
TerraDS: A Dataset for Terraform HCL Programs
Christoph Bühler*

University of St. Gallen
St. Gallen, Switzerland

christoph.buehler@unisg.ch

David Spielmann*

University of St. Gallen
St. Gallen, Switzerland

david.spielmann@unisg.ch

Roland Meier
armasuisse

Thun, Switzerland
roland.meier@ar.admin.ch

Guido Salvaneschi
University of St. Gallen
St. Gallen, Switzerland

guido.salvaneschi@unisg.ch

Abstract—Infrastructure as Code (IaC) aims to automate
infrastructure management by enabling the definition of in-
frastructure configurations in programs, rather than manually
configuring hardware or cloud resources. Terraform is one of
the most widely used IaC tools, gaining significant traction
in recent years, as highlighted by its large and active user
community and widespread adoption in both open-source and
enterprise environments. Terraform’s code is written in the
HashiCorp Configuration Language (HCL), which defines the
infrastructure in a declarative manner. Despite the widespread
adoption of Terraform, there is no large-scale dataset available
for researchers to study IaC Terraform programs systematically.
To address this gap, we present TerraDS, the first dataset of
publicly available Terraform programs written in HCL. TerraDS
contains the HCL code and the metadata of 67,360 open source
repositories with permissive open-source licenses. The dataset
includes 279,344 Terraform modules with 1,773,991 registered
resources, all compiled into a reusable archive (~335 MB).

Index Terms—Cloud Computing, Configuration Management,
Open Source Software, Static Analysis

I. INTRODUCTION

Infrastructure as Code (IaC) automates the deployment and
provisioning of infrastructure for cloud environments. In IaC,
the infrastructure is defined in machine-readable configuration
files and programs, rather than manual processes, reducing
the likelihood of human error and helping developers manage
and version their infrastructure as they do with application
code [1]. There are several tools available for IaC, such
as Ansible [2], Chef [3], and Puppet [4]. These solutions
enable developers to define the steps to deploy infrastructure
and the applications that run on it. Other tools, like AWS
CloudFormation [5] and Terraform [6], allow developers to
define a desired state and derive the required steps to reach
that state from the current one. Terraform is widely used, with
371,981 public repositories on GitHub as of August 2024,
and major companies like Uber and Slack adopting it for
operations [7, 8]. Research on these programs is important
to understand best practices, identify common vulnerabilities,
and improve IaC tools and methodologies.

However, no comprehensive, publicly available dataset ex-
ists that provides a large-scale collection of Terraform HCL
programs, which hinders systematic analysis, evaluation, and
the development of new tools and techniques for IaC.

In this work, we present the TerraDS dataset of publicly
available HCL programs from GitHub. TerraDS consists of

*These authors contributed equally to this work.

62,406 GitHub repositories with permissive open-source li-
censes, including 279,344 Terraform modules and 1,773,991
registered resources. To demonstrate the practical applications
of the dataset, we perform example analyses, showcasing its
potential for future research in the field.

II. TERRAFORM IN A NUTSHELL

Terraform [6] allows declarative infrastructure management
in the HCL configuration language [9]. A configuration con-
sists of .tf files specifying the target state of the infrastruc-
ture [10].

Listing 1: A Terraform HCL program example.
1 provider "aws" {
2 region = "us-east-1"
3 }
4
5 data "aws_ami" "amazon_linux" {
6 most_recent = true
7 owners = ["amazon"]
8 }
9

10 resource "aws_instance" "instance" {
11 ami = data.aws_ami.amazon_linux.id
12 instance_type = "t2.micro"
13 }

Terraform programs are structured in modules, consisting of
a directory in the file system with at least one .tf file, which
can be referenced from other modules – fostering separate
development and software reuse. Listing 1 shows one such
module using the Amazon Web Services (AWS) provider. The
module queries the aws_ami data resource to retrieve the
latest Amazon Machine Image (AMI) ID (Section II) and
defines a managed resource, instance, for creating an AWS
EC2 instance with that AMI (Section II). The AMI serves as
the base system image, which is the pre-configured operating
system used to launch the instance.

Managed resources are objects in the target environment
that are created and directly handled by Terraform. By con-
trast, data resources already exist in the infrastructure or
environment, and are imported into the current IaC program as
read-only, i.e., they can be used to retrieve information about
existing resources. In Listing 1, the aws_instance retrieves
the ID of an existing AMI.

III. CONSTRUCTION OF THE DATASET

To construct TerraDS, we follow a multistep process to
collect, filter, and analyze Terraform programs. We first search
for repositories containing HCL files with a custom CLI

https://orcid.org/0000-0002-2224-1687
https://orcid.org/0009-0004-1715-2059
https://orcid.org/0000-0002-8268-9037
https://orcid.org/0000-0002-9324-8894

371,981 total HCL repositories found

304,621 with non permissive license

67,360 permissive HCL repositories

14 not clonable repositories

4,940 non-Terraform repositories

62,406 Terraform repositories
279,344 Terraform modules

1,773,991 Terraform resources

Fig. 1: Repository search and module analysis.

application in C#. Then, we filter the repositories based on
their license and relevance. Finally, we analyze the Terraform
modules with a Go program to extract metadata and defined
resources inside the Terraform program.

A. Repository Search

Several open source platforms exist, such as GitHub1,
GitLab2, and BitBucket3, just to name a few. Among those,
GitHub is perceived as the most used platform [11, 12].
GitHub also provides an advanced code search API [13].
Therefore, we used GitHub as data source for TerraDS.

We identify the repositories by GitHub’s code search using
the language search parameter as the query – since HCL is a
programming language recognized by GitHub. Since GitHub
limits search queries to 1,000 results, we sliced the queries by
repository creation date.

All queries included the term language:hcl and do
not include forks, i.e., TerraDS will not contain any forks.
The created:[date] was iterated and paginated to com-
ply with rate limits. For reference, the first query, using
created:<2016-01-01, returned 549 repositories that
were created before January 1, 2016. After that, we iterated
day by day, adjusting the creation date. No query from January
1, 2016, to August 31, 2024, exceeded 1,000 repositories. This
step results in 371,981 repositories.

B. Filtering

Figure 1 shows the filtering process of TerraDS. We iden-
tified 67,360 repositories that contain licenses which are
permissive, i.e., they allow derivative work and redistribution.
Repositories without a license fall back to normal copyright
law, which does not allow reproduction, redistribution, or de-
riving further work [14], and thus, are not included in TerraDS.
Next, we removed the non-clonable repositories (14), that
errored during the cloning process. Finally, the non-Terraform
repositories (4,940) were excluded: After parsing the .tf
files to check for valid Terraform modules (Section III-C), we

1https://github.com/
2https://gitlab.com/
3https://bitbucket.org/

Repository

Id: int (PK)
Name: text
FullName: text
CreatedAt: DateTime
Description: (null)

text
License: (null)

text
StarCount: int
ForkCount: int
HtmlUrl: text
GitUrl: text
SshUrl: text
CloneUrl: text
Homepage: (null)

text
Archived: bool
Topics: text[]
LatestCommitAt:

DateTime
LatestCommitSha:

text[]
SizeInKb: int

Module

Id: int (PK)
RepositoryId:

int (FK)
Path: text
Providers: text[]
ModuleCalls: json[]

Resource

Id: int (PK)
ModuleId: int (FK)
ResourceType: enum
Name: text
Type: text
Provider: text[]

Fig. 2: Entity relation diagram (ERM) of the dataset

removed 4,940 repositories which contain .tf files but do not
include any correct Terraform modules (and are incorrectly
identified as HCL files by GitHub). These steps result in
62,406 relevant repositories.

C. Module Collection and Analysis

Our Go program to collect and analyze the modules (1)
downloaded each repository, (2) searched directories for at
least one .tf file, (3) analyzed the Terraform module to
implement the filtering described above and to obtain the
metadata, and (4) stored the repository as a redistributive
*.tar.gz file.

In the analysis, we parse the IaC program and store the
relative path, the used/referenced providers, and the external
module calls. We also store additional information for all mod-
ules about the resources, such as the resource type (managed
or data), the used provider, the provider type (e.g. aws_vpc),
and the resource name.

IV. STRUCTURE OF THE DATASET

TerraDS contains the data of the 62,406 relevant repos-
itories, including 279,344 modules that contain 1,773,991
resources – 1,484,185 managed and 289,806 data resources.
TerraDS consists of two packages: a SQLite database with the
metadata (Figure 2) and an archive with the source code.

In the SQLite database, the repository table contains the
repositories’ metadata, such as name, clone URL, and the
license. The module table references a repository by its ID and
contains the relative path within the repository’s file structure.
Module entries also contain a string array with all used
providers and a list of JSON objects (with a name and source
property) with the external module calls. The resource table
stores, for each resource in a module, name, type, required
provider and whether it is a managed or data resource.

https://github.com/
https://gitlab.com/
https://bitbucket.org/

1 2 3 4 5 6 7 8 9 10 11 ≥12

0

10,000

20,000

30,000

0

500

1,000

1,500

Modules per Repository

#
of

R
ep

os
ito

ri
es

A
ll

#
of

R
ep

os
ito

ri
es

To
p

5%All Repositories Top 5% Repositories

Fig. 3: Distribution modules per repository.

The source code archive contains ~335 MB of compressed
source code. The archive only contains the relevant HCL code
and the version history of the repositories is not preserved.

TerraDS is long term archived on Zenodo4. The tools that
were used to gather and analyze the data are also provided
to allow reproducibility. In addition to the Zenodo entry, the
scripts are also publicly available on GitHub in an open source
repository5 under the CC-BY-4.0 license.

V. DATA ANALYSIS

To demonstrate the use of TerraDS, in this section, we
present an example analysis on the metadata and one on the
source code using the Checkov [15] static analyzer.

A. Metadata Analysis

Figure 3 shows the distribution of modules per repository
through two histograms: one for all repositories and one for
the top 5% (based on their star ratings). The histograms are
based on the metadata and can be simply retrieved with a
SQL query (see Figure 2). The y-axes have different absolute
values, but are scaled proportionally.

Figure 3 shows that about half of the repository contain one
module. The last bin (≥ 12) aggregates all repositories with
12 or more modules. On average, each repository includes 4.5
modules and the repository with the most modules has 1,189
modules.6 Moreover, the histogram of the top 5% by stars is
skewed to the right, indicating that repositories with more stars
tend to have more modules.

Figure 4 shows the distribution of lines of code (LOC),
again for all repositories and for the top 5%. Note that the x-
axis is in logarithmic scale. The average LOC per repository
is 912, while for the top 5% by stars, the average increases to
2,657. The maximum LOC for a repository is 550,1887.

Figure 5 displays the number of repositories created each
year (left), as well as the distribution of providers used in
the repositories (right). First, the number of repositories that
are created is increasing, indicating the growing popularity
of Terraform and IaC in general. Second, AWS is the most
popular provider, followed by other cloud providers such as
Azure and Google Cloud. Notably, the Random provider is
also popular, offering randomness specifically designed for

4https://doi.org/10.5281/zenodo.14217385
5https://github.com/prg-grp/hcl-dataset-tools
6https://github.com/epam/ecc-aws-rulepack
7https://github.com/tamsalem/terragoat-gh-1

20 21 22 23 24 25 26 27 28 29 210 211≥212

0

5,000

10,000

15,000

0

200

400

600

LoC per Repository (Log Scale)

#
of

R
ep

os
ito

ri
es

A
ll

#
of

R
ep

os
ito

ri
es

To
p

5%All Repositories Top 5% Repositories

Fig. 4: Distribution of lines of code per repository.

≤16 17 18 19 20 21 22 23 24*
0

5,000

10,000

15,000

Creation Year

#
of

R
ep

os
ito

ri
es

AWS 29.9%AzureRM 10.7%

Random 8.8%

Google 8.2%

null 5.3%

others 37.1%

Fig. 5: Repositories created per year (left) and the distribution
of providers used in repositories (right).

IaC. Unlike typical providers, it does not interact with external
services. Instead, it generates random values during resource
creation and holds them steady throughout the resource’s
lifecycle, preserving idempotency and reproducibility.

Table I lists the top 10 resource types by total occur-
rences and their coverage across the 62,406 repositories. The
most frequently used is AWS Security Group, which appears
47,468 times and is in more than a quarter (26.21%) of the
repositories. Notably, the Null Resource is the only non-AWS
resource in the top 10. It acts as a placeholder without creating
actual infrastructure and is commonly used to run arbitrary
commands on the local machine.

TABLE I: Top 10 resource types by total occurrences (percent-
age of 1,773,991 total resource occurrences) and repository
coverage (percentage of 62,406 total repositories).

Resource Type Occurrences Repo Coverage

AWS Security Group 47,468 (2.68%) 16,359 (26.21%)
AWS Subnet 43,529 (2.45%) 11,106 (17.80%)
AWS IAM Role Policy Attachment 39,586 (2.23%) 8,628 (13.83%)
AWS IAM Role 39,145 (2.21%) 13,060 (20.93%)
AWS IAM Policy Document 38,967 (2.20%) 9,217 (14.77%)
AWS Security Group Rule 33,283 (1.88%) 4,615 (7.40%)
AWS Route Table Association 31,547 (1.78%) 8,758 (14.03%)
AWS Instance 31,502 (1.78%) 12,749 (20.43%)
Null Resource 30,618 (1.73%) 8,920 (14.29%)
AWS IAM Policy 24,377 (1.37%) 7,467 (11.97%)

B. Analysis with Checkov

In this section, we analyze TerraDS to determine which
security checks are most frequently violated by users. To this
end, we run Checkov [15], a static analysis tool for IaC, and
show the most frequently triggered checks in Table II. Checkov
classifies checks into four severity levels: low, medium, high,

https://doi.org/10.5281/zenodo.14217385
https://github.com/prg-grp/hcl-dataset-tools
https://github.com/epam/ecc-aws-rulepack
https://github.com/tamsalem/terragoat-gh-1

and critical. This is because some checks are simply guideline
violations, while others point out serious security issues. The
top 10 checks in Table II are of low or medium severity, except
for the sixth and eighth check, which are of high severity. For
example, the sixth check indicates that data stored in the AWS
Launch Configuration or Elastic Block Store is not encrypted
and can potentially be accessed by unauthorized parties.

TABLE II: Top 10 most frequently triggered checks by
Checkov in 62,406 repositories.

Description of Violation Violations

Terraform module source does not use a commit hash 109,655
AWS security group rule does not have a description 62,321
AWS Instance Metadata Service has version 1 enabled 41,732
Detailed monitoring is disabled for AWS EC2 instances 35,534
AWS EC2 instance is not EBS optimized 35,353
Data stored in AWS Launch Configuration or EBS is unencrypted 32,603
No IAM role is attached to AWS EC2 instance 29,635
Terraform module source does not use a commit tag 28,622
AWS S3 Bucket does not have cross-region replication enabled 20,460
AWS S3 Bucket does not have event notifications enabled 20,414

We summarize the top 10 most frequently triggered checks
classified as high severity in Table III. For example, the fourth
violation highlights the creation of an Amazon EC2 instance
with a public IP address, which poses a security risk because
it directly exposes the resource to the public internet. The
only critical issue we found is the creation of an AWS IAM
policy that grants full administrative privileges and provides
unlimited access to all resources in an AWS account [16]. This
critical check is violated 392 times across 267 repositories.

TABLE III: Top 10 most frequently triggered checks by
Checkov classified as high.

Description of Violation Violations

Data stored in AWS Launch Configuration or EBS is unencrypted 32,603
Terraform module source does not use a commit tag 28,622
Project-wide SSH keys are used for GCP VM instances 8,734
AWS EC2 instance has a public IP 8,217
GCP boot disks do not use customer supplied encryption keys 7,210
Azure Storage is not encrypted with a customer key 6,622
Azure Storage Blobs do not restrict public access 6,099
AWS Load Balancer is not using TLS 1.2 or newer 5,829
Azure Key Vault secrets do no have expiration date 4,294
Not all data stored in AWS Aurora is securely encrypted at rest 4,131

VI. LIMITATIONS

In this section, we discuss the threats to validity related to
the creation and the adoption of TerraDS.

a) Internal threats to validity: The internal validity of
studies based on TerraDS may be impacted by the quality of
the dataset. The dataset is constructed based on the GitHub
API, on whose reliability we depend upon. However, the API
has been used successfully for other datasets [17, 18]. With
regard to the dataset’s quality, we applied several techniques
to ensure that TerraDS only contains repositories with valid
Terraform code. However, the dataset may still contain errors,
inaccuracies or irrelevant repositories due to the limitations of
the methods applied.

b) External threats to validity: Since IaC is an evolving
field, the dataset may not be up-to-date with the latest Ter-
raform practices. We only analyzed created repositories up to
August 31, 2024. Therefore, the dataset does not contain any
repositories created after this date. Additionally, only publicly
available repositories on GitHub are considered. There exist
more repositories on other platforms like GitLab or BitBucket
as well as private repositories (e.g. for proprietary software of
companies) that are not included in the dataset.

VII. RELATED WORK AND DATASETS

To the best of our knowledge, there is no publicly avail-
able dataset that focuses on Terraform (HCL) programs.
Sokolowski et al. constructed the PIPr dataset, which focuses
on Programming Languages Infrastructure as Code (PL-IaC)
programs [19] and which is the closest to our work. Markovt-
sev and Long introduced the Public Git Archive, containing
182,014 repositories, of various languages, that they ordered
by the number of stars [17].

In the context of IaC and Terraform, Begoug et al. intro-
duced TerraMetrics, a tool that extracts code metrics from Ter-
raform programs to analyze the quality of IaC programs [20].
Before TerraMetrics, Begoug et al. conducted an empirical
study of Stack Overflow posts to identify the current problems
and solutions in IaC for the practitioners [21].

Other work focuses more on the quality of IaC programs.
Bessghaier et al. analyzed the occurrence and the impact of
code smells in Ansible programs [22]. Also, Opdebeeck et al.
analyzed security IaC smells in Ansible [23].

VIII. CONCLUSION

We presented TerraDS, the first publicly available dataset
of Terraform HCL programs. TerraDS is built by collecting
and indexing metadata from 371,981 GitHub repositories,
including 62,406 repositories with valid Terraform code and
licenses permitting redistribution and further analysis. The
metadata includes repository details such as star counts and
licenses, along with information on Terraform modules and
their contained resources. Along with the metadata, the HCL
source code of all 62,406 repositories is provided in an archive.
We further demonstrated the dataset’s utility by analyzing vi-
olated checks identified by Checkov. We believe that TerraDS
further fosters the advancement of research in the area of
Infrastructure as Code. As an example, researchers can use
the dataset to improve the current state of the art in static
analysis or testing and verification tools for HCL programs.

IX. ACKNOWLEDGMENTS

This work has been co-funded by the Swiss National
Science Foundation (SNSF, Grant No. 200429), by armasuisse
Science and Technology, and by European Union’s Horizon
research and innovation programme (CAPE Project, Grant No.
101189899).

REFERENCES

[1] K. Morris, Infrastructure as Code. O’Reilly Media,
2020.

[2] Red Hat, “Ansible,” 2024. [Online]. Available: https:
//www.ansible.com/

[3] Progress Software Corporation, “Chef,” 2024. [Online].
Available: https://www.chef.io/

[4] Perforce Software, “Puppet,” 2024. [Online]. Available:
https://www.puppet.com/

[5] Amazon Web Services AWS, “AWS CloudFormation,”
2024. [Online]. Available: https://aws.amazon.com/
cloudformation/

[6] HashiCorp, “Terraform,” 2024. [Online]. Available:
https://www.terraform.io/

[7] Uber, “Our Tech Stack: Part One — The
Foundation,” 2024, accessed: 2024-10-15. [On-
line]. Available: https://www.uber.com/en-CH/blog/
tech-stack-part-one-foundation/

[8] Slack Engineering, “How We Use Terraform at
Slack,” 2024, accessed: 2024-10-15. [Online]. Available:
https://slack.engineering/how-we-use-terraform-at-slack/

[9] HashiCorp, “HashiCorp Configuration Language,” https:
//github.com/hashicorp/hcl, 2024, accessed: 2024-08-16.

[10] M. Howard, “Terraform — Automating Infrastructure as
a Service,” CoRR, vol. abs/2205.10676, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2205.10676

[11] N. McDonald and S. Goggins, “Performance and
Participation in Open Source Software on GitHub,”
in CHI ’13 Extended Abstracts on Human Factors in
Computing Systems. New York, NY, USA: Association
for Computing Machinery, Apr. 2013, pp. 139–
144. [Online]. Available: https://dl.acm.org/doi/10.1145/
2468356.2468382

[12] V. Cosentino, J. L. Cánovas Izquierdo, and J. Cabot, “A
Systematic Mapping Study of Software Development
With GitHub,” IEEE Access, vol. 5, pp. 7173–7192,
2017. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/7887704

[13] GitHub, “Searching for Repositories,”
2024, accessed: 2024-08-16. [Online].
Available: https://docs.github.com/en/search-github/
searching-on-github/searching-for-repositories

[14] ——, “Licensing a repository,” 2024,
accessed: 2024-08-19. [Online]. Avail-
able: https://docs.github.com/en/repositories/
managing-your-repositorys-settings-and-features/
customizing-your-repository/licensing-a-repository

[15] Checkov by Prisma Cloud, “Checkov,” 2024. [Online].
Available: https://www.checkov.io/

[16] Prisma Cloud, “AWS IAM Policies — BC
AWS IAM 47,” 2024, accessed: 2024-10-15.
[Online]. Available: https://docs.prismacloud.io/

en/enterprise-edition/policy-reference/aws-policies/
aws-iam-policies/bc-aws-iam-47

[17] V. Markovtsev and W. Long, “Public Git Archive: a
Big Code dataset for all,” in Proceedings of the 15th
International Conference on Mining Software Reposito-
ries. New York, NY, USA: Association for Computing
Machinery, May 2018, pp. 34–37. [Online]. Available:
https://dl.acm.org/doi/10.1145/3196398.3196464

[18] O. Dabic, E. Aghajani, and G. Bavota, “Sampling
Projects in GitHub for MSR Studies,” in 2021
IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR), May 2021, pp. 560–564.
[Online]. Available: https://ieeexplore.ieee.org/abstract/
document/9463094

[19] D. Sokolowski, D. Spielmann, and G. Salvaneschi,
“The PIPr Dataset of Public Infrastructure as Code
Programs,” in Proceedings of the 21st International
Conference on Mining Software Repositories. New
York, NY, USA: Association for Computing Machinery,
2024, pp. 498–503. [Online]. Available: https://doi.org/
10.1145/3643991.3644888

[20] M. Begoug, M. Chouchen, and A. Ouni, “TerraMetrics:
An Open Source Tool for Infrastructure-as-Code (IaC)
Quality Metrics in Terraform,” in Proceedings of
the 32nd IEEE/ACM International Conference on
Program Comprehension. New York, NY, USA:
Association for Computing Machinery, Jun. 2024, pp.
450–454. [Online]. Available: https://dl.acm.org/doi/10.
1145/3643916.3644439

[21] M. Begoug, N. Bessghaier, A. Ouni, E. A. AlOmar,
and M. W. Mkaouer, “What Do Infrastructure-as-
Code Practitioners Discuss: An Empirical Study on
Stack Overflow,” in 2023 ACM/IEEE International
Symposium on Empirical Software Engineering and
Measurement (ESEM). New Orleans, LA, USA:
IEEE, Oct. 2023, pp. 1–12. [Online]. Available:
https://ieeexplore.ieee.org/document/10304847/

[22] N. Bessghaier, M. Begoug, C. Mebarki, A. Ouni,
M. Sayagh, and M. W. Mkaouer, “On the
Prevalence, Co-occurrence, and Impact of Infrastructure-
as-Code Smells,” in 2024 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER). Rovaniemi, Finland: IEEE,
Mar. 2024, pp. 23–34. [Online]. Available:
https://ieeexplore.ieee.org/document/10589858/

[23] R. Opdebeeck, A. Zerouali, and C. De Roover,
“Control and Data Flow in Security Smell Detection for
Infrastructure as Code: Is It Worth the Effort?” in 2023
IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR). Melbourne, Australia:
IEEE, May 2023, pp. 534–545. [Online]. Available:
https://ieeexplore.ieee.org/document/10174011/

https://www.ansible.com/
https://www.ansible.com/
https://www.chef.io/
https://www.puppet.com/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://www.terraform.io/
https://www.uber.com/en-CH/blog/tech-stack-part-one-foundation/
https://www.uber.com/en-CH/blog/tech-stack-part-one-foundation/
https://slack.engineering/how-we-use-terraform-at-slack/
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://doi.org/10.48550/arXiv.2205.10676
https://dl.acm.org/doi/10.1145/2468356.2468382
https://dl.acm.org/doi/10.1145/2468356.2468382
https://ieeexplore.ieee.org/abstract/document/7887704
https://ieeexplore.ieee.org/abstract/document/7887704
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://docs.github.com/en/search-github/searching-on-github/searching-for-repositories
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/licensing-a-repository
https://www.checkov.io/
https://docs.prismacloud.io/en/enterprise-edition/policy-reference/aws-policies/aws-iam-policies/bc-aws-iam-47
https://docs.prismacloud.io/en/enterprise-edition/policy-reference/aws-policies/aws-iam-policies/bc-aws-iam-47
https://docs.prismacloud.io/en/enterprise-edition/policy-reference/aws-policies/aws-iam-policies/bc-aws-iam-47
https://dl.acm.org/doi/10.1145/3196398.3196464
https://ieeexplore.ieee.org/abstract/document/9463094
https://ieeexplore.ieee.org/abstract/document/9463094
https://doi.org/10.1145/3643991.3644888
https://doi.org/10.1145/3643991.3644888
https://dl.acm.org/doi/10.1145/3643916.3644439
https://dl.acm.org/doi/10.1145/3643916.3644439
https://ieeexplore.ieee.org/document/10304847/
https://ieeexplore.ieee.org/document/10589858/
https://ieeexplore.ieee.org/document/10174011/

	Introduction
	Terraform in a Nutshell
	Construction of the Dataset
	Repository Search
	Filtering
	Module Collection and Analysis

	Structure of the Dataset
	Data Analysis
	Metadata Analysis
	Analysis with Checkov

	Limitations
	Related Work and Datasets
	Conclusion
	Acknowledgments

