
MAD: Memory-Augmented Detection of 3D Objects
Supplementary Material

In this appendix, we describe additional implementation
details relevant to MAD including architecture, training,
any implementation details for the 3D detectors, additional
quantitative and qualitative results, and limitations and ar-
eas for future work.

6 Additional Implementation Details
In this section, we describe some additional implementa-
tion details of MAD — its architecture and training — and
implementation details for our off-the-shelf 3D detectors.

6.1. Architecture
Trajectory Forecasting Header: Each refinement block
predicts trajectory forecasts from the refinement features
Qref(i) → RNref→Tf+1→d using a single-layer bi-directional
GRU [9]. The output of the GRU is a sequence of 2D BEV
positions for each actor of shape RNref→Tf→2, and we use fi-
nite differences to calculate the heading. The result is trajec-
tories Tref(i) → RNref→Tf→3, describing each objects’ BEV
pose {(x, y, ω)t+sf , . . . , (x, y, ω)t+sf+Tf↑1}. Note while
the GRU sequence length is Tf + 1, we only use the last
Tf outputs as the future trajectory forecasts.

6.2. Training
Augmentations: When training MAD we adopt standard
data augmentations used in prior works [62, 80, 81], in-
cluding random translations in the x, y, and z directions
in the ego coordinate frame with a standard deviation
of 0.5m, random rotation around the z-axis (in the BEV
plane) uniformly sampled from [↑ε/4,ε/4], random scal-
ing sampled uniformly from [0.95, 1.05], and flipping with
{no flip, x flip, y flip, x = y flip} occurring with equal prob-
ability. We do not use any ground-truth sampling [71] be-
cause it is difficult to make consistent and realistic over time
and thus incompatible with memory training.
Loss Functions: Recall our loss function described in
Sec. 3.2,

L = Lrescore(C
merge) +

I∑

i=1

Ldet(B
ref(i),Cref(i)) + Lfor(T

ref(i)),

(1)

which is a combination of a rescoring loss Lrescore, a detec-
tion refinement loss Ldet, and a forecasting refinement loss
Lfor, where the detection and forecasting losses are com-
puted at every refinement block. For brevity, in the above
formula we omit the labels in the inputs to the above loss
functions. The labels consist of the bounding boxes for
Lrescore and Ldet, and the ground truth future trajectories
for Lfor.

Our detection refinement loss Ldet(Bref(i),Cref(i)), in-
cludes a binary focal loss Lcls

det for classification, and an L1
loss LL1

det and IoU loss LIoU
det to regress the bounding box pa-

rameters: Ldet = ϑclsLcls
det + ϑL1LL1

det + ϑIoULIoU
det . For Lcls

det
we use focal loss parameters ϖ = 0.5, ϱ = 2.0. We use
loss weightings of ϑcls = 1.0, ϑL1 = 0.1, and ϑIoU = 4.0.
To calculate the targets for these losses, we first match the
detections to the ground truth bounding boxes through bi-
partite matching as proposed in DETR [3]. We use the same
costs for bipartite matching as in DETR except that we omit
the L1 component of the box cost, and use 3D IoU instead
of 2D IoU.

The rescoring loss Lrescore is the same as the detec-
tion refinement loss described above but without regression
ϑL1 = ϑIoU = 0.

6.3. 3D Detector Implementation Details
We use the official implementations for all 3D detec-
tors in our experiments: single stage CenterPoint [75]3,
HEDNet [81] and SAFDNet [80]4, FCOS3D [64]5, and
BEVMap [6]6.

For the LiDAR based models (CenterPoint [75], HED-
Net [81], SAFDNet [80]), we train with their official con-
figurations for the WOD. Neither FOCS3D nor BEVMap
provide official configurations for training on AV2; we train
with the “front ring camera” on AV2 for 3 epochs with a
batch size of 16, using the proposed learning rate scheduler.

To obtain Qdet from the 3D detectors, for each ob-
ject proposal (x, y, z, l, w, h, ω) in B → RN→7, we in-
terpolate the features map directly before the detection
header at the projected object centroid (x, y, z). Con-
cretely, for detectors that produce BEV feature maps before
their header (e.g., CenterPoint [75], HEDNet [81], SAFD-
Net [80], BEVMap [6]), we perform bi-linear interpolation
of the feature maps at the BEV object centroid (x, y). For
detectors that use image-view feature maps, we perform bi-
linear interpolation at the object centroid (x, y, z) projected
onto the image plane. While not experimented with in this
work, we could similarly use tri-linear interpolation for de-
tectors that use 3D feature maps.

7 Additional Quantitative Results
In this section, we provide additional quantitative exper-
iments on MAD, including full results on WOD leader-
board, evaluating the performance using different memory
horizons, investigating if our proposed memory improves

3https://github.com/tianweiy/CenterPoint
4https://github.com/zhanggang001/HEDNet
5https://github.com/jjw-DL/mmdetection3d Noted/
6https://github.com/mincheoree/BEVMap

1

https://github.com/tianweiy/CenterPoint
https://github.com/zhanggang001/HEDNet
https://github.com/jjw-DL/mmdetection3d_Noted/tree/master/configs/fcos3d
https://github.com/mincheoree/BEVMap


0 0.9 1.8 2.7 3.6
78

78.5

79

79.5

80

80.5

81

Memory Horizon (s)

O
ve

ra
ll

Le
ve

l2
A

P
(%

)

SAFDNet 4f [80]
+ MAD

Figure 3. The effect of the memory horizon on the WOD vali-
dation set. We keep the memory target time stride sm = 0.3s
fixed, while increasing the number of target timestamps Tm →
{0, 3, 6, 8, 9, 14}. The base detector is SAFDNet 4f [80].

trajectory forecasting performance, evaluating the effect of
randomly dropping memory at inference time, ablating self-
attention in the refinement transformer, and additional train-
ing design experiments — training with back-propagation
through time (BPTT) and accumulating gradients.

Full Leaderboard Results: In Tab. 8 we show the perfor-
mance of MAD when enhancing SAFDDet 4f [80] on the
WOD test set for all actor classes, comparing against other
methods on the leaderboard that do not use ensembles, test-
time augmentations, or future sensor data. For methods that
provide no information on these criteria, we give them the
benefit of the doubt and include them. We see that MAD
is strong across all actor classes, particularly on pedestri-
ans and cyclists. Our intuition is that these actor classes
are smaller and more prone to limited LiDAR observations
due to occlusions or distance, so our memory mechanism is
particularly beneficial.

In Tab. 9 we compare against prior methods for learned
temporal fusion on the WOD validation and test sets. We
find that MAD outperforms prior works by a large margin
on all actor classes.

Performance at different memory horizons: In Fig. 3,
we plot detection performance as a function of the mem-
ory horizon Tmsm used at inference time. As described
in Sec. 3.2, the model is trained with a variable number of
target past timestamps Tm → uniform({6, 7, 8, 9, 10}),
with a variable stride sm → uniform({0.2s, 0.3s, 0.4s}),
meaning the memory horizon during training varies from
1.2s to 4.0s. To generate this plot, we run multiple eval-
uations on the WOD validation set, each with a different
number of target timestamps Tm → {0, 3, 6, 8, 9, 14}, keep-
ing the memory target time stride sm = 0.3s fixed. We find
that the performance increases rapidly when first introduc-
ing memory, and then increases more slowly and saturates
around 2.7s, due to the redundancy in most memory pro-
posals.

0 0.2 0.4 0.6 0.8 1
78

78.5

79

79.5

80

80.5

81

Memory Drop Rate

O
ve

ra
ll

Le
ve

l2
A

P
(%

)

SAFDNet 4f [80]
+ MAD

Figure 4. The effect of randomly dropping memory target times-
tamps Tm at inference time on the WOD validation set. The base
detector is SAFDNet 4f [80].

Performance across memory dropping rates: To show
the importance of the memory at inference time, we in-
vestigate how the performance of MAD changes when we
artificially drop memory proposals at inference time. We
randomly drop memory target past timestamps Tm with a
given probability, and Figure 4 plots model performance as
a function of this dropping probability. Our method is rel-
atively robust up to a dropping probability of 0.6 because
much of the information provided by the memory propos-
als is redundant. Removing all target timestamps Tm = ↓
causes the performance to drop near the base detector, as
expected. The refinement transformer without any memory
(dropping probability = 1.0) results in slight improvements
over the base detector. We hypothesize this is because our
refinement transformer without memory is the second stage
of a two-stage detector, which have been shown to improve
performance [75].

Forecasting Results: While our focus is task of 3D object
detection, MAD also performs trajectory forecasting, which
is an important and well-studied sub-task of autonomous
driving systems [5, 10, 11, 44, 45, 59]. In Tab. 10, we in-
vestigate the effect of our memory mechanism on trajec-
tory forecasting performance on the WOD validation set by
training MAD to enhance HEDNet 1f and HEDNet 4f [81]
on the WOD validation set. We also train a version where
we remove the memory from the refinement transformer;
no memory proposals Pmem (using Pref(0) = Pdet), and
no memory cross-attention, so that the model is still able
to generate trajectory forecasts but can’t leverage memory
inputs. The metrics in Tab. 10 are computed at a com-
mon detection recall point of 80% at an IoU threshold of
0.5. Miss-rate (MR) measures the percentage of predicted
trajectory endpoints that are more than 2m away from the
ground truth trajectory endpoint. Average displacement
error (ADE) measures the average Euclidean distance be-
tween the predicted trajectory and the ground truth trajec-
tory across all waypoints in the trajectory, and final dis-

2



Overall L1 Overall L2 Vehicle L1 Vehicle L2 Pedestrian L1 Pedestrian L2 Cyclist L1 Cyclist L2

Method AP APH AP APH AP APH AP APH AP APH AP APH AP APH AP APH

CenterFormer [82] 82.3 80.9 77.6 76.3 85.4 84.9 78.7 78.3 85.2 82.5 80.1 77.4 76.2 75.3 74.0 73.2
BEVFusion [36] 82.7 81.4 77.7 76.3 84.9 84.6 77.9 77.5 84.7 82.0 79.1 76.4 78.5 77.5 76.0 75.1
MSF [15] 83.1 81.7 78.3 77.0 86.1 85.7 79.2 78.8 86.0 83.1 80.6 77.8 77.3 76.4 75.1 74.3
FSD++ [13] 83.5 82.1 78.4 77.1 84.5 84.1 77.1 76.7 84.5 81.6 79.0 76.2 81.4 80.5 79.2 78.3
Octopus Noah 83.1 81.7 78.7 77.3 85.5 85.1 80.2 79.8 84.3 81.2 78.7 75.7 79.5 78.8 76.9 76.3
SEED-L [38] 83.5 82.1 78.7 77.3 84.3 83.9 77.5 77.1 85.2 82.3 79.9 77.0 80.9 80.1 78.7 77.3
LION [37] 83.7 82.4 78.7 77.4 84.7 84.3 77.2 76.9 87.2 84.5 81.9 79.3 79.2 78.3 76.9 75.9
VeuronNet3D 83.7 82.2 79.1 77.7 85.7 85.2 79.1 78.7 85.3 82.3 80.3 77.4 80.1 79.1 77.9 76.7
HIAC 84.0 82.6 79.1 77.8 86.2 85.8 79.4 79.0 86.1 83.4 80.7 78.1 79.6 78.6 77.2 76.3
InceptioLidar 83.8 82.5 79.2 77.8 - - - - - - - - - - - -
VADet 84.1 82.8 79.4 78.2 86.4 85.9 79.8 79.4 85.7 83.3 80.4 78.1 80.1 79.2 77.9 76.4
MT3D 85.0 83.7 80.1 78.7 86.8 86.4 79.8 79.5 86.9 84.1 81.4 78.6 81.4 80.5 78.9 77.4
LIVOX Detection 84.8 83.5 80.2 79.0 - - - - - - - - - - - -
MAD (Ours) 86.0 84.3 81.8 80.2 86.5 85.9 80.3 79.7 87.9 85.4 83.4 80.8 83.5 81.6 81.8 79.9

Table 8. A snapshot of the WOD 3D detection leaderboard https://waymo.com/open/challenges/2020/3d-detection/. We exclude entries
that state they use ensembles, test-time augmentations, or are offline (use future sensor data). “Ours” is using SAFDNet 4f as the 3D
detector. Overall APH L2 is the ranking metric. Dashes “-” denote unavailable results due to missing link on the WOD leaderboard.

Overall L1 Overall L2 Vehicle L1 Vehicle L2 Pedestrian L1 Pedestrian L2 Cyclist L1 Cyclist L2

Method AP APH AP APH AP APH AP APH AP APH AP APH AP APH AP APH

Va
lid

at
io

n

3D-MAN [74] - - - - 74.5 74.0 67.6 67.1 - - - - - - - -
MoDAR [30] - - - 72.5 81.0 80.5 73.4 72.9 83.5 79.4 76.1 72.1 - - - -
LEF [17] 79.6 79.2 71.4 70.9 - - - - - - - - - - - -
MPPNet [8] 81.6 81.1 76.0 74.8 82.7 82.3 75.4 75.0 84.7 82.3 77.4 75.1 77.3 78.7 75.1 74.5
MSF [15] 82.2 80.7 76.8 75.5 82.8 82.0 75.8 75.3 85.2 82.2 78.3 75.6 78.5 77.7 76.3 75.5
PTT [20] 82.7 80.7 77.7 75.7 83.7 83.2 76.3 75.8 85.9 83.0 78.9 76.0 78.5 77.8 76.0 75.3
MAD (Ours) 85.8 84.2 81.0 79.4 84.2 83.6 77.4 76.8 87.9 85.4 82.2 79.7 85.3 83.7 83.3 81.7

Te
st

in
g 3D-MAN [74] 49.6 48.1 44.8 43.4 78.7 78.3 70.4 70.0 70.0 66.0 64.0 60.3 49.6 48.1 44.8 43.4

MPPNet [8] 81.8 80.6 76.9 75.7 84.3 83.9 77.3 76.9 84.1 81.5 78.4 75.9 77.1 76.4 74.9 74.2
MSF [15] 83.1 81.7 78.3 76.9 86.1 85.7 79.2 78.8 85.9 83.1 80.6 77.8 77.3 76.4 75.7 74.3
MAD (Ours) 86.0 84.3 81.8 80.2 86.5 85.9 80.3 79.7 87.9 85.4 83.4 80.8 83.5 81.6 81.8 79.9

Table 9. Comparison of our method against various methods for learned temporal fusion on WOD. “Ours” is using SAFDNet 4f.

Detector Memory MR (%) ADE (m) FDE (m)

HEDNet 1f ✁✁✁ 23.4 2.5 4.81
HEDNet 1f ✂ 18.1 0.89 2.05

HEDNet 4f ✁✁✁ 18.4 0.86 2.06
HEDNet 4f ✂ 17.2 0.72 1.75

Table 10. Measuring the effect of memory on trajectory forecast-
ing performance on the Vehicle class in the WOD validation set.
Metrics are computed on 5s forecasts at 0.5 Hz, at a recall thresh-
old of 80% with an IoU threshold of 0.5. Miss rate (MR) is com-
puted at a distance threshold of 2 m.

placement error (FDE) measures the Euclidean distance be-
tween the predicted trajectory endpoint and the ground truth
trajectory endpoint. We find that memory improves tra-
jectory forecasting performance for both HEDNet 1f and
HEDNet 4f. Note that, because HEDNet 4f uses multiple
past LiDAR sweeps, it has better sensor evidence on the
motion of vehicles. This is why it results in better trajec-

tory forecasting performance than HEDNet 1f; the interpo-
lated features Qdet have more motion information which is
useful to the refinement transformer. Notably, HEDNet 1f
with memory matches or outperforms HEDNet 4f without
memory, showing the strength of our memory mechanism
in capturing object motion information.

Additional training design experiments: In Tab. 11 we
investigated additional training procedures for MAD. For
the experiments in this table we train for 45k iterations to
reduce costs. For fair comparisons, all methods in Tab. 11
were trained with a fixed chunk length of 144 frames and
no cache. Row 3 uses the architecture of MAD described
in Sec. 3.1. There are four alternative design questions we
investigated:
• If we accumulate gradients over the chunk length and up-

date the model parameters once per chunk, does it im-
prove performance? Our hypothesis was that this could
reduce over-fitting to sequences of correlated training ex-
amples. However, comparing row 0 to row 3 of Tab. 11,

3

https://waymo.com/open/challenges/2020/3d-detection/


Accumulating Gradients Qref BPTT AP L1 APH L1 AP L2 APH L2

0 ✂ ✁✁✁ ✁✁✁ 83.8 82.2 78.7 77.1
1 ✁✁✁ ✂ ✁✁✁ 85.2 83.7 80.3 78.8
2 ✁✁✁ ✂ ✂ 85.3 83.8 80.4 78.9
3 ✁✁✁ ✁✁✁ ✁✁✁ 85.3 83.8 80.4 79.0

Table 11. Comparison of different training strategies on the WOD validation set. All trainings are for 45k iterations using a chunk length
of 144 and no cache.

we find that accumulating gradients hurts performance.
For this experiment, while we use the same number of
model forward passes (45k), there are less model param-
eter updates (only once per chunk), resulting in an under-
trained model, even if the learning dynamics are better.
Training with 45k model parameter updates steps in this
setting would multiply the training duration and cost by
the chunk length, which is prohibitively expensive.

• Can we improve performance by initializing the mem-
ory proposal features Qmem with refinement features in
the memory bank {Qref

t↑sm , . . .Qref
t↑smTm

}? Recall from
Sec. 3.1 that Qmem is calculated from the boxes Bmem,
confidence scores Cmem, and trajectory forecasts Tmem.
However, the memory also stores past refined query fea-
tures {Qref

t↑sm , . . .Qref
t↑smTm

}, and our hypothesis was
that initializing Qmem with these refined query features
could improve performance because they contain richer
learned information. To test this, we compute Qmem

using Qref
tm and adding an encoding of the box, con-

fidence score, and trajectory forecasts (the same way
we computed the memory proposal features described in
Sec. 3.1). However, comparing row 0 to row 3 of Tab. 11,
we find that using the refined query features does not im-
prove performance over our proposed Qmem described in
Sec. 3.1. We think this is because the distribution of these
features is changing over training, which makes them dif-
ficult to learn with.

• To address the lack of improvement from using the re-
fined features, we investigated using BPTT through these
features to allow the model to learn to output refinement
features that are relevant for future inferences. Due to
GPU memory constraints, we could only back-propagate
through one past inference. Unfortunately, we found that
this did not improve performance significantly over not
using BPTT (2 vs 1 in Tab. 11), or over not using refine-
ment features to initialize the memory features (2 vs 3 in
Tab. 11). We have two hypotheses for why this is: The
first is that the position, size, confidence, and trajectory
information in the memory features are important and
easy for the refinement transformer to use, overpower-
ing the information in the refinement features. Secondly,
BPTT through one step might not be enough to see im-
provements. This is an area for future work.

Self Attention Veh. AP Ped. AP Cyc. AP

✁✁✁ 76.8 81.9 82.2
✂ 77.0 82.3 83.3

Table 12. Ablating the use of self attention in the refinement trans-
former on the WOD validation set. All metrics are L2.

Model GigaFLOPs GPU Mem (GB)

SAFDNet 4f 880 2.5
MAD Module 50 2.8

Table 13. FLOPs and peak memory measurements per forward
pass for SAFDNet 4f and MAD.

Effect of self-attention: Table 12 illustrates the effect of
using self-attention in the refinement transformer, which
brings a small but consistent performance improvement.
Recall that the memory cross attention only allows each
query Qref(i) to attend to the nearest k = 4 memory pro-
posals features Qmem. Self-attention lets queries see infor-
mation from more distant memory proposals because infor-
mation about memory proposals can propagate through all
query features which can be anywhere in the scene. Fur-
thermore, self-attention allows for modelling interactions
between actors, and prior works have shown it to improve
forecasting performance [4], which would in turn improve
MAD’s detection performance through the memory. Both
of these factors could explain the improved performance of
MAD.

Computational Overhead: We report total FLOPs and
peak memory measurements per forward pass, taking the
maximum across 10 random sequences on WOD in Tab. 13.
We use FLOPs because it is more hardware and implemen-
tation agnostic. There is minimal computational overhead
from MAD relative to the base detector. We also note that in
most traditional self-driving systems, the 3D detector would
be followed by a forecasting module, which MAD can re-
place.

Performance on Stationary Objects Table 14 shows the
performance of MAD on stationary objects on WOD (↔ 0.5
m/s). As expected, forecasting provides minimal benefit for

4



Stationary
Veh. AP Ped. AP Cyc. AP

SAFDNet 4f (Base) 73.8 54.1 34.3
MAD No Forecasting 74.9 56.2 35.9
MAD 74.8 56.1 36.9

Table 14. Performance on stationary objects on WOD (↑ 0.5 m/s).

detecting stationary objects, and both versions of MAD pro-
vide improvements over the base detector.

8 Additional Qualitative Results:
See Figs. 5 and 6 for additional qualitative results on the
WOD validation set. We show the memory bank with the
boxes Bref

tm with all target timestamps Tm overlayed, the
memory proposal bounding boxes Bmem (recall these are
computed with interpolation along the trajectory forecast in
them memory bank), the detection proposal bounding boxes
Bdet, and model output bounding boxes Bref . To visually
compare the detection proposals and MAD’s outputs, we
filter their boxes with a threshold on the confidence scores,
using the threshold that attains the max F1 score on the
WOD validation set (this threshold is computed separately
for the detection proposals and MAD’s outputs). This is a
fair comparison as during deployment we need to choose a
single operating point for the detector. The memory boxes
are thresholded at a confidence score of 0.1, and colored by
their age tm ↑ t. We list some interesting themes which we
circle in the figure:
a) Improved recall on stationary or slow moving vehicles.
b) Improved recall on fast moving vehicles.
c) Accurate memory trajectory forecast and interpolated

position.
d) Improved recall on pedestrians or cyclists.

We notice that the memory has excellent recall on most ob-
jects, and that for most objects the interpolated boxes (and
thus trajectory forecasts) are quite accurate.

8.1. Limitations and Areas for Future Work
Trajectory Forecasting: MADs trajectory forecasts for
turning vehicles can be inaccurate. For example, in Scene
#4 of Fig. 5, there is a right-turning vehicle which has inac-
curate interpolated memory. This is because we do not use
any map information in our model, and we only predict a
single future trajectory for each agent. Works in trajectory
forecasting often incorporate map information and predict
multiple possible future trajectories for each agent [4, 10].
There is room for future work on bringing these improve-
ments to MAD.

Using Refinement Features and BPTT: We think that
using refinement features stored in the memory in conjunc-
tion with BPTT should improve performance. For example,

these features could store more nuanced information about
object appearance and uncertainty, which would be relevant
for deciding if current evidence from the detection propos-
als is similar to evidence in the memory. Unfortunately, we
did not see improvements when using the refinement fea-
tures or BPTT in our experiments (Tab. 11), which leaves
room for future improvements.

Data Limitations: We observe that on WOD and AV2,
there are many cases where labels disappear, possibly due to
occlusion. An example of this is shown in Fig. 7, where we
see a group of parked vehicles at time t, but they are gone
by time t + 0.3s, although they are stationary and in the
region of interest. This provides confusing supervision for
temporal models like MAD, as it must learn when to recall
an object or not, possibly based on estimated visibility. A
dataset with labels that are temporally consistent would be
beneficial for future work in temporal object detection.

Generalization Across Base Detectors: As discussed in
Sec. 3.2, currently MAD is trained separately for each base
detector. Developing a version of MAD that can be trained
once and generalize across multiple base detectors is an
exciting direction for future work and holds promise for
broader applicability.

5



Detection Proposal Boxes BdetMemory Bank Memory Proposal Boxes Bmem MAD Output Boxes Bref

Sc
en

e
#1

Sc
en

e
#2

Sc
en

e
#3

Sc
en

e
#4

0.0s-2.4s Age (tm → t) 0.0s-2.4s

a a

a a

d d

b bc

c

a a

d d

b b

cc

Figure 5. Visualization of bounding box proposals of MAD enhancing CenterPoint 1f [75] on the WOD validation set. We threshold at
the max f1 score for the detection proposals and model outputs. Filled boxes are labels: black are matched labels, red boxes are false
negatives, and dotted boxes have < 1 LiDAR point observation. Box outlines are predictions: blue boxes are true positive proposals,
and yellow boxes are false positives. Annotations which we refer to in the main text are in green. For computing the matching boxes in
visualization, we use IoU thresholds of 0.5, 0.1, and 0.1 for Veh., Ped., and Cyc., respectively.

6



Detection Proposal Boxes BdetMemory Bank Memory Proposal Boxes Bmem MAD Output Boxes Bref

Sc
en

e
#5

Sc
en

e
#6

Sc
en

e
#7

Sc
en

e
#8

0.0s-2.4s Age (tm → t) 0.0s-2.4s

a
d

a
db bc

b b

c

b bc

d dc

d dc

a a
a a

Figure 6. Visualization of bounding box proposals of MAD enhancing CenterPoint 1f [75] on the WOD validation set. We threshold at
the max f1 score for the detection proposals and model outputs. Filled boxes are labels: black are matched labels, red boxes are false
negatives, and dotted boxes have < 1 LiDAR point observation Box outlines are predictions: blue boxes are true positive proposals, and
yellow boxes are false positives. Annotations which we refer to in the main text are in green. For computing the matching boxes in

visualization, we use IoU thresholds of 0.5, 0.1, and 0.1 for Veh., Ped., and Cyc., respectively.

7



Time t Time t+ 0.3s

Figure 7. An illustration of disappearing labels, circled in purple, from the WOD dataset. Labels are shown with filled boxes (same as
Figs. 5 and 6).

8


	Introduction
	Related Work
	Memory Augmented 3D Object Detection
	. Model
	. Training

	Experiments
	Conclusion
	Additional Implementation Details
	. Architecture
	. Training
	. 3D Detector Implementation Details

	Additional Quantitative Results
	Additional Qualitative Results:
	. Limitations and Areas for Future Work


