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Figure 1.

Detectors without long-term temporal fusion (a) miss heavily occluded objects. Our approach enhances detectors (b) to

remember past predictions, (c) recovering from occlusion. Detections are in [green), labels are in |black], lidar points are in e gray.

Abstract

To perceive, humans use memory to fill in gaps caused by
our limited visibility, whether due to occlusion or our nar-
row field of view. However, most 3D object detectors are
limited to using sensor evidence from a short temporal win-
dow (0.1s-0.3s). In this work, we present a simple and ef-
fective add-on for enhancing any existing 3D object detec-
tor with long-term memory regardless of its sensor modality
(e.g., LIDAR, camera) and network architecture. We pro-
pose a model to effectively align and fuse object proposals
from a detector with object proposals from a memory bank
of past predictions, exploiting trajectory forecasts to align
proposals across time. We propose a novel schedule to train
our model on temporal data that balances data diversity
and the gap between training and inference. By applying
our method to existing LIDAR and camera-based detectors
on the Waymo Open Dataset (WOD) and Argoverse 2 Sen-
sor (AV2) dataset, we demonstrate significant improvements
in detection performance (+2.5 to +7.6 AP points). Our
method attains the best performance on the WOD 3D de-
tection leaderboard among online methods (excluding en-
sembles or test-time augmentation).

1 Introduction

Most self-driving vehicles (SDVs) utilize a 3D object detec-
tor to recognize and localize objects in 3D space. This task
is challenging due to occlusion, large intra-class variability,
and distant objects, which typically have limited sensor ob-
servations. To overcome these challenges, human drivers

rely on their memory. For example, they may drive more
cautiously when remembering a previously observed but
now occluded cyclist, who may suddenly enter the road.

A common approach for improving 3D object detectors
is to aggregate a short temporal window of past sensor ob-
servations. Towards this goal, most existing LiDAR-based
methods transform a short buffer of sensor data into the cur-
rent ego (SDV) coordinate frame to align past and current
evidence [1, 39, 58, 74, 75]. Similarly, camera-based meth-
ods stack multiple images [46, 78] as input to existing ar-
chitectures. These methods cannot handle long temporal
sequences due to computational and memory constraints.
Moreover, temporal stacks of 3D/Bird’s-Eye-View (BEV)
representations like point clouds or lifted camera features
require a large receptive field, especially for fast-moving
objects [30], further increasing computational burden.

There is a growing interest in long-term temporal fusion.
Scene-level memory approaches [14, 17, 31] recurrently
fuse scene-level features, but they can struggle to capture
relevant foreground objects. Other approaches associate ob-
jects in memory over time via tracking [8, 20, 30, 32], ag-
gregating past information for each particular object. How-
ever, the associations from the tracker may contain mis-
takes that can compound over time and lead to informa-
tion loss. Other methods leverage attention from current
detection proposals to the past sensor or object informa-
tion [15, 18, 74]. Still, they can be challenging to scale
to long histories and suffer from false negatives as the pro-
posals refined into the final detections only come from the
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present time.

In this paper, we present a simple and sensor-agnostic
add-on for enhancing any existing 3D object detector with
long-term memory. We refer to it as MAD — short for
Memory-Augmented Detection, and Fig. | illustrates the
high-level idea. MAD is a transformer-based model that
fuses proposals from a detector with proposals from a mem-
ory bank representing past beliefs. Inspired by recent devel-
opments [4], we exploit joint detection and trajectory fore-
casting. By storing explicit trajectory forecasts in the mem-
ory bank, we can estimate object poses at arbitrary future
timestamps for all the objects in the memory. This enables
us to enrich the set of proposals by aligning memory pro-
posals with the current observations.

Training with temporal data can be challenging: back-
propogation through consecutive training examples con-
sumes prohibitive amounts of memory, training on long se-
quences can cause over-fitting when back-propagating on
every example, and using memory warm-up can slow down
training. We design a more effective training schedule that
begins with short temporal sequences and progressively in-
creases the length, exploiting high data diversity early and
closing the gap with inference towards the end. To en-
sure the model learns to trust the memory when training
on short sequences, we use cached model outputs from pre-
vious training iterations.

We demonstrate the generality of our approach by en-
hancing existing LiDAR-based and camera-based 3D ob-
ject detection networks with MAD, and show considerable
improvements over the base detectors on two large-scale
datasets: Waymo Open dataset (WOD) [57] and Argoverse
2 Sensor dataset (AV2) [68]. Notably, SAFDNet [80] en-
hanced with MAD achieves state-of-the-art performance on
WOD for online detection methods without requiring en-
sembles or test-time augmentation.

2 Related Work

3D Object Detection: We can categorize 3D detectors by
their input modality (e.g., LIDAR, camera), scene repre-
sentation (e.g., point clouds, voxels), and number of stages
(e.g., single-stage or multi-stage)

LiDAR-based methods commonly represent the input as
voxels [12, 27, 56, 71, 80, 81], pillars [23, 25, 55, 61, 66,
72], or point clouds [43, 53, 54, 69, 73]. A widely used ap-
proach for including temporal LiDAR information is point
aggregation, which involves transforming past point clouds
into a common coordinate frame and processing the ag-
gregated point cloud. These approaches are usually lim-
ited to < 5 past LiDAR frames due to computational con-
straints [30] in online applications like autonomous driving.
Another drawback is that point aggregation does not align
moving objects, requiring a larger receptive field in the de-
tector backbone the longer the temporal horizon is [30, 80].

Camera-based 3D detection is challenging because of
missing depth information. One approach is to produce 3D
bounding boxes from image features by estimating depth,
3D size, and orientation [7, 41, 64, 70]. Other methods
leverage voxel [47, 48, 51] or point cloud [65, 76] repre-
sentations by predicting pixel depth distributions to lift 2D
features to 3D. Stacking and processing past camera images
or feature maps is a common but expensive method for tem-
poral fusion [2, 19, 46, 52, 78].

Regardless of modality, we can further categorize 3D de-
tectors as single-stage or multi-stage. Single-stage methods
produce detections from sensor data [6, 12, 64, 71, 80, 81]
with a single deep neural network. Multi-stage methods
use bounding box proposals from a first stage (or ran-
domly initialized proposals) to gather features (e.g., with
RolIPool [49], RolAlign [16], interpolations [75], or atten-
tion [4, 28, 33-35, 67, 82]) and iteratively refine the bound-
ing boxes.

MAD is a sensor-modality-agnostic module that we can
add to any detector as a subsequent refinement stage. In
our work we utilize CenterPoint [75], SAFDNet [80], HED-
Net [81], FCOS3D [64], and BEVMap [6] as proposal net-
works.

Long-Term Temporal Fusion for 3D Detection: Vari-
ous works attempt to solve the shortcomings of sensor ag-
gregation by learning to use multiple seconds of sensor ev-
idence to improve object detection.

In this line of work, the scene-based paradigm uses
recurrent fusion of scene-level features [14, 17, 31, 75],
with some methods relying on multiple traversals of the
scene [77]. A challenge of this approach is focusing and
aligning features from relevant and dynamic foreground
objects, which past works addressed by transforming fea-
ture maps, using segmentation to focus on foreground ob-
jects [17], and using deformable attention or convolution
to align features of moving objects [22]. Processing both
foreground and background areas can be computationally
expensive. It is worth noting that many of these methods
are single-stage detectors [14, 17] and which we could use
as a detection proposal network with MAD.

Alternatively, the object-based paradigm focuses on the
foreground by using detection proposals. Detect-track-fuse
methods are a sub-family of object-based methods that as-
sociate previous detections over time to create tracks, and
these tracks summarize information from past sensor evi-
dence [8, 20, 30, 30, 32, 79]. However, in complex situ-
ations like pedestrian crowds, association over time can be
difficult due to heavy occlusions and erratic behavior, po-
tentially leading to false negatives or identity switches in
the tracks. Object-to-scene approaches mitigate the short-
comings of association by directly using current detec-
tion proposals to aggregate historical scene-level informa-
tion using hand-crafted feature aggregation modules [15]
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Figure 2. MAD is a plug-and-play module that enhances any off-the-shelf 3D detector (kept frozen) with long-term memory.

or attention mechanisms [82]. These approaches can be
difficult to scale to long history horizons as they require
re-processing past sensor evidence or dense feature maps
based on the current proposals (e.g., [15, 82] only use 0.7s
of history). Finally, object-to-object methods use past ob-
ject detections to improve current object detections without
explicit tracking, e.g., by cross-attending from current de-
tection proposals to past detections [63, 74], or using hand-
coded attention matrices based on distance [18]. Overall,
most object-based methods share some deficiencies: Many
only refine detection proposals produced by current sen-
sor evidence and struggle to recover from missing propos-
als [8, 15, 18, 20, 74]. Others naively concatenate past
detections with current proposals [63], which can lead to
alignment issues for dynamic objects and miss-calibration
in the proposal scores, as the model should trust historical
proposals less than current proposals.

Our proposed method, MAD, performs object-based
temporal fusion without requiring explicit object associa-
tion, aligns the memory in space and time by with trajectory
forecasting, and can recover from missing proposals by us-
ing and rescoring proposals from the memory bank.

3 Memory Augmented 3D Object Detection

3D object detectors take a short temporal window of sensor
data as input and produce a set of detections. Existing ap-
proaches typically struggle to perceive occluded and distant
objects with limited sensor observations. To tackle these
challenges, we propose MAD, a plug-and-play module to
enhance existing 3D object detectors with the ability to per-
form long-horizon temporal fusion. Our only requirement
from the detector is that each detection includes an object
bounding box, multi-class confidence scores, and a feature
vector capturing local context. We demonstrate the general-
ity of MAD by augmenting and improving various LiDAR-
based and camera-based detectors.

We enable long-horizon temporal understanding through
a memory bank that captures all the relevant information on
objects, including where we expect them to move. These
trajectory forecasts allow us to align the memory objects

with the current detector proposals in space and time. Im-
portantly, we do not require the object detector to provide
motion forecasts; instead, MAD computes them. To com-
pensate for ego-motion, we assume the ego is localized —
which is the norm in modern self-driving platforms [57, 68]
— and store the ego pose in the memory along with the
model outputs.

3.1. Model

We start with an overview of our model; refer to Figure 2
for an illustration. At every inference step, MAD takes
as input the detection proposals, the current timestamp ¢
(e.g., LIDAR sweep-end time or camera capture time), and
the ego pose E, in a global coordinate frame. It then re-
trieves objects from memory, aligns them spatially with E;
and temporally to ¢, and extracts high-dimensional features
from the aligned boxes and trajectory forecasts. We refer
to the aligned boxes and trajectory forecasts with the ex-
tracted features as memory proposals. A proposal merg-
ing mechanism then fuses detection and memory proposals
by rescoring their confidence scores and applying standard
post-processing. Finally, our refinement transformer itera-
tive refines the object detections and trajectory forecasts in
the merged proposals with cross-attention to the memory
and factorized self-attention. In preparation for future in-
ferences, the memory bank is then updated by appending
the model outputs (a.k.a. refined proposals) and removing
older model outputs to keep the memory bounded in size.

Proposal representation: We define object proposals
P = (B,C,T,Q) with N bounding boxes B € RV*7,
where the last dimension corresponds to (x,y, 2,1, w, h, 0)
with object 3D centroids (z,y, z), headings 6 in a BEV
ego-relative coordinate frame, and the 3D box dimensions
(w, 1, h); multi-class confidence scores C € [0, 1]V*C,
where C' is the number of actor classes; trajectory fore-
casts T € RN*Trx3 describing objects’ BEV pose
{9,155, (2,9,0) 1115, } over Ty future way-
points at a time interval sy; and an object feature Q €
RN *(Ts+1)xd encoding both local and global features for
every object at the present and future timestamps, where d



is the feature dimensionality. We use superscripts to de-
note the source of the proposals: detection proposals Pdet
from the 3D detector, memory proposals P™°™ from the
memory bank, merged proposals P™°"¢¢ from the proposal
merging module, and refined proposals P*f from the out-
put of the refinement transformer. For detection proposals
Pdet we generate T9°* by assuming the object is static over
time since detectors do not provide forecasts (and this is
just an initialization before refinement). The object features
Q¢* are obtained by interpolating the feature map from be-
fore the detector header at the projected object centroids,
repeating (7's + 1) times to get the features for future times-
tamps, and adding a learned embedding of B¢t and Cdet,
In the paragraphs below we describe how we obtain P™°™,
pmerge apnd fPref_

Memory Bank and Retrieval:

The memory bank is a set
of tuples (tm, E; , trjf

: ) with timestamped past model out-
puts and ego pose, sorted by the timestamp ¢,,, at which the
outputs were generated. During inference at timestamp ¢,
we retrieve memory entries Pfﬁf at a set of past target times-
tamps t,, € T, Where T, = {t — Sy, t — 28, ..., t —
TnSm}. Tr, is the number of past target timestamps, and
Sm 1s the time stride of the retrieved entries. To be precise,

we retrieve the closest memory entry to each timestamp in
T to be robust to small sensor delays.

Extracting Memory Proposals: For effective use of the
memory at inference, we should align each retrieved entry
(tm,Ey,,, P;h) in space and time with the current detec-
tion proposals at time ¢. We handle ego-motion by applying
the relative transform E; _,;, = E;'E, to Bgfﬂf and Tg‘fj.
To handle object motion, we linearly interpolate the stored
trajectory forecast to the current timestamp ¢ to obtain the
proposal box B™¢™, To obtain the proposal forecast T™™,
we also interpolate/extrapolate the stored trajectories as re-
quired to obtain waypoints at Ty = {t +ss,...,t +Tyss}
from stored waypoints at {t,, + sf,...,tm + Tfss}.
Finally, we extract latent features Q™™ at ¢ and every
future time step ¢y € 7;: First, we compute sinusoidal posi-
tional embeddings [60] for the centroid coordinates Bg]‘;";
and encode them with a lightweight MLP. Separately, we
concatenate other features including B;">" , (box dimen-
sions and heading), confidence scores (j“iCﬁl, the memory
age t — t,,, and a 2D vector pointing to where the pro-
posal was in the current ego coordinate frame at the time
t,. Finally, we encode the concatenated features with an-
other MLP and add the features from both MLPs together.

Proposal Merging: The memory and detection propos-
als can be redundant, particularly in areas with good sen-
sor coverage. To merge proposals, we learn to rescore their
multi-class confidence scores. Rescoring is essential as the
confidence the model should put in a memory proposal not
only depends on the confidence score at a past timestamp

Ci2™, but also on the proposal age ¢ — t,,, as the fore-
casting uncertainty grows with the time horizon and other
factors. For example, the model should trust a fast-moving
detection less than a stationary object, or it should trust an
object observed 0.5 seconds ago more than one observed
5 seconds ago. Furthermore, the detection proposals come
from the 3D detector, while the memory proposals are pro-
duced by MAD, and detectors have been found to be mis-
calibrated [24, 40, 42].

To make the scores comparable, we learn two small
MLPs that separately map the features of the detection pro-
posals Q4°t and the memory proposals Q™™ to new multi-
class scores C™°'8¢, As explained in Section 3.2, these
rescoring MLPs are trained under a single detection loss ap-
plied to the merged proposals so that the model can decide
which proposals to trust from both sources. Finally, we filter
proposals with score thresholding, non-maximum suppres-
sion (NMS), and keep the top K merged proposals sorted
by score (maximum over actor classes). Post-processing en-
ables the refinement transformer to process a smaller num-
ber of queries.

Finally, we add learned time positional embeddings to

the merged proposal features Q™°"° to indicate the time of

. L def

the trajectory forecast. At this point, we have N™e'ge =
N*ef merged proposals P™¢™8¢ ready for refinement.

Refinement Transformer: We utilize a transformer de-
coder to refine the merged proposals P™erge = Pref(0) ¢
eratively over I blocks into pref) | pref(D)  \where the
final model outputs are P! = Pref/) We propose a novel
memory cross-attention mechanism to allow the queries —
proposal features Q'*f(") — to aggregate information from
all the memory proposals Q™™, including those that pro-
posal merging filtered out. We want to use this informa-
tion in the refinement transformer because multiple overlap-
ping memory proposals provide significant evidence about
an object’s presence and location. To achieve this, we per-
form cross attention from the object queries Q**'(¥) to the
memory proposal features Q™. For efficiency, we limit
the cross attention to the nearest k keys to each object query
(computing the nearest neighbors of BXL" in B,
Similar to many works [4, 44], we perform factorized
self-attention in each refinement block, which separates
time self-attention and object self-attention for efficiency,
where the former attends only to queries from the same ob-
ject (sequence length 7'y + 1) and the latter only attends to
queries from the same time step (sequence length N). The
updated queries Q"*f(“+1) are input to the next block.
Finally, we update the explicit proposal information
as described in DeTra [4], by using a simple MLP to
produce B**f(i+1) and Cr*f(+1) and a gated recurrent

unit (GRU) [9] to update the future trajectory waypoints
Tref (i+1)'



Memory Bank Update: We post-process the refined pro-
posals P*f as we did to the merged proposals: score thresh-
olding, NMS, and top K based on confidence score, adding
the result to the memory bank, along with the correspond-
ing timestamp ¢ and ego pose E;. To limit the size of the
memory bank when running on long sequences, we remove
any memory entries older than ¢ — T, s,,, — € (the past time-
horizon used in memory retrieval with a small buffer €).

3.2. Training

We first train an off-the-shelf 3D detector following their
original training strategy. This stage can be omitted if a
pre-trained 3D detector is available. Then, we train all the
parameters in MAD as a subsequent stage, with the 3D de-
tector weights frozen. Pre-training and freezing the 3D de-
tector is important to ensure the detection proposals do not
change throughout MAD training. Note that we train a sep-
arate MAD for each 3D detector, as each detector has differ-
ent features Q% and detection distribution and calibration.

Before detailing our proposed MAD training, we discuss
some possibilities and trade-offs when training temporal fu-
sion models. Training on unordered examples has the ad-
vantage of satisfying the assumption of i.i.d examples (bet-
ter learning dynamics) [21, 50]. However, it differs from
evaluation, where the model is rolled out on long sequences
and consumes its previous outputs. Training on long se-
quences of ordered data has the advantage of being closer to
evaluation, but it has worse learning dynamics since consec-
utive examples are heavily correlated (there are few changes
in the scene from one frame to the next). If, instead, gradi-
ents are accumulated over a long sequence and used to up-
date the model parameters once per sequence, a sequence
becomes one example (satisfying the i.i.d assumption), but
the training duration is multiplied by the sequence length
if the number of model updates is kept constant. Despite
this large space of possibilities and the importance of such
choices, prior works on learned temporal fusion neglect de-
tails and discussion of their training recipe [15, 17, 20, 30].

To tackle these challenges, we design a novel training
schedule. We propose to train MAD on increasingly long
chunks of ordered data, using single frames' at the begin-
ning and entire sequences at the end of training. To train ob-
ject memory on short chunks (or even single frames) of data
while maintaining a reasonable amount of memory inputs,
we propose to maintain a cache of memory banks across
training and using it to build the memory proposals for each
training example. Below, we detail this proposed schedule,
our cache of memory banks, how we handle augmentations
with memory, and our loss function.

Training Schedule: The datasets we use (WOD [57],
AV2 [68]) organize their data into driving logs, each around

'We slightly abuse the term “frame” here, as some detectors use a win-
dow of multiple past frames as input.

20s in duration with data captured at 10Hz, meaning each
log has around 200 frames. Each log has a unique identi-
fier (logID). For the first 25% of training, we sample single
frames (that is, consecutive training examples are random
frames from random logs). Throughout the rest of training,
we sample sequential chunks of gradually increasing size:
48 frames for (25%, 50%] of training, 96 frames for (50%,
75%], and 144 frames for (75%, 100%]. We train with a
single cosine decay learning rate schedule with no resets.
The intuition behind this is that when the learning rate is
high, and the model weights change the most, the model is
exposed to more diverse data. Then, when the learning rate
is lower, the model is tuned to be closer to the evaluation
setting, where it consumes its previous outputs.

Exploiting a Cache of Memory Banks: If the schedule
described above is followed naively during the individual
frame and short chunk training, the model cannot consume
its previous outputs and thus would not learn to use memory
during this phase of training. To address this problem, we
introduce a cache of previous memory banks. This cache is

a mapping from the unique driving log identifier logID to

a memory bank. At the start of training, we initialize the

cache with empty memory banks for all logIDs. On a given

training iteration, we index the cache with the logID of the
current training example to obtain the memory bank. If
available, we retrieve the memory proposals from this mem-
ory bank as described in Sec. 3.1. We update the retrieved
memory bank at the end of the training iteration with the
model outputs, replacing any existing entry with the same
timestamp. Note that during training we do not limit the
size of the memory bank.

There are a few challenges to training with the object
memory cache that we address:

* To train these models efficiently on large datasets, we
use a distributed data training scheme, meaning we split
examples in the minibatch across multiple GPUs. Each
GPU has a unique index called a rank. Each rank main-
tains a separate cache to prevent the cache from filling
up the RAM and avoid synchronization costs. To guaran-
tee high cache hit rates, we ensure that training examples
from a given logID are always put on the same rank dur-
ing training.

* The cache is filled with MAD outputs, which are inac-
curate at the beginning of training. We do not want er-
roneous model outputs to fill the cache; otherwise, the
model may not learn to trust the memory proposals. To
mitigate this, we only start filling the cache (and train-
ing with memory proposals) after 2.5% of training, after
which performance is reasonable.

* To make the model robust to variable latency and the pres-
ence and absence of memory proposals, we randomize the
target timestamps 7,,, that we retrieve memory elements
for during training by randomly sampling the time stride



Overall L1 Overall L2 Vehicle L1 Vehicle L2 Pedestrian L1 ~ Pedestrian L2 Cyclist L1 Cyclist L2
Method AP APH AP APH AP APH AP APH AP APH AP APH AP APH AP APH
Centerpoint 1f [75] 76.1 735 700 67.6 757 752 679 674 776 71.6 70. 644 749 738 721 710
+ MAD (Ours) 829 810 776 758 81.1 8.5 740 734 838 8.0 772 735 838 826 81.6 804
Centerpoint 2f [75]  77.5 758 71.7 70.1 764 759 687 682 792 756 719 685 768 759 744 735
+ MAD (Ours) 828 812 775 760 814 808 743 737 847 821 782 756 822 80.8 80.1 787
HEDNet 1f [81] 81.6 797 756 737 809 8.5 73.1 727 846 8.2 771 728 794 185 766 75.6
+ MAD (Ours) 8.2 833 802 783 836 89 766 760 8.0 84 8.0 774 8.1 837 8.0 8l1.6
HEDNet 4f [81] 836 823 781 768 824 819 751 746 8.3 836 794 768 822 814 799 79.1
+ MAD (Ours) 8.5 838 8.6 790 836 89 768 761 8.7 8.0 819 792 8.1 835 832 8l.6
SAFDNet 1f [80] 817 797 755 736 8.5 800 725 721 847 802 771 729 79.8 788 769 7159
+ MAD (Ours) 853 835 803 784 834 828 765 759 8.8 89 807 768 858 84.7 837 82.6
SAFDNet 4f [80] 839 826 784 771 828 823 754 749 868 842 80.1 775 820 811 796 788
+ MAD (Ours) 858 842 810 794 842 836 774 768 879 84 822 797 8.2 837 833 817

Table 1. Comparing the performance of various off-the-shelf LiDAR object detectors with and without MAD on the WOD validation set.
Base detector results are reproduced using official code. MAD consistently boosts the performance of all detectors across all metrics.

Vehicle AP IoU 10 In Camera Field of View

Method Overall [0,40)m  [40,80)m  [80, 120)m
FCOS3D [64] 37.6 73.9 343 4.65
+MAD (Ours) 43.6 82.6 40.0 8.11
BEVMap [6] 51.5 86.5 54.0 13.9
+MAD (Ours) 53.4 88.0 55.1 17.2

Table 2. Adding MAD to camera-based 3D detectors on AV2.

Sm, and the number of target timestamps 75, .

Handling Augmentations with Memory: Prior
works [26, 75, 80, 81] find that data augmentations
(e.g., translation, rotation, flipping, and re-scaling) are
important for detection performance. We apply augmenta-
tions to the boxes B™*™ and trajectories T™°™ in memory
proposals after the memory alignment step. We apply
the inverse of the augmentations to B"f and T*f before
storing them in the memory bank.

Loss function: We optimize a multi-task objective
L = Lre_score(cmcrgc) =+ Zf:1 Ldet (Brcf(i)’ Crcf(i)) +
Lfor(Tref(Z)), which is a combination of a rescoring loss
Lgcore, a detection refinement loss Ly, and a forecasting
refinement loss Ly,., where the detection and forecasting
losses are computed at every refinement block.  Follow-
ing [4], Lg¢ includes a binary focal loss for classification,
an L1 loss for regression and an IoU loss. To calculate the
targets for these losses, we first match the detections to the
ground truth bounding boxes through bipartite matching as
proposed in DETR [3]. The rescoring loss is similar, ex-
cept it consists only of the focal loss as we are only train-
ing the multi-class scores C™'8° output by the rescoring
module. The trajectory refinement loss is an L1 loss against
the ground-truth trajectory, supervised only for true-positive
detections (with IoU with a ground truth box higher than

Method APL1 APHL1 APL2 APHL2
CenterFormer [82] 82.3 80.9 77.6 76.3
BEVFusion [36] 82.7 81.4 77.7 76.3
MSEF [15] 83.1 81.7 78.3 71.0
FSD++ [13] 83.5 82.1 78.4 77.1
LoGoNet [29] 83.1 81.8 78.4 77.1
Octopus_Noah 83.1 81.7 78.7 773
SEED-L [38] 83.5 82.2 78.7 77.3
LION [37] 83.7 82.4 78.7 714
VeuronNet3D 83.7 82.2 79.1 77.7
HIAC 84.0 82.6 79.2 77.8
InceptioLidar 83.8 82.5 79.2 77.8
VADet 84.1 82.8 79.4 78.2
MT3D 85.0 83.7 80.1 78.7
LIVOX Detection 84.8 83.5 80.2 79.0
MAD (Ours) 86.0 84.3 81.8 80.2
Table 3. Results on the WOD test set, as reported on the

leaderboard?. We exclude entries that state they use ensembles,
test-time augmentations, or are offline (use future sensor data).
“Ours” is using SAFDNet 4f as the 3D detector. APH L2 is the
ranking metric.

0.5). See our supplementary for more details.

4 Experiments

This section provides a comprehensive quantitative analy-
sis of MAD from three perspectives. First, we add MAD to
existing 3D detectors, showing significant improvements.
We use both LiDAR-based and camera-based detectors on
WOD [57] and AV2 [68], respectively. Second, we com-
pare the best version of MAD to the state-of-the-art meth-
ods on WOD, setting a new record on the WOD leaderboard
among online methods without ensembles or test-time aug-
mentation and outperforming prior learned temporal fusion
methods by a large margin. Finally, we conduct thorough



Method APLI APHLI APL2 APHL2
LEF [17] 796 792 714 709
= MoDAR [30] - - - 72.5
S MPPNet [8] 81.6  8L1 760 748
= MSF[I5] 82.2 80.7 76.8 75.5
= PTT[20] 827 807 717 757
MAD (Ours) 858 842 810 794
3D-MAN[74] 496 481 448 434
£ MPPNet [8] 81.8 806 769 757
£ MSF[15] 83.1 81.7 783 770

MAD (Ours) 86.0 84.3 81.8 80.2

Table 4. Comparison of our method against various methods for
learned temporal fusion on WOD. “Ours” is using SAFDNet 4f.

ablation studies to understand the architectural choices that
make MAD effective and the impact of different training
procedures. Refer to our supplementary for more imple-
mentation details, experimental results, and ablations.

Implementation Details: The refinement transformer
uses I = 3 refinement blocks, and the dimension of all
embeddings is d = 128. We forecast Ty = 10 future
timestamps at stride of sy = 0.5s, yielding a 5s prediction
horizon. Unless otherwise stated, we use target timestamps
of T, = {-0.3s,—0.6s,...,—2.4s} (i.e., s, = 0.3s,
T,, = 8) for reading from the memory bank at inference.
In the memory cross attention we use the nearest K = 4
neighbors. Following prior works [75, 80, 81], for any
detection post-processing, we use a 0.1 confidence thresh-
old; per-class NMS IoU thresholds of {0.75,0.6,0.55} for
vehicles, pedestrians, and cyclists, respectively; and a top
K = 500. MAD has 3.8M parameters, while the base
detectors have anywhere from 8M (Centerpoint [75]) to
53M (BEVMap [6]) parameters. For each base detector,
we train MAD for 60k update steps (roughly equivalent to
6 epochs on WOD and AV2), with batch size 16. We use
a cosine learning rate decay with a max learning rate of
8 x 1074, and a linear warm-up for the first 1000 steps,
beginning with a learning rate of 8 x 10~°. During train-
ing, we use a variable set of memory target timestamps
T ~ uniform({6,7,8,9,10}) with a variable stride
Sm ~ uniform({0.2s,0.3s,0.4s}).

Metrics: We report the detection metrics from the offi-
cial WOD leaderboard [57], which include average preci-
sion (AP) and AP weighted by heading error (APH) for ve-
hicles (Veh.), pedestrians (Ped.), and cyclists (Cyc.). These
metrics use intersection-over-union (IoU) thresholds of 0.7,
0.5, and 0.5, respectively. The metrics are broken down into
two levels of difficulty: Level 1 (L1) includes only labels
that have > 5 LiDAR points and are not marked as “hard”,
and Level (L2) includes all boxes that have > 0 LiDAR
points (a superset of L1). For camera experiments on AV2,
we report the mean average precision (AP) for vehicles in

the camera field of view at an IoU threshold of 0.1. We re-
port the macro-average over all classes if the actor class is
not specified.

Augmenting off-the-shelf 3D Detectors with MAD:
Tab. 1 and Tab. 2 show the performance of MAD ap-
plied to off-the-shelf 3D detectors on WOD and AV2, re-
spectively.To show the generality of our approach, we ex-
periment with multiple base detectors trained on different
datasets and sensor modalities. We enhanced three LiDAR-
based methods with MAD on WOD: CenterPoint [75] with
both 1 LiDAR frame (1f) and 2 LiDAR frames (2f) as in-
put, HEDNet [81] (1f and 4f), and SAFDNet [80] (1f and
4f). We follow their official protocols to train and eval-
uate all models from scratch (due to the Waymo Dataset
License Agreement, we cannot simply re-use pre-trained
models). We also enhance two camera-based methods on
AV2, FCOS3D [64] and BEVMap [6], which takes the
most recent image from the front camera as input. We
use the official implementation for both FCOS3D [64] and
BEVMap [6]. Training details are in the supplementary.
Our model brings significant improvements to all detec-
tors on both datasets. These gains are largest for single-
frame detectors, where the memory provides the most ad-
ditional information. The fact that the MAD-augmented
single-frame detectors are better than the multi-frame detec-
tors clearly shows the effectiveness of our method relative
to the common point aggregation approach. Please visit the
supplementary materials for qualitative comparisons.

Comparison against SOTA: By augmenting SAFDNet
4f with MAD, we show in Tab. 3 that we achieve the best
performance on the WOD leaderboard”, among all online
methods that do not use ensembles or test-time augmenta-
tion. Table 4 compares MAD to prior learned temporal fu-
sion methods on the WOD validation and test set, where we
achieve substantial gains. Please refer to our supplementary
for full Tabs. 3 and 4 with metrics for all actor classes.

Effect of memory proposals and memory attention:
We ablate the different components of our memory pipeline
in Tab. 5. Comparing rows 1, 2, and 5 shows that both the
proposed memory attention and memory proposals have a
positive effect. This is intuitive as the memory proposals
let MAD recover from false negative detection proposals,
which is complementary to memory cross-attention that al-
lows MAD to use all memory information for refinement
(bypassing the filtering in proposal-merging).

Effect of forecasting: Comparing rows 3 and 5 in Tab. 5,
we find that using trajectory forecasting to align memory
proposals to the current time is important, particularly for
fast-moving objects. Without forecasting, the memory pro-
posals from previous frames will be far from the current po-

Zhttps://waymo.com/open/challenges/2020/3d-detection/ as of submis-
sion (14/11/2024)


https://waymo.com/open/challenges/2020/3d-detection/

‘ Mem. Prop. Mem. Attn.  Forecast.  Rescore. ‘ Veh. AP Ped. AP Cyc. AP Veh. AP [20,30) m/s  Cyc. AP [5, 10) m/s
0 X X X X 75.4 80.1 79.6 38.0 72.4
1 X v v v 76.5 81.3 82.0 40.4 82.1
2 v X v v 75.8 81.7 81.6 37.7 75.9
3 v v X v 76.9 81.8 81.9 34.6 78.7
4 v v v X 72.7 82.0 81.2 11.9 73.9
5 v v v v 77.0 82.3 83.3 45.2 86.2

Table 5. Component ablation of MAD on the WOD validation set. All metrics are L2. Row 0 is the base 3D detector, SAFDNet 4f [80].
All ablations in this table (including the final method with all components) use a reduced training duration of 45k iterations to reduce costs.

Evaluated Proposals APL1 APHL1 APL2 APHL2 Chunk Length  Cache APL1 APHL1 APL2 APHL2
Detection (Pdet) 83.9 82.6 78.4 77.1 la 144 X 85.4 83.9 80.5 79.0
Combined (Pme™ yPdet) 181 17.8 16.8 16.4 b 144 v 85.2 83.7 80.3 78.9
merge
I/‘ffrgedl(i , 2ef<1) gi'l ggg 7S'§ ZZ 2 48 X 85.1 83.5 802 786
ter Block 0 (P (")) : : 9. 78. 2b 48 v 85.3 83.8 80.3 78.9
After Block 1 (Pref(2)) 85.8 84.2 80.9 79.3
After Block 2 (Pef) 85.8 84.2 81.0 79.4 3a 1 X 83.9 824 78.4 71.0
3b 1 v 85.0 83.3 80.1 78.5
Table 6. Evaluating various intermediate proposals from MAD. 4da  1-48-96-144 X 84.9 83.3 79.9 78.3
The base detector is SAFDNet 4f. 4b  1-48-96~144 v 85.8 84.2 81.0 794

sition of those objects, making it challenging for the model
to leverage the memory effectively.

Effect of learned proposal merging: Comparing rows 0,
4, and 5 of Tab. 5 we find the proposed learned rescoring of
the merged detection and memory proposals is crucial for
good performance. Without it, MAD cannot enhance the
base detector (row 0) because the proposal scores from the
3D detector and memory are miss-calibrated before being
post-processed in the proposal merging step (i.e., NMS).
We illustrate this in Tab. 6, where we evaluate intermedi-
ate proposals of MAD: (1) the detection proposals P4t
(2) naively taking the union of the detection proposals P4¢t
and memory proposals P™°™ and post-processing them, (3)
the merged proposals P™°"&¢ (which have been rescored),
and (4) after each block of the refinement transformer
pref() . pref(D) - Naively concatenating the combined
proposals is much worse than the base detector because of
the miss-calibrated scores. After proposal merging, P™°"&®
already improves over the base detector. Each refinement
block brings further gains, illustrating the strength of our
proposed refinement transformer.

Training Procedure Study: Table 7 provides evidence
supporting the effectiveness of our proposed training sched-
ule. We first train MAD with three different chunk sizes
(i.e., sequences with {144,481} frames), each with and
without the memory bank cache. Training with long chunks
(144 frames, Tab. 7.1a) provides good performance because
there is a low gap between training and evaluation. The
cache provides no gains in this setting (Tab. 7.1b) because
the model already has memory proposals in most frames.
Training with shorter chunks (Tab. 7.2a,3a) performs worse
because there is a more significant gap between training
and evaluation. Including the cache helps significantly by

Table 7. Ablating chunk length and the memory cache on WOD,
using SAFDNet 4f.

closing the gap to evaluation but does not fully reach the
long chunk performance (Tab. 7.2b,3b). As hypothesized
in Sec. 3.2, there is room for improvement by training with
our proposed schedule and memory bank cache (Tab. 7.4b).
This strategy allows MAD to learn generalized patterns
over a diverse set of examples quickly by training on short
chunks (more i.i.d. data) at the beginning when the learn-
ing rate is higher while refining its understanding on long
chunks (closer to the deployment setting) towards the end
when the learning rate is lower. Table 7.4a shows the impor-
tance of the cache when using this training schedule; other-
wise, training with small chunks is ineffective as the model
would not learn to use the memory.

5 Conclusion

In this paper, we propose MAD — a simple, effective, and
sensor-modality-agnostic add-on for enhancing any existing
3D object detector with long-term memory. To achieve this,
we design a transformer-based model that uses joint detec-
tion and trajectory forecasting to populate a memory bank
with spatial-temporal object trajectories. Our model can ef-
fectively fuse memory proposals with detection proposals
by reading previous memory entries and aligning them with
the current time and ego pose. We also propose a novel
training strategy that increases data diversity while keep-
ing the training-to-inference gap low. Our approach is very
general — bringing impressive improvements to a variety
of LiDAR-based and camera-based detectors, and very ef-
fective — achieving SOTA performance on Waymo Open
Dataset when paired to the base detector SAFDNet 4f [80].
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