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Abstract

Infrastructure as Code (IaC) has become essential in managing modern cloud environments,
yet misconfigurations remain a significant risk, often leading to costly outages and security
breaches. This thesis introduces a novel static analysis approach for verifying network-level
connectivity in Terraform-based IaC before deployment. By transforming declarative configu-
rations into abstract graph models, the method enables early detection of unreachable services
and misconfigurations without requiring infrastructure provisioning. A proof-of-concept tool,
evaluated on the TerraDS dataset, demonstrated strong scalability and effectiveness in real-
world scenarios. The approach integrates seamlessly into DevOps pipelines, enhancing existing
IaC testing workflows. Looking ahead, the method offers potential for broader verification
across multi-cloud environments, including cost and energy efficiency assessments.
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Chapter 1

Introduction

1.1 Cloud Computing and Infrastructure as Code
Cloud computing has rapidly become a fundamental component of organizational innovation
across various sectors, including businesses, governments, and industry. Its adoption enables
organizations to dynamically provision computing resources without substantial upfront capital
investments, thus revolutionizing traditional IT infrastructure paradigms [20, 41]. The growing
reliance on cloud solutions has necessitated new methods for efficiently managing and deploying
complex infrastructures, leading to the adoption of Infrastructure as Code (IaC).

Infrastructure as Code represents a significant advancement in IT infrastructure manage-
ment by employing code-based (or rather: machine-readable) automation for defining, pro-
visioning, and managing cloud resources [31]. By applying traditional software engineering
practices to infrastructure management, IaC fosters consistency, version control, reproducibil-
ity, and collaboration among developers and operations teams [4]. This approach streamlines
infrastructure deployments, reduces manual setup procedures, and improves overall system
reliability and compliance.

1.2 Challenges of Infrastructure as Code Misconfigurations
Despite its numerous advantages, IaC brings its own set of challenges, notably related to mis-
configurations. IaC configurations typically encapsulate reusable code components, promot-
ing efficient reuse, collaboration, and rapid deployment across environments. However, this
reusability can inadvertently amplify the impact of misconfigurations: a single faulty configu-
ration can propagate quickly and affect multiple deployment environments simultaneously [31,
4].

Misconfigurations in IaC scripts share the same negative consequences as direct configura-
tion errors within live cloud environments. A seemingly minor error in an IaC script – such
as incorrect firewall rules, security group settings, or network access controls – can lead to
significant system outages, vulnerabilities to cyberattacks, data breaches, and costly compli-
ance violations [34, 37]. For example, incorrect network configurations might inadvertently
expose internal resources to unauthorized external access, resulting in data leaks or unautho-
rized system access. Similarly, wrong resource allocation or incorrect dependencies between
infrastructure elements could disrupt critical services, affecting both organizational operations
and customer satisfaction.

For instance, in 2017, a misconfigured Amazon S3 bucket by Booz Allen Hamilton exposed
sensitive data, highlighting the risks associated with improper access controls in cloud storage
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services [16]. Similarly, in 2023, Microsoft experienced a disruption in its Exchange Online
services due to a configuration glitch, underscoring the potential operational impacts of mis-
configurations in cloud environments [30].

Another notable example is the 2019 incident involving AutoClerk, a travel reservations
platform, where a misconfigured database led to the exposure of sensitive information of U.S.
government (military) personnel [42]. These incidents exemplify how misconfigurations in IaC
can have far-reaching consequences, affecting not only organizational operations but also na-
tional security. As organizations increasingly adopt IaC for managing their infrastructures, they
must implement robust validation mechanisms to detect and rectify misconfigurations before
deployment.

1.3 Limitations of Current Verification Tools
While tools such as “Checkov” [13] provide basic static analysis capabilities to identify configu-
ration errors, these tools often fall short in fully capturing the complexity of real-world scenar-
ios. Therefore, organizations still face significant risks and often resort to resource-intensive,
iterative trial-and-error deployments, substantially increasing operational overhead and vulner-
ability periods. In the example of Checkov, the tool can provide basic analysis, but fails to
check the full abstract syntax tree of the infrastructure as code program. Thus, it cannot check
certain errors but only check if some conditions are met. One of the found issues is – as example
– if a security group (essentially firewall rules in Amazon Web Services) contains a description
that states what the group is for. This is only a very limited basic check to ensure the most
basic level of software quality.

1.4 Research Objectives and Approach
This thesis addresses this critical gap by developing a proof of concept for automated veri-
fication approaches to enhance early-stage IaC testing. By implementing a verification tool
that systematically checks critical properties – specifically for the PoC: network reachability
between cloud instances – prior to deployment, developers can swiftly detect and correct mis-
configurations, significantly minimizing the risk of outages, security breaches, and compliance
failures [31, 4]. Through this proactive approach, the research contributes towards safer, more
reliable cloud operations, and lays the groundwork for further studies in robust, pre-deployment
verification techniques for declarative IaC solutions. The emphasis lies on pre-deployment since
the deployment and then subsequent analysis of infrastructure is time-consuming and costly.
The goal is to find the errors before the deployment, so that the deployment can be done in a
more efficient way.

To guide this research, we formulated two key research questions:

• RQ 1: How applicable is the proposed approach to real-world IaC programs?

• RQ 2: How does the performance of the proposed approach compare to post-deployment
tools?

These questions focus on evaluating both the practical applicability of our verification ap-
proach across diverse real-world IaC configurations and its performance characteristics com-
pared to existing post-deployment solutions. The answers to these questions will help de-
termine the viability and potential impact of pre-deployment verification in real-world cloud
infrastructure management scenarios.
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1.5 Thesis Structure
The remainder of this thesis follows this structure: Chapter 2 establishes the fundamental
concepts and terminology used throughout this thesis. Chapter 3 examines related work in
the field of infrastructure verification and automated testing, also, it provides an overview of
the current state of the art in cloud infrastructure management and verification. Chapter 4
presents the conceptual framework for the proposed verification approach. Chapter 5 details
the implementation of the proof of concept, including the technical architecture and key com-
ponents. Chapter 6 evaluates the implemented prototype, Chapter 7 discusses its advantages,
limitations and future work, and Chapter 8 summarizes the key findings and outlines directions
for future research.
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Chapter 2

Context and Background

Before diving into the technical contributions of this thesis, it is essential to establish a founda-
tional understanding of the core concepts, technologies, and distinctions. This section provides
a concise but comprehensive overview of the terminology and tools relevant to this work, aiming
to clarify the context in which the proposed solution operates.

The concept of IaC (Infrastructure as Code) and its significance within modern DevOps
and cloud engineering practices is introduced. Then, a distinction between IaC and IfC (In-
frastructure from Code) shows how the two similar concepts are different. Following this,
“Terraform” – a widely adopted IaC tool used throughout this thesis – is examined, detailing
its language, workflow, and position within the IaC ecosystem. The section then distinguishes
between configuration management and infrastructure management, two paradigms that play
complementary roles in infrastructure automation. Lastly, an overview of Amazon Web Ser-
vices (AWS), the cloud platform used in the proof of concept, is offered, with a focus on the
infrastructure components most relevant to this research.

This background lays the groundwork for understanding the design choices, challenges, and
objectives addressed in subsequent sections of the thesis.

2.1 Infrastructure as Code
Infrastructure as Code (IaC) is a practice within software engineering and DevOps paradigms
[4], emphasizing the automation of infrastructure provisioning and management through code
rather than manual processes. This approach treats infrastructure resources – such as servers,
networks, and services – as software, enabling reproducibility, consistency, version control,
and rapid deployment across environments. IaC allows teams to define, deploy, and manage
infrastructure components systematically, promoting greater collaboration, rapid development
cycles, and consistent operational environments [31]. Not to be confused with Infrastructure
from Code (IfC), which is briefly introduced in Section 2.2.

Several tools facilitate the adoption and practice of IaC by organizations, each with distinct
features and use cases:

Terraform Is a widely adopted IaC tool developed by HashiCorp that allows users to define
infrastructure components across multiple cloud and on-premise environments using a high-level
declarative language (HCL – HashiCorp Configuration Language [24]). It enables infrastructure
automation, state management, and lifecycle management, supporting multiple cloud providers
[26].
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AWS CloudFormation Offered by Amazon Web Services (AWS), provides users with an
AWS-specific service to describe and provision resources through JSON or YAML templates.
It integrates deeply with other AWS services, offering automated and repeatable infrastructure
provisioning tailored explicitly to the AWS cloud ecosystem [3].

Chef Is a configuration management tool developed by Progress Software Corporation that
enables infrastructure automation through code. Chef employs a domain-specific language
(Ruby-based DSL) for defining infrastructure configurations and enforcing the desired state.
It is particularly effective for managing complex server configurations, deploying applications,
and ensuring system consistency across multiple environments [32].

Ansible Developed by Red Hat, is an automation platform providing comprehensive capabil-
ities to automate infrastructure, manage configurations, and streamline deployment workflows.
It excels in configuration management and is known for its ability to handle highly dynamic
environments through flexible, code-driven automation [35].

2.2 Infrastructure from Code
Infrastructure from Code (IfC) is an emerging paradigm in cloud infrastructure management
that automates the provisioning and configuration of infrastructure directly from application
code. Unlike Infrastructure as Code (see Section 2.1), which requires separate configuration
files to define infrastructure, IfC tools analyze the application code to infer and generate the
necessary infrastructure components automatically [14]. This approach streamlines the devel-
opment process by reducing the need for manual infrastructure definitions and ensuring that
the infrastructure aligns seamlessly with the application’s requirements.

A notable example of IfC in practice is Nitric [5], an open-source framework designed to
facilitate cloud application development. Nitric enables developers to declare infrastructure
requirements within their application code using multi-language SDKs. During deployment,
Nitric interprets these declarations to provision the appropriate cloud resources across various
providers such as AWS, Azure, and Google Cloud. This integration allows developers to focus on
writing application logic while Nitric manages the underlying infrastructure, thereby enhancing
productivity and reducing the complexity associated with cloud deployments.

In summary, while both IaC and IfC aim to automate infrastructure management, they differ
in their approaches and use cases. IaC offers detailed control through separate configuration
files, making it suitable for complex infrastructures requiring precise customization. In contrast,
IfC emphasizes automation and integration by deriving infrastructure directly from application
code, which can enhance development efficiency, particularly in serverless and rapidly evolving
environments.

2.3 HashiCorp Terraform
Terraform [26], developed by HashiCorp, is an open-source Infrastructure as Code tool designed
to enable users to define and manage infrastructure resources across various cloud providers
and on-premises environments using a consistent workflow. Terraform leverages the HashiCorp
Configuration Language (HCL) [24], a declarative language that allows users to specify the
desired state of infrastructure clearly and concisely. HCL enhances readability, maintainability,
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and scalability of infrastructure definitions, contributing significantly to the efficiency of IaC
practices.

1 provider "aws" {
2 region = "us-east-1"
3 }
4

5 resource "aws_vpc" "main" {
6 cidr_block = "10.0.0.0/16"
7 }
8

9 resource "aws_subnet" "main" {
10 vpc_id = aws_vpc.main.id
11 cidr_block = "10.0.1.0/24"
12 }

Listing 1: Terraform Configuration Example in HCL

Listing 1 illustrates a simple Terraform configuration in HCL. At the beginning, the required
provider – AWS1 in this case – is configured to use the “us-east-1” region as default value. Then,
the HCL configuration defines an AWS Virtual Private Cloud (“VPC”) (lines 5–7) and a subnet
(lines 9–12) within that VPC. One thing to note is, that in HCL, a whole object is called a
block. The structure of the language contains blocks (resource), which may contain labels
(aws_vpc and main) and attributes (cidr_block).

Terraform’s declarative approach specifies the desired state rather than the steps required
to achieve that state. It calculates and manages resource dependencies via directed acyclic
graphs, automates provisioning, and maintains state consistency through its planning and ex-
ecution phases. Terraform is renowned for its robust ecosystem, offering extensive provider
support, community modules, and integration capabilities, thus facilitating flexible, reliable,
and automated infrastructure management.

A typical Terraform workflow, as depicted in Figure 2.1, involves multiple sequential steps
initiated by the user. Initially, the user writes configuration files defining the infrastructure, then
initializes Terraform (to download the required providers). Then, the user authenticates with
the cloud provider’s API. Terraform validates the configuration, and generates an execution
plan based on the current infrastructure state. After reviewing the displayed plan, the user
applies the deployment, triggering Terraform to provision resources via the cloud provider’s
API. The cloud provider subsequently creates the defined resources within the infrastructure,
and Terraform confirms the successful completion of the deployment process.

Recent licensing changes by HashiCorp, transitioning to the Business Source License (BUSL),
have sparked community-driven initiatives such as OpenTofu. OpenTofu is an open-source
fork aimed at preserving an open-source infrastructure as code solution, adhering closely to
Terraform’s original philosophy and maintaining full compatibility with existing Terraform
configurations [25, 17].

1 Amazon Web Services
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InfrastructureCloudProviderAPITerraformUser

InfrastructureCloudProviderAPITerraformUser

Write configuration files

Initialize Terraform

Authenticate

Validate configuration

Plan deployment

Retrieve current infrastructure state

Display execution plan

Apply deployment

Provision resources

Create resources

Confirm deployment completion

Figure 2.1: Terraform Engineering Workflow

2.4 Difference between Configuration and Infrastructure
Management

Understanding the distinction between configuration management and infrastructure manage-
ment is crucial in effectively leveraging IaC tools. Although both are closely related and often
intertwined, they address different aspects of infrastructure automation and maintenance.

Configuration management focuses on maintaining and managing the state of software and
configurations within existing infrastructure. It ensures consistency and integrity across system
deployments, software installations, and configuration settings. Tools like Ansible [35] belong
into this category by managing the internal state of servers, virtual machines, or containers.
Ansible uses a procedural approach, where specific tasks and steps are explicitly defined. For
example, Ansible can automate tasks such as installing software packages, applying security
patches, and configuring application settings across multiple servers, ensuring uniformity and
compliance with organizational standards.

On the other hand, infrastructure management involves provisioning and managing infras-
tructure resources themselves, typically at a higher abstraction level. Infrastructure manage-
ment tools, such as Terraform [26] (see Section 2.3), deal with the creation, modification, and
lifecycle management of entire infrastructures – such as cloud resources, networking, and stor-
age – across various providers. Terraform adopts a declarative approach, as shown in Listing 1,
where users specify the desired end state of infrastructure, and Terraform manages the inter-
mediate steps to reach that state. For example, Terraform can provision a complete cloud
environment, including virtual machines, networking resources, load balancers, and databases,
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maintaining a consistent state and handling dependencies among these components automati-
cally.

The choice between configuration management (e.g. Ansible) and infrastructure manage-
ment (e.g. Terraform) is driven by specific use cases and requirements. Typically, Terraform is
utilized to set up and manage infrastructure resources across cloud providers, whereas Ansible
is used after the provisioning process to configure and maintain software and system settings on
the deployed resources. In practice, these tools are often used in conjunction to achieve com-
prehensive infrastructure automation: Terraform provisions the infrastructure, while Ansible
ensures the desired configuration within that infrastructure.

2.5 Amazon Web Services
Amazon Web Services (AWS), developed by Amazon Inc., is a comprehensive, evolving cloud
computing platform that offers a broad set of infrastructure services. Examples are cloud
storage, databases, analytics, networking, mobile computing, and enterprise applications [28].
Launched in 2006, AWS pioneered the cloud computing industry and has since maintained a
dominant position, being widely recognized for its scalability, reliability, and global reach. AWS
operates across numerous regions globally2, allowing users to distribute applications geograph-
ically for redundancy and lower latency [22].

AWS operates on a pay-as-you-go pricing model, enabling users to scale infrastructure up or
down according to real-time demand, thereby significantly reducing initial capital investment
and ongoing maintenance costs. AWS offers various types of cloud computing services, primarily
categorized into Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS). AWS’s infrastructure enables companies to rapidly deploy computing resources
without significant upfront investment, fostering agility and innovation [22].

Core AWS components include Amazon EC2 for virtual servers, Amazon S3 for storage,
and services like Amazon RDS for database management. AWS also provides load balancing
services, such as Elastic Load Balancing, to automatically distribute incoming application traffic
across multiple targets, enhancing availability and fault tolerance. Moreover, AWS incorporates
advanced security features, including security groups functioning as network firewalls, allowing
fine-grained access control to cloud resources [22].

Due to its broad service offerings, advanced features, and strong security infrastructure,
AWS is extensively used by prominent enterprises worldwide, including Netflix, Facebook,
Adobe, and Twitter, demonstrating its versatility and capability to support complex, large-
scale operations effectively [22].

Since AWS is still the most used cloud provider in conjunction with Terraform [9], the proof
of concept in this thesis is based on AWS. The focus lies on the network reachability between
two EC2 instances, which are virtual machines in AWS.

2 By the time of writing, AWS spans 114 availability zones with 36 geographic regions [28]
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2.6 Static Analysis and Model Checking
Static analysis is a method for understanding program behavior without executing the code,
relying instead on mathematical models of program semantics. As detailed by Rival and Yi
[36], static analysis frameworks typically use abstraction to construct a computable repre-
sentation of possible runtime behaviors, allowing developers to reason about potential errors,
security vulnerabilities, or policy violations before deployment. The abstract interpretation
framework, which underpins many static analyzers, provides a sound (but incomplete) way to
over-approximate program behavior. This is particularly beneficial for analyzing infrastructure-
as-code (IaC), where the goal is not to execute the infrastructure, but to ensure its correctness
and security properties prior to provisioning.

Model checking offers another influential approach to verifying system correctness through
exhaustive exploration of finite-state models. Clarke, Grumberg, and Long [12] introduced
abstraction techniques to make model checking scalable to large systems, addressing the state
explosion problem. Their work demonstrates how abstractions can be used to conservatively
approximate the system’s state space, allowing verification of safety properties even when a
complete analysis is infeasible. This concept is especially relevant in cloud infrastructure sce-
narios, where a static tool can simulate the potential interactions between resources to detect
misconfigurations or unreachable services. These insights support the use of abstract, graph-
based models in the thesis’s proposed approach to statically analyzing network reachability
within Terraform configurations.

2.7 Challenges in Infrastructure as Code
Infrastructure as Code (IaC) has significantly transformed IT infrastructure management by au-
tomating the deployment and management of complex infrastructure. However, the paradigm
shift toward IaC introduces several critical challenges. Foremost: the issue with misconfigu-
rations that happen. IaC (e.g. Terraform), while reducing manual intervention, still relies on
accurate code representation of the desired infrastructure state, as described in Section 2.3.
Consequently, misconfigurations in IaC scripts can propagate rapidly and cause operational
disruptions, outages, and significant security vulnerabilities [37, 1]. Without proper testing
tools, it is nearly impossible to ensure that the growing infrastructural code in a project stays
correct.

Another prominent issue in IaC practices is the prevalence of “code smells,” poor coding
practices that reduce the maintainability, readability, and correctness of IaC scripts. Empirical
research highlights the negative impact of these smells, demonstrating their frequent correlation
with higher defect rates and increased maintenance efforts [8]. Addressing such challenges
requires rigorous code review practices and automated detection methods, yet existing solutions
provide limited comprehensive coverage.

Moreover, the complexity in modern cloud-native architectures fosters these issues. IaC
typically – at least in cloud environments – interacts with highly distributed, containerized, and
microservice-based applications. This complicates dependency management and increases the
risk of configuration drift3. Ensuring resilience, scalability, and elasticity becomes significantly

3 Configuration drift happens when users change the environment outside the IaC program and thus the
current state does not match the last applied state anymore
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more challenging in such dynamic, interconnected environments [11].

Automation, while essential in Site Reliability Engineering (SRE) to maintain high avail-
ability and reduce downtime, introduces additional complexity in cloud infrastructure man-
agement. Automation involves complex orchestrations and dependencies, requiring careful in-
tegration with existing infrastructure, meticulous maintenance, and ongoing management to
prevent failures [2]. As the infrastructure scales, ensuring seamless integration and consistency
across automated workflows becomes increasingly difficult, highlighting the need for robust and
intelligent verification and testing tools.

Finally, existing static analysis tools, such as “Checkov,” [13] offer valuable but insufficient ca-
pabilities for comprehensive IaC validation. These tools typically handle common and straight-
forward misconfigurations but struggle with complex, dynamic infrastructure dependencies and
interactions. Consequently, organizations often rely on resource-intensive iterative testing or
manual reviews, increasing operational overhead and the potential for human error [7].

Thus, addressing these critical challenges through advanced automated verification ap-
proaches remains an essential goal for improving the robustness, reliability, and security of
IaC-managed cloud environments.
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Chapter 3

State of the Art

This thesis addresses the critical gap of lacking pre-deployment reachability verification for
Infrastructure as Code (IaC). The following chapter surveys the current landscape of research
and industrial tooling related to Infrastructure as Code (IaC). Given the critical importance of
reproducibility, reliability, and correctness in the management of cloud-based infrastructures,
the need for automated testing, analysis, and verification of IaC scripts has grown significantly
[38, 7, 6]. The state of the art contains efforts from both academia and industry, spanning
topics such as static analysis, dynamic testing, and formal verification. However, as we will
demonstrate, most existing tools and approaches provide only partial support or operate post-
deployment. This limitation impedes early detection of critical issues such as unreachable
resources, misconfigurations, and faulty access rules. Ultimately, this leads to increased costs
and operational risks. This chapter derives advancements across several subdomains and iden-
tifies where further research and development is needed. Building on these findings, Chapter 4
will present our conceptual framework for addressing these gaps through a novel pre-deployment
verification approach.

3.1 Industry Adoption and Practitioner Challenges
Guerriero et al. [21] investigate the practical adoption and challenges associated with Infras-
tructure as Code through empirical research involving 44 semi-structured interviews with senior
developers from diverse companies. Their findings shed light on the industry’s current practices,
the variety of available tools, and significant challenges that practitioners encounter.

The study highlights issues such as the lack of comprehensive automated testing frame-
works, difficulties in managing readability, consistency, and portability of IaC scripts, and the
critical need for improved tooling to support maintenance and evolution. Practitioners empha-
size the necessity of enhanced testing practices and robust tooling to address these challenges
effectively. Additionally, the authors discuss organizational barriers, such as skill gaps, cultural
resistance to automation, and the complexity involved in transitioning from traditional man-
ual processes to IaC-based automated workflows. These insights underscore the urgent need
for further research and innovative solutions [21] to overcome these barriers and improve the
quality, maintainability, and adoption of IaC, directly correlating with the current project’s
objectives to enhance automated verification and testing strategies.
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3.2 Static Analysis of Infrastructure as Code

3.2.1 Overview of Static Analysis Approaches

Chiari, De Pascalis, and Pradella [10] present a comprehensive survey on static analysis tech-
niques applied to Infrastructure as Code, highlighting the growing necessity for rigorous verifi-
cation due to the potential defects that IaC scripts may contain, which can lead to significant
security and reliability issues. The authors systematically categorize existing static analysis
approaches into two main groups: syntactic-based techniques, including code smell detection
and machine learning, and semantic-based methods employing formal verification and model
checking [10].

Their review identifies common defect categories such as security vulnerabilities, idempo-
tency issues, dependency errors, and improper configurations. This systematic categorization
reveals that, despite advancements, current static analysis tools still face limitations in ade-
quately addressing the complex and dynamic nature of cloud infrastructures. Additionally, the
authors explore the effectiveness and limitations of current tools, emphasizing that more sophis-
ticated semantic analysis techniques are necessary to capture context-sensitive issues accurately.
Chiari, De Pascalis, and Pradella [10] advocate for an integrated approach combining syntactic
and semantic methods to enhance the overall accuracy and reliability of pre-deployment verifi-
cations, aligning closely with the present project’s aim to improve automated early verification
methods in IaC.

3.2.2 Checkov: Rule-Based Security Analysis

One of the possibilities to statically analyze IaC is Checkov. Checkov is an open-source static
analysis tool developed by Cloud [13] that scans Infrastructure as Code (IaC) configurations to
detect misconfigurations before deployment. It supports a variety of IaC frameworks, including
Terraform, CloudFormation, Kubernetes, Helm, ARM Templates, and Serverless frameworks.
By integrating Checkov into the development pipeline, teams can identify and remediate po-
tential security and compliance issues early in the software development lifecycle, thereby en-
hancing the overall security posture of their cloud infrastructures [13].

One of Checkov’s key features is its extensive library of over 750 predefined policies that
align with industry standards such as the Center for Internet Security (CIS) benchmarks. Ad-
ditionally, it allows users to create custom policies using Python or YAML, providing flexibility
to enforce organization-specific security requirements. Checkov’s command-line interface fa-
cilitates seamless integration into continuous integration and continuous deployment (CI/CD)
pipelines, enabling automated scanning of IaC files. The tool also offers various output formats,
including CLI, JSON, JUnit XML, and SARIF, to accommodate different reporting needs [13].

3.2.3 TerraMetrics: Quality Assessment for Terraform

Also, a more recent example from academia is TerraMetrics [6]. Begoug, Chouchen, and Ouni
[6] introduce TerraMetrics1, an open-source static analysis tool designed to assess the quality
of Terraform configurations written in the HashiCorp Configuration Language. Recognizing
the growing complexity and widespread use of Terraform in modern cloud deployments, the
tool targets key software quality concerns by quantifying 40 structural and semantic metrics at
the block level (see Section 2.3). TerraMetrics processes Terraform files by constructing their

1 https://github.com/stilab-ets/terametrics
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Abstract Syntax Trees (ASTs) and extracting detailed metrics that relate to aspects such as
cyclomatic complexity, nesting depth, string values, references, and control flow constructs like
loops and conditions. Compared to the early versions of checkov, this approach offers a more
robust and semantically aware assessment compared to traditional regular-expression-based
scanning.

The tool functions as a command-line application that accepts individual files, folders, or
GitHub repositories as input. It outputs metrics in JSON format, making it well-suited for
integration into CI/CD pipelines. TerraMetrics has demonstrated high precision (88%) and
recall (97%) in measuring code understandability [6], with its cyclomatic complexity metric
correlating well with manually assessed readability. As Begoug, Chouchen, and Ouni [6] argue,
the lack of tools for analyzing Terraform scripts beyond basic security scanning (like checkov –
the example above) has hindered deeper quality assessments. TerraMetrics thus fills a critical
gap by enabling maintainability evaluations, code review support, and empirical research into
Terraform code quality.

3.3 Testing Infrastructure as Code

3.3.1 Testing Practices and Methodologies

Hasan, Bhuiyan, and Rahman [23] examine testing practices specifically designed for Infrastruc-
ture as Code scripts. Utilizing open coding methodologies on internet artifacts, they identify
critical testing practices that are essential for improving the quality of IaC scripts. Among the
identified practices are behavior-focused test coverage, the regular use of automated testing,
sandbox and remote testing environments, and the importance of avoiding coding antipatterns
in test scripts.

The authors emphasize the significant prevalence of defects in IaC scripts and the necessity
for systematic testing approaches to prevent costly incidents. Hasan, Bhuiyan, and Rahman
[23] provide concrete examples of major incidents caused by IaC script defects, highlighting
the potential financial and operational impacts these defects can have on organizations. The
paper also explores perspectives from industry on testing challenges, suggesting that many pro-
fessionals struggle with identifying suitable testing methodologies and lack adequate resources
to implement them effectively. These insights show a clear gap in systematic testing method-
ologies and underscore the need for improved guidance, tools, and frameworks within the IaC
space, aligning with the present project’s focus on developing more rigorous pre-deployment
testing and verification methods to enhance infrastructure reliability and security.

3.3.2 Terraform Native Testing Framework

With regard to two popular IaC tools, Terraform and Pulumi, we now analyze the state of the
art in testing IaC.

In version 1.6, Terraform introduced a native testing framework that enables authors to
validate module configurations without impacting existing infrastructure or state. This frame-
work allows for the creation of both integration and unit tests directly within the HashiCorp
Configuration Language. By default, tests provision real infrastructure, facilitating integration
testing by applying configurations and verifying the resulting infrastructure.

Alternatively, setting the command attribute to plan within a run block allows for unit
testing by validating logical operations without actual resource creation. Tests are defined in
files with the .tftest.hcl or .tftest.json extensions and can include multiple run blocks, a
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1 provider "aws" {
2 region = "eu-central-1"
3 }
4

5 variable "bucket_prefix" {
6 type = string
7 }
8

9 resource "aws_s3_bucket" "bucket" {
10 bucket = "${var.bucket_prefix}-bucket"
11 }
12

13 output "bucket_name" {
14 value = aws_s3_bucket.bucket.bucket
15 }

Listing 2: Terraform Test Example: main.tf

variables block, and provider blocks. This structured approach ensures that module updates
do not introduce breaking changes, enhancing the reliability and maintainability of Terraform
configurations [27]. Both parts of the example, Listing 2 and Listing 3, are directly taken from
the official Terraform documentation [27].

3.3.3 Automated Configuration Testing (ACT) for Pulumi

Sokolowski, Spielmann, and Salvaneschi [39] present a novel methodology, Automated Configu-
ration Testing (ACT), addressing the crucial, but underexplored, area of testing Infrastructure
as Code programs. Recognizing the complexities inherent to IaC, particularly with programs
written in general-purpose languages such as TypeScript or Python, the authors highlight the
limited adoption of systematic testing approaches in this domain. Their study reveals – based
on the PIPr dataset [40] – that less than 1% of public IaC programs on GitHub utilize systematic
tests, underscoring the critical need for effective testing methodologies.

ACT introduces an automated approach designed to rapidly test numerous configurations
with minimal manual intervention. It achieves this by automatically mocking resource defi-
nitions within IaC programs, supported by generator and oracle plugins (partially provided
by the community) for efficient test case creation and validation. Implemented in the ProTI
testing tool for Pulumi TypeScript, this framework demonstrates significant advantages over
existing techniques, including enhanced bug detection capability, reduced testing time, and the
ability to easily integrate third-party tools through a pluggable architecture.

The relevance of this study to the present project lies in its clear identification of a sig-
nificant gap in IaC testing practices. By explicitly showcasing the necessity and benefit of
automated, systematic testing for IaC programs, Sokolowski, Spielmann, and Salvaneschi [39]
establish a foundational context for ongoing research into enhancing IaC verification methods.
This aligns directly with the objectives of the present project, which seeks to further improve
early-stage verification and testing frameworks to mitigate risks associated with infrastructure
misconfigurations.
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1 variables {
2 bucket_prefix = "test"
3 }
4

5 run "valid_string_concat" {
6 command = plan
7 assert {
8 condition = aws_s3_bucket.bucket.bucket == "test-bucket"
9 error_message = "S3 bucket name did not match expected"

10 }
11 }

Listing 3: Terraform Test Example: valid_string_concat.tftest.hcl

3.4 Formal Verification of Infrastructure as Code
Formal verification of Infrastructure as Code programs remains an emerging and underdevel-
oped area of research. One notable contribution to this field is the work by Sokolowski and
Salvaneschi [38], who present a vision for achieving greater reliability in modern IaC programs,
particularly those written in general-purpose languages such as TypeScript through Pulumi
[33]. Their proposal centers on ProTI (as also mentioned in Section 3.3.3), a tool designed to
support automated unit testing and verification. While much of the paper focuses on fuzzing
and property-based testing, it also introduces a path toward automated verification by embed-
ding domain-specific specifications into IaC programs and leveraging resource plugin support
from cloud providers. The vision includes verifying properties such as access paths or network
reachability offline, prior to deployment, using formal backends such as SMT solvers (e.g., Z32

or MonoSAT3). This demonstrates a promising direction but is still largely conceptual, with
initial prototyping rather than mature, large-scale implementations.

Another concrete step towards formal verification in IaC is the master’s thesis by De Pascalis
[15]. The author develops and evaluates DOML-MC, a prototype model checker tailored for the
DevOps Modelling Language (DOML), which is part of the EU-funded PIACERE project. This
tool translates infrastructure descriptions into Satisfiability Modulo Theories (SMT) problems
and uses the Z3 solver to verify properties about infrastructure topology and configuration. The
approach is grounded in static analysis and emphasizes structural correctness, such as ensuring
that interconnected components can communicate or validating dependency constraints. While
limited in scope and maturity, the thesis shows that SMT-based verification of IaC models is
technically feasible. Nonetheless, the thesis also underscores the lack of widespread tool support
or integration with mainstream IaC workflows, highlighting that formal verification in IaC is
still in its infancy.

2 https://github.com/Z3Prover/z3
3 https://github.com/sambayless/monosat
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3.5 Post-Deployment Network Analysis

3.5.1 AWS Reachability Analyzer

The AWS Reachability Analyzer is a network diagnostics tool designed to verify network paths
between two resources within an Amazon Virtual Private Cloud (VPC). It enables users to
determine whether a network packet originating from one resource (e.g., a network interface of
an EC2 instance, or an internet gateway), can reach another resource. The tool considers the
applied routing, security groups, and network access control list (ACL) configurations – among
other elements that could influence networking on AWS. This tool is particularly valuable for
validating and troubleshooting network connectivity within and across VPCs, as it models the
data plane rather than relying on live packet delivery, making it non-intrusive and safe for
production environments [29].

Functionally, the Reachability Analyzer creates a virtual representation of the user’s net-
work configuration and performs reachability analysis by tracing potential paths between se-
lected source and destination resources. The tool analyzes influencing factors such as route
tables, as mentioned before, to determine if a network flow is permitted. If a valid path exists,
the tool provides a detailed route highlighting each hop in the network, otherwise it explains
where the traffic is blocked. Additionally, the analysis results can assist in auditing security
configurations and identifying misconfigurations or overly permissive rules that could lead to
security risks. The analyzer supports both intra-VPC and inter -VPC scenarios, including
multi-account environments, and integrates with AWS Organizations to simplify cross-account
visibility [29].

3.6 Empirical Datasets for IaC Research

3.6.1 TerraDS: A Dataset for Terraform HCL Programs

The TerraDS dataset, introduced by Bühler et al. [9], provides a comprehensive collection of
Terraform HCL (HashiCorp Configuration Language) [24] programs designed to address the
absence of large-scale datasets in the Infrastructure as Code research community. The dataset
comprises publicly accessible Terraform repositories from GitHub, totaling 62,406 repositories
after extensive filtering based on licensing and repository validity. These repositories collectively
include 279,344 Terraform modules and 1,773,991 resources, making TerraDS the most extensive
publicly available dataset specifically tailored for Terraform and IaC research.

TerraDS is structured to support diverse research applications, including static analysis,
vulnerability detection, and best practice identification. Bühler et al. [9] demonstrated the
dataset’s usefulness through metadata analyses – such as distribution patterns of modules per
repository and lines of code – and by applying static analysis tools like Checkov to reveal
common security violations and issues in Terraform scripts.

The availability of TerraDS significantly advances research potential by providing a substan-
tial empirical basis to study Terraform configurations. Researchers can leverage this dataset to
develop improved static analysis tools, conduct in-depth vulnerability assessments, and explore
best practices in infrastructure automation.

TerraDS is also the data foundation of this thesis. The available data allows for evalua-
tion and testing of the implemented tool against real world problems and programs. Instead
of searching for suitable programs, the TerraDS dataset can be used to evaluate the tool’s
performance and effectiveness.
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3.6.2 The PIPr Dataset of Public Infrastructure as Code Programs

The PIPr dataset, introduced by Sokolowski, Spielmann, and Salvaneschi [40], addresses a
critical gap in Infrastructure as Code research by providing an extensive collection of publicly
available Pulumi programs. Pulumi [33] is an IaC framework that enables users to define
and manage cloud infrastructure through general-purpose programming languages, offering
flexibility and integration with existing software development practices.

The PIPr dataset contains Pulumi programs sourced from public repositories, systemati-
cally collected and curated to support empirical studies and tool development within the IaC
research community. Specifically, the dataset includes a wide variety of infrastructure configu-
rations, resource definitions, and metadata to facilitate analyses, including static code analysis,
vulnerability detection, and best practice evaluation.

In relation to this project, PIPr [40] closely parallels the TerraDS [9] dataset; however,
while TerraDS focuses on Terraform programs written in HCL, PIPr specifically targets Pulumi
programs authored in general-purpose programming languages such as TypeScript, Python,
and Go. Both datasets provide critical infrastructure data resources, though targeting different
IaC tools, to enable rigorous testing, verification, and analysis. This similarity underscores
their complementary roles in advancing research into automated verification methods for IaC
solutions across diverse tooling ecosystems.

3.7 Summary and Identified Gaps
The reviewed body of work demonstrates that while there has been substantial progress in
addressing the challenges of Infrastructure as Code, significant limitations persist. Static anal-
ysis tools such as Checkov and TerraMetrics help detect syntactic and semantic issues before
deployment. But, they are often limited to rule-based mechanisms and do not handle complex
resource interactions or dynamic infrastructure behavior. TerraMetrics improves older tools by
incorporating deeper quality metrics, yet it also only focuses on code understandability and
maintainability, leaving functional validation out of scope.

Testing practices in IaC remain an open challenge. Terraform’s built-in test framework and
academic contributions like the ACT model for Pulumi offer valuable approaches to verifying
behavior pre-deployment, but they rely on mocking cloud APIs, which introduces additional
complexity. Moreover, these approaches require infrastructure definitions to be tested in iso-
lation or through sandboxed environments, limiting their coverage of real-world production
scenarios. Testing is still largely ad hoc or dependent on integration environments.

Efforts in formal verification, such as the work by De Pascalis [15] and Sokolowski and
Salvaneschi [38], are notable yet only not that developed as they could be. These approaches
aim to apply formal methods, such as property-based testing and SMT solving, to validate IaC
configurations. However, their adoption is limited due to prototype status, lack of integration
with existing development workflows, and the high expertise barrier required to define formal
specifications.

Finally, industrial tools – such as the AWS Reachability Analyzer – provide robust, visual
diagnostics for network paths within cloud environments. However, these tools function only
after infrastructure has been deployed. As such, they are not suitable for catching reachability
or configuration issues before deployment.

In summary, the current ecosystem lacks a comprehensive solution that allows for expressive,
pre-deployment verification of key infrastructure properties such as network reachability. The
ability to statically analyze and verify the effects of a change before infrastructure is provisioned
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remains out of reach. There is a clear need for a verification tool that integrates into the IaC
development process, operates without full deployment, and offers guarantees about properties
such as connectivity and access control. Such a tool would reduce iteration cycles, prevent
costly outages, and contribute to more secure and reliable cloud infrastructure management.

Having reviewed the capabilities and shortcomings of current static and dynamic verifica-
tion tools, it becomes evident that existing approaches struggle to provide scalable, provider-
independent, and pre-deployment-compatible solutions for reachability analysis. The limita-
tions discussed, such as constrained protocol coverage, reliance on deployed infrastructure, or
lack of extensibility, reinforce the need for a tool that can operate early in the development life-
cycle, leveraging only the declarative configuration. The next section introduces a conceptual
framework and proof-of-concept implementation designed to directly address these challenges.
It outlines the specific goals, assumptions, and design choices that underpin a novel static
analysis approach to verifying network connectivity in Terraform-based cloud infrastructures.
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Chapter 4

Analysis of Infrastructure as Code

This section presents the conceptual foundation for performing static analysis on Infrastruc-
ture as Code (IaC) programs, with a particular focus on Terraform. Given the dynamic and
declarative nature of IaC, traditional static analysis methods face substantial challenges; espe-
cially when reasoning about dependencies, references, and resource behaviors that are typically
resolved only at runtime. We begin by exploring the challenges of dependency management in
IaC tools, where resources reference each other through dynamically resolved attributes. Fol-
lowing that, we define the functional and non-functional requirements that guide the design of
the analysis tool, before introducing the concept and scope of the intended proof of concept.
The central goal is to enable pre-deployment validation of properties such as network reacha-
bility, using only the static program definitions – without relying on provider APIs or runtime
state – thus, supporting more reliable and efficient cloud infrastructure engineering.

4.1 The Challenge of Dependencies
Terraform [26] operates by first constructing a directed acyclic graph (DAG) that models

the dependencies between all defined resources. This graph ensures that resources are created,
modified, or destroyed in an order that respects their interdependencies. Once the DAG is
constructed, Terraform proceeds through its execution plan by traversing the graph and making
API calls to the respective cloud provider(s) to create the required infrastructure components.
Each resource is provisioned only after its dependencies have been satisfied. As each step in the
plan is executed, the results of these API interactions – such as dynamically generated values
like IP addresses or identifiers – are stored in a state file. This state acts as a source of truth for
subsequent operations, enabling references to the outputs or attributes of previously created
resources within the configuration. This mechanism ensures consistency, reproducibility, and
traceability across deployments.

The HCL code in Listing 4 results in the DAG shown in Figure 4.1. Thus, Terraform will
first create the VPC, then the subnet, and finally the two EC2 instances. The arrows in the
DAG indicate the dependencies between resources. The calculation is done via references inside
the code blocks. It is obvious, that the subnet cannot be created before the VPC because it
depends on the ID of the VPC. Also, the ID is only every available after the VPC has been
created on the cloud API. Modelling this fact is hard when it comes to static analysis. Because
the system should also work when no prior deployment has been done, there is no way to foretell
the resulting ID of the VPC. Note that the same concept also applies for Pulumi.
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1 provider "aws" {
2 region = "us-east-1"
3 }
4

5 resource "aws_vpc" "main" {
6 cidr_block = "10.0.0.0/16"
7 }
8

9 resource "aws_subnet" "sn_main" {
10 vpc_id = aws_vpc.main.id
11 cidr_block = "10.0.1.0/24"
12 }
13

14 resource "aws_instance" "example_a" {
15 ami = "ami-0c55b159cbfafe1f0"
16 instance_type = "t2.micro"
17 subnet_id = aws_subnet.sn:main.id
18 }
19

20 resource "aws_instance" "example_b" {
21 ami = "ami-0c55b159cbfafe1f0"
22 instance_type = "t2.micro"
23 subnet_id = aws_subnet.sn_main.id
24 }

Listing 4: Terraform example - VPC, Subnet and two EC2 instances

As a result – shown in Figure 4.2 – the VPC is created first, then the subnet, and finally the
two EC2 instances. Terraform will optimize the creation of the two instances since there have
no further dependencies. This results in a parallel execution, if possible.

As the example above shows, there is a challenge in modeling the infrastructure locally. In the
example of an ID field, the value can be artificially created on the fly while evaluation happens,
but other values like IP addresses and such would require a more sophisticated mechanism,
such as ProTI [39].

4.2 Goals and Non-Goals
This section outlines the functional and non-functional requirements that define the scope of
this thesis and the accompanying proof of concept. The functional requirements describe the
core behaviors the tool must support, such as analyzing Infrastructure as Code definitions
and detecting potential network connectivity issues before deployment. The non-functional
requirements capture essential quality attributes – such as performance, correctness, and gen-
eralizability – that ensure the tool can operate efficiently and reliably in a practical DevOps
environment.
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Figure 4.1: Terraform DAG Example

FRQ-1 The analysis must be able to run pre-deployment. This means that the analysis should
be able to run before the IaC program is deployed to the cloud provider. This is important
because it allows engineers to catch potential issues early in the development process, before
they become more difficult and costly to fix. Further, this saves time and resources by preventing
the need for rework or rollbacks after deployment.

FRQ-2 In the case of Terraform, the analyzer is able to perform the analysis without executing
Terraform itself. Thus, it allows parsing of the HCL or JSON representation of the IaC program.
This is important because it allows the analysis to be performed without requiring access to
the cloud provider or the need to deploy any resources. This is particularly useful for teams
that are working in a local development environment or that are using a CI/CD pipeline.

FRQ-3 The analysis can be integrated into CI/CD pipelines. This allows engineers to use the
tool locally and in their automation settings. As such, teams can profit from automated tests
and checks before they even deploy the infrastructural programs (in conjunction with FRQ 1).

FRQ-4 The analysis supports the required resources from the cloud provider to be able to
fulfill its task. In the example of the Proof of Concept (see Section 4.3), the analysis must be
able to parse and analyze all network related resources. This includes, but is not limited to,
virtual machines, gateways, load balancers, and networks.

FRQ-5 The analyzer tool must allow (in the case of the PoC) the specification of ports,
protocols and the WAN 1. This allows specific checks for network reachability and also fosters
reusability as a CLI tool.

NFRQ-1 The tool must provide rapid feedback to support seamless integration into CI/CD
pipelines. High performance is essential to ensure that infrastructure changes can be tested
and validated quickly without delaying the development or deployment process. Fast execution
enables frequent testing cycles and promotes early detection of errors, aligning with agile and
DevOps best practices.

1 WAN: Wide Area Network; Internet
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Figure 4.2: Terraform DAG Deployment

NFRQ-2 The analyzer must be designed in a modular and extensible manner so that its
core concepts—such as parsing, modeling, and property evaluation – can be reused or adapted
to check additional infrastructure properties beyond network reachability. This generalizabil-
ity ensures long-term applicability and supports future use cases like verifying access control
policies, resource dependencies, or cost-related constraints.

NFRQ-3 The analyzer must yield results that are consistent with those produced by estab-
lished tools like the AWS Reachability Analyzer. Ensuring correctness is crucial for building
trust in the tool’s output; inaccurate assessments could lead to false confidence in flawed infras-
tructure configurations. Therefore, correctness serves as a foundational quality that underpins
the reliability and adoption of the tool.

Summary In summary, the functional requirements of the project emphasize the need for an
analysis tool that operates pre-deployment, works independently of cloud provider execution
(e.g., without invoking Terraform), integrates seamlessly with CI/CD pipelines, and supports
the parsing and understanding of relevant cloud resources. Additionally, the analyzer must
accommodate protocol-, and port-specific inputs to enable detailed property checks, such as
network reachability. Complementing these, the non-functional requirements underscore the
importance of high performance for rapid feedback, modularity for generalizing the approach
to other properties, and correctness to ensure the tool produces trustworthy results comparable
to established verification services like AWS Reachability Analyzer. Collectively, these require-
ments define the scope and expectations of the proof of concept and its potential evolution into
a general-purpose pre-deployment verification tool.
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4.3 Proof of Concept: Network Reachability
The proposed Proof of Concept (PoC) introduces an offline network reachability analysis

tool that emulates the core functionality of the AWS Reachability Analyzer [29]. In contrast
to the AWS-native tool, which analyzes network connectivity only after the infrastructure
is deployed, this PoC enables pre-deployment verification (FRQ 1). By statically analyzing
infrastructure definitions – such as those written in Terraform (see Section 2.3) – the tool
constructs an internal model of the virtual network topology. It then simulates communication
paths between defined resources (e.g., virtual machines, gateways, load balancers, and networks)
and identifies potential misconfigurations or blocked routes based on route tables, security
groups, and other access control mechanisms. This proactive, static approach significantly
reduces the risk of deployment-time outages by surfacing network-level errors early in the
development cycle, without requiring actual infrastructure to be provisioned.

A key advantage of this approach lies in its seamless integration into Continuous Integra-
tion/Continuous Deployment (CI/CD) pipelines. By incorporating network reachability checks
directly into the IaC validation workflow, the tool enables developers and DevOps engineers to
detect issues immediately as part of their routine version control and testing processes [23, 39].
This capability addresses one of the major shortcomings in existing static analysis tools such
as Checkov, which focus predominantly on syntactic and compliance checks but cannot rea-
son about dynamic properties such as path reachability [13]. Similarly, while the ACT testing
framework for Pulumi introduces testable infrastructure semantics through mocking [39], the
proposed PoC offers a language-agnostic and cloud-agnostic alternative for early-stage verifica-
tion. By bridging the gap between static analysis and post-deployment diagnostics, this PoC
lays the groundwork for a scalable, pre-deployment verification solution that could save both
time and cost in modern DevOps pipelines.

While network reachability is the central focus of this PoC, it is only one of many properties
that can benefit from static, pre-deployment analysis. The underlying architectural approach is
generalizable and can be extended to verify additional properties such as resource dependency
correctness, IAM permission scopes, encryption settings, or compliance with architectural se-
curity patterns. These properties often span multiple configuration files and resource types,
and detecting inconsistencies or violations before deployment would provide significant value.
As infrastructure environments continue to grow in scale and complexity, the ability to validate
a broad range of infrastructural and security properties offline becomes increasingly crucial for
ensuring reliable, secure, and cost-effective cloud operations.
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Chapter 5

System Design

This section presents the implementation of the proof of concept (PoC) developed for the auto-
mated validation of Infrastructure as Code (IaC) configurations. It provides a comprehensive
overview of the design rationale, the selection of technologies, and the architectural principles
that guided the development process. Furthermore, this section details the methods employed
for parsing Terraform configurations, constructing and analyzing network topologies, and ex-
posing the system’s functionality through a command-line interface and supporting tools. By
systematically outlining the boundaries, workflow, and auxiliary utilities of the PoC, this sec-
tion establishes a clear understanding of the technical foundation and operational capabilities
of the proposed solution.

5.1 The Go Programming Language
Go, often referred to as Golang, is a statically typed, compiled programming language devel-
oped by Google in 2009. Designed with simplicity, efficiency, and reliability in mind, Go offers
a clean syntax that is easy to learn and use, making it an excellent choice for both begin-
ners and experienced developers. Its straightforward design facilitates rapid development and
maintenance of scalable software systems.

One of Go’s significant advantages lies in its native support for concurrency, allowing devel-
opers to write efficient and scalable code for multicore and distributed systems. Additionally,
Go’s fast compilation times and cross-platform support enhance developer productivity and
software portability [19].

Importantly, the HashiCorp Configuration Language (HCL, see Listing 1), which is the foun-
dation of Terraform configurations, is implemented in Go1[24]. This implementation choice sim-
plifies the process of parsing and analyzing Terraform files within Go applications. Developers
can leverage Go’s robust standard library and the HCL Go API to decode HCL configurations
directly into Go structures, facilitating seamless integration and manipulation of infrastructure
code.

In summary, Go’s simplicity, performance, and native compatibility with HCL make it an
ideal language for developing tools that analyze and manage Infrastructure as Code programs.
Its features align well with the requirements of static analysis tools aiming to provide pre-
deployment verification of infrastructure configurations.

1 https://github.com/hashicorp/hcl
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5.2 Overview of the PoC
The PoC demonstrates the feasibility of automatically validating infrastructure configurations
as code. The primary goal of this PoC is to provide a working implementation that:

• Section 5.5: Parses Terraform configuration files to extract and structure key resources.

• Section 5.6: Constructs a network topology from the parsed data, modeling components
such as virtual networks, subnets, instances, security groups, and routing elements.

• Section 5.7: Evaluates network reachability between interfaces using security group rules,
route tables, and other connectivity elements.

• Section 5.8: Offers a command-line interface to trigger and display the results of the
reachability analysis.

• Section 5.9: Utilizes complementary tools to enhance and support the analysis process.

By integrating these components, the PoC serves as a concrete example for validating prop-
erties of Infrastructure as Code setups. Detailed architecture, including individual modules, is
discussed in subsequent sections.

5.3 Architecture of the PoC
The architecture of the proof of concept is designed with modularity and clear separation of
concerns in mind. The overall structure follows Go best practices by leveraging two main
directories:

• internal/: Contains packages that are private to the project and are not intended for
external consumption. This folder includes core packages, such as:

– internal/reachability: Implements the network reachability logic, including topol-
ogy creation (see, e.g., topology.go) and interface rules (e.g., interface.go).

– internal/terraform: Provides the resource parsing and configuration mapping
from Terraform files (e.g., subnet.go and vpc.go).

– internal/cli: Implements the command-line interface using Cobra2[18], handling
user interactions and command dispatch (see, for example, reachability.go).

• pkg/: Contains packages that are designed to be reusable and offer more generic func-
tionality for external use. These include:

– pkg/parser: Provides a generic interface for parsing Terraform sources and convert-
ing them to internal representations while enforcing the structure required by the
PoC.

– pkg/reachability: Exposes key constants and functions related to the network
reachability analysis.

This clear separation ensures that internal implementation details remain encapsulated
within the project, while common functionality that might be reused in other projects is avail-
able in the pkg directory. The design emphasizes modularity, testability, and adherence to Go
conventions, thus supporting maintainability and potential future extensions.
2 https://github.com/spf13/cobra
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Figure 5.1: Architecture of the PoC

Figure 5.1 provides a visual representation of the architectural layout described above. The
system is divided into three major logical components: CLI, Core Engine, and Public Library
Access. The CLI layer includes the Entry Command and the specific Reachability Command,
both responsible for initiating execution based on user input. These interact with the central
Reachability Functions located in the Core Engine. The Core Engine also encapsulates the
Topology Builder, which constructs a model of the infrastructure’s network topology based
on parsed Terraform configurations provided by the Terraform Parser. This process forms
the foundation for simulating and evaluating network reachability. The architecture further
exposes selected reachability functions and Terraform parsing utilities through the Public
Library Access. This clean separation of concerns enables both CLI interaction and library-
based integration while supporting extensibility and maintainability across use cases.
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5.4 Boundaries of the PoC
The PoC presented in this thesis explicitly focuses on network reachability within Terraform-
managed AWS infrastructure. This limitation is deliberate and motivated by several practical
considerations. First, network reachability was chosen as the verification property due to the
existence of the AWS Reachability Analyzer [29]. By comparing results from our tool to those of
an established industry-standard analyzer, we can effectively verify correctness and reliability,
which is essential for validating the effectiveness of our approach.
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Figure 5.2: Distribution of Providers in Terraform

Terraform was selected as the target Infrastructure as Code tool primarily because of its
widespread adoption and significant presence in industry and open-source communities. As ev-
idenced by the recently published TerraDS dataset, Terraform currently has extensive coverage
in publicly available repositories, significantly surpassing alternative IaC tools such as Pulumi
[9, 40]. Additionally, the TerraDS dataset provides researchers with a robust foundation of
Terraform modules and resources, enabling comprehensive analytics and systematic studies.
The dataset clearly indicates that AWS is the most frequently utilized cloud provider (see Fig-
ure 5.2), making it an ideal initial target for developing and demonstrating the effectiveness
of our analysis tool. Thus, the choice of AWS and Terraform facilitates practical validation,
leveraging readily available resources and existing benchmarks in the domain of static analysis
and IaC verification.

5.5 Parse Terraform Configuration Files
The first iteration of the implementation focused on parsing Terraform configuration files by
manually resolving attribute values in the HashiCorp Configuration Language. Specifically,
it attempted to interpret expressions directly within the configuration during the process of
constructing the network topology. For instance, if a resource attribute referred to another
resource using a reference expression (e.g., aws_vpc.main.id), the implementation would try
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to trace and substitute the referenced value dynamically during parsing. While this approach
demonstrated the feasibility of on-the-fly resolution for simple attributes, it quickly revealed
limitations in handling complex expressions, nested references, and dynamically computed val-
ues. This led to challenges when more complex patterns – like the one in Listing 5 – were
encountered. Referencing values became a big issue.

1 resource "aws_vpc" "main" {
2 cidr_block = "10.0.0.0/16"
3 }
4

5 resource "aws_route" "demo" {
6 route_table_id = aws_route_table.main.id
7 destination_cidr_block = aws_vpc.main.cidr_block
8 }

Listing 5: Terraform example - Resource references

The subsequent iteration of the implementation aligned more closely with Terraform’s inter-
nal mechanics by adopting a directed acyclic graph (DAG) approach to resolve dependencies
between resources. In this design, all resources from the configuration files are first added as
graph nodes. Then, during a secondary pass, each resource’s expressions are analyzed to deter-
mine inter-resource dependencies, and edges are added accordingly to reflect these relationships.
The resulting DAG accurately represents the evaluation order required to resolve all references
in compliance with Terraform’s dependency model. This approach enables a consistent and
reproducible resolution of references without relying on actual deployment or provider APIs.

Once the DAG is constructed, the implementation performs a directed traversal of the graph
to evaluate each resource node in topological order. As each vertex is visited, its attribute
expressions are resolved, and their resulting values are stored in a shared evaluation context.
This context allows subsequent resources to access the resolved values of previously evaluated
dependencies. For example, a subnet resource can now be resolved with full knowledge of its
parent VPC’s CIDR block or identifier. By systematically walking the DAG and maintaining
a progressively enriched evaluation context, the parser can substitute references with effective
values throughout the entire configuration. As a result, all resources are ultimately annotated
with concrete, statically derived values, enabling accurate static analysis of infrastructural
properties like network reachability.

The complete Terraform parsing process is illustrated in Figure 5.3. It begins with decod-
ing the raw HCL body, extracting all defined resources, variables, and expressions. These are
initially added to the internal model as vertices in a DAG. Once all components are present, a
second pass adds the edges that represent inter-resource dependencies by analyzing expressions
and references. The core logic then proceeds to walk the DAG in topological order. During this
traversal, each node is processed depending on its type – whether it is a variable, expression, or
resource definition. Expressions are evaluated in the context of already resolved dependencies,
and their resulting values are stored. This ensures that all references within the configuration,
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Figure 5.3: Parse Terraform Configuration

such as those involving CIDR blocks or resource identifiers, are statically resolved and material-
ized. Finally, the evaluated and fully populated resource representations are returned, enabling
accurate and consistent downstream static analysis.

5.6 Create a Network Topology from Resources
In the context of AWS, constructing a network topology involves defining and interconnecting
various resources that facilitate communication within and outside the cloud environment. Key
components include:

• Virtual Private Cloud (VPC): Serves as the fundamental network boundary, allowing
the creation of isolated networks within AWS.3

• Subnets: Subdivisions within a VPC that segment the network into smaller, manageable
sections.4

• EC2 Instances: Virtual servers that reside within subnets and perform compute tasks.5

3 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc
4 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/subnet
5 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
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• VPC Peering Connections: Enable communication between VPCs, facilitating re-
source sharing across different networks.6

• Route Tables and Routes: Define the traffic flow within the network by specifying
how packets are directed.7

• Internet Gateway: Allows resources within the VPC to access the internet.8

• Security Groups: Act as virtual firewalls, controlling inbound and outbound traffic to
AWS resources.9

These components collectively define the structure and security of the network, ensuring
controlled and efficient communication pathways.

VPC Subnet Instance SecurityGroup VPCPeeringConnection RouteTable InternetGateway

Create Topology Called

Initialize Topology object

Initialize empty error slice

For each resource in 
resourceMap

Determine resource type

Call addNetwork Call addSubnet Call addInterface Call addAccessGroup Call addNetworkLink Call addRouteTable Call addInternetGateway

If error, append to errs

All resources processed

Return Topology and 
errors.NewCombinedError

End

Figure 5.4: Creating the network topology

The process of building the network topology from parsed Terraform resources is outlined
in Figure 5.4. The function begins by initializing the topology builder, which involves setting
up the core data structure for tracking the network graph and allocating an empty slice to
collect any errors encountered during processing. It then iterates over all entries in the internal
resourceMap, where each resource is dynamically classified based on its type.

Depending on the resource type, the system dispatches to the corresponding handler func-
tion: for example, aws_vpc resources invoke addNetwork, aws_subnet calls addSubnet,
aws_instance routes to addInterface, and so on. Specialized functions exist for handling
6 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/vpc_peering_

connection
7 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/route_table

and https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/route
8 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/internet_

gateway
9 https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/security_

group
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access control (addAccessGroup for aws_security_group), connectivity (addNetworkLink
for aws_vpc_peering_connection), routing (addRouteTable for aws_route_table), and ex-
ternal access (addInternetGateway for aws_internet_gateway). Each handler enriches the
topology with objects specific to the role of the resource in the network structure. If any errors
occur during processing, they are appended to the error list. During this step, a business-logic
mapping is applied to ensure that the resource is interpreted according to its semantics. For
example, a aws_subnet resource is added as a subnet object, while an aws_vpc resource is
added as a network object. The topology struct in Listing 6 serves as the core data structure
for this process, encapsulating all networks, network links, and route tables. It also maintains
a reference to the resource map, which is essential for resolving dependencies and references
between resources.

1 type Topology struct {
2 Networks map[string]*Network
3 NetworkLinks map[string]*NetworkLink
4 routeTables map[string]*RouteTable
5

6 resourceMap *terraform.ResourceMap
7 }

Listing 6: The Topology Struct

Each of the resource-specific functions – such as addSubnet, addInterface, or addRouteTable
– is designed to be order-independent by internally verifying the presence of any required parent
resources within the topology object. If a referenced parent (e.g., a VPC for a subnet, or a
subnet for an instance) has not yet been added, the function will proactively create and insert
the missing parent into the topology before proceeding. This strategy ensures that the overall
construction process is robust against input order and does not rely on resources being parsed
or processed in a specific sequence. As a result, the topology graph remains structurally con-
sistent and complete regardless of how the resources were originally ordered in the Terraform
configuration files.

Once all resources have been processed, the function aggregates any collected errors and
returns the final topology object along with an optional combined error. This modular dispatch
pattern ensures that each resource is interpreted according to its semantics, leading to a well-
structured and semantically rich topology model ready for subsequent analysis.

5.7 Network Reachability Analysis
The Topology object is the central in-memory model of the network structure, constructed
from parsed Terraform resources. As depicted in Figure 5.5, it organizes and interrelates key
domain entities, including Network (representing a VPC), Subnet, Interface (modeling sub-
nets and EC2 instances), RouteTable, InternetGateway, NetworkLink (for VPC peering),
and AccessRuleGroup (for security groups). Each of these components encapsulates a spe-
cific aspect of AWS networking: for example, a Network contains multiple Subnet objects,
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each of which may host several Interface instances. AccessRuleGroup aggregates ingress and
egress AccessRules, capturing the semantics of AWS security groups and related rules. The
Topology object maintains explicit relationships between these entities: subnets are associated
with networks, interfaces are attached to subnets, and route tables and gateways are linked
to their respective networks. Routing logic is modeled via RouteTable and Route objects,
which determine how traffic is forwarded within and between networks, including support for
VPC peering10 (NetworkLink) and internet gateways. Access control is enforced through the
association of interfaces with one or more AccessRuleGroups, reflecting the effective security
group rules for each network interface. Importantly, the topology is incrementally constructed
as Terraform resources are parsed and is further updated during reachability analysis. This
results in a live, queryable structure that accurately reflects all relevant network paths, routing
policies, and access restrictions present in the infrastructure configuration. The object-oriented
design of the topology enables efficient computation of connectivity and reachability, and pro-
vides a flexible foundation for future extensions, such as modeling additional cloud providers
or supporting advanced analyses of network isolation and policy compliance.
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Figure 5.5: The Topology Construct

The IsReachable method in Listing 7 is a core function of the Topology object, responsible
for determining whether a network source can reach a given destination on a specified port
10 VPC Peering: Mechanism for intercommunication between different and/or distant VPC networks.
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1 func (t *Topology) IsReachable(
2 source, destination string,
3 port uint16,
4 protocol Protocol,
5 ) ReachabilityResult {
6 // ...
7 }

Listing 7: The Main Reachability Check Function

and protocol. The method begins by resolving the source and destination identifiers to their
corresponding network interfaces. It then verifies the existence of these interfaces and their
parent networks, returning early if any are missing. The method retrieves the relevant egress
rules from the source and ingress rules from the destination, which represent the effective
security group policies applied to each interface. If both interfaces reside within the same
network and neither has any access rules, the method immediately concludes that reachability
is allowed.

If access rules are present, the method checks whether the source’s egress rules permit traffic
to the destination’s IP, and whether the destination’s ingress rules allow traffic from the source’s
IP, port, and protocol. If either check fails, the method returns a result indicating the specific
rule that blocks connectivity. For interfaces in different networks, the method examines the
existence of network links (such as VPC peering connections) and the presence of appropriate
routes in the source’s route table. If a valid route and link are found, reachability is granted;
otherwise, the method checks for public internet access via an internet gateway. If no valid path
is found, the method returns an unreachable result. This structured sequence of checks enables
precise modeling of AWS network reachability semantics within the in-memory topology.

The IsReachable (Listing 7) method returns a ReachabilityResult enum, which – cur-
rently – can have the following values:

• Reachable: The source can successfully reach the destination on the specified port and
protocol.

• Unreachable: No valid path exists between the source and destination; connectivity is
not possible.

• SourceInterfaceNotAvailable: The specified source interface does not exist in the
topology.

• DestinationInterfaceNotAvailable: The specified destination interface does not exist
in the topology.

• SourceNetworkNotAvailable: The network containing the source interface is missing or
undefined.

• DestinationNetworkNotAvailable: The network containing the destination interface is
missing or undefined.
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• BlockedByEgressRules: The source’s egress rules explicitly block traffic to the destina-
tion (if the rule list is not empty).

• BlockedByIngressRules: The destination’s ingress rules explicitly block traffic from the
source (if the rule list is not empty).

• NoRouteAvailable: There is no valid route in the route table to forward traffic from the
source to the destination.

• NoPublicAccess: The network lacks a route to an internet gateway, preventing public
access.

This enumeration is used to provide a clear and structured way to communicate the result
of the reachability check, allowing for easy interpretation and handling of different scenarios.

5.8 Exposing the CLI
The proof of concept provides a command-line interface (CLI) that enables users to perform

network reachability analysis on infrastructures defined using Terraform. The main command,
reachability, allows querying whether two network interfaces – such as EC2 instances or the
public internet (WAN) – are able to communicate over a specified port and protocol. The
CLI requires the user to provide the path to a directory containing Terraform configuration
files. Additionally, users can optionally specify a source address, a destination address, a port
number, and a protocol (from the supported set: any, tcp, or udp). If any of these optional
arguments are omitted, the tool interactively prompts the user for input, thereby ensuring
usability even when not all parameters are explicitly provided.

Reachability EvaluatorTopology BuilderParserApplication

Reachability EvaluatorTopology BuilderParserApplication

User

Run command with args

Parse Terraform configuration

Return resource map

Create network topology

Topology built (networks, subnets, interfaces)

Call IsReachable(instanceA, instanceB, port, protocol)

Return reachability result

Show final output

User

Figure 5.6: Process Overview for CLI Usage

Internally, the CLI initiates a parsing phase in which the provided Terraform configurations
are converted into an internal resource representation (Section 5.5). Subsequently, a topology
builder constructs the in-memory model of the network (Section 5.6), containing all networks,

38



subnets, interfaces, and their connections. With this model, the reachability analysis module
evaluates whether the specified source and destination can communicate, considering route
tables, security group rules, and network structures (Section 5.7). Finally, the result is presented
to the user – either confirming successful connectivity or providing the reason for failure (e.g.,
blocked by a security group or missing route). This mechanism, illustrated in Figure 5.6,
supports both automated CI/CD workflows and manual, ad-hoc usage by engineers or security
analysts.

5.9 Complementary Tools
This subsection introduces a set of complementary tools developed solely for the evaluation
of the network reachability library presented in the PoC. These tools are not part of the core
implementation, but are designed to facilitate systematic benchmarking and validation of the
library’s analysis capabilities.

5.9.1 WAN Access Checker

The wan_access checker is an evaluation tool designed to systematically assess the network
reachability of cloud resources provided by TerraDS [9]. It operates by reading a CSV file
(all_instances.csv) that enumerates instances across various repositories and modules. For
each instance, the checker generates a comprehensive set of reachability queries, including tests
for inbound and outbound connectivity to and from the public internet (WAN) on common ports
(such as 22, 80, and 443), as well as cross-instance reachability within the same module. These
queries are executed in parallel, leveraging all available CPU cores to maximize throughput and
efficiency during large-scale evaluations.

For each reachability query, the checker ensures the relevant Terraform repository is available
(extracting it from an archive if necessary), parses the infrastructure using the project’s parser,
and invokes the reachability analysis engine. The results, including the outcome (e.g., reachable,
blocked by rules, or no route available), any errors encountered, and the duration of the check,
are recorded in a results CSV file. This systematic approach enables automated, reproducible
benchmarking of the IaC verification tool’s ability to detect and explain network exposure and
isolation, providing valuable insights into the security posture of diverse infrastructure-as-code
projects.

5.9.2 Plan Creator

The plan_creator tool is a utility designed to generate synthetic Terraform infrastructure
plans for evaluation and benchmarking purposes. It programmatically constructs AWS network
topologies with a configurable number of VPCs (up to four11), each containing subnets, security
groups, and EC2 instances. The tool uses Go templates to produce Terraform code that defines
these resources, including VPC peering connections and the necessary routing to enable inter-
VPC communication. Each generated VPC is assigned a subnetted portion of a larger supernet,
and security groups are configured with a variety of ingress and egress rules to simulate realistic
access control scenarios.

11 The number of VPCs is limited – including the default VPC – to five VPCs by AWS. Going over that limit
is possible but requires inquires to AWS to be made.
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By allowing users to specify the number of networks as a command-line argument, plan_creator
enables systematic scaling of infrastructure complexity for testing the IaC verification tool. The
generated plans include not only intra-VPC resources but also cross-VPC peering and routing,
providing a rich environment for evaluating reachability, isolation, and policy enforcement. This
approach ensures that the verification tool can be rigorously assessed against a range of topolo-
gies, supporting both functional validation and performance benchmarking in a controlled,
reproducible manner.

5.9.3 Instance Analyzer

The instance_analyzer tool is a lightweight command-line utility designed to evaluate net-
work reachability between two specific instances within a Terraform-managed infrastructure.
By accepting the path to a Terraform configuration directory, the identifiers of the source and
destination instances, and a port number as arguments, the tool parses the infrastructure,
constructs the in-memory network topology, and determines whether the specified source can
reach the destination on the given port. The analysis leverages the project’s reachability en-
gine, which takes into account security groups, routing, and other network policies defined in
the Terraform files. This tool is basically the same as the CLI of the library. But it was used
in a very specific way for the automated evaluation of the library and is not part of the final
implementation.

This tool is particularly useful for targeted, instance-level connectivity checks during evalu-
ation or debugging of the IaC verification system. It provides immediate feedback on whether
communication is possible between two endpoints, reporting the result via structured log out-
put. By automating the process of parsing, topology construction, and reachability analysis,
instance_analyzer streamlines the validation of network policies and supports fine-grained
testing scenarios within larger evaluation workflows.

5.9.4 AWS Reachability Analyzer

The aws_reachability_analyzer tool serves as an interface to AWS’s native Network Reach-
ability Analyzer, automating the process of empirically verifying network connectivity between
two EC2 instances in a specified AWS region. By accepting the names of the source and desti-
nation instances, a port number, and a protocol (TCP or UDP) as command-line arguments,
the tool uses the AWS SDK to resolve instance IDs, create a Network Insights Path, and initiate
a Network Insights Analysis. It then polls the analysis status until completion, measuring the
time taken for the analysis and reporting this duration as its output. The tool also ensures
cleanup by deleting the created network insights resources after the analysis concludes.

This tool is particularly valuable for benchmarking and validating the results of the IaC
verification tool against the actual behavior of AWS’s own reachability analysis service. By
providing a ground truth for network connectivity in real AWS environments, it enables sys-
tematic comparison between the static analysis performed by the verification tool and the
dynamic, cloud-native analysis provided by AWS. This approach supports both correctness
validation and performance evaluation, ensuring that the verification tool’s predictions align
with real-world network behavior as observed in the cloud provider’s infrastructure.
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Chapter 6

Evaluation

This thesis addresses the critical gap of lacking pre-deployment reachability verification for
Infrastructure as Code (IaC). This section presents a structured evaluation of the proposed
Infrastructure as Code (IaC) verification tool, focusing on its applicability and scalability. We
conduct a series of empirical experiments on both real-world and synthetic Terraform con-
figurations to assess how effectively the tool handles diverse infrastructure setups and how
its performance compares to existing post-deployment solutions. The evaluation is organized
around key research questions, with each subsection addressing a distinct dimension of the
tool’s capabilities, highlighting both its strengths and potential limitations.

6.1 Research Questions
RQ-1 Generalized Applicability: Can the IaC verifier effectively analyze diverse and complex
real-world Infrastructure as Code programs?

This research question investigates the general applicability of the proposed verifier across
a broad spectrum of real-world IaC configurations. It aims to determine whether the tool
can handle the structural complexity, varying resource types, and real-use scenarios commonly
found in practical Terraform deployments. Demonstrating successful application to such config-
urations would validate the verifier’s robustness and indicate its readiness for use in real-world
DevOps and infrastructure engineering contexts.

RQ-2 Scaling: How does the performance of the IaC verification tool scale with the size of
the infrastructure? How does it compare to the performance of the AWS Network Reachability
Analyzer?

This research question explores the scalability of the verifier when analyzing network reacha-
bility across infrastructures of varying sizes. Specifically, it compares the verifier’s performance
against AWS Reachability Analyzer, which performs post-deployment checks for similar net-
work queries. Since static analyzers typically do not support reachability queries, they are
excluded from this comparison. The goal is to assess whether the verifier’s pre-deployment,
local analysis approach enables faster and more scalable evaluations—especially in scenarios
where repeated or automated checks are required.
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6.2 RQ 1 - Applicability
Research Question: To what extent can the verifier be applied successfully to existing, real-
world Infrastructure as Code (IaC) programs written in Terraform?

This research question focuses on the operational feasibility of using the verifier in practice.
Specifically, it assesses whether the tool can process actual Terraform modules from open-
source repositories and yield meaningful analysis results. Rather than exploring the theoretical
capabilities of the tool, this question addresses its practical integration: Can the verifier parse
and analyze real infrastructure programs without failure, and can it respond to meaningful
reachability queries within those configurations?

6.2.1 Procedure

To investigate this, we executed the verifier on 1,313 Terraform modules containing a total
of 2,502 EC2 instances, sourced from TerraDS [9]; the largest curated dataset of Terraform
programs to date. As shown in Figure 5.2, AWS is the most frequently used cloud provider in
the dataset, making it an ideal target for our initial evaluation. The modules chosen include
AWS resource types supported by the verifier and define valid, real-world virtual network
topologies. Each module was evaluated as a self-contained infrastructure unit.

The evaluation consists of two main tasks: First, external reachability analysis was per-
formed to determine whether EC2 instances could be reached from or connect to the public
internet (WAN) over ports 80 (HTTP) and 443 (HTTPS). Second, internal reachability was
tested between EC2 instances within the same module. For this, the dataset is filtered to select
modules with at least two EC2 instances, yielding 796 modules and 7,390 unique reachability
queries (sourced in the Cartesian product of the queries time the instances). The queries in-
cluded typical internal communication over port 22 (SSH), port 80 (HTTP), port 443 (HTTPS),
and an “any”-port reachability check.

6.2.2 Metrics

We measured two primary outcomes:

• Percentage of successful reachability queries completed by the verifier: This
metric indicates the breadth of the tool’s applicability across diverse real-world configu-
rations.

• Average execution time per query: This captures the time needed to parse, model,
and analyze each module.

These metrics serve as proxies for usability in practical settings, where reliability and perfor-
mance are essential for adoption in CI/CD pipelines or infrastructure validation workflows.

6.2.3 Results

External Reachability Analysis Table 6.1 presents the results of the external reachability
evaluation using the PoC. The table is organized by reachability direction (ingress and egress)
and by port (80 and 443). Column 2 reports the ability to reach EC2 instances from the
internet (ingress), while Column 3 shows the ability of instances to reach the internet (egress).
Column 4 provides the average execution time per query, including parsing, topology building,
and the actual analysis step. The rows are grouped by the outcome of the reachability query.
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The Not Reachable results are further categorized into two error classes: No Public Access
and Blocked by Rule. The former indicates that the infrastructure configuration lacked access
to or from the internet (e.g., missing Internet Gateway or Route configuration), while the latter
reflects missing security group rules that explicitly allowed the corresponding traffic. The final
category, Failed to Analyze, aggregated all modules that could not be processed by the PoC,
typically due to syntax errors or unsupported constructs.

Analysis of Failures A deeper inspection of the 836 failures in the ingress analysis on port
80 reveals that 448 cases lacked the subnet_id field, and 548 contained unparsable CIDR
values. The absence of subnet_id prevented correct mapping of EC2 instances to subnets,
thereby rendering their location within the VPC unresolvable. Similarly, malformed or empty
CIDR values violated expected formats for defining network ranges and thus invalidated the
resource. These findings underscored the prevalence of incorrect or incomplete real-world IaC
configurations. Importantly, the PoC did not attempt to infer missing values, as such inference
would undermine the integrity and trustworthiness of the analysis.

Success Rates and Performance Despite these challenges, the PoC successfully completed
approximately two-thirds of all external reachability queries. This result was notable given
that the evaluation did not exclude erroneous or deprecated modules. Additionally, the results
highlighted a clear asymmetry between port access: 44% of instances were reachable on port
80 (HTTP), but only 4% on port 443 (HTTPS). This discrepancy was partly explained by
repositories with duplicated modules that defaulted to HTTP.

Performance-wise, the PoC’s average runtime of just 51ms per query suggested it was well-
suited for integration into the development workflow, particularly in CI/CD pipelines where
rapid feedback was critical.

Internal Reachability Analysis Table 6.2 summarized the results of the internal reacha-
bility analysis between EC2 instances defined within the same Terraform module. Three port
categories were evaluated: port 22 (SSH), port 80 (HTTP), and “any port”. Each pair of in-
stances was analyzed for connectivity, and results were grouped into categories: Reachable,
Blocked (Ingress), Blocked (Egress), No Route, No Peering, and Failed to Analyze. No Route
captured cases with misconfigured/absent route tables, while No Peering denoted instances
located in separate VPCs without a peering connection. VPC peering is a specialty of AWS
that allowed communication between VPCs. But to do so, a VPC Peering and corresponding
route objects had to be configured. Figure 6.1 showed an example with two VPCs that were
connected via a peering connection.

Module-Level Analysis Overall, the PoC answered approximately one-third of internal
reachability queries. The higher failure rate relative to external analysis was explained by
query volume: each module may yield numerous internal pairwise queries, and a single parsing
failure led to a complete loss of results for all pairs in that module.

In addition to query-level statistics, we evaluated the number of modules that could be
successfully analyzed. The PoC completed external reachability analysis on 805 out of 1,313
modules (61%) and internal analysis on 571 out of 796 modules (72%). In most failing cases,
analysis was impeded by structural issues in the IaC code, such as syntax violations or depre-
cated language constructs, which prevented the construction of a valid model. These results
reaffirmed both the practicality and resilience of the PoC when applied to a diverse and imper-
fect landscape of real-world Terraform programs.
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6.2.4 Conclusion

The PoC successfully analyzed the majority of real-world IaC modules and executed most
of the reachability queries. Its low runtime overhead, combined with informative diagnostic
messages for unreachable paths, made it well-suited for use as a pre-deployment debugging tool
in development and CI/CD workflows.

Category
Internet to EC2
Port 80
Port 443

EC2 to Internet
Port 80
Port 443

Avg. Time

Reachable
1,105 (44%)
89 (4%)

1,304 (52%)
1,303 (52%)

36.7ms
34.7ms

No Public Access
20 (1%)
26 (1%)

100 (4%)
104 (4%)

21.5ms
23.5ms

Blocked by Rule
541 (22%)
1,547 (62%)

250 (10%)
249 (10%)

39.9ms
39.5ms

Failed to Analyze
836 (33%)
840 (34%)

848 (34%)
846 (34%)

86.8ms
84.9ms

Total 2,502 (100%) 2,502 (100%) 51.5ms

Table 6.1: Evaluation of external reachability of the IaC verification tool on the TerraDS [9]
dataset.

Category EC2 to EC2

Port 22 Port 80 any port

Reachable 1,790 (24%) 1,640 (22%) 1,867 (25%)

Blocked (ingress) 432 (6%) 615 (8%) 350 (5%)

Blocked (egress) 59 (1%) 53 (1%) 58 (1%)

No Route 0 (0%) 2 (0%) 2 (0%)

No Peering 29 (0%) 19 (0%) 41 (1%)

Failed to Analyze 5,080 (69%) 5,061 (68%) 5,072 (69%)

Total 7,390 (100%) 7,390 (100%) 7,390 (100%)

Table 6.2: Evaluation of internal reachability of the IaC verification tool on the TerraDS [9]
dataset.
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6.3 RQ 2 - Scaling
Research Question: How does the performance of the IaC verification tool scale with the size
of the infrastructure? How does it compare to the performance of the AWS Network Reachability
Analyzer?

This research question explores the scalability of the proposed PoC in contrast to the cur-
rent state-of-the-practice, namely post-deployment tools such as AWS Reachability Analyzer
(AWS RA). Specifically, it examines how both tools behaved as the size and complexity of the
infrastructure grew. While AWS RA performed analysis after infrastructure was provisioned in
the cloud, the PoC performed local, static analysis pre-deployment. We hypothesized that the
PoC offered significant performance advantages by avoiding the overhead of actual deployment
and leveraging a local model of the infrastructure.

6.3.1 Procedure

To address this question, we constructed – with the help of the “plan creator” (Section 5.9.2) –
four synthetic Terraform IaC programs in the form of Figure 6.1, each representing a distinct
network configuration with an increasing number of Virtual Private Clouds (VPCs), ranging
from one to four. Each VPC contained two subnets, and each subnet hosted two EC2 instances,
creating a symmetrical and scalable infrastructure setup.

VPC 1

Subnet

Instance Instance

Subnet

Instance Instance

VPC Peering

VPC 2

Subnet

Instance Instance

Subnet

Instance Instance

Figure 6.1: Artificial VPCs used for the evaluation of the IaC verification tool.

The intra-VPC configuration constructed according to Figure 6.1. The artificial IaC pro-
grams were created with the “plan creator” (Section 5.9.2), whereas the measurement of the
AWS RA execution was done with the “AWS Reachability Analyzer” helper tool (Section 5.9.4).
As the number of VPCs increased, the size of the Terraform configuration ranged from 172 lines
of code (LOC) for one VPC to 784 LOC for four VPCs. This range reflected real-world usage
as observed in the TerraDS dataset [9], which showed that 20,966 modules defined exactly one
VPC, 1,174 defined two, 101 defined three, and only 32 defined four. Modules defining more
than four VPCs were rare and not representative of common practice.

For each IaC configuration, we ensured full connectivity across instances by defining appro-
priate VPC peerings and route tables. All instances were assigned security groups containing
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five rules (three inbound, two outbound), ensuring that security constraints did not hinder the
scalability measurement. We compared the PoC against AWS RA, which was limited to single-
region deployments [29]. Reachability queries spanning multiple regions were unsupported by
AWS RA but posed no issue for the PoC, which operated on a region-agnostic, static topology.

We executed the PoC locally on each configuration and compared its performance against
AWS RA by deploying the infrastructure and issuing equivalent reachability queries via the
AWS web console.

6.3.2 Metrics

We measured the execution time for each AWS RA query, which included both the time to
deploy the infrastructure and the time to perform the reachability analysis post-deployment.
Each AWS RA query was run five times, and the average duration was computed to reduce
variability caused by deployment overhead and AWS-side delays.

For AWS RA, the timing was broken down into five phases:

• Init: Initializes the working directory and downloads Terraform providers.

• Validate: Performs static syntax checks on the configuration.

• Apply: Deploys the infrastructure to AWS.

• AWS RA: Executes the reachability query using AWS Reachability Analyzer.

• Destroy: Tears down all deployed resources.

For the PoC, we measured the end-to-end duration of each query from parsing the Terraform
configuration to building the internal model and executing the reachability analysis. Since the
PoC was deterministic and did not depend on cloud-side operations, we recorded the execution
time once per configuration.

6.3.3 Results

Figure 6.2 provided a breakdown of total execution time across five operational phases – Init,
Validate, Apply, AWS RA, and Destroy – when varying the number of VPCs from one to four.
The overall trend demonstrated a substantial increase in time, from 127 seconds for a single
VPC to over 204 seconds for four VPCs.

The Destroy phase consistently dominated the total runtime, growing from 75.1 seconds
(1 VPC) to nearly 120 seconds (4 VPCs). The Apply phase also exhibited significant scaling
behavior, increasing from 22.8 seconds (1 VPC) to 54.5 seconds (4 VPCs). In contrast, the Init
and Validate phases remained relatively stable across all configurations, ranging from 7.7–8.4
seconds and 4.3–4.4 seconds respectively.

Interestingly, the AWS Reachability Analyzer phase showed minimal variance, hovering
around 17 seconds regardless of the infrastructure size. This constancy reflected its bounded
runtime but highlighted that the bulk of performance costs stemmed from provisioning and
decommissioning infrastructure, not the analysis itself.

These results emphasized the high time overhead incurred by post-deployment validation
methods like AWS RA, especially in scenarios with increasingly complex infrastructure. They
underscored the advantage of the PoC’s pre-deployment static analysis, which avoided such
latency entirely and maintained a constant analysis duration of approximately 75 milliseconds.
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Figure 6.2: Performance metrics across deployment phases per number of VPCs. Averaged over
5 runs.

6.3.4 Conclusion

The PoC demonstrated clear scalability advantages. Its runtime remained virtually constant
across different configurations, highlighting its suitability for iterative development cycles where
infrastructure was frequently modified and revalidated. Unlike AWS RA, which incurred con-
siderable latency due to deployment and teardown phases, the PoC enabled instant feedback
without provisioning any resources.

This showed that the PoC could dramatically reduce analysis time in real-world DevOps
workflows, enabling rapid iteration without sacrificing accuracy or completeness.

6.4 Summary
In summary, the evaluation demonstrated that the proof of concept (PoC) verifier was broadly
applicable to real-world Infrastructure as Code programs, successfully analyzing the majority
of Terraform modules and reachability queries sourced from the TerraDS dataset (Table 6.1,
Table 6.2). The tool exhibited low runtime overhead, with average query times suitable for
integration into CI/CD pipelines and development workflows. Comparative analysis with AWS
Reachability Analyzer highlighted the PoC’s significant scalability advantage, as it avoided
the time-consuming deployment and teardown phases required by post-deployment tools (Fig-
ure 6.2). While some limitations remained – primarily due to incomplete or erroneous IaC
configurations – the results confirmed the practical value and efficiency of pre-deployment
reachability analysis. Overall, the PoC provided a robust foundation for further research and
development in automated IaC verification.
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Chapter 7

Discussion and Outlook

The evaluation results demonstrate that the proof of concept successfully addresses both re-
search questions: it proves applicable to real-world IaC programs, successfully analyzing the
majority of Terraform modules from the TerraDS [9] dataset, and shows significant performance
advantages over post-deployment tools like AWS Reachability Analyzer. Building on these find-
ings, this discussion section examines the broader implications of the proposed approach. First,
we analyze the key advantages of the reachability analyzer, including its reusability through
abstract modeling, time and cost efficiency, and seamless integration into DevOps workflows.
Next, we address the limitations of the current implementation, particularly regarding dynamic
configuration values and provider-specific behaviors. Finally, we explore potential future work
directions, such as extending the verification approach to other infrastructure properties like
cost and energy efficiency, and integrating dynamic adaptation mechanisms for continuous op-
timization.

7.1 Advantages of the Reachability Analyzer Approach

7.1.1 Reusability Through Abstract Modeling

A key contribution of this thesis was the implementation of provider-specific resource types
for abstract infrastructure modeling. This process included analyzing cloud provider APIs,
defining abstract representations of resources such as VPCs, subnets, and instances, extending
the Terraform parser, and translating parsed configurations into their abstract equivalents. For
property-specific analyses – such as the network reachability use case presented in this work
– these abstractions were further mapped to domain-specific models (topology). Once imple-
mented, these resource abstractions were reusable across different IaC programs, configurations,
and verification tools, making the overall approach portable and extensible.

This modular design laid the foundation for a broader ecosystem of reusable infrastructure
models. Future work could extend this effort into a community-driven repository of shared
resource definitions. Similar initiatives, such as the AWS Resource Providers project1, demon-
strated the feasibility and benefits of such collaborative development, where resource types were
defined and maintained across tool boundaries.

1 https://github.com/org-formation/aws-resource-providers

48

https://github.com/org-formation/aws-resource-providers


7.1.2 Time and Cost Efficiency

By eliminating the need for infrastructure deployment, the reachability analyzer achieved a
substantial performance improvement over post-deployment tools such as AWS Reachability
Analyzer. Unlike static analyzers, it supported expressive queries involving the network topol-
ogy. Developers received actionable feedback within milliseconds, enabling fast iterations during
the development phase. This rapid feedback loop reduced turnaround time and avoided the
operational and financial costs associated with deploying test infrastructure.

7.1.3 Seamless Integration into DevOps Workflows

The reachability analyzer was designed for easy integration into existing DevOps pipelines and
developer tools. Because it operated locally and did not depend on actual cloud deployments,
it could be used in environments without cloud access, including local development setups and
CI/CD pipelines. This independence made it highly versatile: it could function as a standalone
verification step or be embedded into Integrated Development Environments (IDEs), such as
Visual Studio Code, to provide real-time validation as developers wrote their IaC programs.
This supported a shift-left approach to infrastructure validation, catching errors early and
improving overall development efficiency.

7.2 Limitations
The reachability analyzer, by design, performed offline verification and did not have access to
the output configuration. That is, values assigned dynamically by the cloud provider during
infrastructure deployment. Consequently, it could not reason about configuration behaviors
that depended on runtime-assigned values, such as IP addresses or instance IDs that were
referenced in other resources. For example, if a security group rule was configured to allow
traffic only from an IP that was dynamically assigned during deployment, the analyzer could
not determine this link ahead of time.

Another inherent limitation of the reachability analyzer was its reliance on the correctness
of cloud provider specifications. Since the analysis operated solely on the declared config-
uration, it assumed that resources behaved exactly as documented by the provider. Unlike
post-deployment tools that could query live infrastructure for actual behavior or enforcement
(e.g., verifying whether security group rules were applied as expected), the reachability analyzer
could not identify discrepancies caused by undocumented behavior or provider-side bugs. As
such, it could not validate the runtime enforcement of policies. This responsibility ultimately
lay with the cloud provider and fell outside the scope of static verification tools.

7.3 Future Work: Extending Early Verification of IaC Pro-
grams

While this work focused on the early detection and verification of network reachability issues
in Infrastructure as Code (IaC) programs, the underlying approach was broadly applicable to
other infrastructure properties that could be analyzed pre-deployment. One promising direc-
tion was the evaluation of cost efficiency: assessing whether the declared configuration led to
unnecessarily expensive infrastructure deployments. Integrating cost modeling into the early

49



verification process could allow teams to optimize infrastructure spending before provisioning
any resources.

Another possible research avenue was the analysis of energy efficiency. For instance, devel-
opers could define infrastructure-specific energy budgets or carbon impact goals, and the verifier
could provide actionable feedback when a configuration was likely to exceed those thresholds.
This aligned with the increasing emphasis on sustainable computing and green software engi-
neering practices.

Moreover, combining static analysis with dynamic adaptation mechanisms opened the door
for continuous optimization. A future extension of this work could involve runtime monitoring
and auto-configuration of IaC-defined infrastructure, where resource usage patterns informed
automated adjustments to the infrastructure (e.g., scaling policies, instance types, or region
selection).

An important area for future development is extending the system to support additional
cloud providers such as Microsoft Azure and Google Cloud Platform. This would require imple-
menting additional abstraction layers analogous to those used for AWS. Specifically, Terraform-
specific resources (e.g., google_compute_network, azurerm_virtual_network) would be mapped
to internal, provider-agnostic representations such as network, similar to the translation from
aws_vpc to network. By enriching the abstract object model and translation logic, the verifier
could perform consistent reachability and policy checks across heterogeneous cloud platforms,
thereby generalizing its applicability and increasing its practical relevance in multi-cloud envi-
ronments.

Altogether, these extensions represent a promising step toward more intelligent infrastruc-
ture design workflows. By embedding static verification into the early stages of development,
infrastructure engineers could receive actionable, context-specific feedback that goes beyond
correctness to include cost, sustainability, and scalability metrics. This would shift infrastruc-
ture development from a reactive to a proactive practice, minimizing misconfigurations and
resource waste before deployment.
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Chapter 8

Conclusion

This thesis presents a new approach to verifying cloud infrastructure defined as code, focusing
on pre-deployment analysis to detect misconfigurations before resources are provisioned. By
statically analyzing the intended target state and simulating the behavior of cloud resources,
we show that meaningful properties such as network reachability can be validated locally with
high accuracy and minimal runtime.

We implemented a prototype for Terraform configurations targeting AWS, and evaluated it
across two dimensions: applicability to real-world IaC programs and the scalability compared
to the AWS Reachability Analyzer. The evaluation demonstrates that the tool can process a
broad range of real-world configurations, offers orders-of-magnitude performance improvements,
and yields accurate results comparable to cloud-native tools.

The motivation for this work arises from the increasing complexity and criticality of cloud
infrastructure, as discussed in Chapter 1. The thesis first establishes the foundational concepts
and terminology in Chapter 2, and surveys the state of the art in IaC verification and related
tools in Chapter 3. Building on these foundations, Chapter 4 introduces the conceptual frame-
work for pre-deployment verification, emphasizing the need for static, property-specific analysis
that can be integrated early in the development lifecycle.

The core contribution is detailed in Chapter 5, where the design and realization of the
proof of concept (PoC) are described. The implementation leverages Go for its performance
and compatibility with Terraform’s HCL, and is architected around a modular design that
separates parsing, topology construction, and reachability analysis. The PoC demonstrates
how Terraform configurations can be parsed, abstracted, and analyzed to construct a network
topology model, enabling efficient reachability analysis without requiring cloud deployment.

A comprehensive evaluation, presented in Chapter 6, validates the approach on both real-
world and synthetic datasets. The results confirm that the verifier is broadly applicable, while
still being performant, with low runtime overhead suitable for CI/CD integration. The dis-
cussion in Chapter 7 highlights the advantages of abstract modeling, time and cost efficiency,
and seamless DevOps integration, while also acknowledging limitations such as the inability
to reason about runtime-assigned values and reliance on provider specifications. Future work
is outlined, including extensions to cost and energy efficiency analysis, and the potential for
runtime adaptation and continuous optimization.
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Beyond network reachability, our approach is extensible to other properties, including com-
pliance, cost, and energy efficiency. We envision a future where IaC verification becomes a
standard part of the development cycle, supported by a modular and community-driven frame-
work that integrates seamlessly into existing CI/CD workflows. The proposed tool contributes
toward this vision by making verification both accessible and practical, ultimately improving
the reliability and quality of cloud infrastructure engineering.
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