AR-Based
Navigation in
Crowded
Public Spaces

January 2019
Michael Nissen 428074 University of
Paul Nylund 84930028 Southern Denmark

Thank
you

Our projected is indebted to the knowledgeable
friends and experts that we were so lucky to speak
with. We are grateful for their invested time and
continued interest.

Alexis Rappaport (Architect, Clive Wilkinson
Architects), for supporting us through several
long discussions

Asa Kremmer (Architect, HASSELL Studio), for
testing our paper prototype and participating
in a lengthy interview

Cindy Soo (Strategic Director, IKEA), for
showing such strong interest in our project and
referring us to Curtis Barrett

Curtis Barrett (Principal Technical Program
Manager, Google), for taking the time to offer us
plenty of invaluable advice

Elizabeth Churchill (Director of UX, Google),
for showing strong interest in our project

Marie Ehrndal (Design Technologist, Topp), for
helping us iron out a bunch of bugs in Unity3D

Michael Knopoff Montalba
Architects), for being so supportive and giving

(Principal,

us a tour of his firm

Moina Medbge Tamuly (Student, NTNU), for
his interest in using the Lace technology as part
of'a public exhibition in Oslo

Morten Nissen (Apprentice, Branel), for
helping out with load balancing on Lace’s

virtual servers

Nikolas Gundersen (Creator, Norwegian Rain),
for offering his facilities for initial prototype
testing

Spencer Cappiello (Co-Founder, Where Art
Thou), for testing out our paper prototype, as
well as endless discussions about augmented
reality

We would like to make a special shout-out to our
supervisor, Danielle Wilde (Associate Professor,
SDU), for being so kind and supportive, keeping
us on track whenever we inevitably drifted
astray.

, I ‘Table of
Contents

1. Abstract

2. Introduction

3. Background

4. Method

5. Expert Interviews

5.1. Principal Technical Program
Manager at Google

5.2. Principal at Montalba
Architects

5.3. Landscape Architect at
HASSELL Studio

6. Exploration

6.1. Venues

6.2. Establishing a Control

6.3. Measuring Success

7. Public User Testing

7.1.Method

7.2. Results

7.3. Analysis

8. Survey

8.1. Method

8.2. Results and Analysis

9. User Personas

9.1 Bruno

9.2. Victoria

10. Iterating and Brainstorming

10.1. Conceptualizing

10.2. Paper Prototyping

10

11

12

12

13

13

14

14

15V

16

17

17

19

21

21

21

22

23

25

10.2.1. Creation

10.2.2. Testing

11. Final Prototype: Design

11.1. Flow and Layout

11.2. Visual Design

12. Final Prototype: Development

12.1. Client

12.1.1. Mobile Platform

12.1.2. Augmented Reality

12.1.3. Development Stack

12.1.4. Indoor Positioning

12.1.5. Pathfinding

12.1.6. Project Structure

12.2. Server

12.2.1. Server Droplet

12.2.2. Machine Learning

12.2.3. Object Recognition

12.2.4. Density Grid

13. Final Prototype: Reactions

14. Discussion

15. Reflection

16. Conclusion

17. Next Steps

18. Bibliography

19. Appendix

19.1. Appendix

27
29
31
33
34
34
34
35
37
38
39
43
45
45
45
49
51
55
6o

62

65

66

68

71

71

1. Abstract

The lack of dynamism of signage displays in
crowded public spaces can lead to confusion
amongst pedestrians about how to safely and
efficiently navigate these spaces. In this project,
we focused on serving pedestrian’s individual
requirements about how to best navigate
towards a destination through such crowded
spaces. We also investigated methods of
implementing real-time crowd-analysis to
ensure that our solution could respond
dynamically to users’ behavior. Our response is
an augmented reality-based navigation app that
dynamically updates its route according to the
calculated density of all pedestrians in a space.
We spoke with a range of experts across
different fields, from consumer technology to
architecture, to learn about how we could
implement a solution with minimal upfront
cost and greater market-value. We conducted
user-studies, experiments, and a survey
—comparing the resulting data to research in
the field of crowd control and analysis. Our
response, which we call ‘Lace’, can help alleviate
situations in which crowd control is needed
without prior warning. It can consequently act
as an early warning system for dangerous
overcrowding. Lace could be implemented in
public transportation terminals, wherein travel

time is a significant concern.

All the code can be found in the following
GitHub repositories:

https://github.com/qruzz/lace-web
https://github.com/paultnylund/lace-server,

https://github.com/paultnylund/lace-mobile

2. Intro—
duction

Variation in signage can be confusing for

traveling pedestrians, potentially causing
diversions at the expense of time or energy. The
lack of real-time signage augmentation is a
safety issue pertaining to crisis-response and
other situations in which individuals in crowds

would need to be advised.

As the world becomes increasingly globalized,
differing signage patterns can be difficult to
translate for travelers. Real-time signage
augmentations can be expensive, requiring
human or structural resources to direct large
groups Personalized

of people. signage

augmentations are rare outside of private tours.

The opportunity herein lies in the potential to
create an immersive solution which assists
individuals in navigating public spaces. This
could amount to more effective crowd-control
in said space, assuming that several of the
aforementioned individuals are provided for.
We aim to design a scalable system that can be
integrated into existing public spaces with little
to no added infrastructure.

Our response is called ‘Lace’ because it is
designed with the ever-changing fabric of
interactions between pedestrians, obstructions,
and spaces in mind. Lace provides dynamic and
responsive pedestrian navigation based on
individual user input and collective foot traffic.
Lace responds to the collective movement of
pedestrians through a public space. Through an
augmented reality interface, Lace responsively
advises each active participant about how to
navigate through that space in order to reach a
specified or changing destination. In ensuring
that Lace is able to inform users in real-time, it

Figure 1: Paul Nylund (left) and Michael Nissen (right)

accommodates unforeseen circumstances, such
as users spontaneously navigating to points of
interest.

Lace can be built upon the widespread
infrastructure of existing security cameras.
Current consumer-focused crowd-control
solutions add physical infrastructure or require
human labor. Adding such amenities is an
expensive and thus difficult-to-scale practice.

Hence, Lace does not consider this practice.

The team that worked on this project is
comprised of Michael Nissen and Paul Nylund.
The two of us undertook this project together, as
we have worked together on many similar
projects before. Because of this, we are familiar
with each others process. We are both
passionate about questioning the role of
technology in our everyday lives, continually
striving to build ubiquitous solutions for the
betterment of society. While we share a similar
perspective and common knowledge, we
specialize in different areas making decision-
making a simpler process. Having different
areas of expertise helps us distribute the work

between us in an efficient way, allowing us to

achieve more in a shorter timespan.

Michael Nissen (http://www.michaelnissen.me)
studied Computer Science at the University of
Aarhus (AU) before studying Interaction
Design Engineering at the University of
Southern Denmark (SDU). During a semester
abroad in Paris, France he followed a masters in
Embedded Systems at Ecole dIngénieurs.
Living in Paris led him to take an internship at
Snips.ai during his sixth semester. He has
worked on numerous development projects as a
self-employed software engineer for many years
earning him expertise in safety-critical
full-stack

engineering practices and

development.

Paul Nylund (https://www.paulnylund.com)
studied Industrial Design Engineering at The
Hague University (THUAS) in the Netherlands,
before moving to Denmark to study Interaction
Design Engineering at the University of
Southern Denmark (SDU). He spent his
summers working as a designer or frontend
developer for software companies in New York,

New York and Oslo, Norway. During his fifth
semester at SDU, Nylund studied Industrial
Design at the Norwegian University of Science
and Technology (NTNU), where he worked on
projects involving machine learning. During
his sixth semester, Nylund was employed as an
Interaction Design Intern at ‘ustwo’ in Malmo,
Sweden.

3. Background

As urban areas become bigger and denser,

crowd-management becomes increasingly
important [12]. And just as crowd behavior is
unpredictable, so are crowd-related accidents
[12]. This makes studying accidents decidedly
difficult in the present day while strengthening
the argument for persistent crowd-analysis
solutions, such as Lace. Computer vision can be
especially effective for analyzing especially
dense crowds [12]. Feliciani describes the
“intrinsic risk” of a crowd as the product of the
congestion level and density in a space. Hence,
making accurate density measurements could
be a means to prevent dangerous overcrowding
in the future. Through guiding pedestrians
around crowded areas, our response, dubbed

‘Lace’, could offer this solution.

How pedestrians move is not at all random. In

fact, pedestrian movements are often
influenced by their personal motivations [18].
These motivations can be treated as forces,
acting towards a goal. Providing guidance to
pedestrians effectively may turn out to be quite
difficult, as

environments through their own frame of

most people interpret
reference. Specifically, it has been determined
that all pedestrians have a preferred velocity
—their preferred walking pace according to an
environment (averaging 1.34 m/s) [22]. This
preferred velocity can be interpreted as a force,
exerting itself on a user’s physical behavior. A
user’s actual velocity will change exponentially
over time towards that of their preferred

velocity [22].

Some simulation models are based on physical

theory, treating crowds as a whole as if they were
a liquid or gas. Some of these simulations have
proved to be quite successful at predicting
pedestrian movement [18]. Users’ individual
preferred velocity force, as well as external
social forces and obstacle forces, act on users
and change their behavior over time. For
example, pedestrians will make small changes
in their movements to avoid other
pedestrians and obstructions
around them [19]. Small changes
made across crowds cumulatively
affect the rate of individual approaches to each
respectively preferred velocity. In an obstacle-
free environment, pedestrians approach their
preferred walking velocity exponentially over
time [22]. Determining velocities is helpful in
programming simulation models. Additionally,
the ability to measure individual velocities
could introduce opportunities for
optimization; predictive algorithms could be
run at varying rates for different individuals,
depending on their walking velocity [8]. In our
case, however, measuring pedestrians’ velocities
with the server was determined to be negligible.
Because we were detecting pedestrians’
positions with close to real-time frequency,
predicting their individual courses was
unnecessary. Nonetheless, measuring velocity
on individual users’ devices could still be useful
when calculating the time remaining in their
journeys. Pedestrians in the real world are
generally quite coordinated, planning much
further ahead than their

counterparts [8].

simulated

Pedestrians have been shown to imitate others
and/or change their own fundamental behavior
in response to crowd dynamics [15]. Fridman
offers Social Comparison Theory as further
explanation for this behavior; humans will
typically mimic others if they are failing to
objectively evaluate their own state.
Implementing Social Comparison Theory in
crowd simulations has been shown to quicken
the formation of lanes. While pedestrians have
a natural tendency to form separate lanes when
they are walking towards each other [18], there

still exists a significant amount of friction

Photo by mauro mora on Unsplash

between pedestrians —yet another potential
force impacting an individual’s walking
velocity. These lanes could form as a result of
pedestrians’ personal reluctance to
accommodate other pedestrians’ conflicting
describes this

paths [19]. Johansson

phenomenon as dynamic stripe formation [22].

It is possible to calculate the potential

movement of single pedestrians using a social

force model. A social force model is calculated
based on a series of forces, including a preferred
force, an interaction force, and obstacle force.
The preferred force describes the willingness of
a pedestrian to reach their preferred walking
velocity. An interaction force describes the
willingness of a pedestrian to avoid
surrounding pedestrians. An obstacle force is a
force which causes pedestrians to keep their
distance from inaccessible space. Perhaps
another force could be added, which describes
the influence that signage and commercial
stimuli may exert on certain users. A random
force, or fluctuation variable, has previously
been introduced as a means to resolve the
difficulty of predicting spontaneous decisions
[18].

In the context of Lace is that if a user feels
uncertain about their own whereabouts, there is
a good chance they might look to others
—especially persons whom they perceive as
being similar to themselves— as a guide for
where they should walk and/or how they should
behave in a crowd.

Increasing the amount of circulation in smaller
spaces can help such spaces feel wider and
thereby more accommodating [3]. Helbing
describes the

roundabouts”

emergence of “unstable
in pedestrian traffic [16],
indicating that circular patterns emerge as a
collective subconscious effort to improve the
average efficiency of foot traffic. By fostering
increased circulation in crowded spaces, one
could create the illusion of greater personal
space for all pedestrians involved. By efficiently
guiding pedestrians through crowds, Lace
improves users’ relationships with a public

space.

Pedestrians will choose routes that allow them
to walk in long, straight lines, avoiding crowds
and obstacles at any cost [16][8][5]. Elderly
pedestrians or pedestrians carrying heavy
items will generally choose to walk longer
routes to avoid taking the stairs [27]. This could
be due to the fact that pedestrians will prefer to
make the smallest amount of decisions en route

to their destination [27]. Millonig introduces
five different navigation strategies exhibited by
pedestrians [27]:

- random (lack of information)

- taxonomic (following visual cues towards a
goal)

+ praxic (forewarning with distance or time-
based measurements)

-+ route (using landmarks)

+ locale (by mental reconstruction of an

environment)

The use of landmarks, or ‘salient objects’, as
visual cues can be an extremely effective
wayfinding strategy [27][5]. While existing
signs can serve as effective landmarks [27],
signs vary quite a lot from destination to
destination, making their usage decidedly less
scalable. Lace was predominantly based on
taxonomic navigation, in that its primary
purpose is to display a persistent guiding path
towards a user’s chosen destination. The path
itself is made to support praxic navigation by
textually conveying the remaining distance to
the destination.

4. Method

We started our journey in Copenhagen airport,

waiting to board our flight to Los Angeles,
California. We would spend three weeks
traveling from Los Angeles to the San Francisco
Bay Area, meeting with various experts within
architecture as well as consumer technologies
along the way. In these three weeks, we gained a
lot of insights pertaining to our initial project
proposal. These insights would help reframe
our project going forward. Our user-centered
work on the project would not truly kick off
until we touched down in Melbourne, Australia
later that month. Of course, that followed a
layover in tropical honeymoon destination,
Nadi, Fiji. Who says students can’t enjoy life
once in a while? We stayed in Melbourne for
close to three months, conducting user
research, designing prototypes, developing, and

writing.

To define the overall project structure,a GANTT
chart —or categorized timeline was created
[Appendix]. We first determined different
preliminary tasks of the project. These tasks
were then grouped into larger phases, including
the following project-specific subsections. For
some time, we were planning on using the Agile
framework for organizing our project tasks.
Agile is a method of planning engineering
projects in a structured fashion while allowing
tasks to be periodically evaluated. We decided
against using Agile for during the initial design
phase when working with an unstructured

process could help us work openly with several

concepts when it mattered the most. Our
interest in using Agile eventually dwindled at
the beginning of the development phase, as we
became less certain of who would be benefitting
from Agile’s contributions to our parallel

workflows.

Preliminary Investigation and Literature

Review

This phase was comprised of interviews with
experts in the fields of architecture and
consumer technology. We had also set out to
establish a user group, or groups, in Melbourne,
Australia with whom to conduct research.
Additionally, time was allotted for researching
and making sense of academic papers and/or
articles that

could provide supporting

arguments for this project.

User Studies

We were determined to adhere to a
participatory design process throughout this
project. Participatory design is, in essence, is an
invitation for users themselves to contribute to
the design process, validating or negating any
learnings or decisions along the way [40]. The
involvement of participatory design in our

process was dependent on the readiness of the

prototype and consequently our ability to test it.

Prototyping

The team considered user feedback in the
design and ideation of prototypes. One or more
low-fidelity prototypes would have to be created
quickly with limited resources, in an effort to
retain focus on feedback and iteration until
sufficient data had been found. The role of low-

fidelity prototypes was to gain insights from

Ca

users with a minimum investment of time,
energy, and funds. The high-fidelity prototype
would be synthesized towards the end of the
process, based on the total collected insights

from the low-fidelity prototypes.

|

Figure 2: Waiting room at the Google Hardware
Lab

5. Expert
Interviews

In an effort to further clarify our concept, we
conducted several expert interviews. These
experts were selected from a wide set of what we
determined were relevant fields to our project.
They ranged from specialism in architecture to
system design. We were especially interested in
learning from architects, as their work often
considers the movement of people through
space.

The remainder of this section will detail each of
their
perspective on and position on our project

the expert interviews, outlining

proposal.

5.1. Principal

Technical Program
Manager, Google

Curtis Barrett is the Principal Technical
Program Manager of Consumer Hardware
Chipsets at Google Inc. He was previously
Senior Technical Program Manager of Google
Glass and Program Director at Intel, where he
focused on augmented reality wearables. Given
his history of managing such large and
consequential projects, we felt that Barrett
could offer significant insight on how we could
seek to develop our response to be both scalable
and future-proof.

In September 2018, we met with Barrett at

Google headquarters in Mountain View,
California. We presented the project definition
at the time, as well as our hunches about how
certain technologies might be leveraged. We
hoped he would either reject or acknowledge
some of these hunches, thereby helping us set

further limitations to the project scope.

Coming into our meeting with Barrett,
our proposed idea featured real-time
anticipation of users’ movements in a
space. Barrett was pessimistic about this
idea, assuring wus that accurately

predicting a single person’s movement
—given all the variables that arise in such a
scenario— would be extremely difficult to
accomplish in the timespan of the project. This
could be especially true for predicting the
movements of dozens of users in low-latency
real-time.

Barrett urged caution about the amount of
processing power required to track crowds of
unique individuals. The potential expenses
associated either with running servers or
ensuring that users experience a minimal delay
when interacting with our solution would have
to be minimal in order for it to be considered as
a feasible option; lowering the cost of our
solution could consequently lead to wider
adoption. Barrett explained that keeping
these time and energy costs low could lie
beyond the scope of the project’s 3-month
timeframe. He suggested instead that we
focus on proving that we could accurately
predict the movements of people and verify
said prediction through a highly controlled
experiment.

Barrett strongly favored the use of cameras for
collecting data about user behavior. He
referenced Nest, claiming that, “people are
putting cameras all over their houses with
1080p imaging capabilities, so the ability to take
out some reasonable space and capture really
high-end video is completely feasible from an
economic standpoint.” This would function as
an alternative to leveraging mobile devices,
which could severely limit user participation,
or building unique hardware, which is likely too
expensive to produce and maintain. This also
runs counter to our adherence to avoiding
requiring additional physical infrastructure.

Following our meeting with Barrett, we
were led through the dimly lit hallways
of Google’s secretive hardware
building, past the cafeteria, and out
into the parking lot. After shaking
hands and parting ways, we walked back to our
rental car in a quiet perplexity. The potential
technological difficulty of implementing our
initial idea loomed over us, as we sat in the car
for several minutes in the Mountain View
parking lot. The silence was interrupted only by
the chewing on crunchy Japanese snacks we
had purchased at a Japanese supermarket in Los
Angeles the previous day. We decided to lend
some space to the new insights that we had
gathered, pausing the conversation until the

following day.

That next afternoon, we started to narrow down
the
prototype, while ensuring that it was fully

core technical requirements of our

feasible to build by December the same year. We
decided to

anticipation in favor of a purely reactionary

scrap pedestrian movement

solution, statically capturing pedestrians’
positions in real-time. Anticipating the walking
patterns of any number of pedestrians would
likely distract too much from design
considerations. Programming the ability to
anticipate the movement of even a single
pedestrian would likely have occupied a

significant portion of our time and energy.

The common closed-circuit television camera
(CCTV), or security camera, in public spaces
could provide an existing infrastructure upon
which to build our prototype. This would limit
Lace’s infrastructure to rely solely on that which
is often already existing in so many public
spaces in the developed world. Given mobile
phones’ massive popularity, providing the
service via a mobile app was determined to be
the most affordable point of entry for on-
boarding users. It would also be cheaper to
prototype, as we could avoid acquiring
expensive dedicated reality
headsets.

augmented

5.2. Principal,
Montalba Architects

Michael Knopoff is the Principal at Montalba
Architects in Santa Monica, California. He has
been involved in several consequential public
projects, including a Los Angeles Metro station,
the Canyon Lodge in Mammoth, California, the
Westfield shopping center in Palm Desert, and
the Tom Bradley International Terminal at the
Los Angeles Airport (LAX).

We discussed several projects that Knopoff had
been working on. One of these projects
comprised of the redevelopment of an older
industrial building into a new mixed-use space.
After donning hard-hats, he brought us to the
active construction site just across from the
Montalba office at Bergamot Station. While
perhaps less fruitful to the distillation of our
project, Knopoff spoke about the challenges
associated with his project, especially how
Montalba had designed the space while
considering the flow of surrounding Metro
traffic. The potential foot-traffic convinced
them to reduce the usable office space and
the of commercial

increase coverage

storefronts.

With regards to the Tom Bradley International
Terminal, Knopoff discussed the concepts of
circulation of pedestrians in public spaces. In
an effort to increase the efficiency of pedestrian
flow throughout the terminal, Knopoff and his
colleagues planned a layout with several
“roundabouts” in the form of commercial or
seating areas. These “roundabouts” would
simultaneously guide pedestrians through the
space while providing those pedestrians with
enough flexibility to gather at the peripheral

commercial areas.

Knopoff expressed an especially negative
opinion towards the large electronic displays
installed throughout the interior of Tom
Bradley International Terminal by another
firm. He suggested that the displays obstructed

10

11

the architectural dignity of the space by
interrupting the intended peacefulness he
preferred would greet arriving passengers. This
reaffirmed our adamancy against the addition

of minimal physical infrastructure.

Figure 3: Michael Knopoff gives us a tour of the
construction site at Bergamot Station

5.2. Landscape
Architect,
HASSELL Studio

Asa Kremmer works as an architect at HASSELL
Studio, as well as a tutor in architecture and
landscaping at the Royal Melbourne Institute of
Technology’s (RMIT) Faculty of Architecture
and Urban Design, in Melbourne. Kremmer
specializes in topics within urban planning and
landscape design, as they pertain to the
planning of public and private spaces. We
wanted to speak to Kremmer because of his
obsessive attention to detail in how spaces are
orchestrated. We were especially interested in
hearing his opinion on how a digital pedestrian
wayfinding might integrate with such spaces.

Our interview with Kremmer was conducted as
a follow-up to having him test paper prototypes
later in our design process [Section 10.2.2].

Kremmer expressed interest in the potential of
tracking pedestrian movement throughout
spaces, stating that having such information is
potentially powerful to designers such as
himself. Automating the creation of heat and/or
flow maps of foot-traffic through spaces could
save firms such as HASSELL a lot of manual
effort. Such maps could support designers by
indicating where pedestrians typically collect.
One could then “rearrange public benches,” as
well as anything else in a space to adapt to users’

Figure 4: Kremmer (left) and Nylund (right)

conducting an experiment with the paper prototype

wants or needs. Mapping pedestrian traffic,
including where and when people collect, can
help validate an architect’s decision when
presenting to clients. Integrating real-time
mapping as a regular component of architects’
toolsets could have significant implications
—specifically in product cycle iterations and
client communications.

Kremmer also mentioned the curation of paths
between public spaces, particularly with respect
to the way in which the city of Melbourne shows
interest in linking its outlet shops, food halls,
and other points of interest. He pondered the
potential of “controlling” pedestrians’ journeys
throughout the city. In particular, Kremmer
would want to be informed of the whereabouts
of the best taco truck en route to his chosen
destination. We think the idea of controlling
pedestrians’ journeys is too harsh and would
rather talk about guiding them.

6. Exploratio

6.1. Venues

We visited numerous venues in an effort to
identify which could be used to conduct
controlled experiments. The venues needed a
sufficient vantage point in which we would be
able to attach a camera for our project. The
venues visited include large shopping malls,
transportations hubs, and university buildings.
The main point of this exercise was to evaluate
the suitability for doing user research, in each
of the venues.

We were looking for environments that could
afford a multitude of path choices. Some
considerations were whether or not the room
was too crowded to conduct -controlled
experiments, or if pedestrians had a sufficient
number of passages available to them.

When working with computer vision, a good
placement of the camera will make
development simpler when trying to get
accurate detections. Good camera placement
considers both the angle of capture, as well as
the lighting conditions. For the camera to
accurately distinguish between different objects
in the frame, venues need appropriate lighting
and the distance to objects being detected

cannot be too far. When evaluating the venues,

understanding how the camera might be placed
was therefore also considered.

We visited multiple venues which quickly
proved non-optimal. These were either too busy
for controlled testing, or the options of
navigation were too limited. The Crown Casino,
despite it being almost empty, offered a few
different spots with multiple passages leading
to the same destination. The high ceilings,
reflective floors, and dim lighting which can be
seen in [Figure 6 top] did not provide optimal
conditions for the basic computer vision which
we were going to employ.

n We came across a foyer at the RMIT

campus, with multiple revolving
doors, all leading out to Swanston Street [Figure
6 bottom]. The foyer was well lit, with a single
point of entry and multiple points of egress.
This provides good conditions for computer
vision as well as a controlled experiment. The
ceilings, however, were quite low which could
not provide a camera with a high enough
vantage point.

impeckable
service

';/7/, Vi
B8 N
/////////////

N

Figure 5: Melbourne Central Railway Station
leading into a mall with multiple points of egress

13

We also visited the Melbourne Central Railway
Station [Figure 5]. It is simultaneously a large
transportation hub and a shopping mall. Much
of'the signage in this venue is obscured, making
it difficult to navigate through the many
crowded spaces. Although this venue could
benefit from Lace, the venue was simply to busy
for us to conduct a controlled experiment.

Several of the venues inspired use-cases for the
concept. To understand if our concept was
helpful for our potential users, we needed to
conduct a controlled experiment featuring a

prototype.

Figure 6: (Top) Foyer at The Crown Casino with

multiple similar paths. (Bottom) RMIT campus
building with multiple revolving doors.

6.1. Establishing
a Control

To test our prototypes function and user-
friendliness, we needed a static, or unchanging,
environment. This would narrow the focus of
user testing to specific interactions while
filtering out noise associated with complex
real-world environments. We could regulate
lighting, camera angles and obstacles in a
venue. Our thinking was that answering as
many questions as possible through controlled
experiments could eliminate uncertainties
when testing the final prototype in a more
realistic scenario.

The control was primarily designed to test
whether
altering

dynamically and autonomously

signage over time was helping
pedestrians better navigate a space. Conducting
a controlled test would allow us to observe how
people are moving through a crowded space
without any guidance. The same users could
then attempt to navigate that same space while
being guided by the final prototype. Both tests
would feature the same number of participants
and thereby similar levels of density. After the
test, we could ask open-ended questions such as
how the participants felt navigating with and
without the system, and if it helped them in any
way. Such questions would provide qualitative
data on whether the prototype helped its users
navigate to a destination, considering any

obstacles or densely crowded areas in a space.

6.2. Measuring
Success

Because we intended for the concept to be able
to exist within the constraints of a venue’s
existing hardware infrastructure, it had to
require little to no additional hardware. Lace is
supposed to respond to the collective
movement of pedestrians in a space and advise
each individual pedestrian about how to

navigate that space.

The control was designed to test whether

dynamically and autonomously altering
signage over time was helping pedestrians
better navigate a space. To determine if the
concept is a success, we compared the result
from our public user-testing with that of the
control test. If a significantly greater number of
pedestrians moved in the suggested direction
with Lace when compared to the control, we

would consider Lace to be a success.

7. Public User

Testing

To converge onto our concept, we needed to
engage with our potential user group. This
section will show how we investigated various
and how the
investigation helped us determine which was

signage display methods,
most effective. We also investigated if there is an
association between the position of signage and
a passage leading to a user’s desired destination.

We chose two primary display methods: digital

overlays and two-dimensional interfaces.
Digital overlays sit on top of the user’s field of
view, while two-dimensional interfaces for
signage may resemble a mobile application.
to add as little

infrastructure to venues as possible, we would

Because our aim was
develop our response for use on personal
digital devices, such as mobile phones.

To understand how wusers would react to
different signage, we created an in-person
experiment. This would give us the ability to
engage in conversations with the users,and also
allow for new insights and questions to arise.

/1. Method

Prior to conducting our first user test, we
created a number of low-fidelity prototypes for
the aforementioned signage types. To allow for
a quick and inexpensive workflow, our low-

fidelity prototype was crafted using paper.

Before we could determine what our
signs would look like, we needed to
set up guidelines for the experiment.
The the

effectiveness of different signing

goal was to learn

Figure 7: (Top) Design of the obstacle course. (Bottom)

A participant in our experiment, walking left on a
right arrow.

14

15

go left

go left
to destination

to destination

Figure 8: The design of the four different signage options

methods. We formulated an experiment in the
form of an obstacle course. We presenting the
participants with a number of signs and
observed their reactions. This prompted us to
design an obstacle course [Figure 7 top].
Participants were presented with a simple
choice of going left or right.

The different the
participants included visual elements, textual

signs presented to
elements, and a combination of the two. These
signs were then presented as “digital” overlays
and two-dimensional interfaces. The visual
elements that we chose for the signage options
were an arrow for giving the direction, and a
door to signify the destination. The textual
elements would suggest the user to either ‘go
right’ or ‘go left’ to their ‘destination’. [Figure 8]

The “digital” overlays were simulated by simply
attaching cutouts of the above signage options
to one side of a laminate pouch. This provided
the intended ability of not only being able to see
what is behind the sign but also being able to
place it in front of the intended destination.
This allowed us to test both the specific signage,
as well as its position.

The signage options were printed onto A4
the two-
part of the

sheets of paper representing
This

experiment would not only function as a way of

dimensional interfaces.

testing the position but also act as a
comparison. We wanted to understand if the
medium in which the signage option is
displayed could change the users’ behavior
about it.

We randomly selected a series of different
commercial and instructional signs to display
alongside the ones we had made. These
surrounding “messages” could impact users’
decisions about how to navigate towards their
destination.v

Our experiments did not require much other
than an unobstructed surface on which we
could lay out our obstacle course. As our user
group was rather diverse, we decided to set up
and conduct the tests in a public space. This
allowed us to approach random passersby and
ask them to participate.

After participants reached the end of the
obstacle course, we would ask a series of
questions designed to start a conversation
(open-ended questions) rather than a simple
yes-or-no answer. This allowed us to better
understand the users’ desires and opinions
regarding the subject.

In the end, we had conducted the experiment
with ten different people over a four-hour
period. This left us with plenty of data in the
form of notes, videos, impression, and quotes.

7.2. Results

We had to synthesize the data collected from the
experiment. We examined the answers to
interview questions and reviewed the video
footage from the experiments. We then noted
down our observations on sticky notes and
place them on the wall. [Figure 9] Sorting and
coding our observations helped us discover
common themes.

Figure 9: Extracting learnings from observations

and interview questions gathered at the experiment

We grouped together notes addressing similar
issues to establish if any compelling statements
have been repeated across the board. These
commonalities or themes were written onto
separate sticky notes which would then form
the basis for our analysis of the experiments.
The themes, which can be seen in Figure
[Figure 10] allowed us to spot trends in what the
test users experienced.

Figure 10: Themes and patterns extracted from the

7.3. Analysis

We extracted trends from users’ experiences
based on the results discussed in Section 7.2.
The test users seemed to gravitate towards
simpler methods of display, with a limited
number of visuals. With multiple different
visuals, the signage was distracting and require
more processing. Purely textual signage seemed
to cause misunderstanding between ourselves
and the participants when interpreted without
visual aids. This was apparent when a
participant interpreted an instruction to go
“right to

destination”; they skipped the rest of the

destination” as “straight to
obstacle course and walked straight to the end.
While purely textual signage might not be
adequate in every situation, when phrased
correctly, it can be utilized as a support for
visual elements. This is especially the case if
there is any uncertainty from the user or
ambiguity in the language.

When asked if the physical position of signage
was relevant, a majority of participants
disagreed with the statement. However, when

reviewing the footage of the experiment, it

16

17

became apparent that participants made a
decision much more quickly when the sign
was positioned closer to the destination. Some
participants even started walking towards the
sign before it was shown to them. This suggests
that the position was relevant, even if the test
users did not notice it. They subconsciously
moved towards the signage which suggested less
cognitive effort.

8. Survey

We had several lingering questions pertaining
to the placement and perspective of arrows. In
particular, discovering any correlations (or
contradictions) between our experiments and
the survey results was of utmost importance. We
wanted to get user input on what specific types
of arrow-signage combinations they might
respond to. We were especially interested in
scenarios in which they would be navigating
with the aid of an augmented reality interface.

We determined that we needed more data
backing our observations, as we felt that the data
obtained from our sample size of ten
participants was too inconsistent, making it
difficult to draw overarching conclusions. We
created a survey to gather a larger dataset, to
learn from a larger sample size and compare
those results to our findings from the initial

experiments.

We conducted a survey with Google Forms. It
garnered a total of 46 responses. The survey
allowed us to compare users’ qualitative
opinions to their quantitative rating of
different signage types. These ratings would
provide us an opportunity to compare
statistical analyses to opinions or suggestions
from the survey —as well as from the public

user test.

8.1. Method

We designed a survey to allow users to create
their own combination of arrow and signage
methods. Specifically, users would be able to rate
each arrow position or perspective before
choosing their favorite. They would then have
to do the same for the signage type. Users could
also volunteer an explanation of their thought
process along the way.

A total of sixteen images were created for use in
the survey. Users were then given the following
instructions, repeating them for every step:
This is the future, and you are wearing some
snazzy AR glasses. Imagine you are walking
around town looking for a nice cup of coffee.
Please rank the following arrows by their ability
to help you navigate towards a café.

Four initial images depicted different arrow

types:
camera plane) arrow and three perspective

one two-dimensional (parallel with
arrows positioned at the top, middle, and
bottom of the observer’s field of view. We
created a set of four destination markers. These
consisted of an icon depicting a cup of coffee,
that same icon with associated text saying
“coffee”, just the text saying “coffee”, and finally,
a generic red location marker, or ‘pin’.

We shared a link to the Google Form survey to
our personal Facebook, Twitter, and LinkedIn
accounts. Sharing the survey through these
platforms had the potential to reach a number
of different cultures, potentially providing us
with different cultural interpretations. We
accepted responses for three consecutive days
with the goal of attaining as many responses as
possible in that timeframe. By the end of the
third day, the survey had gathered forty-six
responses.

in the survey

ignage configurations used

:All the s

Figure 11

18

8.2. Results
and Analysis

The majority of the respondents volunteered
detailed reasonings for why they chose a certain
arrow or signage type. In order to make sense of
the large number of responses, we generated
normal distribution curves [Figure 12, 13]. We
graphed curves of several parameters according
to a 1-10 rating system. Parameters included the
collective arrow type preference, collective
signage type preference across all arrow type
selections, and corresponding collective
signage type preferences for each arrow type.
The aim was to retain the integrity of the rating
data while allowing us to qualitatively interpret

that same data.

General Arrow Type Preference

Scale

The arrow type with the highest collective
preference was the bottom perspective arrow
[Figure 11]. In contrast, the two-dimensional
arrow had the lowest preference, with only one
of the forty-six respondents having chosen it as
their favorite arrow type. The middle and top
arrow types were rated quite similarly
—perhaps due to their common disassociation
with the inferred ground plane of the image.
The differences in total collective signage type
preference were not pronounced, as the icon
and icon with text ranked only slightly higher
than the text and generic location marker. The
correlation between the icon and icon with text,
as well as between the text and marker should be
noted. We speculate that this correlation is due
to userss general preference for a
representational icon —the common element

between the preferred signage types.

== Bottom
- \iddle

e op

Rating

Figure 12: Distribution curves for General Arrow Type Preference

General Signage Type Preference

Scale

19

10 - con
- Tex
8
== |con+Text
6 == Marke
4
2
&
0

Rating

Figure 13: Distribution curves for General Signage Type Preference

Figure 14: Feedback on arrows marked with a blue A, suggestions with a green ¥, and
destination signage with a red ‘S’

Figure 15: Our learnings from the experiments side by side with the survey

20

9. User
Personas

We selected groups of polarized opinions and
began to craft personas. In this case, the
personas are imaginary characters whose
opinions and perspectives were made up of
ones we found to be compatible when grouped
together. The personas’ ages and careers were
based on those of our participants. The
common practice of creating personas would
function as a frame of support in the design and
implementation of features later on in the
process. In reducing the user feedback we had
received into a couple of distinct characters, it
would be easier to grasp and involve their
concerns.

9.1. Bruno

55-years-old
Process-oriented
- Seeks reassurance

Prefers text-based signage

Bruno is a 55-year-old high school science
teacher. He is data-driven and easily gets his set
mind on things. This means that he prefers to
see detailed information, such as specific
distances or a direct visual representation to
reassure him that he is navigating towards his

“'ve got to get to mY destination
one waYy or onotherl.“

desired destination. On the other hand, because
Bruno gets easily distracted if unsure about the
meaning of certain signage, he may ignore
unclear or confusing guiding cues. Bruno will
typically adapt to the environment within the
limits of his preconceptions —his
preconceptions being related to similar
environments he has visited in the past.
Providing specific text-based signage is
important to earn Bruno’s trust and facilitate

his understanding of a space.

9.2. Victoria

- 28-years-old
« Goal-oriented

« Goes with the flow

« Prefers visual cues

Victoria is a 28-year-old paralegal at a law firm.
She is career-oriented and values efficiency
quite highly. This goal-focused mindset leads
Victoria to care less about the process of
reaching her destination. She is less actively
engaged in navigation, preferring to go with the
flow. Consequently, Victoria is more likely to
follow simpler guidance cues. This entails
signage that is less verbose and more
standardized, leveraging pictograms such as
arrows in conjunction with the shortened text.
However, Victoria’s preference for visual
navigation cues is somewhat of a double-edged
sword. Because she focuses more on imagery,
logos and promotional messages can be

especially distracting.

“I don't want to have to
spend time Figuring out how
fo get to my destination.”

10. Iterating and
Brainstorming

We initiated a brainstorming session that
would generate ideas for four major categories.
These categories were informed and defined
during the research and include floating icons,
picking a destination, depicting the goal, and
presenting the progress.

The ‘floating icons’ category considered how to
display visual guidance in a user’s environment.
This included both nudging patterns along the
pathway, as well as how to represent a user’s final
The category,
destination’, considered how to enable the user

destination. ‘picking a
to pick their desired destination. Depicting the
goal referred to how our prototype could
remind or describe the destination to which the
user is currently navigation towards. Finally, the
‘progress’ category considered how we should
illustrate the progress users would be making
towards arriving at their desired destination.

The brainstorm was guided by the previous
research and findings, allowing us at every step
to compare ideas from the brainstorm with the
findings and personas.

We selected groups of polarized opinions and
began to craft personas. In this case, the
personas are imaginary characters whose
opinions and perspectives were made up of
ones we found to be compatible when grouped
together. The personas’ ages and careers were
based on those of our participants. The
common practice of creating personas would
function as a frame of support in the design and
implementation of features later on in the
process. In reducing the user feedback we had
received into a couple of distinct characters, it
would be easier to grasp and involve their

concerns.

22

10.1. Conceptualizing

The brainstorming session was divided into
four parts of ten minutes each. One session for
each of the four categories mentioned above.
The goal was to sketch out several ideas for each
category, while still trying to adhere to the
findings. We evaluated each of the concepts
against the learnings that we had generated in
Section 7.3 and 8.2 in order to determine which
of them still held water. We used the “surviving”
concepts in the design of the paper prototype.

Figure 16: Rippling base to signify destination

Floating Icons

We produced an assortment of floating arrows,
planted signs, rippling floors, fireworks, and
cute characters. While they did not all hold up
when evaluated against previous learnings, two
ideas were combined in such a way that they
more obviously represented the user’s desired
destination. Figure 16 and 17 shows the two
ideas which were combined into one.

On the left is a sketch of a rippling circular or
globular pattern on the ground. On the right is
a sketch depicting an arrow floating above the
ground and pointing downwards towards the
destination. The goal of the globular pattern was
to draw people in towards the destination, and
boundaries of the
destination. We felt it may be difficult and
cumbersome for users to understand that they

also to visualize the

have reached their target destination if the
destination is rendered as a single point in
space. Rendering a larger area of completion
would eliminate these issues.

The rippling circular pattern was adapted to
three dimensions, taking shape as a floating
spherical aura. In a crowded space, a two-
dimensional aura on the ground might be
obstructed. It could, therefore, be difficult for
the users to find.

The purpose of the arrow was in its ability to

provide a more conventional combination of

Figure 17: Floating arrow to signify destination

both visual and textual guiding cues. While
floating above the aura, it could act as a label
and provide some guidance from a distance.

Figure 18: List view for picking destination

Picking the Destination

For this category, we ideated on different ways
for users to select their desired destination.
Ideas included tapping on the floor in the real
world or tapping on the representational map
or floor plan. Users could be a shown list of
destinations in a drawer and sort that list by
categories. These categories could be described
either through three-dimensional bubbles or by
planting locations in the direction of their real-
world coordinates. Some ideas carried
unnecessary complexity —not only in terms of
but

comprehension. We decided to move forward

development also in ease of
with a more traditional two-dimensional list as
the focus of this project was to guide users,
rather than to enable them to explore
destinations. The simpler, two-dimensional list

would also make it faster to develop the
prototype.

Figure 19: Depicting the goal during navigation

Depicting the Goal

Here, we generated ideas about how to display
users’ desired destination while they navigate.
This was mostly intended for goal-oriented
users. The session generated numerous ideas.
Most of them were situated around describing
the goal textually within a drawer, upon tapping
the screen, or as a smaller label in the corner of
the screen. Some of the zanier ideas included a
crazed animated train conductor yelling at the
user from his locomotive. In an effort to avoid
cluttering users’ field of view, we chose to
textual
dimensional card. This card would show up

provide instructions on a two-
when users tap the screen. This was simple
enough to develop for the prototype, while still
adhering to our learnings from Section 7.3 and

8.2.
Progress
This was perhaps the most ambiguous prompt,

as the team had not yet determined what
progress could really mean to users.

24

25

Figure 20: Signifying process during navigation on

the line, using meteres to destination

Distance to the destination was referenced the

most. Represented as changing colors
measurements along the path or in smaller
labels. In a couple of instances, the distance was
depicted in its entirety as a secondary
simplified graphic along an edge of the display.
We also considered how crowd-density might
be represented in the aesthetic of the path itself.
The idea that was chosen to move forward with,
can be seen in the figure on the left. Specifically,
it is a three-dimensional “path” lightly fading
away from the user. The distance to the goal is
depicted at the base of the path using a standard

textual representation.

10.2. Paper
Prototyping

The early prototyping session was done with
paper, as the low fidelity properties of the
material allowed us to quickly iterate upon, and
The
intention was to tie together ideas from the

experiment with different concepts.

brainstorm and bring forward a single concept
that the team could test with users.

10.2.1. Creation

The two sketches from the brainstorm were a
simple list of possible destinations, as well as a
two-dimensional floor plan of the venue. We
created multiple different versions, allowing us
to test which would provide the most clarity and
ease-of-use.

After a user selects their desired destination,
they would be shown the most efficient path
which is determined in relation to other people

Figure 21: Crafting paper prototypes

Al
)
RMIT Library RMIT Likrary NgarkigPlacay —
o 2¢
BB “le Cofkere ey
D bty
- - — =
n n . >
(Melbewme C
& a i % niasteat. 2
s 11 mebers
: LA ;) e neban
You sclecked m 2c Ry ier
m AA
_m £ 13 mmibes ¥

Figure 22: The individual components of the low-fidelity paper prototype

and objects in the space. This path was
visualized in two different ways - either as a thin
line, or a wider path tapering off in the distance.
We designed two different visualizations: a
color gradient fading away from the user or a
textual representation with the number of
meters from the user to the destination as
shown in Figure 20.

When towards a

destination, the client application needed some

starting navigation
way of depicting the goal. Depicting the goal is
intended for ending navigation, changing the
destination, or simply getting reminded of the
chosen destination. We depicted the goal as two
different two-dimensional cards which would
be placed somewhere in the user’s field of view.
Both cards provide a textual description of their
destination, as well as an option to end
navigation. The main difference was that one of
the cards would be permanently visible in the
user’s field of view, while the other would be
prompted by tapping the screen.

The goal object was composed of a globular aura
and a secondary visual element accompanied
by text [Figure 16 and 17]. Two different options
were made for the latter, one being a floating
arrow with the word “GOAL” written on it and
another being a physical sign that stood on the
ground.

With all the components drawn and cut out in
paper, we created a frame of a mobile device.
The frame had a translucent material in the
center, on which the different components
would be placed. This would also allow the users
to perceive the context of the environment
behind the device, as it would be in augmented
reality.

26

27

10.2.2. Testing

To test the validity of the different paper
prototypes, we sat down with a landscape
architect and a media technologist. The process
involved a 10-15 minute discussion where the
what they
understood from different concepts, as well as
what they
performing certain interactions. This was

participant would explain

expected to happen when
followed up by a more in-depth discussion
about different use cases and other topics that
might have become apparent during the testing
itself. The conversation was purposefully kept
open, to gather qualitative recollections rather
than yes or no answers.

Landscape Architect

The landscape architect liked that the prototype
featured iconography for walking distance and
time estimations. The subject expected a
dropdown menu when tapping on a
destination, indicating that he was seeking
further information about each destination. He
expected to be shown directions, as well as his
current location on the map, in the mentioned
dropdown. Hence, the augmented reality
capabilities of the prototype could have been
less than clear. His first impression of the
prototype was apparently confined to the
destination selection view.

Upon showing a floor plan of the room, the
his
destination. This was primarily due to the

architect struggled with locating
handwriting depicting the room numbers.
Locating the destination on the map took much
longer than locating the destination from a list.
Upon locating his destination. He did not
hesitate to tap the green “Confirm” button to

lock in his choice.

We suspected that a faded pathway might lead
to easier depth comprehension as it would
the This
aesthetically mimic the effect of atmospheric

recede into distance. would

diffusion on the visibility of distant objects, a
familiar natural phenomenon which could aid

users’ depth comprehension. The subject
suggested representing doorways in the space as
the user moves through it. Providing enough
context relative to the path could play an

important role in effectively guiding users.

Upon tapping the screen, the architect said he
would expect either some sort of blinking to
occur or a point in his surroundings to be
highlighted. This point could be represented as
an icon, avatar, character, person walking
through the space. When faced with a pop-up
window instead, he toyed with the idea of
placing a walking man or stopwatch icon on
this screen to indicate remaining time in the
user’s journey. Upon tapping a button on this
pop-up labeled, “Stop Navigation”, he expected
to be shown a floor plan of the space he was in.
Alternatively, he would expect to be shown
details to his

amenities or pertaining

destination.

In retrospect, it is unclear whether or not the
architect fully understood how the pathway
would be situated in an environment when
interacting with the prototype. We found that it
can be a challenge to test prototypes about
augmented reality, as it is such a new
technology. Something that could improve our
paper prototype testing methods would be to
draw in an imaginary three-dimensional
context behind the user interface. This might
offer more context to the user interface
Unlike paper
contained two-dimensional prototypes, three-

elements. prototyping for

dimensional = objects, or installations,
augmented reality experiences demand a
significant correlation between the hardware
form factor, digital two-dimensional interface,

and the context of the test itself.
Media Technologist

We took what we had learned from the previous
test,and came to the conclusion that we should
test our paper prototype with at least one more
person. This time, we met with a media
technologist and augmented reality enthusiast.
Because this subject was more familiar with the

relevant technology, we felt that he could
express a more cohesive understanding of the

prototype.

When the media technologist was asked to
navigate to his destination, he immediately
wondered whether that meant doing so through
the app or by looking around his real
environment. When navigating to a numbered
room, he preferred to just seek out the
of all the
Alternatively, if the rooms did not correspond

numbering patterns rooms.
to any numbering system, he would need to ask
for help on how to reach his destination. The
subject preferred using the list view to choose a
destination, especially if the destinations could
be sorted alphabetically or numerically.

The media technologist wished to see more
information about a room when selecting it in
the list view, such as its availability, a photo of
that room, and/or more information. However,

he did not think
immediately would be too much

starting navigation
of a
commitment. Upon tapping on a destination in
the room layout-view, he expected to see a blue
guiding “trail”, or path, akin to that in Google
Maps. He cited its universality, and by
extension, its familiarity, as reasons for why the

path should be blue.

When launching the navigation view, the media
technologist wanted to see some form of
instruction explaining to the user that they
could follow the path toward their destination.
Since so many people are not yet familiar with
reality
explaining to users that they are able to move

using augmented applications,

their phone around could be helpful.

Upon tapping the display while in the
navigation view, he expected to be shown more
information or alternative routes. He

specifically mentioned the ability to see how
much time was left in his journey, cancel
navigation, and possibly even an option to
change the color of the path. The subject spoke
passionately about the potential of creating
scenic routes; he thought it would be cool if he

could add stops to the route if he tapped on the
path.

Showing the estimated time to the destination
was especially important to the subject. While
distance is constant, the time it takes to reach
the user’s destination is dynamic. He talked
about the joy of trying to beat the time
estimation he is given in traditional navigation
apps, such as Google Maps. Apparently, it can
feel like a challenge —he described using the
time to indicate progress as being playful. He
described the remaining time as his current
task as an individual. So, he preferred the time
estimation to always be present on the screen.
The time estimation could be shown together
with the remaining distance to the destination.

The media technologist was intrigued by the
idea of having the guiding path follow him so
that he would never veer off the path. He
preferred a wider path to a narrower one, as a
wider path would require him to spend less
time searching for it. He expressed concern
regarding a path of greater width: in a worst
case scenario, a wider path could obscure less
prominent obstacles on the ground, posing a
possible danger to users. The subject had quite a
strong preference against having the path fade
away into the distance. He felt that it was
limiting his perspective, as it kept him from
seeing the whole route. He was concerned that
limiting the visibility of the route to the first
few meters —despite its preferable aesthetics—
would result in users mindlessly following the
route ad infinitum. The infiniteness was the
most bothersome to the media technologist. If
the path was solid for the whole route, he
suggested drawing notches on it to aid the user’s
sense of depth.

According to the subject, the navigation process
should be made harder to stop in order to
prevent that happening by accident. Rather
than tapping on the screen to access the ‘Stop
Navigation’ button, he suggested enabling users
to tap and hold on the route until it wiggles
—indicating one’s ability to discard it. He also
suggested using extreme movements, such as

28

1

having the user point their device at their feet
or to the ceiling, towards an “Exit” button.

In both the layout diagram and the AR view, the
media technologist expressed a preference for
initial guiding arrows. In the layout diagram,
the blue location indicator could show a
direction in which the user should walk. In the
AR view, arrows could help users find the path,
indicating to them to turn their devices until
the path is in view. He asserted that any assets
along the path should be rendered in three
dimensions in order to utilize the full ability of
augmented reality.

1. Final

Prototype:
Design

29

It was important to build a sense of familiarity
into Lace in order to lower the barrier for
consumer adoption. Although the vision for
Lace is to run it on an augmented reality
headset, the Lace prototype will be built and
tested on a mobile device. As such, we still
wanted the prototype to feel like a mobile
application.

We felt Lace should incorporate a level of
playfulness to facilitate an otherwise utilitarian
task. Including some playful and dare-we-say
flashy elements could attract users to start using
the application. While a certain level of
playfulness is good for gaining attention,
retention rates stem from having an
application that is simple and concise in
communicating its use. Therefore, minimalistic
concepts were weighted more heavily.

1 — A crowded train station in a foreign land

4 — Our friend uses Lace to find his platform

2 — Our friend looks confused. He’s late for a 3 — Fear not! Lace has a plan!

train. /

5 — He’s a tad hungry. No matter what he 6 — Our friend finds the platform. The day is
decides to do, Lace will pick up right where he saved!
left off

30

31

11.1. Flow
and Layout

©Q Student Café

Room 34A
* 2 MINS

Room 34A
£ 2 MINS

Room 34A
£ 2 MINS

Room 34A
£ 2 MINS

Room 34A
£ 2 MINS

Figure 23: Destination selection from list

Our primary concerns when approaching the
design of the app were affording users the
ability to select a destination and guiding them
towards that destination. The user interface was
broken up into two primary screens: a two-
dimensional interface which affords the ability
to select a destination to navigate to, and the
world-space (representation of what user sees)
augmented reality (AR) view, which draws an
optimal path from the user to that selected
destination. In the final design, users are able to
show and hide a card with some options on the
latter screen. We reasoned that separating the
the

navigation view would ensure that after

destination selection screen from
launching the app, users’ attention would
primarily be occupied by a single, simple task.
Users’ real environments could be distracting,
with real-world elements interfering with the
task at hand. Making a distinction between the

two-dimensional interface and the three-

dimensional AR view is made possible by the
fact that the Lace client is running on a mobile
phone. Because displaying an interface on a s5-
inch display is not as fully immersive as
integrating digital objects into a real-world
environment, we do not have to worry about
any elements obstructing users’ actual field of

view.

We had previously begun to consider how to
onboard users onto the app. However, we've
learned from past projects that implementing
an on-boarding flow can become a major
inhibitor for users —especially someone like
our persona, Victoria. Data is a sensitive subject,
which makes it difficult to attain before users
have used the app. So we discarded on-boarding
ogether. The primary benefit of having an on-

boardi rocess in an app lies in its ability to

teach users to access its basic functionality,
as well as how that
that user. In the absence of an on<hoarding flow,
the immediate functionality of the Laceh
would have to be inferred intuitively. While the
best way to verify the effectiveness of the app’s

initial affordances would be to test it with users

©Q Student Café

Room 34A
2 MINS

Room 34A
£ 2 MINS

Room 34A
£ 2 MINS

START NAVIGATION

Figure 24: Starting navigation towards Room 34A

Room 34A
% 25 SECS

32 seconds

- Getting informed aboutthe destina

25 seconds

ion (center). Seeing the

destination endpoint (right)

13], there still certain

precautionary considerations we could make.

[Section were

Both new and old users will see a destination
selection screen upon launching the Lace
client. On this screen, they can see the name of
the venue in which they are located, a visual
layout of their location featuring their position
in the venue space, and a list of destinations
they could navigate to in that space. In future
this list could be filtered by
alphabetical order. Each destination in the list

iterations,

features an estimated travel time. Restricting
the selectable destinations to a preset list was
preferable in the context of developing the Lace
client prototype, considering that we were
expecting to run controlled experiments in the
future. Upon tapping a destination name, the
Lace client calculates and visualizes a path on
the room layout according to the current
conditions of that room. Users of the paper

prototype
additional information about a destination

expected to be shown some

when selecting it.

When a destination is selected, a button will
appear along the bottom of the screen. This
button is not visible if no destination is
the
destination selection screen will be hidden and

selected. Upon tapping this button,
the user is shown the AR view with a path
guiding them towards the selected destination.
When testing the paper prototype, both of our
test users hesitated to tap the green button
when it appeared.

The AR view is comprised of the device’s camera
feed, as well as a 3D-rendered path that connects
the user to their destination in the world-space.
The path always starts at the user’s position,
inspired by the concept that the user can never
be wrong; the user is always on the right path.
This is a mechanic that could satisfy both Bruno
and Victoria: Bruno should be able to trust his
own decision over Lace, and Victoria would not
have to think twice about following the path. If
the user is looking away from the path, Lace
gives a hint to the user about which direction
they should turn to face the path.

32

33

The distance to the destination is marked by
notches at every meter along the path, in an
effort to help users understand their journey’s
progress, as they move through the space. The
destination is marked by a translucent “aura”
accompanied by an arrow. The arrow indicates
the exact position of the destination, while the
aura represents the “goal-space”. When the user
enters the goal-space, the navigation will end.

If a user taps on the navigation screen, a card-
like overlay will appear on top of their world-
space. This card features the layout of the room
with the user’s location and a path connecting
them to their destination (the same one that is
rendered in the world-space). It also displays the
name of the destination to which they are
navigating, the estimated travel time to that
destination, an option to stop navigating and
show the destination selection screen, and an
option to continue navigation. The latter option
hides the card-overlay.

11.1. Visual
Design

It was important to us to properly represent an
environment with just the right amount of
details for each individual; Lace could help
users orient themselves with respect to the path
connecting them to their destination. An
isometric projection of the room layout was
selected as an artistic nod to architectural
drawings, as the concept of flow and circulation
in architecture has had a strong influence on
our response to dangerous crowding. Isometric
drawings lead to aesthetically pleasing and
undisrupted overviews. The main drawback of
using isometric projections is that they are not
effective at depicting details. Resolving height
difficult; Vertical
easy to

differences can also be

displacement is not illustrate
isometrically. However, in this case, the vertical
axis was not necessary to consider, as we
planned to test the prototype in a single-level

environment. The projected layout only serves

to facilitate the user’s understanding of a space.
It is not interactive.

The isometric project primarily reconstructs
the users’ environment, providing a visual aid
to help the users understand the space and their
physical relationship to it on a holistic level. We
considered placing various landmarks in a map
view, such as the position of a café or the
available exits, thereby supporting ‘route’
navigation. While it was determined that
detecting landmarks in real-time would require
significantly more processing power, some
objects’ positions could be hard-coded and
visualized in the initial prototype.

The guiding path was colored blue as a nod to
Google Maps’ blue navigation path. It was
determined that using a familiar color for the
path could help earn users’ trust in the
prototype. Google Maps is a service people use
every day, and so we wanted to capitalize on
their market success. We also trust that Google’s
solution is rooted in a substantial amount of
research. The path is of constant semi-
transparency, to avoid obstructing users’ fields
of view. The path is also wide, to increase
recognition and visibility.

It has been found that text is most legible when
placed in the lower half of augmented reality
displays [37]. Additionally, displaying white
sans-serif fonts on black backgrounds is
preferable [9]. Rzayev states that augmented
reality interfaces inhibit reading ability and
comprehension [37]. This could be due to the
fact that the respective experiment took place
on a mobile device, where there is a frequent
shifting of focus from the display to a user’s
surrounding environment. We understood that
this is a limitation that the Lace client prototype
could have faced. Yet, we were inclined to forego
testing on more expensive headsets due to
budget
designing for mobile devices with greater

constraints, instead focusing on

ubiquity —such as the smartphone.

12. Final Prototype:
Development

To asses the movement of crowds in a space.
This system would need to understand the
space, as well as how people would move
through it. Our system needed a way to detect
and identify people in the space and translate
their respective placements into a set of
coordinates. This information would then have
to be transmitted to the user's application,
allowing it to determine the best path through
the space.

We utilized users’ mobile devices to calculate
the best path through the space, and present it
back to the users. The final system was divided
into two separate systems, which would then
communicate with each other through a simple
and secure RESTful API, with a single endpoint.

The first system, the server, utilizes a video
camera placed in a space to understand the

movements of the crowds. The server would

run on Node]JS, an open-source, cross-platform

run-time environment used to execute

JavaScript code. We implemented a library for
developing machine learning algorithms called
Tensorflow. To then detect objects and people in
the video stream, we use an SSD architecture
with a MobileNet feature extractor which is a
state-of-the-art, object detection system. All of
this would be programmed in Python. Finally, a
MongoDB database is used for storing the
models of the space, until they are requested by

the client through the API.

The
implementation of

second system, or the clientside
the prototype, is
implemented as a mobile application. Per
section 13.1, the goal of the client was to render
an optimized three-dimensional path from a
user to their selected destination. This path is
determined by a common pathfinding

algorithm known as A* (“A-Star”). The client

utilizes the Google ARCore SDK in conjunction
with Unity in order to render this path as a
digital layer in a user’s physical environment.
ARCore is also used to determine an accurate
reading of a user’s location, as well as to ensure
that three-dimensional assets are properly
anchored in their environment. As the client is
the Unity
environment, all of the program scripts are

developed entirely within

written in C#.

12.1. Client

Developing the client prototype for augmented
reality required a host of new platforms and
tools with which neither of us had any prior
experience. This presented a new set of
challenges which led to quite a steep learning

curve.

12.1.1. Mobile Platform

Prior to this project, most of our prior
experience in developing front-end interfaces
involved React Native, React]S, and C++. While
we would have been much more comfortable
developing the app using a familiar set of tools,
the computational required to
properly reality
environments are heavy. This limits the
compatibility of AR platforms to only a handful
of new devices.

resources

render augmented

We chose to develop the prototype for the
Android platform, due to budget constraints.
An Apple developer account is expensive and
required to register test-devices. Since both of us
had Android devices, we decided to load and
test on one of those devices: a Huawei Nexus GP.

React Native was ruled out as a development

34

35

platform, due to augmented reality being such
an intensive process. React Native runs
processes on a single thread, hence limiting the
number of processes a program can run at one.
A resource-hungry augmented reality process
would likely block the thread. This could cause
postponement of other operations, such as
making HTTP

pathfinding algorithm. We wanted to ensure

requests or running the
that the program as a whole ran as efficiently as
possible to accommodate for any sudden
crowd-movement in the testing environment.

12.1.2. Augmented Reality

Achieving a sense of presence through
augmented reality is important because it can
aid their

environment. Presence can be described as

users in connecting with
either eliminating mediation or the illusion of
mediation [25]. The superimposition of digital
layers on top of a perceived real-world reality is
the introduction of a mediator between a user
and that reality.

An inherent risk in guiding pedestrians is the
offloading of cognitive decision-making to our
system. This could cause pedestrians to become
worse at navigating on their own over time. (5]
The danger in this is that some pedestrians
might learn to ignore stimuli in their
environments [7]. If Lace is able to provide
sufficient tracking and “eliminate” the mediary,
users may feel more connected in their
environment and consequently more in

control. [7]

A potential drawback from designing Lace for
use of mobile phones rather than dedicated
augmented reality headsets is that users may be
more

distracted by constantly switching

attention from a small device to their

surrounding environment [7]. Indoor
navigation requires a lot of resources from
[5], so it

importance to decrease the cognitive load by

pedestrians is of the wutmost

focusing on avoiding any level of obstruction

between users and their environments.

Tracking in augmented reality can be defined as

the ability of digital artifacts to consistently
anchor themselves to the real world. Good
tracking is when objects stick to their
environment, despite any movements of the
device running the application. This is
especially important if we wish to improve the
sense of presence for our users. Increased sense
of presence can enable users to feel a more
intuitive sense of control when interacting with
their environment [39]. Inaccurate tracking
could lead users to distrust our prototype, to the
point where they might consider using an
entirely different solution [30]. Misaligned
arrows could lead wusers to interpret the
differently than [30],

possibly causing them to stray so far off a route

guidance intended
that any potential benefit from our prototype is
ultimately negated.

The importance of effective hardware-software
integration cannot be understated. Because
augmented reality is still so new to the market,
how to achieve high-accuracy tracking is still
unclear. Augmented reality technologies rely
on a myriad of different sensors [39] to anchor
artifacts in a user’s environment, and no
available solution has a significant advantage
over its competitors.

Photo by David Grandmougin on Unsplash

The Lace client was intended to be run on a
mobile device. While there are several advanced
augmented reality headsets available on the
market today, such as the Microsoft Hololens or
Magic Leap One, it was difficult to conduct full-
scale testing, as the vast majority of people do
not currently have access to one, including
ourselves. Because the majority of people carry
a mobile phone with them —with most of the
newer models natively supporting augmented
reality— it made sense to optimize our
development process for supported mobile
devices. In this section, we compare a few
mobile

augmented reality development

frameworks and SDKs available today.
ARCore

Google’s ARCore is the successor to the
company’s Project Tango, which has since been
deprecated. Project Tango was highly effective
in tracking users’ locations indoors; It had the
ability to accurately determine users’ locations
using depth-sensing cameras. ARCore has since
picked up the torch from Project Tango,
inferring depth with software alone. Today,

ARCore is less accurate than Project Tango ever

was.

One of the biggest challenges in current mass-
market augmented reality solutions is in
in the
environment. While ARCore is accurate in

preventing assets from drifting
determining a user’s location relative to it their
surroundings, in relying on two-dimensional
visual input alone, environmental lighting can
cause Google’s algorithm to lose track of a
device’s surroundings.

ARKit

Apple’s ARKit is ARCore’s main competitor in
the mass-market augmented reality space.
While it is similar to ARCore, ARKit is
consistently shown to be even more prone to
drifting. Because crowded rooms can be such
volatile and random systems, it is critical that
path
represents the environment in which it is

our three-dimensional accurately
rendered. Because of this, in addition to the
high entry-costs of developing for iOS, ARKit

was eliminated as a viable option.

36

37

12.1.3. Development Stack

The Lace client was developed in C#. The app is
rendered and compiled for Android devices
with Unity3D and the Android SDK. Its
augmented reality abilities are built atop
Google’s ARCore SDK, which supports indoor
positioning, anchoring, and tracking.

Selecting a frontend development stack was
largely dependent on choosing which
programming language we wanted to learn.
Preferably, this programming language would
have the shallowest learning curve. Ensuring
that this programming language would be
easier to learn than others would help us to

expedite development in the long run.

The C# language has wider community support
than its rivals, such as C++, and is considered by
many to be easier. Choosing C# also had a lot to
do with personal preference. While we attended
a course at SDU in which we learned C++, it was
not immediately intuitive. Because of this, as
well as the respective languages’ associate
stacks, we decided to try our hand at C#-.

SDKs (Software Development Kits) such as
ARCore or ARKit offer means of interfacing
with APIs on popular platforms like iOS and
Android. While each platform has its respective
APIs,
prototype for both operating systems has

such as Sceneform, developing a

become a problem in itself. Luckily, there are
that
introduce opportunities for cross-platform

several widely supported solutions

development.

When three-dimensional

applications, one will have to choose a

programming

rendering platform. Video game engines have
been the solution of choice for many years now,
energized by the massive success of the gaming
industry. Today, however, there are some new
kids on the block that are making augmented
reality development easier than ever before. We
considered the following options:

Unity3D

To date, Unity3D remains the most universally
supported development platform. Scripts in
Unity3D are written in C#. In this case, C# is
more widely supported in game development.
This is due to the fact that Unity3D has been on
the market for much longer. Unity3D is the
most popular game development platform at
the time of writing. This implied an increased
ability to reach out to friends and ask for help
with debugging if we decided that it was needed.

Unity3D is better for lightweight mobile
development. This is particularly dependent on
whether it is used for game development or
something else. As Unity contains fewer built-in
game frameworks, it has a tendency to use more
resources during runtime than Unreal Engine.
As our prototype would not feature any
complex game mechanics, a lighter weight
platform like Unity3D perfectly served our

purposes [32].
Unreal Engine

Programming with Epic Games’ Unreal Engine
(www.unrealengine.com) is done using C++. Its
primary focus is on blueprint-programming to
make working with C++ easier and less prone to
mistakes. The defining feature of blueprint
programming is visually drawing connections
between nodes. This was a major consideration
when choosing a 3D-development engine, as we
were less accustomed to blueprint
programming than scripting. Unreal includes a
lot of pre-programmed modules that offer
specific game-related logic. This makes Unreal
ideal for designing games such as high-
performance first-person shooters and is not as

wieldy for less traditional applications.

Still, there is little difference overall between
Unreal Engine and Unity3D; the differences can
often be entirely subjective. We plan to keep
Unreal Engine on the backburner, as its more
visual approach is enticing. It could be worthy
of more time and effort later on when timing is
not such a huge constraint.

React Native

The major drawback of React Native-based

solutions is that React Native cannot run

multi-threaded programs. This was especially

important considering Lace was to run our

pathfinding algorithm while making an HTTP
request to the server. Because Lace was to be
implemented in a crowded and dynamic
environment, reducing latency was extremely
important. Communicating with the server and
generating the optimal path would have to run
simultaneously in order to avoid any long
delays. Such delays could occur, while the client
waited for other methods to complete.

Viro Media’s Viro AR
(https://viromedia.com/viroar/) offers a
promising cross-platform development

solution for developing augmented reality apps.
Viro AR integrates directly with the native
process of both ARCore and ARKit and
compiles for both platforms. This would have
been the easiest point of entry for us, as apps
using Viro AR are developed with the React
Native platform. In addition to Viro AR, there
are several other React Native solutions that
make it easier for JavaScript developers to
create apps for iOS and Android.

WebAR

WebAR likely the future of
augmented reality development. To develop for

represents

WebAR, one could use Google’s
WebARonARCore or WebARonARKit
frameworks, which integrate tightly with

ARCore or ARKit, respectively. To develop for
these frameworks, one uses the Three;js
JavaScript framework. While developing the
Lace client with JavaScript would have been a
much more familiar and comfortable choice
than with C#, WebAR is still widely untested
and unsupported, requiring the user to install a
dedicated browser. Google Chrome has already
added ARCore
experimental flags as part of their WebXR

in-browser support via

Device API [28]. However, as support is yet to be

made official, WebARonARCore is highly

susceptible to potential syntax changes and
unforeseen bugs.

12.1.4. Indoor Positioning

The Lace client uses ARCore’s built-in tracking
ability to determine user positions. It was
chosen, because of unworkable inaccuracies in
alternative methods. In complex, rapidly

changing environments, high-accuracy
position tracking is needed to guide users.
Anything could change in an instant, and every
step counts. Indoor positioning was not a
primary focus of the Lace client. This was
because there exist several pre-packaged
solutions that were good enough for our
purposes. The considered solutions are listed

below:
ARCore

ARCore was found to be the most consistently
accurate indoor positioning solution that we
tested. It tracks a user’s position by anchoring a
multitude of points to an environment. These
points are anchored visually, meaning ARCore
recognizes features —using a device’s camera—
in the user’s environment and tracks the
position of those features relative to the device’s
sensor data.

ARCore provides acceptable position tracking
performance in low-density spaces, as it is
consequently easier to “see” more features of
the
potentially obscure ARCore’s ability to perform

static environment. Crowds could
ground plane detection, causing positioning

with ARCore to be more unreliable.

While ARCore’s tracking technique is primarily
based on its ability to process visual data, it is
limited in that it does not perceive depth. This
makes it difficult for ARCore to determine the
distance from devices to static objects in the
environment, occasionally resulting in loss of
tracking and/or orientation.

38

39

IndoorAtlas

IndoorAtlas (https://www.indooratlas.com) was
our first choice for indoor positioning for a
the

Unfortunately, none of the multiple tests that

significant ~ duration of project.
we ran with IndoorAtlas were successful. This
was due to an apparent position-accuracy of
roughly the same area of the room in which we
due to the

construction of the building in which we ran

were testing. This could be

the calibration tests. Because IndoorAtlas relies
partially on magnetic readings in order to
locate a mobile device, the steel beams of the
building could have had a significant effect on
its accuracy.

The main drawback of using a third party API
such as IndoorAtlas is having to exchange data
between Lace and that third party. Because
preservation of user privacy is so important to
this project, the consideration of IndoorAtlas
was admittedly credited to a “fake it ‘til you
make it” mentality. Maybe it was for the best that
it did not work so well.

FIND3

FIND3 [14] is the premium open source option
for indoor positioning. Similar to IndoorAtlas,
FIND3 boasts support for triangulation based
on a multitude of data sources, such as
Bluetooth, Wi-Fi, and magnetic fields. It also
supports built-in passive scanning —something
which previously required a separate server.

Despite allowing us to use a private server,
calibrating a device running FIND3 was
determined to be more time-consuming, with a
more manual setup process compared to
IndoorAtlas. This extra hassle was something
we did not want to focus on too much in the
creation of the Lace client. After all, there were
plenty of other things that could go wrong.

12.1.5. Pathfinding

The main purpose of the Lace client is to find
and show a path to its users. The Lace client
utilizes a weighted graph of crowd-density
provided by the server. The path that the Lace
client generates is determined through a
pathfinding algorithm called A*, or “A-Star”
[45]. The Lace client is effective only when the

dimensions of a room are certain.

A* is based on Dijkstra’s algorithm [2], which
was purpose-designed for finding the shortest
path between two nodes by creating and
evaluating trees of possible connections to the
end node. Dijkstra’s algorithm does not depend
on an organized grid of nodes in order to
determine the shortest route. It is also much
slower than A* because it evaluates so many
paths before determining the shortest one. A*
simplifies that process by pathfinding on a
square grid of nodes, making it easier to keep
track of which nodes it has already evaluated.
Additionally,
density across a room according to a square

Lace server determines the

grid.

This is not to say A* is the only option (nor is it
the most efficient), especially considering the
JPS+ pathfinding algorithm. We chose A*
because it was efficient enough and supported
—the
component. JPS+, for instance, has been shown

weighting nodes most critical
to be over one hundred times faster than A* at
finding the shortest path [35]. Unfortunately,
JPS+ is so efficient, because it only draws a path
at every decision point; its efficiency is entirely
credited to its ability to skip evaluating as many
nodes as possible. In a dynamic and complex
environment with crowds of pedestrians,
skipping any amount of nodes was certainly not

an option.
The Algorithm

The Lace client runs a modified version of the
A* algorithm which factors in the given crowd-
density throughout the room. Instead of
generating the shortest possible path from the

start position to a chosen target position, Lace
attempts to generate the most efficient path.
Specifically, the crowd-density in the room is
made to affect the generated path by guiding
pedestrians to avoid the most crowded areas.
Whereas the standard A* algorithm generates
scores for defined cells in a room based on their
individual distance from the start point and the
end point, the Lace client weights this score
with the crowd-density values received from the
server. This version of the A* algorithm is based
on the excellent example from Sebastian Lague

[23].

An x—y coordinate grid of nodes is
drawn to represent a room which the
Lace server is analyzing, with the
origin being the upper-left node.
Each node represents the corner of a
cell. A cell is the shape of a perfect
square with a width and height equal
to the distance variable supplied by
the server.

The A* algorithm relies on the creation of two
lists of nodes to keep track of which of those
nodes it should consider at every iteration. It
runs until the current node is found to be equal
to the target node, or destination. The open list
contains all of the nodes that should be
considered as part of the most efficient path for
a node. The closed list contains all of the nodes
which have been determined not to be part of
the most efficient path.

The A* algorithm is contained within the
‘AStar.cs’ C# script. Firstly, classes are imported
and local variables defined. This includes a two-
dimensional array of integers. This array will
come to represent the weights of all the nodes in
the room. An object of type Coordinate is
instantiated, representing the route's start
position. Finally, we define a second coordinate
which represents the route’s end, or target,
position.

When AStar.cs is enabled from Main.cs, the
Start method will run. The Start method sets the
local graph array equal to the graph array in the

1 List<Node> openSet =

) HashSet<Node> closedSet =

global response object. It initiates the global
grid object and sets the start coordinates of the
start node equal to those in startPos. Then, it
sets the start coordinates of the start node equal
to those in startPos.

A List of nodes is instantiated as ‘openSet. This
set will include all of the nodes that the
algorithm has yet to evaluate. A HashSet of
nodes, ‘closedSet, will include all of the nodes
that the algorithm has successfully evaluated.
The start node is added to the open set.

new List<Node>();

new HashSet<Node>(

4 openSet.Add(startNode);

The ‘Node’ class is used to describe a node in
the coordinate space. First, we define some class
variables: the node object’s parent, its position
in a GridObj,a boolean determining whether or
not the node is traversable by foot, the node’s g-
cost, h-cost, and crowd-density weight.

All nodes are assigned a g-cost and an h-cost.
The g-cost is the Pythagorean distance of the
current node at coordinates xc and yc, from the
user’s starting position at coordinates xg and yg,
which will always be equal to node’s coordinate-
position on the grid object. The h-cost is the
Pythagorean distance from the current node to
the target node at coordinates xh and yh. The
real distance between can be disregarded in
both cases because it remains a constant value.

gCost = '\/(xg - xc)2 + (O, — yc)2

hCost = V(xh - xc)z + (yh - yc)2

In this class, we automatically create a property
of the node’s f-cost. The f-cost of a node is equal
to the sum of the g-cost, the h-cost, and the

);

40

crowd-density weight at that node’s coordinates. 3. If the current node is equal to the target

The f-cost is what is ultimately compared with node, run the RetracePath method with

other nodes’ f-costs in order to help the arguments startNode and targetNode and

algorithm choose the optimal route. sets the global boolean value, pathFound, to
true.

fCost = gCost + hCost + . 4. Iterate through each neighboring node of

the current node. If the neighboring node is

Also included in the Node class is an optional either not walkable or has been added to the

method to be run upon its instantiation. In this closed set before, continue to the next

method, we set the node’s walkability and iteration of the loop. Create an updated cost

position, as well as the crowd-density weight of and sets it equal to the g-cost of the current

the node equal to that of the corresponding node plus the distance from the current

position in the graph array of the API response. node to that neighboring node. If this cost is

less than the g-cost of the current
neighboring node, or if the
open set does not contain the

1 ic Node isWalkable, Coordinate _positior . .
PRiae ede: (hos) ite,, Comminate _pesision) i current neighboring node,
set the g-cost of the current
isWalkable = _isWalkable; X .
- o neighboring node equal to
position = _position;
density = (int)graphlposition.X][position.¥]; the updated cost. Then set the
553 h-cost of the current

41

neighboring node equal to its
distance from the target node, and the
Figure 26: The initialisation method of the Node parent node of the current neighboring
node equal to the current node. If the open
set does mnot include the current
The algorithm loops through the following neighboring node, add the current
steps while there are still nodes in the open set neighboring node to the open set.
to be evaluated:

1. Set the current node equal to the first node
in the open set. For each node in the open Figyre 27: Code snippet for the RetracePath method
set: Check if the f-cost of
node ‘1 in the open set is
less than or equal to the f- 1 static void RetracePath(Node startNode, Node targetNode) {
cost of the current node. If
the h-cost of node ‘i’ in the : List<Node>p = new List<Node>();

Node currentNode = targetNode;

open set is less than the h-
cost of the current n0de’ 6 while (currentNode == startNode) {
sets the current node

equal to the node ‘1’ in the 8 p.Add(currentNode);

open set currentNode = currentNode.parentNode;

2. Remove the current node

12 p.Add(startNode);

1 p.Reverse();
the current node to the 14 Global.Instance.grid = new Gridobj() {path = p};

from the open set and add

closed set. 15 }

The ‘RetracePath’ method retraces the path
backward from the target node via its parent
nodes, their respective parent nodes, and so
forth. Firstly, this method
instantiates a new list of nodes. This will come

creates and
to represent the final optimized path from the
start node to the end node. Then, the current
node is made equal to the target node.

While the current node is not equal to the start
is added to the
optimized path, and the current node equal is

node, the current node

made equal to its parent node.

1 public static double GetDistance(Node nodeA, |

return Math.Sqrt(

Math. l’l)a(
(nodeB
w(

(nodeB.positi

2A.posit

ion.X),

.position.)

Math.Pc

on.Y

- nodeA.position.Y),

Figure 28: Method for calculating the distance
between two Nodes

The start node is added to the optimized path.
The order of the optimized path is reversed so
that the first node is the start node. The path
object of the global grid object is then made
equal to the optimized path.

method utilizes the
the

distance between two node objects and

The ‘GetDistance’

Pythagorean theorem to calculate

returns the calculated distance.

The ‘Coordinate’ class consists of two int
objects, X and Y. These represent a position
on the node grid.

The ‘GridObj’ class represents a grid object
containing all of the nodes in a space. Within
this class, we first define the following
variables: a two-dimensional grid of objects
of type Node, a 2-dimensional array of
integers, a list of Node objects to be

1) Y

Node

1 public List<Node> GetNeighbors(Node node) {
List<Node> neighbors = new List<Node>();
for (int x = -1; x <1; x+) {

for (int y = -1; v <1; y+) {
if (x =086 y = 0) {
continue;
int checkX = node,position.X + Xx;
int checkY = node.position.Y + y;
if (checkX > 0 &6
checkX < width &6
checky 2 0 &6
checkY < height) {
neighbors.Add(grid[checkX, checkY]);
}
return neighbors;

populated with the final optimized path, the
maximum number of nodes in the x and y-axes
(width and height), and a boolean representing
walkability, which defaults to true. The GridObj
class automatically runs a method upon
instantiation, which sets the data array equal to
the server’s graph array, the width, and height
equal to the number of values in each column
and row of the mentioned data array, and runs
the CreateGrid method.

The CreateGrid method populates the grid
this method
instantiates the grid object with
the calculated width and height.
Then, for each node in this grid

object. Firstly,

mdv'ri) {

object, we check if its crowd-
density weight is equal to the
predetermined highest possible
density value. If so, the grid
position’s walkability is set to
“false”, indicating that its position
is not traversable by foot. Then, we
instantiate a new object of class Node at the
same coordinates with its

walkability.

corresponding

The ‘GetNeighbors’ method determines the

Figure 29: Code snippet for the GetNeighbors
method

43

valid neighbors of a specified node. Specifically,
we want to make sure that all neighboring
nodes exist within the boundaries of the space.
In this method, we create and instantiate a new
list of nodes. Then, we iterate through each
node in the specified node’s adjacent nodes, also
known as the Moore neighborhood with range,
r =1 [44]. Then we check if the current adjacent
node is equal to the specified node before
continuing onto the next iteration of the loop.

We set temporary x and y values equal to the
sum of the specified node's x-y position and the
current x and y values of the current adjacent
node. If the temporary x or y values are greater
than or equal to o, or if the temporary x or y
value is less than the maximum size of the grid,
that object of class, Node, is added to the list of
neighboring nodes.

After iterating through all of the nodes in the
specified node’s Moore neighborhood, the
GetNeighbors method returns a list of valid
neighboring nodes.

12.1.6. Project Structure

The client app was developed entirely within
Unity3D. Several scripts were written in C# and
attached to objects in the Unity3D editor.
Attaching scripts to objects allows those scripts
to be run at a defined time.

Main.cs

This
important tasks in the app. Main.cs is dedicated

script manages some of the most
to running the A* algorithm, and calculating
the remaining distance from the user to their
destination at every frame.

Global.cs

To avoid confusion of passing variables between
functions, we used global variables. Global
variables that can be updated and accessed by
any program are important when running
multiple threads at the same time, as values
would need to be updated in no particular
After the
implementing global variables across C#

order. toiling with task of
scripts, given the limitations and nature of
Unity3D

enabling/disabling scripts, came across a novel

—attaching scripts to objects,

solution called Singleton [41].

1 public class Global : Singleton<Global> {

protected Global () {}

isGlobal = tru

public bool

Figure 30: Implementation of a Global Singleton

Implementing a Singleton in Unity3D enabled
the prototype to have persistent access to data
across all scenes. This was especially important
when switching between two-dimensional and
three-dimensional interfaces, which could be
allocated to different scenes yet retain the need
to access and/or modify data. An example
would be allowing users to choose a destination.
Singletons have several caveats, however.
Lacking polymorphism, for instance. Despite
this, it worked perfectly for us novice C#
programmers. Global.cs creates a class called
Global of type Singleton. This allowed us to set
variables within a global singleton object,
consequently making them accessible to any

other script in the project.
APl.cs

APILcs sends a POST HTTPS request to the
server and assigns the server’s response to its
respective global variable during the execution

of'a coroutine. A coroutine is an asynchronous

method that mimics multi-threading, in that it
resumes a method with every frame update
until the method is completed. That way, the rest
of'the program will be able to continue as APIL.cs
waits to receive a response from the server.

1 public class API {

public void Post(MonoBehaviour instance) {
instance.StartCoroutine(PostRequest());
}
IEnumerator PostRequest() {
Q
(}

Figure 31: Code snippet for making POST requests

In the POST request, the client sends a package
containing request headers. These headers
include the content type which the client is
expected to receive, as well as an authentication
token. This token ensures that the client posting
the request is valid and thereby has permission
to receive a response from the server.

As the data received is of type string, it has to be
deserialized. What this means is that the string
is converted into a JSON object. This allows
other scripts to loop through the received data
and perform actions on it accordingly. The

void Awake () {
Add(new Destir
Add(new Destinat
id(new Destina
Add(new Destinatior
tinations.Add(new Destir
int n
int yoffset = -120;
Figure 32: Code = =
snippet for the ‘
Awa emethOd foreach (Destination n in ds

d.group = destinationList

ationName = newDestinationCard

tion("Swing Set", 3, 7));
ion("Apartment®, 12, 19));

received response [Section 14.2.4] includes a
unique ID, the constant distance between each
pair of collinear nodes (in meters), and a two-
dimensional array describing the crowd-

density weights at each node in the room.

DestinationSelector.cs

This script generates a list of GUI toggles in
two-dimensional canvas element. For the proo
of-concept, available destinations are hard-
coded into the script. When a toggle is selected,
the “Start Navigation”
available. If the user taps this button, the GUI is
hidden, and the user is shown the navigation

button becomes

view.
Populate.cs

This script serves to draw the path from the start
coordinates to the end coordinates. It plots a
waypoint for every valid path node calculated
by the A* algorithm. These waypoints are
grouped within a shared parent. In this case, we
use a free script called CurvedLineRenderer.cs
[10] to magically draw a smooth line between
the instantiated waypoint objects.

e Rack®, 16, 11));
15, 0));

("Entryway",

ation("Garden”, 0, 13));

ns) {

.GetComponentInChildren(typeof(Text)) as Text;

45

DATABASE

MongoDB

USER Collection FETCH credientiails
Authentication Credentials

cradientials
GRAPH Collection FETCH graph

Store Density Graphs graph

INSERT graph

h Endpoint

Auth Endpoint: /auth

Video

Visualisation tools

Machine Learning

Computer Vision

streamer

DROPLET

NodeJS
POST image
REST API

GET resources
resources
Web Server

GET web assets

web assets Render Ul

Object Detection

Image Grid
Density Map Cre

Figure 33: System architecture drawing for the “Server” system

12.2. Server

As mentioned in the introduction of Section
13.2, the prototype needed to understand the
space in which it is operating as well as how
people through the This
functionality would be handled by the system
referred to as ‘server. The server system can

move Space.

essentially be split into three separate parts
with the droplet as the intermediary between all
the elements. A visual representation of this can
be seen in Figure 33.

In this Section, we will dive deeper into the
different parts of the server system, what they
do, and how they were developed.

12.2.1. Server Droplet

The server droplet is the brain behind the
server system. This is referring to a virtual
system running a base form of Linux with
access to virtual CPUs. Everything that needs to
be processed will go through the droplet, and
the droplet will direct the input to the relevant
process. This results in a simple and elegant

one-way communication stream between the
client and the server. This is done to limit the
number of entries into the server system which
in turns adds to the performance and security
of said system.

As the central processing is happening on the
droplet, it is vital that this is kept as secure as
possible. Intrusions into the droplet could have

devastating consequences for the overall
system. The droplet is handling
communication with the wuser’s devices.

Gaining access to the droplet could result in
access to the user’s private information. This is
why the communication stream has been fully
encrypted using SSL [46] certificates which
have a key pair: a public and a private key. These
keys work together to establish an encrypted
connection which ensures that the connection
All the
communicated is encrypted guarding the

is secure. information being
system against potential man-in-the-middle
attacks which could reveal confidential user

information.

To further ensure the safety of the system, each

Stream Came

WEBSITE

streamer.js

Get Camera input

ra Input

player.js

cted Resources

sation

React JS

Handle Interactions

client trying to request assets from the server
will need a 512 bits unique, random string of
symbols as part of the request. This random
string of symbols is referred to as an auth token.
The auth token will be generated using a
custom built, hidden function that only the
server and client application have access to. In
making a request, the server will first check ifan
auth token has been sent through and if it is
matching the pattern. The request will be
allowed only if the auth token is considered
valid. This
application will be able to request assets from

ensures that only the client

the server, eliminating intrusive 3rd party

access.

To ensure that the system does not fall to No-

SQL

developed for the header parameters in the

Injections, extensive checks were
communication stream. No-SQL injections are
similar in nature to the more “well-known” SQL
injection, which is a technique used to inject
malicious code into a data-driven application
which can tamper with the stored data. This will
usually happen by sending executable code
snippets through some sort of text input on the

client side.

The verification checks look at every header
parameter and determine if the data matches
what was expected. If it does not match, the
request will be denied.

that
personnel can access and make changes to the
droplet itself, the SSH keys of the authorized
personnel have been added to the droplet,

Finally, to ensure only authorized

allowing only these keys access. SSH [41]
(Secure Shell) is a cryptographic network
protocol used for operating network services,
matching a public key added to the droplet with
a private key on the user’s development

machine.

A Node]JS development environment is run on
top of the droplet. Because we had more
with Node, the
environment allowed for rapid prototyping and

experience working

development. Node is a stable and extensible

development environment. It allowed us to
quickly set up and develop the web and API
server. It also provided plenty of flexibility in
running separate operations on multiple CPU
threads, known as child processes [6].

Node drastically improves the scalability as it
the

paradigm that is still governing the web. Instead

changed traditional request-response

of created a mnon-blocking, event-driven
input/output (I/O) stream to run real-time
applications across devices. By employing
event-driven development, Node gathers all the
requests on a single thread, allowing it a
theoretical max of over 1 million concurrent
connections. [1] As we have a constant stream of
images coming in from the cameras, and a
constant request of information from the
client, this will be crucial to ensure not

overloading the server droplet.

As can be seen in Figure 13.2.1 the Node
environment encapsulates everything that is
running on the droplet, the first thing being the
REST APL API
Application Programming Interface and is

Technically, stands for
there for the server droplet to serve the client.
When thinking about the web, one can imagine
a large network of interconnected, remote
server droplets. Every website or asset is stored
on a remote server droplet somewhere, and the
way you gain access to said assets, are by

interacting with the droplets API [36].

There are many different ways of designing an
API. When choosing an architectural style,
scalability was once again the predominant
decision maker. We chose to implement a
RESTful API. REST
Representational State Transfer, which is
style
distributed hypermedia systems” [13] defined

is an abbreviation of

essentially an “architectural for

in Roy T. Fielding’s dissertation
Architectural Styles and the Design of Network-
based Software Architectures [13].

on

REST proposes a set of guiding constraints
which must be satisfied in order for an interface
to be RESTful. The first constraint concerns the

46

47

client-server architectural style. When we
delegate the concerns of the user interface to
the client, we are freeing up the server to focus
on data storage concerns, improving the
scalability of the system [13]. The second
constraint is to the interaction between the
client and server. Each request from the client
must contain all of the relevant information
that the server needs to understand said request
[13]. No state or context is stored on the server.
This improves the scalability of the system by
not having to store the state between each
request, allowing the server to quickly free
Mr.
dissertation that this is also the biggest design
trade-off [13]. This tradeoff is rooted in the
increase in repetitive data sent in each request,

resources. Fielding’s claims in his

which could decrease the network performance.
5G connections are expected in the first half of
2019 [34], with 4G being already widespread.
The downside could be negated when weighing
the benefits of scalability and latency against
the potential decrease in network performance.

The goal of the REST API is to act as the
intermediary between the clients requesting
assets and the that

droplet executing

MOBILE

GET graph

UNKNOWN

graph

Visualisation tools

Graph Endpoint: /graph
Stream Endpoint

Auth Endpoint: /auth

Video streamer

Machine Learning

functionality. The droplet has no knowledge
about surrounding clients [Figure 34] and
interfaces only with the APL In turn, the API
handles all client requests and directs the
verified data to the droplet for processing. Once
finished with its operations on the data, the
droplet will return documentation to the API.
This documentation will be returned to the
client. This process occurs when the client
makes a request for a density graph of the
environment that they are currently in.
Contacting a specific endpoint of the API will
command the droplet to fetch the density graph
from storage and return it. A more detailed
explanation on how said density graph is
constructed will be provided in Section 12.2.4.

The Lace website (www.lace.guide) can turn any
capable device into our camera. It posts an
image stream to the server by connecting to a
different endpoint on the API. The API will then
forward the image to the droplet, telling it to
perform the operations needed to create a
density graph from the image. This, like the
requests from the client, happens concurrently
and in close to real-time if negating the latency.
Per Figure 33, there is a streamer and a player

DROPLET

NodeJdS
POST image
REST API

/stream

GET resources
resources
Web Server

GET web assets
web assets

iap Creation

Figure 34: Illustration of the API connections and its knowledge about clients

WEBSITE

component. The streamer component harbors
the camera functionality. To keep prototyping
costs down, the camera functionality was
developed into a website which could then be
accessed from any camera phone. The streamer
requests access to use the camera of the phone
and then streams images of what it sees to the
droplet by hitting a dedicated API endpoint.

The player component of the website can be
accessed to view what the camera is seeing. It
can also draw a graphical representation of
object detection and creation of the density
graph on the droplet for demonstration
purposes. Because the droplet is purely a
command line interface with no graphical user
interface, it is difficult to verify the correctness
of the operations being performed.

The API takes care of storing generated
resources, specifically the density graph, in a
database so that it is ready when the client
requests it. When it comes to databases, there
are two main philosophies; relational and non-
relational database structures. Relational
databases are how things were traditionally
handled using technologies such as MySQL and
PostgreSQL. Relational databases have reliably
served data applications for many years, and
offer a lot of features that remain critical today.
This include features like an expressive query
language, known as SQL, and secondary
This allows wusers to access and
data that

operational and analytical applications. As the

indexes.

manipulate in ways support
technology is mature, applications written in a
relational way becomes increasingly complex
when building around an evolving data
structure, known as a model. This imposes
significant work if the data structure will ever

have to change.

Modern
requirements, which are not handled by
This
relational database come into play. Non-

applications impose new

relational databases. is where non-
relational databases offer a flexible data model
which is an invaluable feature when working
with data-driven applications. Whether your

data consists of documents, data-graphs, etc.
non-relational databases offers a way to

combine data of any structure without
modifications of the schema. This leads to
increased scalability and performance, as
databases can easily scale out enabling lower
latencies than relational databases. Common
non-relational databases, like MongoDB and
Redis, are developed for these exact purposes.
Specifically, we chose MongoDB due to our
prior experience dealing with this way of
defining database models and schemas for
operating on it. This allowed for rapid

prototyping and iteration.

We wanted to rapidly iterate on the data

structure during the prototyping and
development phase, while simultaneously
providing increased performance in

production environments. Because of this, non-
relational databases were a clear choice for the
purpose of this project.

Storing the density graph in a database allows
the droplet to free up the resources held by that
graph and direct those resources to other
operations. As the system is running object
pretty

operation, we wanted to free up as many

detection, which is a expensive

resources for this operation.

Generating the density graph is an expensive
operation in terms of resource utilization, as it
is running machine learning, computer vision,
object detection, and many more algebraic
operations under the hood. All of these
operations could end up blocking the thread
running on the central processing unit (CPU).
This results in the client not be able to contact
the system through the API before all the
operations are complete. Although the duration
of operations could be as low as a second or two,
the generation of density graphs occurs in close
time for other
Node]S Child

leaving little
This
Processes [6] comes into play.

sequence,

operations. is where

Single-threaded performance in NodeJS is great
for single processes, though running our

48

49

system, one process in one CPU is not going to
handle the of the
operations. While Node runs on a single thread,

combined workload

we could still take advantage of multi processes
using the child processes module. The child
processes module allows Node to spawn a child
process which enables access to the operating
system (OS) functionalities by executing system
commands inside a child process. Node and the
child process then communicate using the
standard input/output streams of the OS. This
allows the system to spawn a child process
which runs in parallel with that same system.
This parallel process will handle the expensive
operations involved in creating the density
graph, while the main process is completely free
to handle other tasks. Once the child process is
done with its operations, it will send the output
back to the main process and store it in the
database, ready for the client to use.

12.2.2. Machine Learning

Machine Learning essentially gives computers
the ability to “learn”; they can progressively
improve their performance on specific tasks
based on data input. They are also not explicitly
programmed to perform a specific task.
Machine learning is a skill largely comprised of
basic statistics, probability theory, and calculus.
Implementing effective machine learning
generally requires a thorough understanding of
these mathematical concepts, rather than
strong algorithmic skill. In Lace, machine
learning is implemented to achieve computer
vision and object recognition. This approach
helps Lace understand the crowd density in a
space. Tom Mitchell [28] asserts that a machine
learning system will be able to use data to
perform some task. After having computed said
task, the system will have gained some
experience on how to perform it. Next time the
system receives data, it will use the experience
gained from previous tasks to guide its process.
This allows us to not specifically program a
solution for every single case, but rather let the
system create an inference on the provided

dataset.

The child process being executed by Node is
programmed using Python. [33] Python has
been gaining a lot of attraction with developers
after technologies which rely heavily on
advanced mathematical operations have
become part of mainstream products. The
reason for this is not that python is better at
performing such mathematical operations, but
because Python has been adopted as the go-to
language by scientist and researches. This made
Python the clear favorite, as plenty of Python-
based frameworks on which we could build, had

already been developed.

Since we are working with computer vision for
object detection and recognition, Python has a
clear advantage in the number of supporting
packages that exist for the system. An especially
essential package is for operating on and
manipulating images. One of the downsides,
however, is that with the number of advanced
and encompassing packages, a large amount of
overhead is added. This means that it requires
more processing power than most other
languages. While this would be quite a
substantial downside had this computation
happened on-device, handling all of these
processes on a server proves less of an issue.
Since cloud servers have increasingly high
processing power for increasingly lower prices,
Python provides a strong foundation to which
one can build their technology.

With the increase in demand for machine
learning technologies, Google developed their
first edition of a highly specialized processing
unit for exactly this purpose. The Tensor
Processing Unit [38] (TPU) is a processing unit
developed specifically for neural networks and
machine learning using Google's TensorFlow
framework. What sets Google's Solution apart
from the standard Graphical Processing Units
(GPU) is that they lack any sort of hardware for
rasterization and texture mapping which would
be required from a general-purpose GPU. While
they are not yet commercially available, it will
most likely become the standard as technology

is moving forward.

We are using TensorFlow is because it is open-
source. This allows us to customize it and use it
however we please by compiling from source
with our own modifications and optimizations.

Weights

Inputs

neuron to learn from previous experience, each
incoming signal will have a weight which will
programmatically be adapted over time. A
visualization of this can be seen in Figure 35
below.

Activation
Function

»] Output

Summing Part

Figure 35: Visualization of an Artificial Neuron

TensorFlow is built upon the concepts of
which
dimensional arrays. By representing images as

tensors, are essentially multi-
arrays of bits, we can utilize TensorFlow to
increase the performance of detecting objects
in these image arrays. TensorFlow uses an
artificial neural network to achieve machine

learning.

An artificial neural network is an intelligent
system modeled after the human brain. It
emulates an artificial neuron based on the
with
mathematical operations. A natural neuron

neuroscience foundations some
structure is known to have a nucleus which
receives information from dendrites which are
receiving incoming signals from neurons.
Finally, an axon activates a signal to other
neurons. Modeling this structure as an artificial
neuron, one can create an artificial neuron unit,
which sums all the incoming signals, and

activates a new signal to other neurons. For the

Each of these neurons is then placed in an
interconnected network which is comprised of
layers. Each network contains an input layer
which receives signals from outside the
network, as well as an output layer firing some
action that will have an influence on functions
outside the network. It can then have an
arbitrary number of hidden layers, between the
input- and output layers. The more layers a
neural network has, the more complex
knowledge it can represent. It essentially allows
us to model complex relationships between all
the inputs and outputs to find patterns in data
which

recognition.

comes in handy for the object

It is possible to get the pre-compiled binary for
TensorFlow, making getting started with the
tool quick and easy. The pre-compiled binary is
compiled to support as wide a number of CPUs
as possible, resulting in specialized instruction
sets being excluded. The specialized instruction

50

51

with detection_graph.as_default():

with tf.Session(graph=detection_graph) as sess:

detection_g

detection_classes = detection

es, r'um) - \.-»'»».run(
detection score

ensor: numpy

S, detection classes

image_array_e

raph.get_tensor_by_name('image_tensor:0')

1_graph.get_tensor_by_name('detection_boxes:0')

tion_scores = detection_graph.get_tensor_by_name('detection_scores:0')

graph.get_tensor_by_name('detection_classes:0')

ions = detection_graph.get_tensor_by_name('num_detections:0')

y Num_detec !_‘;l'ln*)],

xpanded}

Figure 36: Code snippet of the Python routine handling object detection

sets available to you depends on the specific
hardware. In the case of Lace’s droplet, the
hardware running it has access to the AVXo2,
AVXs512F and FMA extended instructions sets.
These
instructions for processing matrix or vector

instruction sets contain optimized
operations. Making a custom compilation of
TensorFlow, which secures access to these
instructions sets, could give between 35-50%
general speed increase on this particular setup.
This made it worth investing our time.

12.2.3. Object Recognition

The density graph is intended as a guide for the
client to determine which path to take through
a space. It is based on the crowd density. Hence,
the system had to understand when something
is an animate or inanimate object. Areas
crowded by pedestrians is be represented as
high density, whereas areas containing static
objects, such as tables, will be represented as
lower density. This is where the system needs to
understand the object in the space. Suggesting
the client move through a table might not work
out so well.

Object recognition is a subset of the research
and technology field of computer vision.
Recognizing a visual object is a rather trivial
task for humans to perform, while computers

are not so good at it. Object recognition uses
what is known as an image classifier to identify
if an object belongs to a certain category. The
image classifier’s task is to assign an image one
label from a predefined set of categories. It does
so by taking a single image in which it detects
and infers the type of visual objects present
using a floating confidence rating between o
and 1. Depending on how the classifier is built,
it can assign different labels to the image, each
including a rating of confidence that the label
corresponds to the object in the image.

Current detection systems use image classifiers
to perform detection on an image. To detect an
object, image classifiers utilize an image
classifier for said object and evaluate it against
various locations in a test image. These image
classifiers then utilize what is known as the
‘sliding window’ approach where the classifier
is run at evenly spaced locations over the entire
image. For a computer to make any sort of
operations on an image, the image has to be
represented by a set of values that the computer
can work with. Converting an image into a large
three-dimensional matrix of values. The values
in the matrix are the red, green, and blue
channels in an image used to represent the
color of each pixel. If we are running detection
on a 480 by 480-pixel image, with each pixel
having three channels, we get an array

Overall mAP

40
Faster R-CNN w/ResNet, Hi

s, 50 Fropasats @ Faster RCNN
m—
3 5 R-FCN W/ ‘f\ o Cj- ’_) . [
ResNet, Hi Res, A
100 Proposals :D ~ /]w 0 B
30 : Galm
@ @H @
€n)
25 o,
(@]
20
SSD w/Inception V2, Lo Res
15 SSD w/MobileNet, Lo Res
10
0 200 400

Meta Architecture

Faster R-CNN w/Inception
Resnet, Hi Res, 300
Proposals, Stride 8

Feature Extractor
Inception Resnet V2
Inception V2
Inception V3
MobileNet
Resnet 101
VGG

00 ® 000

600 800 1000

GPU Time

Figure 37: Time vs. Accuracy evaluation of the meta-architectures [22]

representation with a total of 691.200 values.
Each specific value ranges between o (black)
and 255 (white). The system has to turn over half
a million of these values into a classification
label. This is done using a data-driven approach,
where we provide the computer with many
examples of each class of object it is supposed to
detect. This is where machine learning comes
into play. Based on the many different examples
of objects, the system will be able to learn
numerical representations of visual objects in
images, which it could use to classify further
objects.

There are different types of architectures used
to build these object detection
Although a common factor is that they all

systems.

implement a convolutional neural network,
such as the ones explained in earlier. Some of
the most popular architectures, also referred to
as the meta-architectures, include SSD (Single
Shot MultiBox Detector) [24], R-CNN (Region-
based Convolutional Network), Faster R-CNN,
and R-FCN (Region-based Fully Convolutional
Network). While the Region-based architectures
are similar in structure by incorporating both a

feature extractor, a proposal generator, and a
box classifier, the SSD architecture combines
the work done by the proposal generator and
box classifier into a single step, lowering the
number of times the system has to look at the
image to one, increasing speed of detection. As
the system needs to keep up with walking
pedestrians, we need to get as close as possible
to real-time detections.

There is a dramatic tradeoff when one detection
system is required to run quickly. The accuracy
of the detections. When wanting to increase the
frame rate at which the system can run, one
must be willing to sacrifice the mean average
precision (mAP). The speed depends not only
on the architecture but also on the feature
extractor used with it. When deciding on which
architecture and feature extractor to use, we can
refer to Figure 37, which compares time vs
combinations of

accuracy on different

architecture and feature extractors.

The fastest feature extractor is MobileNet [20],
placing under a 100 GPU time. The overall
fastest architecture is the SSD which all comes

in under 180 GPU time. One radically different

52

53

Extra Convolutional Feature Maps

A

f
Classifier : Conv: 3x3x(3x(Classes+4))

Classifier : Conv: 3x3x(6x(Classes+4))

SSD

iR S
:\\ \\
| _ | AN
: N R I

00 || |1 |38 |

| [}

image| | ! !
|

| I i

oof[L | 38 |

\\ | |

v | |

A | }

Wsesrmicrasasny ENS (PO |

IR

74.3mAP
46FPS

Conv: 3x3x(4x(Classes+4))| @

U et

| Detections:8732 per Class |
[Non-Maximum Suppression]

Figure 38: The SSD Model Architecture using the VGG16 Convolutional Neural Network [24]

approach, which is not considered part of the
meta architectures is the YOLO (You Only Look
Once) object detection architecture. While it is
not mentioned in Figure 37 we tested it out. It
proved less accurate than the SSD and
MobileNet combination.

The SSD architecture, “it is based on a feed-
forward convolutional network that produces a
fixed-size collection of bounding boxes and
scores for the presence of object class instances
in those boxes”. [24] The exact SSD architecture
can be seen in Figure 38 above. Rather than
using the VGG16 CNN for feature extraction, we
would exchange this part of the SSD Model with
the MobileNet CNN which has been proved to
achieve VGG16 level accuracy using only 1/30th
of the computational power. This makes the
object recognition system incredibly fast, and
still accurate enough for our purpose. The
layers seen under the “Extra Convolutional
Feature Maps” are the neural network layers
implementing the machine learning and
evaluating the image classifiers data.

The job of feature extractors is to reduce the
amount of computational power needed to
process an image without losing important or
relevant information. Running through an
image using a pool layer to reduce the
dimensionality of the input image. A pool layer

is used to create a summarization of a particular
image patch. The summarization operation
could be using the average, minimum, median
other
From

summarization
the

operation seems to be the most common.

or any statistics

operation. investigation, max
Employing a 2x2 max pooling layer [Figure 39]
would take a 300 by 300-pixel image down to a
150 by 150-pixel image lowering the number of

pixels to run detection on by half.

After reducing the number of dimensionalities
in the input image to a satisfactory level where
the number of actual pixels remaining is as
small as it gets without losing any of the
features from the original input image, the
system will evaluate the image classifier against
the remaining pixels. This is what can be seen as
the ‘Conv’ layers under “Extra Convolutional
Feature Maps” in Figure 38 above. The image
classifier will use what is called a k-Nearest
Neighbor Classifier algorithm to find the top k
closest images in a training set and use them to
evaluate which is the most similar to the input
image. One of the most common ways the
algorithm determines similarity is by using a
pixel-wise difference to compare the distance
between the images, essentially comparing the
images pixel by pixel and adding up the
differences. This can be done using the L1
distance formula:

maxpoollayer vith
2x2 filters and 2 6 4

stride

X

Figure 39: Visual representation of input and output from a 2x2 maxpool

d(1112) =Z|11p _12p|
14

where I1, I2 are the images represented as
vectors.

If the summarized distance between the two
image vectors is o, the two images are identical.
The higher the value of d(I1l2), the more
different the image are and the lower the
confidence rating will be. The lower the value,
the higher the confidence. A visualization of
how this would look can be seen in Figure 40
below.

The two images are subtracted at each element,

[Figure 40] and all of the differences are added
up to a single number. The example is not
representing an entire image, rather a single
color channel, remembering that the entire
image is represented by a 3-dimensional matrix.
The distance between the two vectors is high,
d(I1Id)-1039 which means that the similarity
between the two is low, giving a low confidence
rating.

The system has now understood what object is
present in the image. It now needed to draw
what is referred to as a bounding box around
the object. This bounding box is what will be
used to evaluate the density against each point

23 | 123 | 56 | 32 53 |12 | M1 30 | 111 | 15 | 32

14 1250 73 | 12 28 | 82 |255| 38 14 | 168 [182 | 26
= = 1.039

200(101 | 2 | 27 46 | 67 | 122 | 32 154 | 34 |120| S

0 123 | 36 | 49 12 |175| 4 | 91 12 | 52 | 32 | 42

Figure 40: Calculating similarities between two vectorized images. Here done on a single color channel

54

55

in the observed space. Determining the
position and size of the bounding box is what is
know as object localization. Object localization
will start by finding the center point of the
object. Based on the center point, it can create
an outline for which a bounding box will be

created around.

The system now knows what object is present in
the space, and how much room it takes up,
which we used to construct the density grid.

12.2.4. Density Grid

The density grid is the final data structure that
will be served to the client. It is a grid
representing the room with an integer value
representing how dense each grid box is.

The system starts by creating a grid with a range
depending on the distance from the camera to
the floor of the space. The longer the distance
from the camera to the floor, the finer the grid
will be. It is important that the grid is of a fine
enough resolution to be able to distinguish
different elements within them, as well as a not
being so fine that the number of data points
becomes large. The finer the grid, the more data
point, which in turns requires increased
computational power. The more computational
power required, the bigger the chance for
bottlenecks on the client.

There is some debate about how to define the
cell size, or the constant space between each
collinear pair of nodes, in order to make the
“best” crowd observations. While Davidlich
suggests spacing nodes every o.53m (to suit a
single Caucasian male) [8], Feliciani suggests
using a spacing of 0.2m [12]. Of course, the size
of the cells affects the optimal sampling
frequency; The sampling frequency depends on
how many cells a pedestrian is able to cross in a
short amount of time, as well as our need to
provide accurate and current readings to users.
Feliciani found that the respective optimal
sampling frequency was once every 2.5 seconds,

although their specific reasoning is unclear. The
typically preferred velocity of individual
pedestrians has been determined to be 1.34m/s
[22]. This places a strict limitation on the
amount of time it takes to detect pedestrians’
locations and calculate paths for Lace users.
This time limitation underlines the importance
of implementing prediction algorithms in the
future.

The crowd-density grid of square cells, versus
triangular or hexagonal alternatives, was
chosen because we determined the format to be
useful for developing a proof of concept. Using
square cells is the most common practice in
pathfinding algorithms (Davidich determined
the diameter of cells —in this case, hexagonal—
to be 0.53m [8]).

The specific grid size has been decided based on
a number of tests and a formula was drafted for
the system to automatically create the grid
based on its distance to the floor.

Gsize = LZ(T&) * lOg (d)J

where G is the graph and d is the distance from
the camera to floor in centimeters.

We modeled that an exponential function to the
base 2 multiplying a logarithmic exponent of
the camera, to make it grow a little more rapidly
with larger values of d. The system has
determined how fine the grid should be, it will
normalize the pixels of the image into a [0;1]
Cartesian coordinate system. This allows the
system to perform calculations independent of
the pixel ratio of the image which could vary
depending on the distance from the camera to
the floor.

Now that the grid size has been determined, the
system can create grid boxes according to the
calculated size. Firstly, the system will create
Gsize evenly spaced grid lines within the
normalized coordinate interval. The number of
grid boxes corresponds to the formula (Gsize-
1)2. This operation will happen on both the x-
and y-axis.

From these grid lines, structured as two lists, the
system can create a new list of coordinate
points for each grid box. As a simple example,
let us imagine Gsize=3. This results in there
being 3 grid lines in the normalised coordinate
interval: [o, 0.5, 1]. Because the image stream is
of equal width and height, this is representative
of both axis. With these 3 grid lines we will get a
grid with 4 grid boxes. These boxes would have
the following coordinates starting from the top
left and going clockwise, (o, 0) being in the top-
left quadrant:

boxyoom iee + 100,0), (0.5, 0), (0.5, 0.5), (0, 0.5)]
box,,, ,ign + [(0.5,0), (1, 0), (1, 0.5), (0.5, 0.5)]

boxXyiom rigne * 1(0,0.5), (0.5, 0.5), (0.5, 1), (0, 1]
boxyyom tee : 1(0.5,0.5), (1, 0.5), (1, 1), (0.5, 1)]

We were actually able to craft these boxes by just
the and bottom-left
coordinate which would translate to the

knowing top-right

following:

boxbattom left [(0.5, 0), (0, 0.5)]
boxtoprighr [, O), (0-5, 05)]

boxbollom right : [(05, 0.5), (0, 1)]
boxbottom left [(1, 0.5), (0.5, 1)]

This allowed us to halve the number of data
points which each algorithm have to run
through. Imagining that an operation takes o0.01
time-units for each data input. In a system
where the camera is 4 meters from the floor,
Gsize= 12(4)" log(400)1 = 95 we would have (95
-1) * 2 = 8.836 grid boxes. As each grid box is a
list of 4 floating point values, performing the
imagined operation on each of them would take
atotal of (8836 *4) * 0.01 = 353 time-units. When
only using two coordinates sets, the total time to
complete the operation would be (8836 *2) *
0.01= 178 time-units.

With coordinates for the grid boxes and the

coordinates from the bounding boxes, the
system can use these coordinate sets, to
calculate the area of overlap between a
bounding box and a grid box. This area value is
what will be transformed into the density. The
higher the area of overlap between bounding
boxes and grid boxes, the more objects have
been detected there and greater density. This
means the density values represent how dense
the area is between a set of grid box coordinates.

Before the system calculates the area of overlap,
it checks the classification of the bounding box,
eg. is it a person or a table? If it is not a person
or another animate object, it will add a null
value to the density. The null value refers to the
certain grid being occupied by some object,
impossible to pass through. If the object is a

Yl B: (3, 3) (5, 7)

X
Figure 41: Visualization of the Area problem given
two opposing coordinate sets for each rectangle

person, it will calculate the area of overlap.

Visualizing the problem of calculating the area
of overlap between two rectangles, while only
the bottom-left
coordinate set will help solve it. [Figure 41]

knowing and top-right

It is important to note that the solution would
have to quickly determine if the boxes do not
overlap at all and just return, to not create an
unnecessary number of computations or worse,

56

57

throw an exception causing the execution to
halt. Firstly, it will evaluate the distance of
overlap on the horizontal axis. If no overlap is
present, it will return from the function,
allowing the next cycle to start. Looking at the
visualization in [Figure 41] the distance of

max(B, ., G,,) = max(3,2) = 3

overlap on the horizontal x-axis is the distance
between Bi.x and G2.x.

min(B, ., G,,) = min(5,4) = 4

Lace first finds the leftmost point which can
then be excluded. As the leftmost point is G1 we
want to exclude it, and use Bias there is no

Xdistance = min(BZ.x’ GZ.x) - max(Bl.xv Glx)
Xdistance = min(5, 4) — max(3, 2) = 1

overlap between the two:

Ydistance = "n‘n(Bz.yv GZ.y) - max(B,.y, Gl‘y)
Ydistance = min(7, 4) — max(3, 2) =1

To find the rightmost point on the horizontal
axis and excluding it, one gets the minimum
value of the two like so:

Having found these two points, we can find the
distance by subtracting the leftmost point from

A = (min(B,,, G,,) — max(B,, G,)+
(min(Bz_,, Gz_x) = max(le' Gl.x))

the rightmost one, making the formula:

A = (min(7, 4) — max(3, 2)) * (min(5, 4) — max(3, 2))
A=1

Finding the distance on the vertical y-axis; by
finding the top and bottom most points:

Combining the formula for x- and y-distance
and remembering the formula for the area of a
rectangle, A = width*height one can calculate
the area of overlap simply by multiplying the
two. The final overlap formula then looks like
so:

This gives us an area of overlap:

This was translated into a Python function
[Figure 42]

The system needed to understand what those
values represented. As the area of overlap could
fluctuate quite a lot in range, we transformed
the values into a more understandable and
workable range of density values. To allow the
client receiving a density map of'a space, it must
have some context attached. If we just used the
area of overlap, the range of values could be
different each time the client gets it. By
representing them with a consistent range, it
makes it easier for the client to perform the
specifically the A*
algorithm mentioned in Section 12.1.5.

necessary operations,

The density range was defined as a range of 5
different integer values. The first value, o,
describes a grid box which is completely empty,
as in there is no overlap between it and the
bounding boxes of detected objects. This allows
the client to quickly understand where it can go
with least resistance. The next three values
represent three different levels of density
within the grid boxes: 1 is light density, 2 is
medium density, and 3 is high density. The
actual number of people said densities refer to
will however vary based on the size of the grid
boxes and how much overlap there is in other
grid boxes. As the range of area values are
transformed into the density range, what the
numbers represent are relative to the highest
and lowest area of overlap. This was done to
make sure that the density value of a single grid
is always relative to the rest of the space. The last
value, 4, is what was earlier in this section
referred to as the null value. This value, as
earlier described, represents a grid box, for
which it is impossible to pass through as it is
overlapping with an inanimate object.

These ranges contain two extremes, o which is
entirely free of obstacles, while 4 is impossible
to pass through. This makes sense when the
client is looking for a path through the
densities, as it can be taught to immediately stay

1 def calculate_overlay_areas(grid_boxes, bounding_boxes, classes):

2

on

Calculate the overlay areas between all grid- and bounding-boxes

Args:
grid_boxes: A [sizex[size]] tuple generated by the create_grid_boxes_array
bounding_boxes: A [nx[nx[4]]] tuple generated by the object_detection library

Returns:

Returns a [n] tuple of overlap areas
T
Instasiate the overlay areas graph

overlay_areas_graph = []

Calculate overlay area of all grid boxes and store in new array (loop)
for grid_box in grid_boxes:
0.0

for index, bounding_box in enumerate(bounding_boxes):

temp_overlay_area =

overlay_area =
find_grid_box_and_bounding_box_overlay(bounding_box, grid_box)
If the is no overlay area append a zero,

else append overlay area

if overlay_area = 'no-overlap':
temp_overlay_area += 0.0

elif overlay_area = 'null':

temp_overlay_area = -1

else:

temp_overlay_area += overlay_area

overlay_areas_graph.append(temp_overlay_area)

Return new array with overlay areas

return overlay_areas_graph

Figure 42: Code implementation of calculating the area of overlap between
grid- and bounding boxes

away from grid boxes with a density value of 4,
while it can easily move through grid boxes
with a value of o. The three actual density values
were chosen to make sure there was enough
variation in distinguishing between the

different densities, while not blending together.

To preserve the operations of addition and
scalar multiplication in the different overlap
employed a linear

area value, we

transformation formula to transform the range

of overlap area values into the range of density
values. This allowed us to transform one linear
subspace onto another of lower dimension. The
mathematical formula for this would be:

y=@-aE+c

where x is a number in a range [a; b] that one
wants to transform to the number y in a range
[c; d]. Let’s say the lowest recorded overlap area
value is 2, with the highest being 23, giving the

58

range [2;23]. The system would transform this
range of numbers into the density range being
[1;3]. The reason the system excludes the
extremes, o and 4, is that these are constant,and
should not be relative to the rest of the space.
Either the grid box is free, or it is not. Likewise,
either it is impossible to walk through or it is
not. If the system was looking at a grid box with
an area value of 5, the transformed density value
would be:

y=056-2£L+1
y=1

The value of y was rounded to the nearest
integer that first in the range.

As the system now has a single array with all
the density values, it has to adapt them to the
data structure expected by the client. The
number of values in each row array will be the
same as the total number of rows, creating an
n-by-n matrix. If there are a total of 16 values in
the density array, the number of rows will be
equal to the square root of 16, equalling 4-row
arrays, each with 4 density values. This will
require two concurrent loops, and the specific
Python implementation can be seen below.
After the system has adapted the density grid
to the expected data structure, it serializes into
a JSON (JavaScript Object Notation) object
which will be passed back to the calling code -
the Node API method.

The API method will then store the JSON
object in the non-relational database, which is
the end of the operation. The density grid can
now be retrieved from the database by the
client when needed.

1 const pythonProcess = spawn('python', ['/var/lace-server/exec.py'l);

3 pythonProcess.stdout.on('data', function(data) {

4 GRAPH.deleteOne({}, function(deleteError, deleteResult) {

5 if (deleteError) {

6 console.log(deleteError);

7 return (res.send({error: CONST.DELETE_ERROR}));

10 parsedData = JSON.parse(data);
11 GRAPH.create({

Figure 43:]avaScriﬁt
e

12 graph: parsedData[0].graph, code for storing t
13 distance: parsedData[1].distance, da?ﬁgﬁ%ﬂ;ﬁgczﬁg
14 }, function(insertError, insertResult) {

15 if (insertError) {

16 console.log(insertError);

17 return (res.send({ error: CONST.INSERT_ERROR }));

18 }

20 console.log(insertResult);

22 return (res.send(true));
})s
24 s

Figure 44: The blue path guiding a user towards a destination

13. Final

Prototype:

Reactions

We tested an early version of the Lace client
with a couple of test users. The test was set up in
a courtyard, with a webcam on a fourth-floor
balcony being used to capture the scene. We
started by measuring the dimensions of the
courtyard using a household measuring tape
and subsequently calculated the approximate
distance between nodes in our capture.

We gave the test users a phone and asked them
to describe what they saw as they used the app,
in a similar manner to our paper prototype
tests. While the path was not aligning correctly
in the space, the users still provided useful
feedback.

When selecting destinations from the list, one

of the users referred to destinations and
areas as separate categories —the courtyard
being the area and the apartment entrance
the destination.

The users found it easy to understand and
select the correct destination. Despite this,
one of the users theorized about not

knowing what certain destinations are called

if visiting an unknown place. They wondered
why they were provided with a list as a method
to select destinations. In most cases, they would

prefer to search for a destination.

They mentioned there were too few obstacles to
justify using the Lace client —at least in this
specific scenario. The small size of the
courtyard had a significant effect on the
usefulness of the client. Users virtually ignored
other participants standing in the courtyard,
likely due to the fact that their selected
destination was too easy to identify from where

they were standing. The dimensional
limitations led us to conclude that this
particular experiment was not able to

communicate the complete usefulness of the
app.

60

61

Users found it helpful to be able to see that the
line led towards the destination (when it was
working properly, at least). Seeing the full
length of the line was not too important in this
courtyard scenario. Considering a larger area,
users would still prefer to see the whole line for
context —perhaps within a map view.

The blue line was interpreted as looking a bit
too wide. A test user theorized about themselves
perceiving it that way because of the limited
surrounding area. When standing so close to
the goal, they felt that it was unnecessary to be
shown a blue line. Users found that the line was
much too high in their field of view and would
have preferred it to be situated closer to the
ground plane. Because the line was situated at
eye-level, the users would hold the phone up
directly in front of their face. When asked, one
user expressed a preference for holding the
phone at a more discreet angle, such as by their
waist.

Upon reaching their destination, users wanted
to be shown some form of confirmation. One
user in particular wanted to be offered an
option either to close the app or to choose a new

destination.

Figure 45: Webcam mounted onto balcony to

capture as much of the scene as possible

14. Discussion

Destinations can have different properties
which influence how they are interpreted by
users. Because they can represent either finite
points or entire areas, the way in which they are
represented by the client could be more
carefully considered.

Some users have a very specific idea about
where they would like to navigate to in a public
space. This can influence the way in which they
wish to interact with the client. Destination
selection or input methods are important to the
perceived usefulness of the app; Our list view
may not be useful to everyone.

Lace is primarily useful in very large spaces. Its
perceived utility is more delicate in smaller
spaces, where there is little activity. If users are
able to see their destination from where they
are standing, they may not consider interacting
with the client at all, regardless of the perceived
size or complexity of the space they are
standing in. Users may simply choose to forego
using the app in some situations, opting to
follow their intuition instead.

The social impact of using the Lace client in
public is also of concern. Some users may not be
comfortable holding their phone up in front of
them, as they navigate a crowd. The blue line
may have to be more comprehensible, if users’
phones are pointed straight towards the
ground.

Lace has evolved into providing navigation
guidance towards a user-defined destination, as
opposed to improving the design of digital
signage over time. While we do not see this as a
disadvantage, it varies from the original
problem formulation. Lace can respond to the
collective movement of pedestrians through
public space, advising pedestrians on how to
navigate towards their destination. At the time
of writing, Lace takes roughly three seconds to
analyze a space. By lowering the time spent

detecting objects, we can increase how
responsive the navigation is towards the user’s
surrounding environment.

original

We strayed from the project

formulation by dropping support for
personalized navigation. At the time of writing,
the prototype does mnot accommodate
individual users’ preferences for the design of
digital signage. The lack of this personalization
made the development of the prototype more

feasible within our timeline.

In guiding pedestrians, we have to consider how
to preserve users’ agency while they interact
with the prototype —by extension, ensuring
that their interactions are ethical. There were
plenty of ethical concerns pertaining to
personal data and privacy that had to be
addressed.
Congestion can form when too many
pedestrians try to approach the same target,in a
sort-of “bottleneck” [19]. This can cause them to
rub shoulders —possibly even slowing their
movement to a standstill. This led us to
question whether staggering pedestrians could
be a viable solution. Urging pedestrians to wait
before proceeding through a dense crowd could
rob them of their agency; Instructing users to
exhibit certain behavior can have side effects
not limited to suppressing users’ own decision-
making abilities. We also avoided punishing
users for any decision or behavior they made or
exhibited for the same reasons.

The argument for preserving individual
privacy lies in preserving the absence of user-
specific data. Users remain anonymous —if any
data is ever leaked or otherwise obtained, their
privacy cannot be violated.

63

15. Reflection

In order to unpack the value of our project, in
this section, we reflect on the impact on the
different choices we made over the course of the
project.

We consistently spoke about the project with
other people throughout the process in an
effort to widen our perspectives. As part of our
preliminary investigation, we spoke with
experts in a wide array of different fields. Their
willingness to help us out suggests an interest
in our project. People we spoke with were
generally intrigued and wanting to learn more

about Lace and/or discuss related subjects.

We were quick to transition ideas to action.
Scouting out venues early on reframed the
scope of testing to a more controlled and less
chaotic environment. Understanding that we
were designing and developing for testing in a
controlled environment ultimately focused our

prototype.

The project, as a whole, was data-driven, as we
used data to educate our every decision. Hitting
the ground running meant we had plenty of
good data to start with. This data came from
conducting experiments with passers-by, from
survey responses, and several qualitative in-
person interviews. Each set of responses
informed new research. We made sure to string
together every step in the process, referencing
previous findings in order to move forward; we
did not move forward without basing our
decisions on previous findings.

We admittedly could have done more low-
fidelity prototyping. This might have allowed us
to resolve any lack of understanding on part of
those who tested our prototype. This is
particularly true in the landscape architects
[Section 11.2.2] case. It was not until after
starting development, that we understood that
he might not have fully understood the role of
augmented reality in the context of his

environment. To make up for lack of spatial
understanding, we could have conducted
further experiments, such as using a string to
guide users across a room. The reason we had
chosen not to do so at the time was that we felt
that our paper prototype was so grounded in the
findings from earlier user studies. In this case,
our faith in the process was tested too little too
late. This led us to eventually conduct a second
test, which proved to be more fruitful.

The amount of difficulty and scale of the final
prototype forced our process to be more linear
than we would have otherwise preferred. We
could not build and test with users during the
entire development phase, because it simply
would not have been functional enough until it
was completed. The final prototype would
depend on both the server and client being fully
functional. We knew because we were only two
people, the time spent developing the prototype
would run close to our final deadline. This
forced linearity was the primary reason why we
decided against using Agile. While we had set
out to use Agile in our process, the framework
felt increasingly redundant, as we were each
developing our own part of the stack. It would
have meant working with Agile just for
ourselves. We felt that it was, in fact, inhibiting
our processes. We think Agile could still be a
great tool for larger teams. We did not feel that
the time investment would provide enough
benefits.

Throughout the entire design process, we

collaborated closely with each other
Experiments, interviews, a survey, analysis, and
low-fidelity prototyping were all made in strong
collaboration, which resulted in a strong
foundation for the development of the high-
fidelity prototype. When it came time to start
development on the high-fidelity prototype, a
larger separation of responsibilities was
created. Work was delegated due to the

estimated scope of work which had to be done

in order to reach our goals pertaining to the
minimum viable prototype. The reason for the
separation of responsibilities and delegation
was that the two systems, the server, and the
client, were building upon each other, ergo one
could not stand without the other. To reach the
deadline, development would have to happen in
parallel. The responsibilities and work were
delegated in correspondence with each team

member’s personal preference and interest.

The strengths of this team mainly come from
the member’s familiarity with the process and
working with each other. Having shared goals
meant that we never spent too much time
agreeing on a certain direction. Additionally, a
set of

the
Because we had worked together on numerous

balanced overlapping expertise

accelerated decision-making process.
previous projects, we were proactive in our
process. This is both apparent in our outreach
to experts in different parts of the world, as well
as our conducting of experiments during the
user studies.
Some of our communication suffered
throughout the development process. This
could have been due to a myriad of reasons, one
of which was simply being overwhelmed with
the amount of work in each of our delegated
tasks. We never established or discussed our
individual expectations on the frequency of
communicating one’s progress with each other,
which could have been done early on. However,
in writing this conclusion, it was found that our
expectations for frequency of communication
were not aligned. Perhaps because we were
spending a lot of time together, we did not make
an effort to schedule regular, more structured

meetings.

The argument for communicating with agreed-
upon regularity is rooted in boosting team
morale. Everyone has a different personal
threshold in this respect, which contributes to
their trust in the process. It is not just for the
sake up being updated, as every time one is
prompted to describe a complex system, they
can reflect and improve on their understanding

of that system, as well as their presentation
skills. While we may not have needed to update
each other every single day, it could have
benefitted us to establish
structured meetings.

regular, more

As the development of the final prototype was
so intensive and complex, it did not leave much
room for testing during development. This is
due to a fault in our time management. The
systems were dependent on each other, and a
large part of the development happened behind
the scenes. While testing an interaction or a
user interface is plausible, testing the server
structure and API endpoints with users would
not provide much feedback. The two parts of the
prototype were therefore developed in parallel,
and testing could not happen until later in the
development. In the future, we would prefer to
have a better user-involvement during the
development, establishing a co-design process.
However, with only two members in the team,
there simply was not enough time to develop
the front and back-end separately for testing.

|

il
=

Be

&
&
Ju
%
#
R
X
+
i

g

% sEEesy

Figure 46: A busy street in Bangkok

64

65

16. Conclusion

The potential of Lace lies in its ability to open
up crowd-analysis to the average consumer.
While there are plenty of indoor navigation
solutions on the market already —several
implemented using augmented reality— none
of'them are factoring in the potential of current
crowd-analysis practices. The static analysis
makes finer density maps less critical. In case of
being able to predict individual persons’
movements more accurately, possible future
iterations of the maps could take the shape of
probabilistic heat map-based velocities or even
users’ intentions. Future iterations of Lace
should consider group behavior and urge
pedestrians into circulation patterns, keeping
traffic flowing at a consistent speed [17].
Cappiello suggested incorporating an indicator
of commotion into the client interface. The idea
of a single score to describe the state of
commotion in a space could be useful in the
development of early warning systems.

Collecting real-world data on pedestrian
movements can help improve simulation
models, which rely on a myriad of different
variables. Researchers and developers could
compare the results of their models to those of
the real space, potentially leading to the
identification of new variables and increase
their realism. Automating the process of crowd-
analysis could provide a huge boost to

pedestrian movement-related research,
enabling researchers and developers to focus
on how to use the data rather than how to
collect it. Using the security cameras available
to us today, we can learn the specificities of how
and where pedestrians get “stuck”, or which
specific routes they take in response to site-
specific stimuli. These site-specific stimuli
could take the shape of particularly distracting
branding elements or unintentionally
The

majority of computer vision applications only

confusing wayfinding signage. vast
serve to predict pedestrian positions and
trajectories using pre-recorded video. This is
because these solutions are intended to inform
spaces during the planning process rather than
the spaces they are analyzing. This introduces
the potential of dialogue between pedestrians,
objects, and the spaces which they occupy. The
opportunity herein lies in the treatment of
architecture or urban areas as a living
affected by its

organism, continuously

occupancy.

17. Next Steps

The Lace server could potentially factor in the
probability of pedestrians entering and exiting
at specific portals, such as doors, staircases, or
queues, in a space [8]. That way, the guiding
path could accommodate for unapparent traffic
these
possible improvement could be made by

flow surrounding portals. Another
implementing a dynamic blur filter to the grid
matrix that responds to changing room density.
Breaking up rooms into larger cell clusters with
their own respective density weights could
affect how Lace guides users around other
pedestrians and obstacles, such as tables or
walls. If Lace understands wherein a space
pedestrians are likely to accumulate, it could
interest and

assume certain points of

potentially predict the attraction certain
pedestrians feel towards those points of

interest.

Machine learning models could be used to
assign temporary anonymous identities to
identified pedestrians in a space. As our model
improves over time, we could implement
prediction models for each individual
pedestrian. This theoretical prediction model
could be run at different rates depending on
how quickly certain pedestrians are moving
through a space. The algorithm could be further
optimized by identifying pedestrian groups
and running prediction models on their
movement as if they were a single person. Lace
could identify groups based on their formation
pattern respective to the density of the space
around them. For instance, if a cluster of
pedestrians starts to form a “V” pattern in a low-
density space, we could assume that the
pedestrians are associated with each other in
some way. As roughly 70 percent of pedestrians
in crowds are moving in groups [29], this could
dramatically increase the efficiency of our
algorithm, by reducing the number of actions
taking place. The shape itself of a group could
also indicate which direction they are walking

in.

Roughly 70% of pedestrians in a crowded
environment journey in groups [29]. Groups
could be

respective to their local density; groups of

identified by their formations

pedestrians have a tendency to shift from
walking side-by-side to a V-like formation as the
overall density in a room increases [29]. In
identifying groups lies the potential for
sweeping optimizations to Lace’s algorithms. As
the movement of groups typically mimics that
of single individuals [16], the number of
evaluations a theoretical prediction model
would make could be drastically reduced. And,
consequently, the Lace server could return
density graph objects much more often.

When using lace, a security camera may not
capture the entire room, due to either a limited
field of view or overly distorted edges. While
Lace may then be limited from identifying the
positions of pedestrians outside of the scope of
its cameras, it is still important to offer
guidance to pedestrians outside of that scope.
SemaFORR is an alternative solution to A* that
allows for navigating ambiguous environments.
This can be useful when the layout of the rest of
a room is unknown. SemaFORR works by
anchoring points with respect to detected walls
the
environment and superimposing a path on top
of it. While SemaFORR was intended for use in
robotics, similar principles could be applied for

in their proximity, reconstructing

augmented reality navigation. Frameworks
such as ARCore already feature built-in plane
detection. Future iterations of the Lace client
could leverage collective environmental
reconstruction in order to learn and navigate
the spaces which the server cannot detect
—albeit consequently lacking detected crowd

heatmaps [11].

Sometime during our development phase, we

were contacted by a fellow product
designer/engineer, Moina Medbge Tamuly,

regarding a public installation in Oslo at a

66

future date in 2019. He proposed using the Lace
server in conjunction with some digital visuals
that would represent the locations of people in
that space. The subject of the exhibition is the
“intertwining of man and machine”. Several
Norwegian retailers have also shown interest in
using parts of the technology to analyze
customer behavior in their stores. This hints at
a much wider range of potential use cases for
this technology, and we could not be more
excited about what the future holds for Lace.

Figure 47: Paul Nylund (left) and Michal Nissen (right) during a previous project

67

18. Bibliography

[1] Abernethy, M. (n.d.). What is node Node]JS.
Retrieved January 2, 2019, from
https://www.scribd.com/document/54504131/
What-is-node-JS-developerWorks

[2] Abidy, T, Pang, H., & Williams, C. (n.d.).
Dijkstra’s Shortest Path Algorithm [Blog post].
Retrieved January 2, 2019, from
https://brilliant.org/wiki/dijkstras-short-path-
finder/

(3] Alfirevi¢, ., & Alfirevi¢-Simonovié, S.
(2018). “Circular connection” concept in
housing architecture. Arhitektura I Urbanizam,
(46),26-38. http://doi.org/10.5937/a-u0-16252

(4] Anagnostopoulos, T., Anagnostopoulos, C.,
& Hadjiefthymiades, S. (2011). An Adaptive
Machine Learning Algorithm for Location
Prediction. International Journal of Wireless
Information Networks,18(2), 88-99.
http://doi.org/10.1007/$10776-011-0142-4

[5] Brunyé, T. T, Gardony, A. L., Holmes, A., &
Taylor, H. A. (2018). Spatial decision dynamics
during wayfinding: intersections prompt the
decision-making process, 1-19.
http://doi.org/10.1186/s41235-018-0098-3

[6] Child Process | Node.js v11.6.0
Documentation. (n.d.). Retrieved January 2,
2019, from
https://nodejs.org/api/child_process.html

[7] Chung, J., Pagnini, F,, & Langer, E. (2016).
Mindful navigation for pedestrians: Improving
engagement with augmented reality.
Technology in Society, 45(C), 29-33.
http://doi.org/10.1016/j.techsoc.2016.02.006

[8] Davidich, M., & Koster, G. (2013). Predicting
Pedestrian Flow: A Methodology and a Proof of
Concept Based on Real-Life Data. PLoS ONE,
8(12),e83355-11.
http://doi.org/10.1371/journal.pone.co83355

[9] Dingler, T, Kunze, K., & Outram, B. (2018).
VR Reading Uls (pp.1-6). Presented at the 2018
CHI Conference, New York, New York, USA:
ACM Press.

http://doi.org/10.1145/3170427.3188695

[10] Easy Curved Line Renderer [Forum post].
(n.d.). Retrieved January 2, 2019, from
https://forum.unity.com/threads/easy-curved-
line-renderer-free-utility.391219/

[11] Epstein, Susan & Aroor, Anoop & Evanusa,
Matthew & I Sklar, Elizabeth & Parsons, Simon.
(2015). Navigation with Learned Spatial
Affordances.

[12] Feliciani, C., & Nishinari, K. (2018).
Measurement of congestion and intrinsic risk
in pedestrian crowds. Transportation Research
Part C, 91,124-155.
http://doi.org/10.1016/j.trc.2018.03.027

[13] Fielding, R. T. (2000). Architectural Styles
and the Design of Network-based Software
Architectures. Pp 76-97 Retrieved from
https://www.ics.uci.edu/-fielding/pubs/disserta
tion/fielding_dissertation.pdf

[14] FIND3 [GitHub Repository]. (n.d.).
Retrieved January 2, 2019, from
https://github.com/schollz/find3

[15] Fridman, N., & Kaminka, G. A. (2007).
Towards a Cognitive Model of Crowd Behavior
Based on Social Comparison Theory,1-7.

[16] Helbing, D.(1998). A Fluid Dynamic
Model for the Movement of Pedestrians.
Retrieved from arXiv:cond-mat/9805213

[17] Helbing, D. (2012). Self-organization in
Pedestrian Crowds. In Social Self-Organization
(pp-71-99). Berlin, Heidelberg: Springer Berlin
Heidelberg. http://doi.org/10.1007/978-3-642-
24004-1_3

68

69

[18] Helbing, D., & Molnar, P.(1995). Social
force model for pedestrian dynamics. Physical
Review E, 51(5), 4282-4286.
http://doi.org/10.1103/PhysRevE.51.4282

[19] Hoogendoorn, SP, & Daamen, W (2003).
Controlled experiments to derive walking
behaviour, European Journal of Transport and
Infrastructure Research 3 (1), pp.39-59.

[20] Howard, A. G., Zhu, M., Chen, B.,
Kalenichenko, D., Wang, W., Weyand, T, ...
Adam, H. (in press). MobileNets: Efficient
Convolutional Neural Networks for Mobile
Vision Applications. arXiv:1704.04861.
Retrieved from
https://arxiv.org/pdf/1704.04861.pdf

[21] Huang, J., Rathod, V., Sun, C., Zhu, M.,
Korattikara, A., Fathi, A.,... Murphy, K. (in
press). Speed/accuracy trade-offs for modern
convolutional object detectors.
arXiv:1611.10012. Retrieved from
https://arxiv.org/pdf/1611.10012.pdf

[22] Johansson, F. (2013) Microscopic Modeling
and Simulation of Pedestrian Traffic.
Microscopic Modeling and Simulation of
Pedestrian Traffic,1-127.

[23] Lague, S. (n.d.). Pathfinding [GitHub
Repository]. Retrieved January 2, 2019, from
https://github.com/SebLague/Pathfinding

[24] Liu, W,, Anguelov, D., Erhan, D., Szegedy, C.,
Reed, S., Fu, C, & Berg, A. C.(n.d.). SSD: Single
Shot MultiBox Detector [Slide Show]. Retrieved
January 2, 2019, from

http://www.cs.unc.edu/~wliu/papers/ssd_eccv2
016_slide.pdf

[25] Lombard, M., & Ditton, T. (1997). At the
heart of it all: The concept of presence. Journal
of Computerflediated Communication, 3(2).

[26] Medley, J. (2018, August 29). Augmented
reality for the web [Blog post]. Retrieved
January 2, 2019, from
https://developers.google.com/web/updates/20

18/06/ar-for-the-web

[27] Millonig, A., & Schechtner, K. (20006).
Developing Landmark-Based Pedestrian-
Navigation Systems. IEEE Transactions on
Intelligent Transportation Systems, 8(1), 43-49.
http://doi.org/10.1109/TITS.2006.889439

(28] Mitchell, T. M. (1997). Machine Learning.
New York, NY: McGraw-Hill Education.

[29] Moussaid, M., Perozo, N., Garnier, S.,
Helbing, D., & Theraulaz, G. (2010). The
Walking Behaviour of Pedestrian Social
Groups and Its Impact on Crowd Dynamics.
PLoS ONE, 5(4), e10047-7.
http://doi.org/10.1371/journal.pone.oo10047

[30] Mulloni, A. (2018). Experiences with the
Impact of Tracking Technology in Mobile
Augmented Reality Evaluations, 1-4.

[31] Node.js v9.11.2 Documentation. (n.d.).
Retrieved January 2, 2019, from
https://nodejs.org/docs/latest-vg.x/api/

[32] Prinke, M. (2917, July 14). Why do people
say that Unity is better than Unreal for mobile
game development when both engines support
mobile deployment? [Forum post]. Retrieved
January 2, 2019, from
https://www.quora.com/Why-do-people-say-
that-Unity-is-better-than-Unreal-for-mobile-
game-development-when-both-engines-
support-mobile-deployment

(33] Python 2.7.15 documentation. (n.d.).
Retrieved January 2, 2019, from
https://docs.python.org/2/

[34] Qualcomm. (2018, February 25).
Qualcomm Network Simulation Shows
Significant 5G User Experience Gains.
Retrieved January 2, 2019, from
https://www.qualcomm.com/news/releases/201
8/02/25/qualcomm-network-simulation-
shows-significant-5g-user-experience-gains

[35] Rabin, S. (n.d.). JPS+: Over 100x Faster than

A* [Video file]. Retrieved January 2, 2019, from
https://www.gdcvault.com/play/1022094/JPS-
Over-100x-Faster-than

[36] Rudrakshi, C., Varshney, A., Yadla, B.,
Kanneganti, R., & Somalwar, K. (2014, August).
API-Fication. Core Building Block of the
Digital Enterprise. HLC Tech, 1(1), 4-7.
Retrieved from
http://www.hcltech.com/sites/default/files/apis
_for_dsi.pdf

[37] Rzayev, R., Wozniak, P.W,, Dingler, T., &

Henze, N. (2018). Reading on Smart Glasses (pp.

1-9). Presented at the 2018 CHI Conference,
New York, New York, USA: ACM Press.

http://doi.org/10.1145/3173574.3173619

[38] Sato, K., Young, C., & Patterson, D. (2017,
May 12). An in-depth look at Google's first
Tensor Processing Unit (TPU) [Blog post].
Retrieved January 2, 2019, from
https://cloud.google.com/blog/products/gcp/an
-in-depth-look-at-googles-first-tensor-
processing-unit-tpu

[39] Sekhavat, Y. A., & Parsons, J. (2017). The
effect of tracking technique on the quality of
user experience for augmented reality mobile
navigation, 1-34. http://doi.org/10.1007/s11042-
017-4810-y

[40] Schuler, D., & Namioka, A. (1993).
Participatory Design: Principles and Practices.
Didcot, United Kingdom: Taylor & Francis.

[41] Singleton - Unify Community Wiki
[Forum post]. (n.d.). Retrieved January 2, 2019,
from
http://wiki.unity3d.com/index.php/Singleton

[42] SSH (Secure Shell). (2018, November 1).
Retrieved January 2, 2019, from
https://www.ssh.com/ssh/

[43] TensorFlow.js Documentation. (n.d.).
Retrieved January 2, 2019, from
https://js.tensorflow.org/api/o.13.0/

[44] Weisstein, E. W. (n.d.). Moore
Neighborhood [Blog post]. Retrieved January 2,
2019, from
http://mathworld.wolfram.com/MooreNeighbo
rhood.html

[45] Wenderlich, R. (2011, September 29).
Introduction to A* Pathfinding [Blog post].
Retrieved January 2, 2019, from
https://www.raywenderlich.com/3016-
introduction-to-a-pathfinding

[46] What is SSL, TLS and HTTPS? (n.d.).
Retrieved January 2, 2019, from
https://www.websecurity.symantec.com/securit
y-topics/what-is-ssl-tls-https

[47] Yi, S., Li, H., & Wang, X. (2015). Pedestrian
Travel Time Estimation in Crowded Scenes.

2015 IEEE International Conference on
Computer Vision (ICCV),.
https://doi.org/10.1109/iccv.2015.359

19. Appendix

19.1. GANTT Chart

LU 4

GL/L0M

61/10/20

sLzue

sz

L4374

BLZLO

8Lz

LU 4

aLiLeL

sz

8L/LLS0

sLovz

8oV

81/60/24

