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Hologenomic analysis of rectal mucus
sampling for detection of adenomatous
polyps and colorectal cancer
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Colorectal cancer (CRC) is the fourth most common cancer and the third
leading cause of cancer-related mortality worldwide, with incidence rising
among younger populations. The significant clinical and economic burden
highlights the need for minimally invasive technologies capable of detecting
pre-malignant and early-stage disease. Although liquid biopsy approaches
have advanced, they have not achieved sufficient performance for clinical
adoption when compared with colonoscopy, the current diagnostic gold
standard. CRC is a mucosal pathology, yet current diagnostic methods have
not leveraged mucosal biology. Here we demonstrate the clinical utility of
rectal mucus specimens, collected using a minimally invasive device in an
outpatient setting, without bowel preparation. Through a hologenomic
approach integrating host and microbial genomics, we identify genetic and
epigenetic aberrations and perturbations in microbial communities that drive
the detection of adenomatous polyps and CRC in rectal mucus. Hologenomic
integration enables superior stratification of CRC by disease site and stage
compared with single-omics methods. In summary, we demonstrate the clin-
ical utility of rectal mucus sampling combined with hologenomic analysis as a
translatable prospective tool for diagnostic application.

Colorectal cancer (CRC) is the fourth most common cancer and third
most common cause of cancer-related mortality worldwide1. Higher
incidence, particularly in younger populations2, is driving an increase
in disease burden together with factors such as population aging and
increasing obesity3. While overall CRC mortality rates continue to fall,

higher incidence underlies increased mortality among people
under 504.

Five-year survival rates for CRC are strongly correlated with stage
at diagnosis, with 85–90% of patients diagnosed with Stages I–II sur-
viving for five years or more, compared with 10–65% for Stages III–IV5.
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Additionally, decreased incidence and mortality among populations
receiving preventative screening6,7 have prompted the expansion of
screening programmes to younger groups8,9. This has engendered
higher demand for screening, increasing the burden on healthcare
systems10,11 that have traditionally relied upon primarily endoscopic
and imaging-based techniques12, highlighting a need for a minimally
invasive triage method. Population-scale deployment of quantitative
faecal immunochemical testing (qFiT)13 in symptomatic cohorts has
shown utility as a non-invasive colonoscopy qualification tool14,
although debate remains about optimal thresholding in symptomatic
and asymptomatic cohorts. Advanced imaging techniques, such as
capsule endoscopy, have been trialled15,16 and adopted on a very lim-
ited scale17.

Recent advances have focused ondevelopingmethods that utilise
blood-based specimens, collectively referred to as liquid biopsies.
These assays involve various analytes, including circulating ensembles
of tumour-associated cells (C-ETACs)18–20, circulating tumour cells
(CTC)21, protein biomarkers22,23, cell-freeDNA (cfDNA)24,25, andRNA26,27.
Liquid biopsy targeting mutation and DNA methylation profiles in
circulating tumour DNA (ctDNA) in blood has clinical utility in
detecting, monitoring and guiding treatment of several cancers28–31.
However, this technology is limited by the small quantities of
pathology-derived material, hindering biomarker detection32,33 and
leading topoor sensitivity in pre-malignant andearly-stagedisease34–36.
Various mitigation measures have been employed to overcome this,
including increased sample volumes and plasmapheresis. In parallel
with improvements in detection technology, sample handling and
processing play important roles ensuring target biomarkers are sam-
pled and preserved in detectable quantities, allowing for robust and
reproducible analyses37,38. Immune profiles that correlate with
disease39,40 and treatment response41,42 represent another area with
diagnostic and therapeutic potential.

Sample matrices with anatomical proximity to the tumour site
(e.g., stool, urine, and peritoneal fluid), which are likely to contain
higher concentrations of target analytes and biomarkers, have the
potential to complement or supplant blood-based techniques for
specific indications43–45. Tumour-proximal sampling enables analysis of
biomarkers that are not readily detectable in a blood-basedmatrix. For
instance, increasing evidence implicates the microbiome in colorectal
disease46,47 and highlights its potential utility in cancer diagnosis48,49.

Efforts to develop a minimally-invasive, population-scale CRC
screening tool have sought to address these issues and to improve
performance viamultiomics approaches, targeting genetic, epigenetic
and biochemical markers50,51. Molecular biomarkers are long-
established indicators of dysregulation, with many studies implicat-
ing genetic mutations and epigenetic marks in CRC.Moreover, the use
of molecular markers has been shown to be cost-effective, deployable
and have clinical utility in the field of diagnostics. Here we leverage the
unique features of rectal mucus to assess host genomics and non-host
prospective biomarkers from the microbiome, which are either
underrepresented or not present in other biospecimens. In this study
of 800 patients referred with lower gastrointestinal symptoms
through the UK National Health Service (NHS) Suspected Colorectal
Cancer (Two-Week Wait) pathway and patients with newly diagnosed
colorectal adenocarcinoma (from the Colorectal Multidisciplinary
team meeting) assessed in the outpatient setting, we exploit multiple
omics to investigate the utility of rectal mucus as a novel clinical
specimen for detecting genetic, epigenetic and microbial markers of
pre-cancerous lesions (advanced adenomas defined as polyps > 10mm
in diameter or with high-grade dysplasia) and CRC.

Results
Study design and participant demographics
The OriCol™ sampling device (Supplementary Fig. 1) was used for
rectalmucus retrieval frompatients referredwith suspected colorectal

cancer in four NHS colorectal surgical outpatient clinics. Sampling was
performed without any bowel preparation and provided the patient
could tolerate a digital rectal examination (Supplementary Fig. 2). Data
on the safe use of this device in the target population and the identi-
fication of exfoliated tumour material in the collected sample have
been published52–54.

Eight hundred participants were enroled in the ORI-EGI-02 study
(Supplementary Fig. 3). Figure 1b–i describe the demographics of 419
participants, the combined total of all participants analysed by each
genomic assessment. Trial demographics for all 800 participants are
detailed in Supplementary Fig. 4.

From this pool, three sub-cohorts were selected (Fig. 1a), weigh-
ted for CRC to increase analytical power. Sample aliquots were pro-
cessed using three laboratory pipelines: error-corrected next-
generation sequencing (ecNGS), enzymatic methyl sequencing (EM-
seq), and whole-genome shotgun metagenomic sequencing.

Cohort sizesweredeterminedbyparticipant and sample inclusion
criteria, whereparticipants who had a complete clinical assessment, an
OriCol™ sample successfully collected, and a complete colonoscopy
were available for analysis. Additionally, samples were not included if
biological material was not available, or where sample pre-processing
quality controls (QC), such as DNA extraction QC criteria, were
not met.

Once selected for processing and analysis, samples were further
excluded if library preparation or sequencingQC criteria were notmet
(Methods).

Final sample inclusion yielded the following cohorts: ecNGS = 161,
EM-seq = 208, shotgun metagenomics = 379. Eighty samples were
common to the ecNGS and EM-seq pipelines, and 68 were common to
all three pipelines. Demographics of analytical sub-cohorts (ecNGS,
EM-seq and shotgun metagenomics) and intersecting analytical
methods are illustrated in Supplementary Figs. 5–8 and Supplemen-
tary Data 1.

Clinical labels reported throughout this study are defined as fol-
lows. Early-stage polyps (E-Polyps + ) refers to polyps ≤10mm in dia-
meter and with low-grade dysplasia, hyperplasia or sessile serrated
lesions. Late-stage polyps (L-Polyps + ) are >10mm in diameter or with
high-grade dysplasia. C+ Other refers to a diagnosis of small bowel
cancer. No CRC refers to participants who were referred through the
pathway but not assessed by gold-standard examinations and not
diagnosed with CRC by the 12-month follow-up appointment.

Participant demographics (Fig. 1b–i) showed a balance of biolo-
gical sex, with 50.2% male and 49.8% female. Among all participants,
56.6% had never smoked, 33.4% were ex-smokers and 10.0% were
current smokers. Body mass index (BMI) skewed towards overweight
categories, with 30.8% overweight (BMI 25–29.9 kg/m2). The distribu-
tion of CRC sites was 24.1% right-colon, 22.8% mid-colon (hepatic
flexure to splenic flexure), 17.9% left-colon (descending and sigmoid),
and 34.5% rectal.

Somatic mutation profiling reveals site-responsive disease sig-
nals in CRC tumour suppressors and oncogenes
Initial technology assessmentswereundertaken todetermine themost
appropriate methodologies for mutation profiling analysis. Methods
employing error-corrected NGSwith dual uniquemolecular identifiers
were assessed, as these approaches use molecule-specific read con-
sensus sequences such that low-frequency somatic mutations detec-
ted on both strands can be distinguished from sequencing errors and
PCR errors associated with traditional NGS. Libraries prepared using
the Duplex Sequencing Universal Kit (TwinStrand Biosciences, Seattle,
USA) exhibited the highest proportion of sequencing reads usable for
consensus sequence assembly and subsequent variant calling (Sup-
plementary Fig. 9).

Fifty cancer-associated genes were assessed by ecNGS55 (Duplex
Sequencing) and variant pathogenicity was annotated using the

Article https://doi.org/10.1038/s41467-025-66006-1

Nature Communications |        (2025) 16:10876 2

www.nature.com/naturecommunications


National Library of Medicine ClinVar database (release 20241223).
Additionally, loss-of-function predictions were used to supplement
ClinVar labelling for tumour suppressor genes (APC, TP53, FBWX7 and
SMAD4). The dataset was filtered to include only variants with evi-
dence of a pathogenic impact on cancer development. Twenty-five
genes remained after filtering across all clinical groups.

Among the OriCol™ samples collected fromCRC participants, the
most frequently mutated genes were TP53 (mutated in 79% of CRC

cases), FBXW7 (65%), KRAS (63%), ERBB2 (54%), APC (49%), BRAF
(33%), PIK3CA (18%) and SMAD4 (15%). Thirty genes were not mutated
in CRC cases. The median number of mutated genes per CRC was 4
(range =0–10) (Fig. 2a).

To compare observed and expected mutation frequencies, we
used cBioPortal to curate a multistudy cohort (n = 1605) of CRC cases
with tumour mutation data. In this cohort, the expected mutation
frequencies for the genes reported above were: TP53 (60%), FBXW7
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Fig. 1 | PRISMA diagrams and study demographics. a PRISMA flow diagrams
illustrating three sample-processing pathways (ecNGS, EM-seq, and whole-genome
shotgunmetagenomic sequencing) and the inclusion/exclusion process. Summary
of study demographics, including biological sex (b), smoking status (c), BMI (d),

age (e), Rockwood frailty score (f), and clinical category (g). CRC cases were sub-
divided by stage (h) and pathology site (i). E-Polyps + , Early-stage polyps; L-
Polyps + , Late-stage polyps; C+Other, Small bowel cancer; No CRC, Not diagnosed
with CRC and not assessed by gold-standard examinations.
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Fig. 2 | Identification of genetic mutations and frequencies within OriCol™
samples. aOncoPrint ofCRC cases (n = 78) in the ecNGS cohort across the 25genes
which remained after filtering. The top horizontal bar is per-participant mutation
burden and the right vertical bar is per-gene mutation count. b Hierarchically
clustered heatmap of per-gene, per-participant maximum VAFs across the 161-
participant ecNGS cohort for 25 genes that remained after filtering (control n = 47;

CRC n = 78; early-stage polyps n = 19; late-stage polyps n = 7; small bowel cancer
n = 1; no CRC n = 9). The bars along the bottom of the heatmap denote clinical
category, pathology site, and cancer stage. E-Polyps + , Early-stage polyps; L-
Polyps + , Late-stage polyps; C+Other, Small bowel cancer; No CRC, Not diagnosed
with CRC and not assessed by gold-standard examinations.
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(15%), KRAS (35%), ERBB2 (5%), APC (61%), BRAF (14%), PIK3CA (22%)
and SMAD4 (13%). For the 30 unmutated genes, the median expected
frequency was 2% (range =0–8%) (Supplementary Fig. 10; Supple-
mentary Data 2). Where genes were mutated in both cohorts, a strong
correlation (r2 = 0.91) was seen between expected and observed fre-
quencies of mutated genes (Supplementary Fig. 10).

To examine the impact of background somatic mutations, we
evaluated mutation burden after pathogenic filtering compared to con-
trols. No clustering was observed when visualised by heatmap (Supple-
mentary Fig. 11). We then calculated maximum variant allele frequency
(mVAF) to give a measure of signal strength and visualised the resulting
matrix ofper-gene, per-participantmVAFs as aheatmapwithhierarchical
clustering (Fig. 2b). High mVAFs (particularly in APC, TP53, KRAS, and
SMAD4) resulted in clustering of CRC and late-stage polyps cases
towards each end of the heatmap. Control participants with low mVAFs
generally clustered towards the centre, and early-stage polyps cases
were distributed throughout.mVAFs for APC (Mann–Whitney–Wilcoxon
test Benjamini–Hochberg-adjusted P=0.0055) and TP53 (adjusted
P=0.0055) were significantly higher in CRC cases than controls (Sup-
plementary Data 3), while no significant differences were found between
polyps cases and controls (Supplementary Data 8 and 9).

Right-sided (proximal) CRC is more difficult to detect in stool-
based liquid biopsies50,56. We therefore expected pathology sites
nearer to sample collection to have stronger signal. To explore this, we
selected the eight most frequently mutated genes (Fig. 2a). Per-gene,
per-participant mVAFs for pathogenic variants detected in OriCol™
samples collected from CRC cases were ordered by site of cancer,
followed by those for controls and plotted as a heatmap (Fig. 3a).
mVAFs ≥0.03 are most frequently seen in rectal cancers and least
among controls. The distribution of mVAFs by pathology site was
plotted for each gene for CRC cases, polyps cases and controls
(Fig. 3b–i). APC and TP53 showed the clearest gradients of high rectal
mVAFs to low right-sided mVAFs. By contrast, ERBB2 and FBXW7 did
not show a clear gradient, where mVAFs were comparable between
clinical categories and pathology sites. Consistent with these trends,
mVAFs for APC (Mann–Whitney–Wilcoxon test Benjamini–Hochberg-
adjusted P = 0.00003) and TP53 (adjusted P = 0.001) were significantly
higher in rectal CRC cases than controls (Supplementary Data 4).
mVAFs forAPC (adjusted P =0.0431)were alsohigher in left-colonCRC
cases than controls (Supplementary Data 5), whereas per-gene mVAFs
were not significantly different in mid-colon and right-colon cases
relative to controls after correcting for multiple testing (Supplemen-
tary Data 6 and 7). Together, these findings indicate that more
pathology-derived material was collected when the pathology was
closer to the biospecimen collection site (the rectum).

DNA hypermethylation in CRC associates with gene promoters,
5′ ends and CpG islands marked by transcriptionally active or
bivalent chromatin in a rectal mucosa reference epigenome
We performed targeted enzymaticmethyl sequencing (New England
Biolabs, Ipswich, USA) using DNA extracted from OriCol™ samples.
This technology uses enzymatic conversion of unmethylated cyto-
sines to uracils, which are then converted to thymines during PCR,
resulting in reduced DNA degradation and higher quality sequen-
cing libraries compared to bisulfite sequencing57–60. In a preliminary
technical assessment, each EM-seq library had an enzymatic con-
version rate >99%, and libraries derived from the same genomic DNA
sample clustered togetherwhen applying hierarchical clustering to a
distance matrix derived from pairwise Spearman rank (rs) correla-
tion coefficients calculated for DNAmethylation levels across target
CpG sites (Supplementary Fig. 12). These findings show consistent
performance of EM-seq for DNA methylation profiling across dif-
ferent sample types, providing the basis for applying this technol-
ogy to investigate the extent to which colorectal pathology-

associated DNA methylation patterns are detectable in rectal
mucus samples.

Target CpG sites were defined based on GRCh38 coordinates for
loci in the Human Methylome Panel (Twist Bioscience, San Francisco,
USA) and CpG islands (CGIs) in the UCSC Genome Browser database61

that overlap annotations for 17 genes whose DNA methylation levels
have been previously implicated in CRC. To identify potential con-
founders, we evaluated clinical labels and DNA methylation levels for
associations with participant demographic variables and EM-seq
technical variables (Supplementary Figs. 13 and 14). Associated vari-
ables were included as covariates in themodel matrix created for each
contrast to evaluate differential methylation between controls and
CRC cases.

Across all target loci, we identified 905 hypermethylated CpG
sites (hyper-mCpGs) and 41 hypomethylated CpG sites (hypo-
mCpGs) in CRC using DMRcate62 (FDR < 0.05) (Fig. 4a). To explore
the functional context in which differentially methylated cytosines
(DMCs) are located, we evaluated DMC overlap with (epi)genomic
annotations. We accounted for annotation biases accompanying
CGI-centric target enrichment by comparing observed overlaps with
the overlap distribution from permuted sets of eligible CpG sites
(within the target regions and evaluated for differential methyla-
tion). In permutation tests analysing DMC overlap with gene fea-
tures in theMatched Annotation fromNCBI and EMBL-EBI (MANE)63,
hyper-mCpGs show significant overlap with 1-kb promoters, 5′UTRs,
first exons, all exons (each Benjamini–Hochberg-adjusted
P = 0.0001), and regions 1–5 kb upstream of transcription start sites
(TSSs; adjusted P = 0.0219) (Fig. 4a; Supplementary Data 10). Hyper-
mCpGs overlap introns and 3′ UTRs significantly less than expected
(each adjusted P = 0.0001) (Fig. 4a; Supplementary Data 10). Inver-
ted trends were observed for hypo-mCpGs, which are largely
in introns (adjusted P = 0.0062) and absent from features near
gene TSSs (Fig. 4a; Supplementary Data 10). Hypermethylation
near TSSs and in transcribed regions in CRC cells may be associated
with altered transcription factor binding affinity and exon splicing64.

To examine the epigenomic landscape in which these changes
may be occurring, we analysed DMC overlap with CGI features in the
UCSC database61, and with chromatin state segmentations for a rectal
mucosa reference epigenome65. Consistent with gene promoter over-
lap, hyper-mCpGs significantly overlap CGIs, chromatin state 01
(H3K4me3-marked “Active TSS”) and state 10 (H3K4me3- and
H3K27me3-marked “Bivalent/Poised TSS”) (each adjusted P =0.0001)
(Fig. 4b, c; Supplementary Data 10). ElevatedDNAmethylation in these
regions may be associated with silencing of tumour suppressors or
dysregulation of genes involved in CRC tumourigenesis. Significant
overlaps with chromatin state 13 (“Polycomb repressed”; adjusted
P =0.0156) and state 12 (“Bivalent enhancers”; adjusted P =0.0199)
were also observed (Fig. 4c; SupplementaryData 10). Associationswith
bivalent chromatin and Polycomb repression may reflect disruptions
to tightly regulated expression programmes, with aberrant transcrip-
tion potentially leading to cell cycle perturbations and cell
proliferation66.

In contrast, hypo-mCpGs significantly overlap chromatin state 15
(“Quiescent”, characterised by condensed, transcriptionally inactive
chromatin, with low levels of all histone marks and high DNA methy-
lation; adjusted P = 0.0007) (Fig. 4c; Supplementary Data 10). Overlap
with quiescent chromatin may reflect an association between
decreased DNA methylation in cancer cells and a transition to more
open chromatin in these regions, with possible implications for tran-
scriptional regulation and genome stability.

We also identified DMCs in contrasts between controls and CRC
cases grouped by pathology site. Consistent with stronger signals at
diseasemarkers in caseswithpathology closer to the sample collection
site, DMCs could be called in rectal (hyper-mCpGs= 1493, hypo-
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mCpGs = 299) and left-colon (hyper-mCpGs=35) cases with a sig-
nificance threshold of FDR <0.05, whereas DMCs could be called in
mid-colon (hyper-mCpGs = 30) and right-colon (hyper-mCpGs= 1)
cases only with more permissive thresholds (FDR <0.1 and FDR <0.5)
(Fig. 4d–g). DMC overlap analyses for rectal cases revealed similar

trends to those observed for CRC cases, while hyper-mCpGs in left-
colon cases are more promoter-localised (Fig. 4d, e; Supplementary
Data 11–14).

Similar to findings for right-sided CRC cases, weak signals of
pathology at DNA methylation marker genes were also detectable in

Fig. 3 |MaximumVAFby clinical category andpathology site for the eightmost
frequently mutated genes. a Heatmap of per-gene, per-participant maximum
VAFs for the eight most frequently mutated genes across CRC cases and controls,
ordered by site of pathology (none (control) n = 47; unknown site CRC n = 1; right-
colon CRC n = 14; mid-colon CRC n = 14; left-colon CRC n = 18; rectal CRC n = 31).

b–i Per-gene boxplots of maximum VAFs for CRC cases, polyps cases and controls
ordered by site of pathology (control n = 47; CRC n = 78; early-stage polyps n = 19;
late-stage polyps n = 7; small bowel cancer n = 1; no CRC n = 9). E-Polyps + , Early-
stage polyps; L-Polyps + , Late-stage polyps; C+Other, Small bowel cancer; No CRC,
Not diagnosed with CRC and not assessed by gold-standard examinations.
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late-stage polyps (hyper-mCpGs= 7, hypo-mCpGs = 3) and early-stage
polyps (hyper-mCpGs=32, hypo-mCpGs = 2) cases relative to controls,
with a relaxed significance threshold applied (FDR <0.5) (Supple-
mentary Figs. 15 and 16; Supplementary Data 15 and 16). Hyper-mCpGs
in late-stage polyps significantly overlap chromatin state 01
(H3K4me3-marked “Active TSS”) (adjusted P =0.013), while those in
early-stage polyps associate with CGIs and chromatin state 10
(H3K4me3- and H3K27me3-marked “Bivalent/Poised TSS”) (each
adjusted P = 0.0007).

Broader-scale DNA methylation changes were observed across
eight differentially methylated regions (DMRs, with multiple con-
stituent DMCs), all of which were hypermethylated in CRC (FDR <
0.05). Consistent with findings fromDMC calling with cases grouped
by pathology site, DMR-scale profiles of per-groupmeanmethylation
levels revealed greatest hypermethylation among CRC cases with
rectal pathology, followed by either left-colon or mid-colon cases
(Fig. 5a). Per-DMR mean methylation levels across right-colon cases
are more comparable to those for controls. We observed a similar
gradient of hypermethylation in DMR-scale mean methylation pro-
files for each clinical category: CRC cases exhibit the most pro-
nounced elevation, followed by participants with late-stage polyps,
while levels are more comparable between participants with early-
stage polyps and controls (Fig. 5b).

To evaluate finer-scale associations, we analysed DMC overlap
with (epi)genomic annotations at the level of individual target genes.
Ranked by increasing Benjamini–Hochberg-adjusted P-value, themost
differentially methylated sites in CRC are hyper-mCpGs in SDC2,
LRRC4 and PPP2R5C (Supplementary Data 17). These sites are strongly
associated with rectal pathology and CRC Stages II–IV (Fig. 6a). For
SDC2, CRC hyper-mCpGs significantly overlap the promoter (adjusted
P = 0.019), 5′ UTR, first exon, all exons, CGIs, and chromatin state 10
(“Bivalent/Poised TSS”) (each adjusted P =0.0003) (Fig. 6b; Supple-
mentary Data 10). These associations are also evident at the SDC2-
overlapping hyper-DMR (Fig. 5). SDC2 encodes a transmembrane
proteoglycan with a receptor for extracellular matrix proteins, and is
involved in cell proliferation, cell migration and cell-to-cell signalling.

CRC hyper-mCpGs in LRRC4 aremore concentrated near the TSS,
significantly overlapping the promoter, 5′ UTR, first exon, CGIs, and
chromatin state 01 (“Active TSS”) (each adjusted P = 0.0003)
(Figs. 5 and 6c; Supplementary Data 10). Promoter hypermethylation
of CGI-associated genes is a common epigenetic aberration by which
tumour suppressor genes are silenced in human cancers67. These
trends are therefore consistent with the tumour suppressor activity
reported for LRRC4, whose inhibitory effects on glioma cell growth
and invasion are abrogated by promoter hypermethylation-mediated
inactivation68. Consonant with the tumour-suppressive role of

PPP2R5C, including through regulation of TP5369, hyper-mCpGswithin
or near its transcript variants exhibit significant overlap with chro-
matin state 01 (“Active TSS”) and CGIs (each adjusted P = 0.0004)
(Figs. 5 and 6d; Supplementary Data 10).

CRC hyper-mCpGs in RNF217 associate with the promoter
(adjusted P = 0.0003), 5′ UTR (adjusted P =0.0253), first exon (adjus-
ted P =0.0068), CGIs (adjusted P = 0.0003), and chromatin state 01
(“Active TSS”; adjusted P = 0.0003) (Figs. 5 and 6e; Supplementary
Data 10). The E3 ubiquitin ligase RNF217 regulates intracellular iron
homoeostasis through degradation of the iron export protein ferro-
portin, which depends on TET1-mediated demethylation of the Rnf217
promoter in mouse70. For example, increased ferroportin and dysre-
gulated iron levels have been reported in a conditional knockout line
lacking Rnf217 expression in intestinal enterocytes70. Hypermethyla-
tion of the RNF217 promoter in CRC may therefore be associated with
attenuated ferroportin degradation and impaired iron balance. This is
consistent with previously reported aberrant expression and localisa-
tion of ferroportin in CRC, leading to intracellular iron accumulation
which may induce cell proliferation71.

CRC tumourmicrobiome signals are detected by representation
in the rectal mucosa
Increasing evidence suggests the gut microbiome is associated with
risk of CRC development, treatment response and disease
recurrence72–75. This phenomenon is termed a tumourmicrobiome.We
initially performed 16S sequencing on a small cohort ofmatched rectal
swabs, OriCol™-collected rectal mucus samples and stool. The range
and trends of α-diversity, for both observed and Shannon diversity
metrics, were reflected in both OriCol™ and stool samples (Supple-
mentary Fig. 17). Rectal swabbing had an overall significantly reduced
α-diversity and in three incidences resulted in reduced library sizes.

Thediversity and abundanceof 725OriCol™ rectalmucus samples
were characterised by V3 and V4 16S sequencing to determine asso-
ciations betweenmicrobiome composition and clinical status, where a
weak association was observed (all-groups Kruskal–Wallis P = 0.0419)
(Supplementary Fig. 18; Supplementary Data 18).

Due to the limitations of 16S sequencing, further work was con-
ducted using whole-genome shotgun (WGS) metagenomic sequen-
cing. This allowed for a more comprehensive assessment of the
microbiota community, at species-level resolution and encompassing
less abundant taxa. The microbiome diversity and abundance of 420
mucus samples was assessed by WGS to determine microbial species
associated with CRC (Fig. 7b, c).

Two thresholds have been defined: a minimum abundance level of
1e-04 and aminimum power of 0.4 (Supplementary Fig. 19). In total, 36
species show significant associationswithCRC (Fig. 7d). The association

Fig. 4 |HypermethylatedCpGsites inCRCcasesassociatewithgenepromoters,
5′ ends and CpG islands marked by transcriptionally active or bivalent chro-
matin in a rectalmucosa reference epigenome. aVolcanoplot of target CpG sites
evaluated for differential DNAmethylation inCRC cases (n = 77) relative to controls
(n = 88) (FDR<0.05), with sites colour-coded by their overlapping gene (top).
Permutation tests analysing overlap of CRC differentially methylated CpG sites
(DMCs) with MANE representative gene annotations (bottom; regions 1–5 kb
upstream of the TSS, 1-kb promoters, 5′ UTRs, exons, introns, and 3′ UTRs)63. For
each test, 10,000 sets of randomly selected eligible CpG sites (within the target
regions and evaluated for differential methylation) of the same number as those
within the given DMC set were defined. The overlap distribution from these 10,000
random sets (grey violins) was used to calculate the expected number of overlaps
(black bars; mean permuted-set overlaps) and the number of overlaps at the sig-
nificance level (orange bars; α =0.05). Permuted overlaps were compared with the
observed number of DMCs overlapping the annotation category of interest (blue
bars) to calculate an empirical P-value (Supplementary Data 10). P-values were
adjusted for multiple testing with the Benjamini–Hochberg method. b As in a, but
showing overlap with CpG island (CGI) features (islands, shores (2-kb flanks of

islands), shelves (2-kb flanks of shores), and inter-CGI regions (“open sea”)) in the
UCSC Genome Browser database61. c As in a, but showing overlap with chromatin
state segmentations for rectal mucosa reference epigenome E10165. 01 TssA, Active
TSS; 02 TssAFlnk, Flanking active TSS; 03 TxFlnk, Transcribed at gene 5′ and 3′
ends; 04 Tx, Strong transcription; 05 TxWk, Weak transcription; 06 EnhG, Genic
enhancers; 07 Enh, Enhancers; 08 ZNF/Rpts, ZNF genes and repeats; 09 Het, Het-
erochromatin; 10 TssBiv, Bivalent/poised TSS; 11 BivFlnk, Flanking bivalent TSS/
enhancers; 12 EnhBiv, Bivalent enhancers; 13 ReprPC, Polycomb repressed; 14
ReprPCWk, Weakly Polycomb repressed; 15 Quies, Quiescent. d As in a, b, but
showing target CpG sites evaluated for differential methylation in rectal CRC cases
(n = 29) relative to controls (n = 88) (FDR<0.05; Supplementary Data 11). e As
in a, b, but showing target CpG sites evaluated for differential methylation in left-
colon CRC cases (n = 16) relative to controls (n = 88) (FDR <0.05; Supplementary
Data 12). f As in a, b, but showing target CpG sites evaluated for differential
methylation inmid-colon CRC cases (n = 18) relative to controls (n = 88) (FDR<0.1;
Supplementary Data 13). g As in a, b, but showing target CpG sites evaluated for
differential methylation in right-colon CRC cases (n = 14) relative to controls
(n = 88) (FDR<0.5; Supplementary Data 14).
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ba

Fig. 5 | Regions with elevated DNA methylation in CRC show gradients of
hypermethylation across pathology sites and clinical categories. a Mean per-
cent CpG methylation (mCpG) profiles around eight differentially methylated
regions (DMRs), calculated across CRC cases grouped by the site of pathology
(control n = 88; right-colon CRC n = 14;mid-colon CRC n = 18; left-colon CRC n = 16;
rectal CRC n = 29). DMRs are ordered by increasing Benjamini–Hochberg-adjusted

P-value (FDR <0.05). Coordinates for DMRs (dark grey),MANE representative gene
promoters (green) and exons (purple)63, and chromatin state segmentations for
rectal mucosa reference epigenome E10165 are indicated below the per-group
profiles.bAs ina, butwith participants groupedbyclinical category (controln = 88;
CRC n = 77; early-stage polyps n = 13; late-stage polyps n = 21). E-Polyps + , Early-
stage polyps; L-Polyps + , Late-stage polyps.
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landscape was divided into four quadrants, where the first includes the
most strongly associated species with the highest power, and the last
the least associated species with the lowest power (Supplementary
Data 20–23). Quadrant 1, with the lowestMann–Whitney–Wilcoxon test
Benjamini-Hochberg-adjusted P-values (<0.005) and highest power
(>0.4), includes two species: Hungatella hathewayi and Intestinimonas
butyriciproducens (Fig. 7e, f; Supplementary Data 20). H. hathewayi,

also known as Clostridium hathewayi, is present in virtually all samples,
and has been reported to be enriched in CRC76,77, together with I.
butyriciproducens78,79.

The second quadrant, with higher adjusted P-values (0.05 >P≥
0.005) and highest power (>0.4) (Supplementary Data 21), reveals more
species that have been extensively reported as associated with CRC. Of
interest, we highlight Porphyromonas asaccharolytica (Supplementary
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Fig. 20) and Clostridium scindens. P. asaccharolytica induces oncogenic
stress responses through secretion of the bacterial metabolite
butyrate80. Moreover, the invasion of P. asaccharolytica has been
observed in CRC tissues and coincides with elevated butyrate levels and
senescence-associated inflammatory phenotypes80. The association of a
higher relative abundance of C. scindens with CRC has not been pre-
viously reported. In fact, according to Arabameri et al.81, C. scindens is an
indicator of healthy gut flora, which are reduced in CRC. Quadrant 3
represents species with low adjusted P-values (<0.005) and low power
(<0.4) and, likequadrant 2, includesmany species previously reported to
be associated with CRC, namely Parvimonas micra, Fusobacterium
nucleatum and Gemella morbillorum. Interestingly, P. micra and F.
nucleatum, alongside Peptostreptococcus stomatis and A. muciniphila
(not found to be associatedwith CRC in this study), have been proposed
as part of a four-bacteria biomarker panel for CRC79. Several studies have
reported the elevated relative abundance of F. nucleatum in stool and
cancer tissue from CRC patients79,82,83, but the role and mechanisms
remain unknown. The depth of read coverage across the dataset (Sup-
plementary Data 19) was not high enough to allow for de novo assembly
and functional analysis.

Hologenomic mixed integration reveals distinct molecular
profiles of colorectal pathology
By combining distinct sources of biological data, multiomics approa-
ches aim to improvemodel performance beyond what is possible with
data from any single omics discipline. The potential value of this is
especially clear for CRC given its complex and heterogeneous nature.

To evaluate thepotential benefits of combining somaticmutation,
DNA methylation and microbiome data, we pursued a mixed integra-
tion approach84,85. This involved aggressive omics-specific feature
selection to reduce the set of potential biomarkers, with 10 selected
fromeachomicsdataset. The intersection of the resulting datasetswas
then visualised using PCA (Fig. 8b, c) and as a heatmap, with hier-
archical clustering across biomarkers and participants (Fig. 8a).

The biomarkers identified by feature selection (Fig. 8a) are con-
sistent with the results of previous sections. For somatic mutation
data, those genes found to be most strongly associated with CRC
(Figs. 2 and 3), namely APC, KRAS, BRAF, and TP53, were all selected.
Similarly, the selected microbiome species include both H. hathewayi
and I. butyriciproducens, which were the only two assigned to quad-
rant 1 (Fig. 7) owing to their low P-values and high power. Overall, all
selected species but one, Selenomonas sputigena, were assigned to
quadrants 1–3. For DNA methylation, hyper-mCpGs in SDC2 and
LRRC4 together contributed 7 features, along with one hyper-mCpG
fromeachof PPP2R5C,CERS4andVIM.This agreeswithDMCandDMR
analyses (Figs. 5 and 6), which identified the most pronounced
hypermethylation in SDC2, LRRC4, and PPP2R5C. Furthermore, five of
themost differentially methylated hyper-mCpG sites were also chosen
by feature selection, showing convergence of results across different
methods.

Figure 8 shows the data projected onto pairs of principal com-
ponents for two combinations of omics, colour-coded by clinical
category. Controls tend to cluster together, while CRC cases display

more heterogeneous profiles, withmany clearly distinct fromcontrols.
The locations of early- and late-stage polyps are consistent with their
potential progression towards malignancy, with both types tending to
cluster at the boundary between classes, while some late-stage polyps
have profiles that are indistinguishable from cancers.When labelled by
their site of pathology (Supplementary Fig. 21), rectal cancers and, to a
lesser extent, left-colon cancers canbemost clearly distinguished from
controls. Mid- and right-colon cancers are more interspersed with
controls. This is consistent with the results of per-omics analyses and
indicates that the detectable signal decreases in strengthwith distance
from the pathology. Stage IV CRCs are consistently the most clearly
separated from controls, whereas all other stages can be found at
varying distances from the control cluster, without any clear patterns
of dispersal (Supplementary Fig. 22). Similarly, hierarchical clustering
shows a large methylation-driven cluster of CRC cases along with two
late-stage polyps, whereas the other polyps cases cluster with a com-
bination of cancers and controls (Fig. 8a). Themain clustering by site is
found for participants with rectal cancer, with no clear clustering
by stage.

We observed a large degree of separation along the first prin-
cipal component (PC1), which has an explained variance of 44% and
39% in the dual-omics (Fig. 8c) and tri-omics (Fig. 8b) cases,
respectively. The PC1 loadings provide an indication of the impor-
tance of each selected biomarker to the group stratification (Sup-
plementary Data 24). In the tri-omics case, hyper-mCpGs contribute
the largest seven loadings and so are the dominant factor causing
separation along PC1 and can therefore be considered the most
important omics driving separation. Stratification is also observed
along PC2 and PC3, which explain 10% and 8% of the variance,
respectively (Fig. 8b, c). The loadings of PC2 are dominated by
mutation markers, particularly APC and TP53, while the largest
loading of PC3 is the microbiome, particularly Porphyromonas
asaccharolytica. Therefore, each principal component is dominated
by a specific omics dataset, indicating that all three omics make
important contributions to separating cancers from controls.

Discussion
We have demonstrated the application of rectal mucus as a novel
biospecimen and important tool for gut biology research, allowing the
genetic and epigenetic characterisation of the host bowel and micro-
biota. Moreover, we illustrate the identification of host-derived
pathology-associated signatures and microbial abundance disease
indicators, demonstrating the sample utility for in vitro diagnostic
applications.

The OriCol™ sampling collection device and its application in the
outpatient clinical setting (without bowel preparation in patients who
can tolerate a digital rectal examination) adds novelty to this study,
with high levels of patient acceptability. Ambient samplemanagement
with the tests performed by both clinical and allied healthcare pro-
fessionals potentially offers a test that can be delivered with minimum
infrastructure and process addition, which could be an important
addition to cancer diagnostic pathways. Similarly, rectal mucus sam-
pling could be leveraged to facilitate the study and development of

Fig. 6 | CRChypermethylation ismost pronounced at target CpG sites in SDC2,
LRRC4, PPP2R5CandRNF217,whichhave sharedanddistinct associationswith
(epi)genomic annotations. aHeatmap showing themost differentiallymethylated
CpG sites in CRC cases relative to controls, with CRC stage, pathology site and
clinical category indicated (control n = 88; CRC n = 77; early-stage polyps n = 13;
late-stage polyps n = 21). Methylation level is the log2-transformed ratio of methy-
lated to unmethylated read counts at eachCpGsite, zero-centred and scaled to unit
variance. bVolcano plots of target CpG sites in SDC2 evaluated for differential DNA
methylation in CRC cases (n = 77) relative to controls (n = 88) (FDR<0.05), with
sites colour-codedby their overlapping genic feature(s) in theMANE representative

annotation (top; regions 1–5 kb upstream of the TSS, 1-kb promoters, 5′ UTRs,
exons, introns, and 3′ UTRs)63 or CpG island (CGI) feature (bottom; islands, shores
(2-kb flanks of islands), shelves (2-kb flanks of shores), and inter-CGI regions (“open
sea”)) in the UCSC Genome Browser database61. Permutation tests analysing over-
lap of CRC differentially methylated CpG sites (DMCs) in SDC2 with MANE repre-
sentative gene annotations (top) and with CGI features (bottom) are shown below
the corresponding volcano plots (Supplementary Data 10). c As in b, but showing
target CpG sites in LRRC4. d As in b, but showing target CpG sites in PPP2R5C. e As
in b, but showing target CpG sites in RNF217.

Article https://doi.org/10.1038/s41467-025-66006-1

Nature Communications |        (2025) 16:10876 11

www.nature.com/naturecommunications


translational applications for other conditions of the bowel, such as
inflammatory bowel disease.

This work demonstrates that shed pathology-derived material
captured locally in the mucus layer migrates to the rectum, where
specimens are collected. Analysis of genetic, epigenetic, andmicrobial
datasets allowed the identification of key disease stratification features
from each genomic approach, with relative contributions to the

separation of clinical categories assessed. Clinical categories were
determined by the gold-standard diagnostic procedure, a colono-
scopy, or non-gold standard procedure, such as a CT-scan, combined
with a one-year follow-up to confirm absence of significant pathology.
Analytical findings were benchmarked against clinical diagnosis.

Additionally, we demonstrate that combining genetic and epige-
netic information from the host and microbiota, as a composite
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organism or holobiont, improves detection of disease signals asso-
ciated with colorectal cancer and adenomatous polyps.

To ensure robustmultiomics profiling, the compatibility of rectal-
mucus-derived DNA was assessed across multiple technologies for
each omics discipline investigated, with the best-performing metho-
dology chosen for in-depth study (Supplementary Figs. 9, 12 and 18).

Somatic mutation profiling detected known pathogenic variants,
previously reported in CRC tumours and distal matrices including
blood (ctDNA) and stool, that have not been investigated or identified
in mucus sampling. Initial analysis of mutation presence/absence and
tumour mutation burden showed no significant stratification between
clinical categories. Low-frequency pathology-associated mutations
were found in all samples, consistent with the notion that no single
biomarker reliably indicates disease86. Further examination identified
per-gene maximum VAF as a strong correlate of disease state, serving
to distinguish pathology-derived signal from non-indicative low-fre-
quency variants87.

Eight genes showed the strongest associations with CRC and
adenomatous polyps (APC, TP53, KRAS, BRAF, ERBB2, FBXW7, PIK3CA
and SMAD4), with pathogenic variants detected in 15–79% of partici-
pants (Figs. 2a and 3). Notably, a site-responsive effect was observed,
with maximum VAFs generally decreasing between the rectum and
right side of the colon. This is consistent with the hypothesis thatmore
representative and pronounced signals are detected the closer the
sampling is to the site of pathology, with detection of right-sided
pathology proving more challenging. Moreover, expected mutation
frequencies defined across published data for 1605 CRC tumour
resections exhibited a strong correlation with observed frequencies in
the mucus samples, illustrating a clear representation of pathology
(Supplementary Fig. 10).

Interestingly, higher frequencies are observed in APC and KRAS
for right-sided CRC compared to TP53, BRAF, ERBB2, FBXW7, PIK3CA
andSMAD4 (Fig. 3b, d). Thesefindings support observeddifferences in
right- and left-sided tumour biology identified in resections88, that
have not been discernible in alternative sampling methodologies.

Analysis of pathogenic variant allele frequencies highlighted the
utility of mucus-based mutation profiling in distinguishing CRC-
associated signals across sites and stages of CRC, although stratifica-
tion is not observed for each case. Additionally, CRC-like signatures
were identified in a subset of adenomatous polyps located in the rec-
tum and transverse colon.

DNAmethylation profiles havebeenwidely studied as prospective
biomarkers for CRC detection. CRC-associated epigenetic marks have
previouslybeen identified in tumour-, blood- and stool-based analyses,
with little known about these modifications in the gut mucosa.

DNA methylation profiling across 17 known marker genes
revealed striking hypermethylation and limited hypomethylation of
CpGdinucleotides inCRCand, to a lesser extent, adenomatous polyps,
with gradients of hypermethylation observed across pathology sites
and clinical categories (Figs. 4 and 5). Consistent with stratification of
somatic mutation profiles, CRC cases with rectal pathology exhibited

the most pronounced and extensive hypermethylation, followed by
left-colon or mid-colon cases, whereas weaker signals were detected
for right-colon cases and adenomatous polyps cases.

Hierarchical clustering of participants by DNA methylation levels
at the most differentially methylated CpGs (in SDC2, LRRR4, and
PPP25RC) showed a general association with clinical category (Fig. 6a).
Hypermethylation across these sites is associated with rectal pathol-
ogy and more advanced disease. Moreover, late-stage polyps are
interspersed with CRC cases, which is concordant with DMR-scale
profiles of per-group methylation levels (Fig. 5). Additionally, more
comparable methylation levels were observed between CRC cases and
participants with late-stage polyps, and between those with earlier-
stage polyps and controls.

We observed localised hypermethylation in the vicinity of TSSs,
primarily associating with CGIs in gene promoters and 5′ ends. CpG-
dense promoter hypermethylation is consistent with inhibited tran-
scription factor binding, removal of activating histone modifications
like H3K4me3, and epigenetic silencing of tumour suppressor genes67.
In contrast, CRC hypomethylation was largely absent from TSS-
proximal regions and instead confined to introns in the target genes.
This is consistent with the overall decrease in 5-methylcytosine levels
frequently observed in cancer genomes, which engenders chromoso-
mal instability by fostering rearrangements and translocations89.

SDC2 is among the target genes with the most pronounced DNA
hypermethylation over the promoter and 5′ end (Figs. 5 and 6). This
region is characterised by bivalent chromatin in a rectal mucosa
reference epigenome. Bivalent chromatin ismarked by both activating
H3K4me3 and transiently repressive H3K27me3, which together are
thought to prime genes for highly coordinated expression during
development and cell differentiation. Aberrant DNA methylation and/
or expression of SDC2 is tumourigenic in CRC90 and breast cancer91,
whereas in vivo tumour suppressor activity has been reported in
osteosarcoma92. Poised for transcription, its bivalent chromatin state
might reflect tightly orchestrated cell-type-specific expression pro-
grammes, with dysregulation of finely balanced transcription pro-
moting cancer in different tissues.

We also observed significant hypermethylation over gene tran-
scribed regions in CRC, which may alter binding affinity and disrupt
normal alternative splicing of pre-mRNA. For example, gene-bodyDNA
methylation is known to inhibit CTCF binding and recruit MECP2.
Impaired CTCF binding accelerates RNA polymerase (Pol) II pro-
cessivity, thereby increasing exon skipping93. In contrast, MECP2 binds
methylated DNA and recruits histone deacetylases, which reduce the
transcription elongation rate of Pol II, promoting exon inclusion94,95.
Aberrant alternative splicing events contribute to several malignant
processes in CRC96, and their potential diagnostic and therapeutic
utility have been highlighted97,98.

Diverging from these trends, intronic overlap of PPP2R5C hyper-
mCpGs reflects the structure of the MANE representative transcript.
However, several isoforms are encoded by transcript variants with
alternative TSSs located ~20–40 kb downstream of the hyper-DMR

Fig. 7 | Microbiome analysis and CRC association study of shotgun metage-
nomicsdata for rectalmucus samples. aBubbleplot of the top60most abundant
species in the cohort, coloured by clinical status (control n = 178; CRC n = 127; early-
stage polys n = 18; late-stage polyps n = 47; small bowel cancer n = 1; no CRC n = 8).
Each bubble represents a species, with its position on the x-axis corresponding to
individual rectalmucus samples and the y-axis indicating different species. The size
of each bubble represents the relative abundance of the species in a sample.
Bubbles are coloured according to clinical status. The full list of species is available
in Supplementary Data 19. b, c The top 20 species composition for controls and
CRCcases. Each stackedbar chart represents a samplewith the proportion of reads
attributed to each microbial species. Different colours distinguish microbial spe-
cies, with a light grey colour representing “other”, which contains all other species

not represented. d Power versus Mann–Whitney–Wilcoxon test
Benjamini–Hochberg-adjusted P-value, where each point is a species. The plot is
divided into 4 quadrants. Quadrant 1 represents species with the lowest P-values
(<0.005) and highest power (>0.4). Quadrant 2 represents species that have higher
adjusted P-values (0.05 > P ≥0.005) and high power (>0.4). Quadrant 3 represents
species that have lower power (<0.4) and low adjusted P-values (<0.005). Quadrant
4 comprises species that have higher adjusted P-values (0.05 > P ≥0.005) and low
power (<0.4). e, f Hungatella hathewayi and Intestinimonas butyriciproducens
relative abundance distributions across CRC cases and controls. E-Polyps + , Early-
stage polyps; L-Polyps + , Late-stage polyps; C+Other, Small bowel cancer; No CRC,
Not diagnosed with CRC and not assessed by gold-standard examinations.
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Fig. 8 | Clinical group stratification by combining somatic mutation, DNA
methylation andmicrobiomedata in amixed integration approach. aHeatmap
for the tri-omics case (somatic mutation, DNA methylation and microbiome)
showing clustering across biomarkers and participants (control n = 30; CRC n = 38;
early-stagepolyps = 7; late-stagepolys = 4). Feature selectionwasperformedbefore
integration, leading to the 30biomarkers listed in the plot.bTri-omics PCA analysis
showing the data projected onto pairs of principal components (control n = 30;

CRC n = 38; early-stage polyps = 7; late-stage polys = 4). Polyps cases are trans-
formed and plotted for comparison. The percent of explained variance for each PC
is indicated in parentheses. cAs inb, but for the dual-omics casewith onlymutation
and DNA methylation data included (control n = 36; CRC n = 44; early-stage
polyps = 12; late-stage polys = 4). E-Polyps + , Early-stage polyps; L-Polyps + , Late-
stage polyps.

Article https://doi.org/10.1038/s41467-025-66006-1

Nature Communications |        (2025) 16:10876 14

www.nature.com/naturecommunications


overlapping intron 2 of the MANE transcript. Intronic hypermethyla-
tion has been implicated in gene silencing, in some cases associating
with carcinogenesis99,100. DNA methylation has also been proposed to
influence intronic splice site selection, changing the balance of
expressed isoforms101. Moreover, expression levels of PPP2R5C mRNA
variants encoding the threemajor isoformscorrelatewithprogression-
free survival in ovarian cancer patients with residual disease102.

This detection of hypo/hypermethylated states across gene
structures has highlighted the ability to detect pathology-associated
alterations implicated in a range of dysregulatingmodalities, including
gene-silencing, alternative splicing and genome stability. Hypo-
methylation signatures were seen in Stage I-IV CRC cases and across all
sites of the colon, with a subset of adenomatous polyps exhibiting a
CRC-like pathology signature.

Mucosal sampling enables assessment of both host-derived
material and the microbiota. Metagenomic analysis identified an
average of 782 bacterial species in mucus samples, with the top
20 species in controls and CRC cases highlighted (Fig. 7b, c).

Microbiome diversity and abundance analysis identified 36 bac-
terial species that are associated with CRC (Fig. 7d). The two most
powered and significant species, H. hathewayi and I. butyr-
iciproducens, have previously been implicated in colorectal disease. H.
hathewayi has been implicated in treatment response, anti-tumour
immune activity, colonic epithelial cell expansion, DNA hypermethy-
lation of tumour suppressor genes and as a potential disease state
biomarker76,103–105. Correlations between DMR hypermethylation and
H. hathewayi were investigated, with no significant associations
observed. The butyrate-producing I. butyriciproducens has been
implicated in CRC detection and protection, with studies finding that
butyrate targets the pyruvate kinase (M2), subsequently reprogram-
ming metabolism and reducing cell growth or causing cell apoptosis
directly106,107. Conversely, butyrate-induced senescence has been
implicated in tumourigenesis in the context of over-represented Por-
phyromonas species80.

Additionally, we report several significant bacterial associations
with CRC status that are novel or have been reported only in animal
models. These include Clostridium scindens, Thomasclavelia ramose
and Vescimonas coprocola (Supplementary Data 21). Though pre-
viously unidentified as potential clinical indicators, several of these
species have plausible mechanisms for dysbiosis in CRC cohorts. For
example, Clostridium scindens is known tomodify bile acids, with one
example being the dehydroxylation of cholic acid into deoxycholic
acid108, which in turn has been identified as a promoter of CRC by
suppression of CD8 + T cell109.

We hypothesise that the identification of novel microbial asso-
ciations with CRC may reflect differences between mucus and stool
microbiota. Moreover, previous studies have identified bacterial indi-
cators of pathology in mucus samples that were not detected in mat-
ched stool analysis110. The underlying functional mechanisms
identified by the diversity and abundance analysis are poorly under-
stood and in-depth experimental studies on the mechanisms of action
of each organism, or groups of organisms, will be required. This is a
grand challenge for the research community and thus is beyond the
scope of this work.

These findings highlight the importance of mucosal samples for
understanding fundamental biological processes in the gut, exempli-
fied by the identification of novel bacterial associations and dysbiosis
with pathology. Furthermore, discoveries localised to mucosal matri-
ces present novel targets for mechanistic research, with potential
diagnostic and therapeutic application. Conversely, although micro-
bial CRC associations in the rectal mucus identified in this study
demonstrate utility as a proximal indicator of disease state, it remains
unproven as towhether thesefindings are reflective of themicrobiome
in the tumour itself. Further research is required to determine the

concordance of the microbiome of the tumour with that of
rectal mucus.

Additionally, a small pilot study was undertaken to assess data
quality and concordance of 16S-based microbial analysis between
OriCol™-collected rectal mucus and conventional swabbing approa-
ches. Limitations were observed with rectal swabbing, producing a
generally poor representation of thehostmicrobiome (Supplementary
Fig. 17). The observation of reduced library sizes in 60% of participants
assessed suggests insufficiently collected material, a challenge that
would be further compounded when assessing host genomics111.

Analysis of each omics category illustrates their potential utility
for colorectal disease screening. Genetic, epigenetic, and microbial
CRC-associated signals were detected at all stages of cancer. These
signals, though variable in strength, are detected across all sites of the
colon, consistent with the hypothesis that pathology-derived material
captured in the mucosal layer migrate through the colon to the rec-
tum. Although the diagnostic utility of each omics discipline is
demonstrated, no single assessment facilities the development of a
testing solution to the required standard for adoption in clinical
practice, specifically the detection of right-sided lesions.

However, the mixed integration of selected features across all
omics into one hologenomic dataset improved the detection of signals
of CRC and adenomatous polyps, leveraging the disease-associated
features seen across each omic assessment. Bioinformatic and
machine learning approaches, such as minimum redundancy max-
imum relevance, identified key signals driving pathology detection
with high concordance. Hierarchical clustering of study participants
based on these features resulted in three main clades: CRC and late-
stage polyps (right-hand cluster), predominately controls (central
cluster), and a population largely comprised of polyps and CRC (left
cluster) (Fig. 8a). This two-dimensional representation highlights the
additive effect of hologenomic analysis combining genetic, epigenetic
and microbial markers.

Contributions to clinical category stratification are detailed in
Supplementary Data 24, with the strongest drivers in principal com-
ponents (one to four) determined by the principal component loading.
Interestingly, each principal component is dominated by a specific
omics analysis, allowing the identification of clinical categories in the
direction of each principal component which would be lost if any one
omics technology were removed. For instance, several CRC category
samples in the direction of PC2 would be indistinguishable from con-
trols if only features from PC1 were analysed. This observation is
recapitulated across the four principal components presented (Fig. 8b).

Further analysis identified the distinguishing power of principal
componentswithin the integrateddataset. Theweighting of factors for
stratification are distinct components, consisting of DNAmethylation,
mutation, and microbiome respectively, highlighting the contribution
of each biomarker type (Fig. 8b, c; Supplementary Data 24).

Challenges in the molecular and biochemical detection of color-
ectal cancer is well documented, particularly in blood or stool bios-
pecimens. Non or minimally invasive localised sampling is largely
confined to stool-based methods, where significantly reduced sensi-
tivity is noted when detecting right-sided pathologies112, in addition to
very poor detection of advanced pre-cancerous lesions50. Con-
cordantly, weaker disease-associated signals were identified in rectal
mucus biospecimens when genomic analyses were reported indivi-
dually (Figs. 2 and 4).

However, a combinatory assessment of distinct measures of
dysregulation in the rectal mucus, host or biome derived, allowed the
broader catchment and identification of disease indicators in a het-
erogeneous disease, such as colorectal cancer. This integrated holo-
genomic approach increases signal to noise, driving improved
distinguishment across clinical categories, including the site of color-
ectal cancer and adenomatous polyps.
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It is unknown whether this methodology can be applied to stool-
based testing approaches, as a combinatory approach requires robust
recovery of high-quality DNA from both human and microbial origins,
whichmaybe challenging in specimenswith lowhumanDNApresence
and that are prone to increased DNA degradation113,114. Hologenomics
has been utilised to address ecological and evolutionary questions,
including invasion, disease transmission, and resistance development,
in addition to fundamental systemic host-microbiota interactions115,
though these methods have not been exploited for medically transla-
table research. Here we report the first implementation of hologe-
nomics as a contextualised panoramic analysis for the detection of
colorectal pathology-associated features, which can be leveraged for
diagnostic applications.

In summary, worldwide large numbers of patients are referred
with lower gastrointestinal symptoms and the concern of potential
bowel cancer. Current triage tools include qFiT and stool-based
genomic analysis, which are limited in diagnostic accuracy and patient
engagement. The gold-standard diagnostic test is colonoscopy, which
has a low diagnostic yield in symptomatic patients and requires both
bowel preparation and can be performed only in patients fit for
the test.

In this study, rectal mucus samples were collected from patients
without bowel preparation in an outpatient clinical setting, performed
by an appropriately trained healthcare professional. Samples were
then transported ambiently to the laboratory for storage and sub-
sequent analysis. From a single sample, clinical utility was identified
across humangenetic, epigenetic, andmicrobial biomarkers. Sampling
of the mucosal layer facilitated the discovery of novel bacterial asso-
ciations with pathology, which had not previously been reported in
stool-based analyses. Lastly, integration of these omics to create a
hologenome resulted in unique feature selection and increased
resolving power for stratification of clinical categories (Supplementary
Data 24).

The focus of this study is to identify innovativemeans that can be
leveraged for colorectal cancer diagnosis, although the technologies
and approaches described offer the potential to assess other condi-
tions, such as inflammatory bowel disease, functional andmedication-
associated symptoms. The health economic benefit from reducing the
number of negative colonoscopies, as well as providing early reas-
surance to patients, has the potential to shorten patient wait times,
expedite diagnosis, and drastically reduce the global cost of colorectal
cancer diagnostic pathways.

Developing a test in an outpatient clinical setting allows full
patient analysis, a controlled environment for testing, and high levels
of patient acceptability52. Biobanking of collected specimens allows for
wider analysis in future research of clinical applications.

Further developments of this methodology are being conducted
in the UK Urgent Suspected CRC pathway (formerly the Two-Week
Wait pathway), as part of the TRIOMICORI-EGI-04 study, providing an
opportunity to enhance diagnostic development, train detection
algorithms in a representative cohort, determine performancemetrics
and further compare with current diagnostic procedures and testing
solutions.

Samples collected in the TRIOMIC EGI-ORI-04 study will include a
rangeof additional pathologies identified in the symptomaticpathway.
This clinical resource will accommodate future studies to explore the
linkage between gutmucosa and pathology, offering opportunities for
fundamental research and potential translatable applications.

Methods
Human subjects
Rectal mucus samples and tumour tissues were collected following
HRA and EC approvals (IRAS 263745, 19/EM/0266). Written informed
consent was obtained from all donors. All samples were collected from

patients enroled in the ORI-EGI-02 study; Exploratory Study of Rectal
Mucus for Diagnosing Disease (NCT04659590) from four NHS Foun-
dation Trusts. Additionally, for themicrobiome study, written consent
was obtained from five healthy volunteers who provided matched
rectal mucus, stool, and rectal swab samples.

Statistics and reproducibility
All patients hadbeen referred for investigation either through theNHS
Colorectal Two-Week Wait Service or were recruited from the Multi-
disciplinary Team meeting following a diagnosis of colorectal cancer.
The study design facilitated the assessment of the heterogeneity of
clinical outcomes from participants in the colorectal cancer sympto-
matic pathway. Additionally, the study permitted the enrichment of
samples from participants with confirmed colorectal cancer, aug-
menting this cohort for a detailed study of colorectal cancer asso-
ciated genomic features.

Sample size selection was determined by clinical category, study
inclusion and exclusion criteria and sample quality control metrics. No
statisticalmethodwas used to predetermine sample size. Nodatawere
excluded from the analyses, unless stated, and the experiments were
not randomised. The investigators were not blinded to allocation
during experiments and outcome assessment. Analytical processes are
detailed in themethods,whichutilises open source tools,with the data
deposited in a public archive for full reproducibility.

Clinical labels were assigned based on a participant’s NHS diag-
nostic outcome. CRC+ are histologically confirmed colorectal adeno-
carcinomas, L-polyps+ are large (>10mm) or high-grade dysplastic
adenomas, E-polyps+ are smaller (≤10mm) adenomas without high-
grade dysplasia, and controls are participants referred through the
pathway but without evidence of polyps or colorectal cancer and who
have been assessed by the gold-standard CRC diagnostic, colono-
scopy, which has reached the caecum or terminal ileum with a fair to
excellent quality of bowel preparation. Subjects that were assessed
through the Two-Week Wait pathway without the gold-standard
diagnostic, but not diagnosed with a cancer by the 12-month follow-
up were labelled as No CRC. C+ Other refers to participants diagnosed
with cancer that did not involve the large bowel.

Laboratory methods
Mucus sample collection. Rectal mucus was collected from partici-
pants prior to bowel preparation and colonoscopy using the proprie-
tary OriCol™ sampling device (Origin Sciences Ltd, Cambridge, UK)
according to the manufacturer’s instructions (S1b).

Mucus sample handling. Mucus sampleswere stabilised at the timeof
sampling by the addition of 4mL of stabilisation buffer (Origin Sci-
ences Ltd). Specimens were sealed and transported at room tem-
perature in accordance with UN3373, to the analysis laboratory using
standard commercial courier services. Transport times varied between
two and five days. Immediately upon receipt specimens were recov-
ered from the device and four 1mL aliquots of each specimen were
frozen at −80 °C until required.

Spin column-based DNA extraction. Two 1mL aliquots of thawed
rectal mucus sample were pooled, and Proteinase K digested (10min,
65 °C) prior to processing using the QIAamp DNA Blood Midi kit
(Qiagen, Hilden, Germany) manual protocol according to the manu-
facturer’s instructions. Extracted DNA was stored at −80 °C until
required.

Magnetic bead-based DNA extraction. DNA was extracted from
500 μL aliquots of rectal mucus in stabilisation buffer. The research
use only (RUO) custom rectal mucus nucleic acid extraction kit
(NovaCyt, Camberley, UK) was used and efficiency confirmed using
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qPCR of the provided internal extraction control (IEC) (PrimerDesign),
both according to manufacturer’s instructions. Extracted DNA was
stored at −80 oC until required.

Ethanol/sodium acetate precipitation. Where required, the calcu-
lated equivalent of 0.5 µg ‘human’DNA (hsDNA)was taken andmade to
a total volume of 200 µL in ddH20 and 20 µL of 3M sodium acetate
added before vortex mixing for 30 s. 600 µL of ice-cold 100% ethanol
was added and the sample mixed by vortexing for 30 s. DNA was
precipitated at−80 °C for 16 h and spun for 30min at 20,000 g in apre-
refrigerated (4 °C) centrifuge. The supernatant was carefully removed
without disturbing the DNA precipitate pellet. DNA pellets were
washed twice with 1mL ice-cold 80% ethanol and spun for 10min at
20,000 g in a pre-refrigerated centrifuge. Supernatants were carefully
discarded, and DNA pellets were spun at room temperature at
20,000 g for 1min to remove residual ethanol. Resultant DNA pellets
were air-dried at room temperature for 5min then resuspended in
35 µL of nuclease-free water andmixed by vortexing for 30 s, followed
by pipette mixing. Precipitated DNA was stored at −80 °C until
required.

DNA quality control. DNA integrity was assessed by TapeStation 4150
(Agilent Technologies, Santa Clara, USA) using the genomic DNA
ScreenTape and reagents. Assays were carried out according to the
manufacturer’s instructions. The sample was considered acceptable
with a ‘DNA Integrity Number’ (DIN) of ≥3.

Total double-stranded DNA (dsDNA) was quantified using the
Qubit flex system (Thermo-Fisher Scientific) and broad range dsDNA
(BR dsDNA) reagents according to the manufacturer’s instructions.

Human amplifiable DNA fraction estimation. Estimations of the
proportion of Human amplifiable DNA were carried out by compar-
ison of Qubit readings for dsDNA and a qPCR on the LightCycler®
480 II (Roche, Basel, Switzerland) platform using the Taqman®
RNAse P assay (Thermo-Fisher Scientific, Waltham, USA) according
to manufacturer’s instructions. A six-point human genomic DNA
(Promega) standard curve was prepared for each run and deemed
acceptable with an r-squared of >0.99, coefficient of variation <1%,
and PCR efficiency of 100% ± 10%. Samples, standards, and controls
were run in triplicate.

Duplex sequencing
Library preparation. Dual Molecular Index DNA library preparation
was carried out using the Duplex Sequencing Universal Kit (Twin-
Strand Biosciences, Seattle, USA). DNA input quantities for the Twin-
Strand Library preparation protocol were calculated based on qPCR-
estimated human amplifiable DNA fraction, with a target input of
~165,000 genome-equivalents (i.e., equal to that of 500 ng of pure
human DNA). Mucus-derived DNA was processed according to the
manufacturers protocol. Target enrichment was carried out per man-
ufacturer’s protocol with use of the Cell3™ Target: Cancer 50 hybrid
capture panel (Nonacus, Quinton, UK).

Sequencing. DNA sequencing was carried out by CeGaT GmbH
(Tubingen, Germany) on the NovaSeq 6000 platform using S4 flow
cells (Illumina, SanDiego, USA). Eight libraries werepooled and loaded
per S4 flow cell with a target duplex depth of ~3000x.

Enzymatic methyl sequencing
DNA shearing. Rectal mucus-derived DNA was sheared using an
ML230 focussed ultrasonicator (Covaris, Woburn, USA) and
microTUBE-50 AFA Fiber Strips, to an optimal size of 240–290bp.
Successful fragmentation was confirmed by D5000 DNA ScreenTape
(Agilent). Assays were carried out according to the manufacturer’s
instructions.

The concentration of fragmented sample double-stranded DNA
was established using a Qubit Flex Fluorometer (ThermoFisher Sci-
entific, Waltham, USA) and BR dsDNA reagents.

Library preparation. The Targeted Methylation Sequencing (Twist
Bioscience, San Francisco, USA), and Enzymatic Methyl-Seq Library
Preparation (New England Biolabs) kits were employed according to
manufacturer’s instructions. Sample inputwas normalised to 200 ng in
50uL (4 ng/uL) using 1XTE todilute. DNA input into librarypreparation
was calculated basedon total DNAquantification,with a target input of
~66,000 genome-equivalents (i.e. equal to that of 200ng of pure
human DNA) Samples with <10 ng material were not included. Dena-
turing was performed using Formamide.

Following library preparation, 190 ng of each indexed, converted
libraries were collated into captures, based on indexes used and
fragment size. Each capture consisted of no more than eight libraries.
All samples were processed with the 17-Gene custom panel designed
by Origin (Twist Methyl Custom Panel, SpecReq (103504), Design
name: cgitarget-methylseq_v01; Twist Design ID: MTE-91928803).
Captures were then taken through hybridisation as outlined in the
manufacturers protocol for aminimumof 15 h. Final quality controls of
concentration and fragment size were performed before storage at
−20 °C. Prepared libraries were then pooled in preparation for
sequencing.

Sequencing. DNA sequencing was carried out by CeGaT GmbH
(Tubingen, DE) on the NovaSeq 6000 platform using four S4 flow cells
(Illumina), and Azenta (Oxford, UK) on theNovaSeq X platformusing a
25B flow cell. Libraries were sequenced across five runs to achieve
sufficient coverage depth across the target enrichment panel. For
rectal mucus-derived library preparations, captures were pooled and
loaded across flow cells with a minimum target coverage of 45×.

Microbiome 16S V3-4 and WGS
16S library preparation. Extracted genomic DNA was normalised to
5 ng/µl with 10mMTris-HCl. A PCRmastermixwasmade up using 10 µl
KAPA 2G Fast Hot Start Ready Mix (Merck Catalogue No. KK5601),
0.1 µl 100 µMforward tailed specificprimer, 0.1 µl 100 µMreverse tailed
specific primer and 7.8 µl PCR gradewater per sample. 18 µl mastermix
were added to eachwell to be used in a 96-well plate followedby 2 µl of
DNA and mixed. Specific PCR conditions were 95 °C for 5min, 30
cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s followed by a
final 72 °C for 5min.

For the second PCR 10 µl KAPA 2G Fast Hot Start Ready Mix
(Merck Catalogue No. KK5601) and 8 µl PCR grade water were mixed
per sample and added to a 96 well plate. 1 µl of 10 µM8bpUnique Dual
Indexes were added to each well. Finally, 1 µl of PCR 1 was transferred
into the PCR 2 master mix plate. The second PCR was run using 95⁰C
for 5min, 10 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s
followed by a final 72 °C for 5min. Final libraries were quantified by
Qubit and equimolar pooled together. A single 0.7X SPRI clean-up
using sample purification beads (Illumina® DNA Prep, (M) Tagmenta-
tion (96 Samples, IPB), 20060059) was performed on the pool. A final
Qubit and sizing on aD5000Screen Tape (Agilent CatalogueNo. 5067-
5579) using the Agilent Tapestation 4200 was done to calculate the
final library pool molarity.

16S sequencing. The pool was run at a final concentration of 12 pMon
an IlluminaMiSeq instrument usingMiSeq® Reagent Kit v3 (600 cycle)
(Illumina Catalogue FC-102-3003) following the Illumina recom-
mendeddenaturation and loading recommendationswhich included a
20% PhiX spike in (PhiX Control v3 Illumina Catalogue FC-110-3001).

WGS library preparation. Nextera Flex Enzyme kit (Illumina,
San Diego, USA) tagmentation master mix was prepared using 0.5 µl
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Bead-Linked Transposomes (BLT), 0.5 µl Tagmentation Buffer 1 (TB1)
and 4 µl H20 for a total volume of 5 µl per reaction. 2 µl of 5 ng/µl
metagenomicDNA stockwas added to 5 µl of tagmentationmastermix
for a total reaction volume of 7 µl. Reactions were incubated for
15min at 55 °C.

12 µl of DNA barcoding mastermix was prepared (10 µl Kapa 2G
Fast HotStart ReadyMix (Roche), 2 µl H2O) per reaction, to which 1ul of
barcode primers (10 µM stock of P5 and P7 indexes (Illumina)) were
added. Finally, 7 µl of tagmentation reaction from the previous step
was added for a total reaction volume of 20 µl. Reactions were carried
out using the following amplification profile: 72 °C for 3min, 95 °C for
1min, 14 cycles of 95 °C for 10 s, 55 °C for 20 s and 72 °C for 3min.
Finished barcoding reactions were quality controlled using Qbit and
Agilent Tapestation as described elsewhere in this manuscript.

Equimolar pooling of libraries was carried out ahead of double-
sided size selection using 0.5X and0.7X ratios of SPRI beads (Beckman
Coulter, Brea, USA) sequentially. Pools were characterised using the
Qubit HS assay and Tapestation D5000 tape.

WGS sequencing. DNA sequencing was carried out by CeGaT GmbH
(Tubingen, DE) on the NovaSeq 6000 platform using S4 flow cells
(Illumina). 200 libraries were pooled and loadedper S4 flowcell, with a
target output of 63M 150bp paired end reads.

Data analysis
Error-corrected NGS bioinformatics. Sequencing run QC was per-
formed by assessing the mean insert size, Q30 (Phred) score and GC
content. Demultiplexed FASTQ files were processed through the
TwinStrand® DuplexSeq™ FASTQ to VCF Parallel App (Version 3.11.0 to
3.20.1), which comprises bioinformatics processingmethods generally
as previously described.

Germline matching was performed to confirm identity. This was
performed by approximating variants with <0.25 VAF as acquired
somatic, between 0.25 and 0.5 VAF as heterozygous and variants >0.75
as homozygous. Acquired somatic variants were disregarded. Iterative
pair-wise matching was performed between each sequencing file.
Variants that were labelled as homozygous or heterozygous in both
sequences were considered a match. Then the fraction match of the
total variants was calculated (A∩B/A∪ B). The top 3matches for each
file were evaluated for quality of match and compared with informa-
tion on sample source. Sequences were considered to contain DNA
contamination if they had a generalised downward shift of homo-
zygous VAF and this was confirmed using a combination of index and
germlinematching. Remaining sequenceswith ameanduplex depthof
≥1000 were taken forward for analysis.

Variants with less than 3 alternate depth were excluded. The
duplex depth was calculated by subtracting no calls from the depth
and the VAF was calculated as alternate depth over duplex depth.
Statistical outliers were evaluated on the ratios of duplex depth to
depth and mean depth minus depth to mean depth. This was used to
detect variants with spuriously high no calls or lowdepth, whichwould
result in artificially inflated VAFs. Where either ratio was more than
3 SD from the mean the VAF was calculated as alternate depth over
mean duplex depth.

Variant pathogenicity was annotated using National Library of
Medicine ClinVar database (release 20241223). Pathogenic variants
were defined as those with ClinVar clinical significance annotations
including “Pathogenic” and “Likely pathogenic”, and that are evaluated
for a condition linked to neoplastic changes. Putative pathogenic
variants were annotated in tumour suppressor genes APC, TP53,
FBWX7 and SMAD4. These were either HIGH impact variants (pre-
dicted loss of function) or for TP53, FBWX7 and SMAD4, missense
variants that had not been labelled as benign. The dataset was filtered
for pathogenic and putative pathogenic variants. Of the 50 genes

included in our panel, 25 remained after all QCs and filtering across all
clinical groups.

Studies available on cBioPortal (Memorial Sloan Kettering, USA)
with disease label “Colorectal Adenocarcinoma” were selected to for
themulti-study cohort. These studies were collectively queried for the
50 genes used in the ecNGS performed on OriCol™ samples. The
reported mutation frequencies were collected for comparison to
mutations detected in rectal mucus. For genes reported as mutated in
both multi-study and Ori-EGI-02 cohorts, a Spearman’s rank r2 value
was calculated on the frequency that the gene was seen as mutated in
CRC at any VAF.

Filtered data was grouped by participant and gene, then aggre-
gated by mVAF. This DataFrame was converted into a matrix of parti-
cipant by gene. Where genes do not have any relevant variants passing
filters identified in any participant, they were excluded. Participants
without relevant variants detected were included. An oncoprint and
both heatmaps were plotted with Complex Heatmap. All boxplots
were plotted in python. One-sided Mann–Whitney–Wilcoxon tests
analysing per-gene, per-participant mVAF were performed to test the
hypothesis that the distribution underlying CRC cases is stochastically
greater than the distribution underlying controls. P-values were
adjusted for multiple testing using the Benjamini–Hochberg method
to control the false discovery rate (FDR), applying a significance
threshold of FDR <0.05.

Enzymatic methyl sequencing bioinformatics. A 161-kb custom tar-
get enrichment panel of probes was designed to target loci for hybrid
capture followed by EM-seq (Twist Bioscience, San Francisco, USA).
Target CpG sitesweredefined basedonGRCh38 coordinates for loci in
the Human Methylome Panel (Twist Bioscience, San Francisco, USA)
and CGIs in the UCSC Genome Browser database61 that overlap gene-
body and promoter (0–1 kb upstream of TSSs) annotations for 17
genes whose DNA methylation levels have been previously implicated
in CRC: APC, BMP3, CERS4, CLIP4, FOXA1, LONRF2, LRRC4, MGMT,
MLH1, NDRG4, PPP2R5C, RASSF1, RNF217, SDC2, SEPTIN9, SMAD3
and VIM.

Paired-end reads (2 × 100bp or 2 × 150bp) from targeted EM-seq
libraries were processed with a pipeline written using Nextflow and
adapted from nf-core/methylseq116,117. Adapter sequences, low-quality
bases (Phred+33-scaled quality <30) and 5 bases from the 5′ and 3′ ends
of each read were removed using Trim Galore v0.6.7 (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/). Trimmed reads
were aligned to the GRCh38 reference genome assembly (“no_alt_-
plus_hs38d1_analysis_set”) using bwa-meth v0.2.7118. Alignments were fil-
tered to retain aligned read pairs with MAPQ≥ 10, discarding secondary
and supplementary (chimeric) alignments using SAMtools v1.18119. PCR
and optical duplicate reads were identified using PicardMarkDuplicates
v3.1.1 (https://broadinstitute.github.io/picard/). Duplicate-marked align-
ments were filtered to retain those overlapping regions targeted for
hybrid capture using SAMtools v1.18119. Methylation bias was evaluated
and methylation calls extracted in CpG, CHG and CHH contexts using
MethylDackel v0.6.1 (https://github.com/dpryan79/MethylDackel),
excluding duplicate alignments, sites covered by <10 reads, and likely
variant sites (--maxVariantFrac 0.1 --minOppositeDepth 5).

Non-CpG-derived conversion rate, percent CpG methylation, and
depth and breadth of coverage summary metrics were calculated for
each library in R v4.3.2. The following criteria were applied for inclu-
sionof libraries in downstreamanalyses: conversion rate≥98%,median
CpG depth ≥45, and proportion of target CpG sites covered by ≥10
reads ≥80%. Where there were library-preparation replicates among
the libraries meeting these criteria, the best replicate library
was selected in terms of: (1) depth of coverage, and if there were ties
then (2) breadth of coverage, and if there were ties then (3)
conversion rate.
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To identify potential confounders, clinical labels and DNA
methylation levels were evaluated for associations with participant
demographic variables (e.g., age, sex, BMI, smoking status, Rockwood
frailty) andEM-seq technical variables (e.g., depthof coverage, breadth
of coverage, sequencing run). Associations between categorical and
continuous variables were evaluated by Kruskal–Wallis tests, those
between categorical variables by Fisher’s exact tests, and those
between continuous variables by Spearman’s rank-order correlation
coefficients (rs). Given that correlation coefficients calculated across
large numbers of observations are less likely to be exactly zero, P
values for rs were standardised to represent those based on values
across 100 samples. P-values were adjusted for multiple hypothesis
testing using theBenjamini–Hochbergmethod, applying a significance
threshold of FDR <0.05.

To test associations with finer-scalemethylation levels,meanCpG
methylation (M-value) levels for each library were calculated within
MANE Select representative promoters (1-kb regions upstream of
TSSs) and within gene bodies (TSS–TES) covered by the target panel63.
Principal component analysis (PCA) was performed using the resultant
mean M-value matrix, and relationships between each principal com-
ponent and each clinical, demographic and EM-seq variable were
evaluated by Kruskal–Wallis tests or Spearman’s rank-order correla-
tion coefficients.

Differentially methylated CpG sites (DMCs) and differentially
methylated regions (DMRs) were called in contrasts between OriCol™-
derived EM-seq libraries for control participants and CRC cases, and
separately for control participants and polyps cases, using the Bio-
conductor packagesDMRcate v2.16.162 and edgeRv4.4.0120, where read
counts were normalised to account for differences in library size. The
following variables that show significant associations with clinical
labels or CpG methylation levels were included as covariates in the
model matrix created for each contrast: sequencing run, median CpG
depth, CpH methylation and age. DMRcate estimates the mean-
variance relationship of log2-transformed methylated and unmethy-
lated read counts using the voommethod121, then fits a linearmodel to
the transformed counts via limma122, and applies empirical Bayes
shrinkage to generate per-CpG moderated t-statistics and P-values for
evaluating CpG-level and regional differential methylation. For edgeR
analyses, a negative binomial generalised log-linearmodelwasfitted to
the read counts for each CpG site, and quasi-likelihood F-tests were
applied to identify significantly differentially methylated sites. The
most differentially methylated CpG sites were visualised as a heatmap.
For both analyses, per-CpG P-values were adjusted formultiple testing
using the Benjamini–Hochberg method, applying a significance
threshold of FDR <0.05 unless indicated otherwise for a given
contrast.

Hyper- and hypomethylated CpG sites were analysed for overlap
with (epi)genomic annotation categories using permutation tests.
These categories included MANE representative gene annotations
(regions 1–5 kb upstream of the TSS, 1-kb promoters, 5′ UTRs, exons,
introns, and 3′ UTRs) (Morales et al. 2022), CpG island (CGI) features
(islands, shores (2-kb flanks of islands), shelves (2-kb flanks of shores),
and inter-CGI regions (“open sea”)) in the UCSC Genome Browser
database (Perez et al. 2025), and chromatin state segmentations for
rectal mucosa reference epigenome E101 (the core 15-state
ChromHMM model based on five histone modifications: H3K4me1,
H3K4me3, H3K9me3, H3K27me3 and H3K36me3)65. We accounted for
annotation biases accompanying CGI-centric target enrichment by
comparing observed overlaps with the overlap distribution from per-
muted sets of eligible CpG sites (within the target regions and eval-
uated for differential methylation). For each test, 10,000 sets of
randomly selected eligible CpG sites of the same number as those
within the given DMC set were defined. The overlap distribution from
these 10,000 random sets was used to calculate the expected number
of overlaps (mean permuted-set overlaps) and the number of overlaps

at the significance level (α =0.05). Permutedoverlapswereplotted and
compared with the observed number of DMCs overlapping the anno-
tation category of interest to calculate an empirical P-value (minimum
P =0.0001). P-values were adjusted for multiple testing using the
Benjamini–Hochberg method, applying a significance threshold of
FDR <0.05.

Microbial 16S bioinformatics. Metataxonomic sequence data target-
ing the 16S rRNA gene hypervariable regions V3 and V4 on 725 mucus
samples from colorectal cancer (CRC) patients and healthy controls
was processed (S2a). The quality control analysis was performed on
the set of compressed files using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/, version 0.11.9) andMultiQC (version
1.14)123. FastQC is a tool for assessing the quality of sequencing data,
while MultiQC is a tool for generating aggregated quality control
reports across multiple samples. As criteria for sample inclusion, at
least 10 thousand readsmust be present. Faecalmicrobiome data were
analysed using QIIME 2 (v2023.5.1)124. Raw paired-end sequences were
imported. Sequences were denoised, dereplicated, and chimera-
checked using DADA2125 without truncation, producing a feature
table and representative sequences. Phylogenetic analysis involved
sequence alignment with MAFFT126, masking variable regions, con-
structing an unrooted tree with FastTree127, and midpoint-rooting.
Alpha and beta diversity metrics were computed using the core-
metrics-phylogenetic pipeline with a sampling depth of 10 reads per
sample andmetadata containing health status and covariates. QIIME 2
outputs were further analysed to identify microbiome differences
between groups.

Microbial WGS bioinformatics. For the analysis of the microbiome
of 420 faecal samples from colorectal cancer (CRC) patients and
healthy controls, the following criteria for sample inclusion was as
follows: at least 10 million reads must be present; in cases where a
duplicated External ID was detected, the sample with the highest
similarity to the metataxonomics profile is kept; in cases
where disambiguation via taxonomic profiling is ambiguous, the
sample with the highest number of reads was kept. Given the source
material of the samples, it is expected that a certain amount of host
DNA to be present in the samples that underwent sequencing. To
remove any human contaminant sequences, the NCBI’s HRRT
(https://github.com/ncbi/sra-human-scrubber, version 2.1.0) tool
has been employed on the 408 samples that passed initial quality
control.

All passing samples were analysed with nf-core/taxprofiler (version
1.0.1)128, which performed quality control with FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/, version 0.11.9) and
taxonomic classification using Kraken2 (version 2.1.2)129 and Bracken
(version 2.7)130. The database provided was k2_standard_16gb_20230605
(https://genome-idx.s3.amazonaws.com/kraken/k2_standard_16gb_
20230605.tar.gz). Kraken2 can assign taxonomic labels to DNA or RNA
sequences by comparing k-mers (short fixed-length substrings) from the
input data to a pre-built database of reference genomes. The database
contains k-mer fingerprints for various taxonomic units, such as species,
genera, and higher taxonomic ranks. Bracken is a companion tool to
Kraken2, designed to improve taxonomic classification and abundance
estimation of metagenomic sequencing data. Bracken uses a Bayesian
framework to estimate the abundance of taxa in metagenomic samples
more accurately. It considers not only the number of k-mers assigned to
each taxon by Kraken2 but also the taxonomic composition of reference
genomes in the database.

The downstream analysis pipeline employed R version 4.2.3
(2023-03-15) (https://www.R-project.org/) including tidyverse (version
2.0.0), vegan (version 2.6-6.1), coin (version 1.4.3), pheatmap (version
1.0.12) and pwr (version 1.3-0) to produce all statistical analyses and
visualisations.
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Multiomics analysis. A prevalence threshold was applied to the
microbiome data to remove species with greater than 80% sparsity. All
datasets were then log-transformed as follows:

d ! log2ðcst +dÞ

where d is an omics data and cst=10−4 is a constant to prevent diver-
gence as d approaches zero.

Polyps cases were excluded, leaving n = 165 methylation, 125
mutation and 305 microbiome samples. Feature selection was then
applied to each dataset individually with respect to the binary CRC
labels. For the methylation data, reduction of the large feature set was
carried out to prevent overfitting downstream; a one-tailed Welch
t-test was used to search for hyper-mCpGs, and any sites with P >0.001
were removed. This filtered feature set was passed throughMinimum-
Redundancy Maximum-Relevance (mRMR) selection131, which chose
the best 10 hyper-mCpGs based on their strong relationship to cancer
status, while attempting to avoid selecting features that are too
strongly correlated with each other (i.e., redundant). This same com-
bination of methods, a Welch t-test followed by mRMR, was also
applied to the microbiome dataset to select 10 species. The mutation
data was passed directly to mRMR without a t-test, owing to its small
feature set of only 25 genes. This produced three reduced datasets,
each with 10 candidate biomarkers. The intersection of these datasets
was then taken, leading to 80 samples in the dual-omics case
(methylation and mutation), and 68 samples in the tri-omics case (all
three omics).

These reduced datasets were visualised using PCA by plotting
all combinations of the first four principal components (PCs). This
enabled stratification between cancers and controls to be analysed.
Polyps cases were transformed and plotted using the learned
model, so that their position relative to cancers and controls could
be investigated. PC loadings were calculated to learn about the
contribution of each biomarker, where the loading of a PC is that PC
multiplied by the square root of its explained variance. Finally, the
full tri-omics dataset, including polyps, was visualised as a heatmap
by hierarchically clustering across both biomarkers and
participants.

Data availability
The sequencing data generated in this study have been deposited in
the European Genome-phenome Archive database under accession
code EGAD50000001803. The sequencing data are available under
restricted access for non-commercial researchpurposes, access canbe
obtained by contacting the corresponding author or the data access
committee (EGAC50000000643) and will be reviewed in accordance
with ethical guidelines for the study and participant consent. The raw
sequencing data areprotected and arenot publicly available due to the
presence of sensitive personal health information and limitations
imposed by participant consent, privacy legislation and institutional
ethics approval.

Code availability
All code used is either commercially available (Duplex sequencing,
TwinStrand Bioscience) or adapted from open-source publicly avail-
able repositories, details of which are provided in themethods section.
Additionally, all tools used for this study are described in the methods
in detail including reference and versions.
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