work use
deep generative modeling to further improve realism. Scene
graph-based models [16], [5] learn generative models over
hierarchical scene graph representations of traffic scenes;
but its hand-crafted scene grammar limits its expressivity to
capture the diversity of real traffic. A more flexible approach
uses generative adversarial networks [2] or normalizing
flows [37] to model all actors in the scene jointly. However,
they have not been evaluated beyond a few qualitative
demonstrations [2] or roundabout maps with few actors [37].
Autoregressive models [29], [8] have shown the best sample

quality to date. These models factorize the generation process
into an iterative one, inserting actors one by one according
to a fixed order. Recent work in indoor scene synthesis [21]
relaxes the fixed order assumption but have not been shown
to work well in more complex traffic scenes.

While promising, existing methods generate scenes that
defy common sense; e.g., with collision or off-road actors.
Most also focus on generating scenes unconditionally [2],
[37]1, [29], [8]. LCTGen [28] is a concurrent work that
uses GPT-4 [20] to generate structured scene descriptions to
condition TrafficGen [8]. In contrast, we control our diffusion
model via guided sampling, bypassing LCTGen’s limited
scene grammar and allowing us to use arbitrary constraints,
including common sense ones that improve realism.

Diffusion models: A diffusion model [11], [26] models the
data-generating process as an iterative de-noising procedure.
Starting from random noise, a diffusion model progressively
refines the noise into a sample from the data distribution.
This iterative refinement reverses a forward diffusion process,
where data is iteratively corrupted with noise until it is
indistinguishable from noise. An important characteristic of
diffusion models is that they admit flexible mechanisms
for conditional sampling via guided sampling [6], [12].
Guided sampling biases the reverse process to regions of the
model distribution with high constraint satisfaction, enabling
conditional sampling from an unconditional model. Notably,
the same model can be used for various conditional sampling
tasks without re-training [1], and the guidance strength can
be varied to trade-off realism and constraint satisfaction. To-
gether, these techniques have enabled controllable diffusion
models across a range of modalities, including images [6],
audio [17], point clouds [38], motion trajectories [14], efc.
Our work is most related to Scene Diffusion [24], a
concurrent work that uses a latent diffusion model for traffic
scene generation. However, they do not consider controlla-
bility—an important characteristic for practical applications.
Our work is also related to [36], [35], [3], which are diffusion
models for controllable traffic behavior simulation. Like most
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work in behavior simulation, they assumes a given initial
scene; e.g., from a log, manual creation, efc. We close
this gap by enabling controllable scene generation. Finally,
Scenario Diffusion [23] is a concurrent work that learns a
conditional latent diffusion model for controllable scene and
behavior simulation. Their approach requires training a new
model for each condition whereas we use guided sampling
to enable control over arbitrary constraints at inference time.

III. CONTROLLABLE TRAFFIC SCENE GENERATION

A. Problem Formulation

Notation: We parameterize a traffic scene with n actors by
the joint actor states si., = {s1,...,S,} and an HD map
m of the region of interest, which provides contextual infor-
mation about the surrounding road topology. The number of
actors n varies between scenes, and we focus on a setting
where n is given; e.g., where users specify the desired density
of the scene. Each actor state s; € R is represented by the
actor’s centroid location (z;,;) € R?, bounding box length
and width (I;,w;) € R% heading angle 6; € [0,27), and
speed s; € R>o. We represent the HD map as a lane graph
G = (V,E), where each vertex u € V is a lane segment
and an edge (u,v) € E indicates that v is a successor,
predecessor, or left/right neighbour of w.

Formulation: We formulate the task of controllable traffic
scene generation in two stages. First, we learn a generative
model of traffic scenes p,(s1.,|m) to capture the distribution
of real world traffic scenes. Then, during inference, we
sample from a perturbed distribution [14],

f)tp(slzn|m) O(pw(slzn|m)g(sl:nam) (1)

where g is a guidance function that encodes the degree
to which a scene s;.,, satisfies some high-level constraints.
Sampling from this perturbed distribution corresponds to
generating scenes that are both realistic under p(s1.,|m)
and constraint-satisfying under g(sy.,, m). By varying the
guidance function, we can flexibly encode different con-
straints into the generation process. For example, using the
identity recovers unconditional scene generation whereas us-
ing a collision cost encourages collision-free scenes instead.
Notably, our formulation decouples realism from controlla-
bility, allowing us to re-use the same model with various
implementations of g without re-training.

We propose to parameterize p,(s1.,|m) with a diffusion
model, a family of generative models that achieves state-
of-the-art sample quality and admits flexible schemes for
sampling from perturbed distributions. In the subsequent
sections, we first describe our diffusion model of traffic
scenes and then discuss how to sample from Py, (s1.,, m).

B. A Diffusion Model of Traffic Scenes

A diffusion model is a latent variable model that learns to
reverse a forward diffusion process [11], [26]. For notational
brevity, let xg = (s1 ---s,,) € R"*6 denote n states si.,,.

Forward diffusion process: Starting from data xo ~ ¢(xg),
the forward diffusion process ¢(x;|x;—1) gradually corrupts
the clean actor states xo with Gaussian noise over T  steps
according to a variance schedule 51, ..., Sr,

N/ Bexi-1,(1 = B)I) 2)

This yields a chain of noisy actor states X1, ...

(Xt |Xt 1

» XT.
Reverse diffusion process: Given a sufficiently large 7" and
suitable variance schedule, the distribution of x7 is well-
approximated by an isotropic Gaussian N(0,I). If we know
the reverse distribution ¢(x;_1|x:), we can generate a sample
xo ~ q(x¢) by sampling xy ~ A(0,I) and reversing the
forward process. Since the reverse distribution ¢(x;_1|x¢) is
intractable to compute, we learn to approximate it instead.
Because we are interested in sampling from the conditional
distribution p(sj.,|m), we learn to reverse the forward
process conditional on the HD map m,

m) :N(ug@(xt,t,m),E@(xt,m,t)) (3)

where i, (x¢,t,m) and X, (x;,¢,m) is the approximate
mean and covariance of the reverse distribution at each step
t, and ¢ are learnable parameters. Then, to sample a scene
Xo ~ Po(xo/m), we reverse the forward process, using
Py (X¢—1|x¢, m) in place of g(x;—1|x;) at each step t.

Following existing work [11], we fix X, (x¢,t,m) = 5,1
and parameterize the approximate mean as

pap(xt—1|xt7

/Lap(xta t, m) =

¢107t (xt - f—_’fdte@(xt,t, m)) )
where ay = 1 — B and a; = H;zl o;. Intuitively,
€,(X¢,t, m) predicts the noise e that corrupts x into x; =
Vagxg + /1 — ae. Therefore, learning a diffusion model
amounts to learning a noise prediction model €, (x;,t, m)
to de-noise x; into a sample of the data xg ~ p,(Xo).



Distribution JSD

Common Sense

Model Nearest Dist. Lat. Dev. Ang. Dev. Length Width Speed Collision %  Off-road %
ATISS [21] 0.26 0.26 0.75 0.49 0.20 0.24 22.59 49.09

;1 ATISS++ [21] 0.30 0.22 0.21 0.23 0.15 0.18 1.58 24.84

<  SceneGen [29] 0.20 0.08 0.38 0.26 0.21 0.06 1.80 1.10
SceneControl (Ours) 0.11 0.16 0.18 0.22 0.09 0.05 1.37 0.00

z ATISS [21] 0.20 0.56 0.75 0.36 0.34 0.13 8.27 35.34

2 ATISS++ [21] 0.24 0.37 0.11 0.34 0.17 0.12 9.10 3.84

f_o SceneGen [29] 0.13 0.19 0.29 0.36 0.21 0.08 1.06 0.11

T SceneControl (Ours) 0.10 0.18 0.07 0.31 0.17 0.11 0.32 1.73

TABLE I: COMPARISON TO THE STATE-OF-THE-ART ON ARGOVERSE2 AND HIGHWAY.

Architecture: We parameterize the noise prediction model
€,(x¢,t,m) as a transformer-based architecture with a lane
graph GNN [4] to model complex actor-to-actor/map inter-
actions. In contrast to image-based diffusion models, we do
not rasterize the traffic scene but instead directly operate
over the vector representation of the actor states and the lane
graph. Overall, our architecture is lightweight, permutation-
equivariant, and handles a variable number of actors. It con-
sists of three components: (1) a set of encoders to featurize
the input states and map; (2) a transformer decoder to model
interactions; and (3) a decoder to predict the diffusion noise.

Given noisy actor states x; € R"*5 and an HD map m,
we encode each state vector with a multi-layer perceptron
(MLP) and encode lane graph representation of m using a
lane graph GNN. We also embed the diffusion timestep ¢
with sinusoidal positional encoding [31] and an MLP.

h? = MLP(x,), h,, = GNN(m), h; = MLP(PE(t)) (5)

Next, we use a series of interleaving self-attention and
cross-attention layers to fuse the actor features h? and
lane graph features h,,. Here, self-attention uses actor state
features h’;’ as queries, keys, and values, allowing our model
to extract actor-to-actor interactions. To condition on m,
cross-attention instead uses lane graph features h,, as the
keys and values, allowing our model to capture actor-to-map
interactions. After each pair of attention layers, we fuse the
diffusion timestep embedding h; into the resulting features

h**! = CrossAttn(SelfAttn(h*), h,,) + h; (6)

After K blocks of self-attention and cross-attention, we
use an MLP to predict the forward diffusion noise

€y (%t,t,m) = MLP(h’) (7)

Learning: We learn the noise prediction model €, (x;, ¢, m)
using noise-matching [11],

L(p) = Exo,m,¢,e [”6 - Ew(xtv t, m)H2] 3

where x and m is the joint actor states and HD map for a
real traffic scene, ¢ ~ Uniform(1,7T) is a diffusion step, and
x; is the actor states x corrupted with noise € ~ N (0, I).

C. Controllable Scene Generation with Guidance

Having specified our generative model p,(si.,/m), we
now discuss how to sample from the perturbed distribution
D (S1:n|M) X Py (S1:0|mM)g(81.0, M) to generate scenes that

satisfy high-level constraints. For diffusion models, we use
guided sampling [6], [12]. Given the number of actors n
(specifying the desired scene density), we first sample n
random noise vectors, which we denote x7 ~ N (0,1). Then,
at each step t of reverse diffusion, rather than sampling from
Po(Xe—1]xe, m) = N (p(x¢, t, m), 5;I), we sample from

N(:ul,a (Xta t7 m) - 7t6tvxtg(xt7 m)7 ﬁtI) (9)

where ~; is a time-varying coefficient that controls the
guidance strength. Notably, this approach does not require re-
training a new model for each guidance function, allowing us
to flexibly incorporate any constraints into scene generation.
Fig. 3 illustrates our considered guidance functions.

Spatial region constraints: SceneControl allows us to
insert actors into specific regions of interest in a scene;
e.g., to manually populate specific areas around the SDV or
automatically densify all intersections. We design a guidance
function based on the signed distance function of an actor’s
centroid (z;,¥;) to the boundary of a 2D polygon cregion,

greg‘ion(si; Cregion) = maX{07 SDF<Cregion7 (xiv y2)>} (10)

Actor attributes constraints: SceneControl allows us to
constrain actor attributes such as speed, bounding box size,
etc. Unlike manually specifying each attribute, which can
lead to unrealistic scenes (e.g., a truck with Ferrari speed at
a tight turn), SceneControl automatically adapts all attributes
when controlling for a subset of them. To this end, we design
a guidance function as the distance of an actor’s attribute a;
to the boundary of a 1D range cattr = (Cmin, Cmax)s

gattr(sia cattr) = maX{07 @; — Cmax; Cmin — ai} (11)

Initial scene constraints: SceneControl allows us to gener-
ate traffic scenes from an empty map or from a scene with
existing actors cinit = {8;|¢ € Z}. To this end, we design
a guidance function to penalize the difference between the
existing actors’ sampled vs. original states,

Ginit (Si, cinit) = L[i € Z]||s; — 84| (12)

By adjusting the guidance strength, we can interpolate
between keeping the initial scene fixed vs. allowing for ad-
justments that improve realism; e.g., moving existing actors
closer together when densifying an already dense scene.
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Fig. 4. SceneControl enables generating realistic traffic scenes that satisfy high-level user-specified constraints. By specifying a spatial region constraint
(in orange), we can insert actors into specific regions of an existing scene (Row 1). By changing the desired number of actors, we can vary the density
of the scenes (Row 2). In addition, we can also specify constraints on the actors’ attributes, allowing us to vary the generated actors’ size (Row 3) and
speed (Row 4). Existing actors in the scene are depicted in gray and inserted actors in blue.

Common sense constraints: SceneControl allows us to
incorporate common sense priors to improve realism. In
particular, collisions are rare and actors typically drive on
lanes. Therefore, we devise guidance functions that penalize
collisions and off-lane driving. For collision, we use a
differentiable relaxation [27]; we approximate each actor’s
bounding box with five circles and compute the L2 distance
d((«s, vi), (xj,y;)) between the centroids of the closest
circles between the pair of actors (with radii r; and ),

0,1— d((xzayz)v (*T’j7yj)) } (13)

Jcollision (Sia Sj) = max
T+

For off-lane driving, we use the minimum projection
distance between an actor’s centroid and its closest lane,

glane(sia m) = min dproj ((Iia yi)v lane) (14)

lane€m
IV. EXPERIMENTS

A. Experiment Setup

Datasets: We perform experiments on two datasets that
cover complex urban traffic and high-speed highway driving.
Our first dataset, Argoverse 2 Sensor [34], has 110,071
urban traffic scenes for training and 23,547 for validation.
Our second dataset, Highway, has 160,000/40,000 highway

scenes in its train/validation splits. Both datasets provide 3D
bounding box labels per scene and HD maps.

Baselines: We compare against the state-of-the-art in traffic
scene generation. SceneGen [29] is an autoregressive model
over traffic scenes, where actors are iteratively inserted
in a fixed left-to-right, bottom-to-top order. We compare
to ATISS/ATISS++ [21], an order-agnostic autoregressive
model for indoor scene generation adapted to our setting.
While ATISS follows its original implementation, for fair
comparison, we strengthened ATISS++ for our setting.

Metrics: Evaluating the performance of a generative model
is an open challenge since no single metric is sufficient for
measuring all aspects of realism and controllability necessary
for downstream applications [30]. Therefore, we propose to
evaluate our models on a suite of metrics instead.

« Distribution JSD measures realism by the similarity be-
tween the distribution of real and synthetic traffic scenes.
We report the Jensen-Shannon divergence between dis-
tributions of scene statistics that capture actor attributes,
actor-to-actor interactions, and actor-to-map reasoning.

o« Common Sense metrics measures realism by the fre-
quency to which a model generates infraction-free traffic
scenes, namely scenes that are free from collision and off-
road actors. We report the percentage of collision actors



Region Constraint

Size Constraint Speed Constraint

Model Guide Suc. % JSD Col. % Suc. % JSD Col. % Suc.% JSD Col. %

ATISS++ [21] 8.34 0.23 4.66 8550 022 20.34 76.52  0.22 18.86
gl SceneGen [29] 7.66 0.22 1.54 86.67 0.21 2.53 82.09 0.20 1.98
< SceneControl (Ours) 2478  0.17 1.42 80.33 0.14 2.23 81.33 0.15 1.55

SceneControl (Ours) v 7722 0.19 1.35 95.62 0.14 2.17 98.87 0.14 1.37
z ATISS++ [21] 17.86 047 5.91 7848  0.40 19.80 59.52 0.36 5.91
2  SceneGen [29] 27.66  0.22 0.77 75.86  0.20 0.97 64.93 0.21 0.77
fczo SceneControl (Ours) 35.69 0.16 0.79 79.46  0.15 0.68 71.56  0.15 0.47
T SceneControl (Ours) v 86.60 0.16 0.15 94.66 0.14 0.54 90.84 0.16 0.47

TABLE II: CONTROLLABLE TRAFFIC SCENE GENERATION ON ARGOVERSE2 AND HIGHWAY. SUC. % DENOTES THE CONSTRAINT SATISFACTION

SUCCESS RATE. JSD IS THE AVERAGE DISTRIBUTION JSD. COL. % IS THE COLLISION RATE. GUIDE INDICATES WHETHER GUIDED SAMPLING IS USED.

(Collision %) and off-road actors (Off-road %).

« Constraint Satisfaction measures controllability by the
percentage of synthetic traffic scenes that satisfy a user-
specified constraint. Since this metric’s definition varies
by the desired constraints, we defer details to Sec. IV-C,
where we describe our controllability experiments.

B. Comparison to the State-of-the-art

Our first experiment benchmarks SceneControl and the
baselines in unconditional traffic scene generation. Here, we
want to generate realistic scenes from scratch given only an
HD map of the region of interest. This setting represents
a foundational capability necessary for controllable traffic
scene generation and allows us to fairly compare SceneCon-
trol against the existing state-of-the-art. For fair comparison,
we control for the number of actors each model is requested
to generate. For SceneControl, we use guided sampling with
common sense constraints to improve realism.

Tab. I summarizes our results on Argoverse2 and Highway.
Overall, SceneControl generates the most realistic traffic
scenes in both urban and highway settings. In particular,
SceneControl achieves the lowest nearest distance JSD and
collision rate, suggesting that it models actor-to-actor inter-
actions better than the baselines. SceneControl also achieves
competitive results on lateral/angular deviation JSD and off-
road rate, highlighting its capacity for actor-to-map reason-
ing. In contrast, ATISS/ATISS++ struggle since they were
designed for simpler indoor scenes with few objects. Scene-
Gen is more competitive but its use of simple parametric dis-
tributions limits expressivity. By foregoing such assumptions,
SceneControl achieves significant improvements in angular
deviation, length, and width JSD.

C. Controllable Traffic Scene Generation

Beyond generating traffic scenes from scratch, we are
also interested in generating scenes that satisfy high-level
constraints; e.g., where the actor is placed, how fast they
drive, how large they are. SceneControl does this effectively,
achieving greater controllability and realism than prior work.

Setup: We systematically evaluate controllability across sev-
eral experiments. To evaluate spatial region controllability,
for each scene in the validation set, we remove all actors from
a random non-empty lane, generate a new scene with a region
constraint based on the selected lane polygon, and report

Guidance Distribution JSD Common Sense
Col. Lane Near. Dist. Lat. Dev. Col. % Offroad %

0.29 0.22 17.20 0.00

v 0.12 0.23 1.44 0.11

v 0.30 0.16 16.68 0.00

v v 0.11 0.16 1.40 0.00

TABLE III: COMMON SENSE GUIDANCE ON ARGOVERSE2.

the percentage of new actors whose centroid lies within the
lane polygon. To evaluate actor attributes controllability, we
remove all actors with speed (size) within a random range,
generate a new scene with speed (size) constraints based on
the selected range, and report the percentange of new actors
whose speed (size) fall within the selected range.

Results: Tab. II summarizes our results on Argoverse2 and
Highway. Across all experiments, SceneControl consistently
achieves greater constraint satisfaction and realism than the
baselines. Since the baselines are designed for unconditional
traffic scene generation, they ignore and rarely satisfy user-
specified constraints. In contrast, using guided sampling,
SceneControl achieves a high degree of constraint satisfac-
tion without impairing realism.

Interactive scene generation: In Fig. 4, we illustrate how
SceneControl can be used as an interactive tool for control-
lable traffic scene generation. Specifically, SceneControl can
insert actors into specific regions of an existing scene, vary
the number/density of actors in a scene, and constrain actors’
size and speed to specific ranges. We also demonstrate our
interactive tool in the attached supplementary video.

Incorporating common sense: Tab. III shows that guided
sampling with common sense constraints significantly im-
proves SceneControl’s realism across both distribution JSD
and common sense metrics.

V. CONCLUSION

In this paper, we proposed SceneControl, a framework
for controllable traffic scene generation. SceneControl is an
expressive diffusion model of traffic scenes that enables
us to generate realistic traffic scenes that satisfy arbitrary
constraints. This allows us to flexibly control the generation
process to scalably create traffic scenes that exhibit our
desired characteristics, opening up exciting opportunities to
improve how we design scenarios for training and testing
autonomy, making the safety case, and beyond.
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