
SceneControl: Diffusion for Controllable Traffic Scene Generation
Supplementary Materials

Jack Lu3⋆, Kelvin Wong1,2⋆, Chris Zhang1,2, Simon Suo2, and Raquel Urtasun1,2

I. ADDITIONAL RESULTS

A. Qualitative Results

Generating actors in occluded regions: Handling partially-
and/or fully-occluded actors is an important capability for
safe self-driving. We demonstrate how SceneControl can be
used to generate traffic scenes that exhibit such occlusion
automatically. Specifically, given an existing traffic scene,
we first determine a set of occlusion regions cregions in the
scene by ray-casting from the SDV’s perspective. Then, we
control SceneControl’s generation process using a variant of
the spatial region guidance function gregion described in the
main text. In particular, since there may be multiple disjoint
occlusion regions in a scene, we use the minimum signed
distance function from an actor’s centroid to any polygon
boundary,

gregions(si, cregions) = min{gregion(si, c) : c ∈ cregions} (1)

In Fig. 1, we show how using the guidance function
gregions, SceneControl can generate realistic scenes with
actors that are partially or fully-occluded from the SDV’s per-
spective. Since occlusion regions are automatically extracted
from a given scene via ray-casting, we can generate such
scenes at scale, opening up exciting possibilities to leverage
SceneControl for data augmentation; e.g., to train perception
models that are more robust to occlusions.

Interactive scene generation tool on Highway: We use
an interactive tool to perform controllable generation of the
Highway dataset. As shown in Fig. 5, SceneControl can be
used to generate realistic highway scenes that inserts actors
in a user-specified spatial region, varies the density/number
of actors, and constrains those actors to specific size and
speed ranges.

B. Distribution of Scene Statistics

In Fig. 3 and Fig. 4, we visualize ATISS, ATISS++,
SceneGen, and SceneControl’s distributions of scene statis-
tics in Argoverse2 and Highway respectively. These figures
depict the histograms used to compute our distribution JSD
metrics. Overall, we observe that traffic scenes generated
using SceneControl induces distributions that better match
their real counterparts, reaffirming our quantiative results.
In particular, the baselines generally induce higher entropy
distributions compared to SceneControl. This is especially
noticeable on lane deviation in Highway, where ATISS and

⋆Indicates equal contribution. 1Waabi, 2University of Toronto, 3New
York University. Research done at Waabi. Contact: kwong@waabi.ai

ATISS++ fail to capture the fact that most vehicles drive
near their lane centerlines. Looking at nearest distance in
Argoverse2, we can see that SceneControl also captures high
density traffic better than ATISS, ATISS++, and SceneGen,
which are more likely to generate scenes where vehicles are
in collision or are more spread out.

C. Realism vs. controllability

Fig. 2 depicts the realism vs. controllability trade-off as we
vary the guidance strength. We observe that the constraint
satisfaction success rate increases with guidance strength,
with little impact on realism.

II. MODEL DETAILS

A. Input Parameterization

Actor state: We represent each actor’s state si by its centroid
location (xi, yi) ∈ R2, bounding box length and width
(li, wi) ∈ R+, heading angle θi ∈ [0, 2π), and speed si ∈
R≥0. Before processing this representation with our model,
we re-scale each attribute in si to [−1, 1]. We normalize an
actor’s centroid location, bounding box length and width, and
speed using their respective minimum and maximum values
seen in the training split. For heading angle θi, we use a
biternion representation (cos θi, sin θi).

Lane graph: We represent the HD map m as a lane graph
G = (V,E), where each node u ∈ V is a lane segment
and an edge (u, v) ∈ E indicates that v is a successor,
predecessor, or left/right neighbour of u. Following [2],
we build each lane graph by discretizing the centerlines
of the HD map at regular intervals (3m for Argoverse2
and 10m for Highway). Each lane segment is annotated
with a feature vector describing its location, length, width,
heading, curvature, speed limit, lane boundary type, etc. We
encode crosswalk polygons into the lane graph with regularly
sampled nodes and we add edges between a lane segment
and a crosswalk node if their distance is less than 2.5m.

B. Architecture

We parameterize the noise prediction model ϵθ(xt, t,m)
as a transformer-based architecture with a lane graph
GNN [2]. At a high level, our architecture consists of three
main components: (1) a set of encoders to featurize the
input actor states, HD map, and diffusion timestep; (2) a
transformer decoder to model actor-to-actor and actor-to-
map interactions; and (3) a decoder to predict the forward
diffusion noise. We describe each module in detail next.

Fig. 1. SceneControl can generate realistic traffic scenes with partially and/or fully-occluded actors from the SDV’s perspective. First, we automatically
extract occluded regions (in orange) in a scene by ray-casting from the SDV (in red). Then, we use spatial region guidance to control SceneControl to
insert actors (in blue) into the occluded regions.

0% 20% 40% 60% 80% 100%
Success Rate

0.10

0.12

0.14

0.16

0.18

0.20

JS
D

Region Control
Size Control
Speed Control

0% 20% 40% 60% 80% 100%
Success Rate

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Co
llis

io
n

Ra
te

Region Control
Size Control
Speed Control

Fig. 2. Ablation study of guidance strength on Argoverse2. Increasing the
strength of the guidance function improves constraint satisfaction success
rate with little impact on realism, as measured by distribution JSD (left)
and collision rate (right).

Actor state encoder: We use an MLP to encode each actor’s
state separately (but batched together for efficiency.). The
MLP consists of four linear layers with layer normaliza-
tion [1] and ReLU activation in between every two layers.

Lane graph encoder: We use the lane graph encoder
proposed in [2] to encode the input lane graph. The en-
coder consists of four heterogeneous message passing (HMP)
layers, followed by layer normalization [1] and a linear
layer to produce feature vectors for each lane graph node.
Notably, whereas the HMP layers in [2] use pair-wise relative
positional information only, we also include each node’s
absolute position as node attributes, allowing the downstream
interactive module to better capture actor-to-actor and actor-
to-map interactions in the global traffic scene.

Diffusion timestep encoder: We encode the diffusion
timestep t using sinusoidal embeddings [12] followed by two
linear layers with a ReLU activation in between.

Interaction module: To model actor-to-actor and actor-
to-map interactions, we fuse the actor state, lane graph,
and diffusion timestep embeddings using four transformer
decoder layers [12]. Each layer consists of a multi-head self-
attention layer to fuse actor state features and a multi-head

cross-attention layer to fuse lane graph features into the actor
state features. Before each pair of self-attention and cross-
attention layers, we fuse the diffusion timestep embeddings
into the actor state embeddings by taking the sum of their
features.

Noise decoder: We use an MLP to predict the forward
diffusion noise given each actor’s fused features. The MLP
consists of four linear layers with layer normalization [1]
and ReLU activation in between every two layers. The final
layer predicts a 7-dimensional noise vector corresponding to
the normalized {xi, yi, li, wi, sin θi, cos θi, si}.

C. Learning

Our noise prediction model is trained using a noise-
matching objective [5],

L(θ) = Ex0,m,t,ϵ

[
∥ϵ− ϵθ(xt, t,m)∥2

]
(2)

where x0 and m is the joint actor states and HD map for a
real traffic scene, t ∼ Uniform(1, T) is a diffusion step, and
xt is the actor states x0 corrupted with noise ϵ ∼ N (0, I).

To minimize this loss, we use the AdamW optimizer [8]
with β1 = 0.9, β2 = 0.999, ϵ = 10−8, and weight decay
λ = 10−5. We linearly increase the learning rate from
0.0 to 3.2 × 10−3 over the first training epoch and then
gradually anneal the learning rate to 0.0 following a cosine
schedule [7]. We train the model over 10 epochs (resp., 20
epochs) with a batch size of 32 (resp., 32) for Argoverse2
(resp., Highway). We found it helpful to train over 16
uniformly-sampled diffusion timesteps for each of the 32
scenes per batch and average the loss across all samples.

D. Guided Sampling

To generate traffic scenes that satisfy high-level con-
straints, we use guided sampling [3], [6] to sample from the
perturbed distribution p̃θ(s1:n|m) ∝ pθ(s1:n|m)g(s1:n,m).
Specifically, given the number of actors n, we first sample
n random noise vectors, which we denote xT ∼ N (0, I).

Fig. 3. Distribution of scene statistics on Argoverse2 for ATISS, ATISS++, SceneGen, and SceneControl.

Fig. 4. Distribution of scene statistics on Highway for ATISS, ATISS++, SceneGen, and SceneControl.

Low Density High Density Low Density High Density

Small Actors Large ActorsSmall Actors Large Actors

Low Speed Low Speed High SpeedHigh Speed

D
en

si
ty

Sp
ee

d
R

eg
io

n
Si

ze

Fig. 5. SceneControl enables controllable traffic scene generation on the Highway dataset. Row 1 shows realistic scenes that satisfy spatial region
constraints; Row 2 shows scenes with varying numbers of actors; Row 3 shows scenes with varying actor sizes; and Row 4 shows scenes with varying
traffic speeds. Existing actors in the scene are depicted in gray and inserted actors in blue.

Then, at each step t of the reverse diffusion process, rather
than sampling from pθ(xt−1|xt,m) = N (µθ(xt, t,m), βtI),
we sample from

N (µθ(xt, t,m)− γtβt∇xt
g(xt,m), βtI) (3)

where γt is a time-varying coefficient that controls the
strength of guidance. In our experiments, we use T =
1000, a cosine variance schedule βt [9], and a time-varying
guidance strength γt that linearly interpolates between γT
and γ1. A smaller number of diffusion timesteps T may
suffice as well, but we leave this investigation for future
work. See Tab. I for the guidance strength settings used
for each guidance function we consider. When performing
guided sampling over multiple guidance functions, we simply
perturb µθ(xt, t,m) with the weighted sum of each guidance
function’s gradient. We clip each xt to [-5.0, 5.0] at each
step of the reverse diffusion process, which we find helpful
to prevent generating degenerate traffic scenes.

III. EXPERIMENT DETAILS

A. Datasets

Argoverse2: Our first dataset, Argoverse 2 Sensor [13],
has 110,071 urban traffic scenes for training and 23,547 for

Argoverse2 Highway
Guidance Function γ1 γT γ1 γT

gregion 50.0 1.0 25.0 1.0
gattr 25.0 1.0 25.0 1.0
ginit 10.0 10.0 10.0 10.0
gcollision 5.0 1.0 10.0 1.0
glane 0.1 0.0 10.0 1.0

TABLE I: GUIDANCE STRENGTH SETTINGS FOR ARGOVERSE2 AND

HIGHWAY. WE USE A TIME-VARYING GUIDANCE STRENGTH γt THAT

LINEARLY INTERPOLATES FROM γT TO γ1 OVER T = 1000 TIMESTEPS.

validation. Each scene provides 3D bounding box labels
and an HD map describing the road topology and drivable
surfaces of the surrounding area. We define each traffic
scene as an 80m × 80m region of interest centered on the
SDV. In our experiments, we only consider vehicles that are
on a drivable surface. Therefore, we remove all actors that
are not vehicles or whose centroid location lies outside of
a drivable surface. We classify the following object types
as vehicles: REGULAR_VEHICLE, LARGE_VEHICLE,
RAILED_VEHICLE, TRUCK, TRUCK_CAB, BOX_TRUCK,

Scene Statistic Bin Size

Nearest Dist. (m) 1.0
Lat. Dev. (m) 0.1
Ang. Dev. (deg) 5.0
Length (m) 0.1
Width (m) 0.1
Speed (m / s) 1.0

TABLE II: HISTOGRAM HYPERPARAMETERS FOR COMPUTING

DISTRIBUTION JSD ON ARGOVERSE2 AND HIGHWAY.

VEHICULAR_TRAILER, MESSAGE_BOARD_TRAILER,
BUS, SCHOOL_BUS, and ARTICULATED_BUS.

Highway: Our second dataset, Highway, has 160,000/40,000
highway scenes in its train/validation splits. Each scene
provides 3D bounding box labels and an HD map. As in
Argoverse2, we define each traffic scene as an 80m× 80m
region of interest centered on the SDV.

B. Baselines

SceneGen [11]: Since the source code for SceneGen is not
available, we evaluate a re-implementation of the model. Our
re-implementation largely follows the description provided
in the paper but with hyperparameters adapted to Argov-
erse2 and Highway. Specifically, we found the following
changes to improve training stability and performance: (1)
we parameterize the bounding box distribution’s covariance
matrix using its Cholesky decomposition; (2) we use five
mixture components instead of ten; and (3) we add residual
connections at each layer of the model’s MLPs.

ATISS [10]: We adapt ATISS from indoor scene synthesis to
traffic scene generation following its open-source implemen-
tation1. Our main changes is to: (1) add a decoder to predict
an actor’s speed; and (2) remove the class decoder since we
focus on the vehicles only. Our layout encoder is a ResNet-
18 [4] that extracts an average-pooled 64-dimensional feature
vector from a bird’s eye view raster of the traffic scene, as
in SceneGen.

ATISS++: To improve ATISS’ performance on traffic scene
generation, we make three changes: (1) we extract the lane
graph using a lane graph GNN [2]; (2) we use cross-attention
to fuse lane graph features into the actor and query features;
and (3) we run the transformer decoder autoregressively
over each actor attribute. We found that these changes were
critical to improving actor-to-actor and actor-to-map inter-
action reasoning. Specifically, without the first two changes,
the model fails to place actors realistically relative to the
map. Without the last change, the model tends to learn high
entropy distributions that yield unrealistic samples.

C. Metrics

Distribution JSD: We measure the realism of synthetic
traffic scenes by the similarity of its scene statistics to
those of real traffic scenes. Specifically, we compute the

1https://github.com/nv-tlabs/ATISS

distance between the real distribution of scene statistics P (x)
and its synthetic counterpart Q(x) with the Jensen-Shannon
divergence,

JSD(P || Q) =
1

2
KLD(P || M) +

1

2
KLD(Q || M) (4)

where KLD(P || Q) = Ex∼P [logP (x) − logQ(x)] is the
Kullback–Leibler divergence of P from Q and M = 1

2 (P +
Q).

Our scene statistics measure each actor’s distance to
its nearest neighbour (Nearest Dist.), lateral deviation to
its lane centerline (Lat. Dev.), angular deviation from its
lane centerline (Ang. Dev.), bounding box length (Length),
bounding box width (Width), and speed (Speed). For lateral
deviatiton and angular deviation, we compute scene statistics
only for actors that are within 1.5m of a lane centerline;
otherwise, the actors are considered off-road. To approximate
P (x) and Q(x), we compute histograms of the scene statistic
x. We specify the bin size for each statistic manually. See
Tab. II for details.

REFERENCES

[1] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer
normalization. 2016.

[2] Alexander Cui, Sergio Casas, Kelvin Wong, Simon Suo, and Raquel
Urtasun. GoRela: Go relative for Viewpoint-Invariant motion forecast-
ing. Nov. 2022.

[3] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat
GANs on image synthesis. In NeurIPS, 2021.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[5] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion
probabilistic models. In NeurIPS, 2020.

[6] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance.
CoRR, 2022.

[7] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent
with warm restarts. In ICLR, 2017.

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regular-
ization. In ICLR, 2019.

[9] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising
diffusion probabilistic models. In ICML, 2021.

[10] Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis,
Andreas Geiger, and Sanja Fidler. ATISS: Autoregressive transformers
for indoor scene synthesis. In NeurIPS, 2021.

[11] Shuhan Tan, Kelvin Wong, Shenlong Wang, Sivabalan Manivasagam,
Mengye Ren, and Raquel Urtasun. SceneGen: Learning to generate
realistic traffic scenes. In CVPR, 2021.

[12] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
is all you need. June 2017.

[13] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert,
Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar,
Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter
Carr, and James Hays. Argoverse 2: Next generation datasets for
self-driving perception and forecasting. In NeurIPS Datasets and
Benchmarks, 2021.

