O'REILLY"

Platform
Engineering

Free
Chapters

~>} Coder

Camille Fournier
& lan Nowland

Foreword by Nicole Forsgren

CLOUD DEVELOPMENT

"IS} Coder cnvironmenTs

% =
(‘@

D

Onboard developers to
new projects in minutes
(not weeks)

Get started

OPEN SOURCE | SELF-HOSTED | IDE AGNOSTIC

https://coder.com/trial?utm_campaign=&utm_source=oreilly&utm_medium=&utm_content=ebook&utm_term=platformengineering

Platform Engineering
A Guide for Technical, Product,
and People Leaders

This excerpt contains Chapters 1, 12, and 13. The complete
book is available on the O'Reilly Online Learning Platform
and through other retailers.

Camille Fournier and Ian Nowland

O'REILLY"

Platform Engineering
by Camille Fournier and Ian Nowland

Copyright © 2025 Camille Fournier and Tan Nowland. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: David Michelson Proofreader: Piper Editorial Consulting, LLC
Development Editor: Virginia Wilson Indexer: WordCo Indexing Services, Inc.
Production Editor: Kristen Brown Interior Designer: David Futato

Copyeditor: Rachel Head Cover Designer: Karen Montgomery

October 2024: First Edition

Revision History for the First Edition
2024-10-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098153649 for release details.

The OReilly logo is a registered trademark of O’Reilly Media, Inc. Platform Engineering, the cover image,
and related trade dress are trademarks of O’'Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views or
the views of the authors’ current or former employers. While the publisher and the authors have used
good faith efforts to ensure that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology this work
contains or describes is subject to open source licenses or the intellectual property rights of others, it is
your responsibility to ensure that your use thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Coder. See our statement of editorial independ-
ence.

978-1-098-15364-9
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098153649
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Foreword from Coder

1.

12. Your Platforms Are Trusted

Table of Contents

Why Platform Engineering Is Becoming Essential...........................

Defining “Platform” and Other Important Terms
The Over-General Swamp
How We Got Stuck in the Over-General Swamp
Change #1: Explosion of Choice
Change #2: Higher Operational Needs
Result: Drowning in the Swamp
How Platform Engineering Clears the Swamp
Limiting Primitives While Minimizing Overhead
Reducing Per-Application Glue
Centralizing the Cost of Migrations
Allowing Application Developers to Operate What They Develop
Empowering Teams to Focus on Building Platforms
Wrapping Up

Trust in How You Operate
Accelerate Trust by Empowering Experienced Leaders
Optimize Growth in Trust by Ordering Use Cases

Trust in Your Big Investments
Seek Technical Stakeholder Buy-in for Trust of Rearchitectures
Seek Executive Sponsorship for Trust of New Products
Maintain Old Systems to Retain Trust
Gaining Trust Requires Flexibility on What Is “Right”

Trust to Prioritize Delivery

19
21
21
22
23
24
24
25
25
26

13.

Create a Culture of Velocity
Prioritize Projects to Free Up Team Capacity
Challenge Assumptions About Product Scope
Tying It Together: The Case of the Overcoupled Platform
Wrapping Up

Your Platforms Manage Complexity.........ccoovviviiiiiiiiiiinennnnn

Managing the Accidental Complexity of Human Coordination
Managing the Complexity of Shadow Platforms
Managing Complexity by Controlling Growth
Managing Complexity Through Product Discovery
Tying It Together: Balancing Internal and External Complexity
Burning Out on OSS Operations
Trying (and Failing) to Change the Game
Shadow Platforms Force a Reset
Executing on the Reset
Wrapping Up

26
27
29
30
32

33
35
37
40
42
43
43
43
44
45
46

vi

| Table of Contents

Foreword from Coder

Complexity is a constant in today’s development workflows. Whether its juggling
cloud/private infrastructure, managing developer environments, or ensuring security
compliance, teams are stretched thin trying to keep everything running smoothly.
Platform engineering steps in to solve this, creating a framework that cuts through
complexity and allows your teams to focus on innovation and operations.

Cloud development environments (CDEs) are a relatively new addition to the plat-
form engineering space. They take the burden of administration oft developers by
providing fast, standardized environments that eliminate the need for local setup,
help streamline workflows, and ensure consistency and security across teams. With
CDEs, teams don’t waste time configuring environments—they get straight into writ-
ing code and delivering value.

This book gets into the nuts and bolts of how platform engineering, combined with
CDEs, allows teams to manage complexity rather than be overwhelmed by it. The real
value lies in reducing friction at every step—whether it’s spinning up environments
or integrating tools—so your teams can focus on delivering real business value, and
not wasting time with administration.

If you're dealing with fragmented systems, slow onboarding, or the constant grind of
managing infrastructure, this book will show you how to turn that chaos into control.
It's not just about tools; it's about building a system that works for your team, not
against it.

vii

CHAPTER1

Why Platform Engineering Is
Becoming Essential

She swallowed the cat to catch the bird, she swallowed the bird to catch the spider, she swal-
lowed the spider to catch the fly; I don’t know why she swallowed a fly—Perhaps she’ll die!

—Nursery rhyme

Over the past 25 years, software organizations have experienced a problem: what
to do with all of the code, tools, and infrastructure that is shared among multiple
teams? In reaching for a solution, most have tried creating central teams to take
responsibility for these shared demands. Unfortunately, in most cases this has not
worked particularly well. Common criticisms have been that central teams provide
offerings that are hard to use, they ignore customer needs in favor of their own
priorities, their systems aren’t stable enough, and sometimes all of the above.

Instead of fixing these central teams, some have tried getting rid of them entirely,
giving each application team access to the cloud and their choice of open source
software (OSS). However, this exposes those application teams to the operational
and maintenance complexity of their choices, so instead of creating efficiencies and
economies of scale, even small teams end up needing site reliability engineering and
DevOps specialists. And even with these dedicated specialists, the cost of managing
the complexity continues to threaten the productivity of the application teams.

Others, while embracing the best of the cloud and OSS, have not given up on central
teams; they’ve stuck with the model, certain that the benefits outweigh the downsides.
The best have succeeded by building platforms: developing shared offerings that
other engineers can comfortably build on top of. They have become experts at
managing the complexity of the cloud and OSS while presenting stability to their
users, and they are willing to listen to and partner with the application teams to
continually evolve and meet the company’s needs. Whether or not they’ve called their

efforts platform engineering, they embody the mindset, skills, and approach neces-
sary for solving the problem of ever-growing complexity (the fly) without swallowing
ever-larger animals in the process.

To set the stage, in this chapter we'll cover:

o What we mean by platforms, and a few other important terms we'll use through-
out the book

+ How system complexity has gotten worse in the era of cloud computing and OSS,
leaving us in an “over-general swamp” of exposed complexity

» How platform engineering manages this complexity and so frees us from the
swamp

This chapter has a slight emphasis on infrastructure and developer tooling, but don’t
worry, this book isn't just for people working on infrastructure or developer plat-
forms! We'll use systems common to all developers to provide a tangible illustration
of the current state of affairs, but the underlying challenge of managing complexity is
common to all kinds of internal platform development.

Defining “Platform” and Other Important Terms

Before we get started, let’s define several important terms we'll be using throughout
this book, so we all have the same frame of reference:

Platform
We use Evan Bottcher’s definition from 2018, with a couple of terms updated. A
platform is a foundation of self-service APIs, tools, services, knowledge, and sup-
port that are arranged as a compelling internal product. Autonomous application
teams’ can make use of the platform to deliver product features at a higher pace,
with reduced coordination.

A corollary here is to ask: what, then, isn’t a platform? Well, for the purposes of
this book, a platform requires you to be doing platform engineering. So, a wiki
page isn't a platform, because there’s no engineering to be done. “The cloud” also
is not a platform by itself; you can bring cloud products together to create an
internal platform, but on its own the cloud is an overwhelming array of offerings
that is too large to be seen as a coherent platform.

1 We'll sometimes call these teams your “users” or “customers,” if it makes more sense in the context.

2 | Chapter 1: Why Platform Engineering Is Becoming Essential

https://oreil.ly/y2NfD

Platform engineering
Platform engineering is the discipline of developing and operating platforms. The
goal of this discipline is to manage overall system complexity in order to deliver
leverage to the business. It does this by taking a curated product approach to
developing platforms as software-based abstractions that serve a broad base of
application developers, operating them as foundations of the business. We will
elaborate on this in Chapter 2.

Leverage
Core to the value of platform engineering is the concept of leverage—meaning,
the work of a few engineers on a platform team reduces the work of the greater
organization. Platforms achieve leverage in two ways: making applications engi-
neers more productive as they go about their jobs creating business value, and
making the engineering organization more efficient by eliminating duplicate
work across application engineering teams.

Product

We believe that it is essential to view a platform as a product. Developing plat-
forms as compelling products means that we take a customer-centric approach
when deciding on the features of a platform. This implies a core focus on the
users, but it requires more than just performatively hiring product managers and
calling it a day. With the word “product” we strive to achieve for platforms what
Steve Jobs created with Apple products: against a broad range of demand for
features the product is deliberately and tastefully curated, both through what it
does and, more importantly, through what it leaves out.

The Over-General Swamp

There are many types of internal platforms, and the advice in this book is relevant
to all of them. However, we see the most acute pain today in the infrastructure
and developer tooling (DevTools) spaces, and we see this driving the most demand
for platform engineering. That is because these systems are the ones most closely
integrated with the public cloud and OSS. These two trends have driven a lot of
industry change over the last 25 years, but rather than making things uniformly
better, they are increasing the ownership costs of systems over time. They make
applications easier to build but harder to maintain, and the more your system grows,
the slower you get—like youre walking through a swamp.

This comes back to the economic realities of writing and maintaining software. You
might believe that the major cost of software is associated with the act of writing it.
In fact, most of the cost is related to its upkeep, support, and maintenance.> Estimates

2 For a good diagram of the software lifecycle, see https://oreil.ly/iDM5u.

The Over-General Swamp | 3

https://oreil.ly/iDM5u

suggest that at least 60-75% of the lifetime cost of software accrues after initial
development, with about a quarter of that dedicated purely to migrations and other
“adaptive” maintenance.’ Between required upgrades for security patches, retesting of
the software, migrations to new versions of underlying dependencies, and everything
else, software costs a lot of engineering time in maintenance overhead.

Rather than reducing maintenance overhead, the cloud and OSS have amplified this
problem, because they provide an ever-growing layer of primitives: general-purpose
building blocks that provide broad capabilities but are not integrated with one
another.* To function, they need “glue’—our term for the integration code, one-off
automation, configuration, and management tools. While this glue holds everything
together, it also creates stickiness, making future changes much harder.

The over-general swamp forms as the glue spreads. Each application team makes
independent choices across the array of primitives, selecting those that allow them
to quickly build their own applications with the desired cutting-edge capabilities. In
their rush to deliver, they create whatever custom glue is needed to hold everything
together, and they’re rewarded with praise for shipping fast. As this repeats over time,
the company ends up with the type of architecture seen in Figure 1-1.

[Application] [Application] [Application] [Application]
[T T 1 11 | T 1T 111] T T 1 11 | T T 1 11
Glue Glue Glue) (Glue
Infrastructure
D?[g%’ls provisioning and
management
Deploys

Orchestration || Network Storage || Middleware Storage PaaS Middleware l
Cloud laaS/PaaS 0SS system + Bespoke inhouse infra.

Figure 1-1. The over-general swamp, held together by glue

3 See Jussi Koskinen’s paper on software maintenance costs at https://oreil.ly/EFNZ6.

4 This is literally what they were called in the 2003 AWS vision document (see https://oreil.ly/ndie_).

4 | Chapter 1: Why Platform Engineering Is Becoming Essential

https://oreil.ly/EFNZ6
https://oreil.ly/n4ie_

The problem with the swamp isn’t just the messy architecture diagram; it’s how diffi-
cult it is to change that sticky mess over time. That's important because applications
are constantly evolving, due to new features or operational requirements. Every OSS
and cloud primitive also undergoes regular changes, and all of this requires updat-
ing the glue that binds them. With the glue smeared everywhere, seemingly trivial
updates to primitives (say, a security patch) require extensive organization-wide engi-
neering time for integration and then testing, creating a massive tax on organizational
productivity.

The key to avoiding this situation is to constrain how much glue there is, which
aligns with the old architectural principle of “more boxes, fewer lines” Platforms
allow us to do this, and thus to extract ourselves from the swamp. By abstracting
over a limited set of OSS and vendor choices in an opinionated manner, specific to
your organizational needs, they enable separation of concerns. You end up with an
architecture more like Figure 1-2.

r

Application

~

r

Application

~

r

Application

\

r

Application

~

/[Billing platform]

API platform]

=

[Stored platform]

[Web platform]

DevTools
team

[Data platform

Provisioning platform]

—

[Storage][PaaS][Middleware]

Figure 1-2. How platforms reduce the amount of glue

[Orchestration [Network [Storage [Middleware

Cloud laaS/PaaS

In sum, platforms constrain the amount of glue needed by implementing the con-
cepts of abstraction and encapsulation and creating interfaces that protect users from
underlying complexity (including the complexity of an implementation that needs to
change). These concepts are about as old as computer science itself—but if they’re
so well known, why does the industry need platform engineering? To answer that

The Over-General Swamp | 5

question, we'll start with a look at how enterprise software engineering has changed
over the last quarter century.

How We Got Stuck in the Over-General Swamp

The software industry has changed immensely over the past 25 years, kicking off with
the widespread use of the internet. For those of you who have been in the industry
for a while, we don’t need to tell you how much this affected every aspect of software
development, but for the relative newcomers, it's no exaggeration to say that the
over-general swamp largely exists due to the internet itself and the pressure to ship
more, faster, without failure. Let’s look at the key changes that led to us getting stuck
here, and the implications of that result.

Change #1: Explosion of Choice

The internet generated incredible demand for new software, and software has to run
on hardware, no matter what the name “serverless” might imply. The initial wave
was realized by provisioning a lot more hardware in data centers, and this led to
the growth of infrastructure engineering. Every company was buying a lot more
servers and network gear, negotiating with their data center providers, installing
hardware in ever greater quantities all across the world—big I infrastructure doing
big E engineering powering the big I internet.

We don’t want to minimize the challenges that were overcome in this relatively short
period of time. However, application developers interacting with infrastructure teams
were constantly frustrated by the extent of hardware issues they had to deal with.
They suffered from a limited but constantly changing menu of server choices, fre-
quent data center capacity issues, and weird hardware-related operational problems
that no one would help debug—the common response was “nothing in the system
logs, must be your software.”

It's no surprise that when the public cloud came along, frustrated application develop-
ers were eager to jump over to a world where they could call an API and seemingly
control their own destiny. Despite reasonable concerns about the architectural com-
plexity, security risks, reliability, and cost, even large, conservative companies were
driven to some level of cloud adoption.

Unfortunately, those reasonable concerns have proven not just valid, but worse than
feared. While the cloud promised platforms (PaaS) that would make applications
independent of infrastructure, what has seen wide adoption is IaaS, which in many
cases has tied applications to infrastructure even more than before. Reminding you of
the difference:

6 | Chapter 1: Why Platform Engineering Is Becoming Essential

o With infrastructure as a service (IaaS), the vendor’s APIs are used to provision a
virtualized computing environment with various other infrastructure primitives,
which run an application more or less like it would be run on physical hosts.

» With platform as a service (Paa$S), the vendor takes full ownership of operating
the application’s infrastructure, which means rather than offering primitives, they
offer higher-level abstractions so that the application runs in a scalable sandbox.

Figure 1-3 shows a high-level comparison of the two approaches.

r

laaS

Application
You develop
and operate

You choose Middleware
and operate

Virtualization

Network

-,

You provision,
separately

N—

\.

Vendor

operates,

offering
many
choices

PaaS
Application

Runtime

Middleware

o

Server

Storage

Virtualization >

Network

You develop

You provision,
together

Figure 1-3. Comparison of IaaS and PaaS models in terms of vendor versus

customer responsibility

Initially, it was hoped that application teams would embrace fully supported PaaS
offerings—solutions as user-friendly as Heroku but capable of handling greater com-
plexity.® Unfortunately, these platforms have struggled to support a wide range of
applications and to integrate with existing applications and infrastructure. As a result,
almost all companies doing in-house software development at scale embrace IaaS
to run that software, preferring to accept the added complexity of provisioning and
operating their infrastructure in order to get the flexibility of choice.

5 Other full service PaaSes that failed to see broad success were Force.com, AWS Elastic Beanstalk, and Google
AppEngine. As a result, vendors often use the term Paa$ for more flexible offerings, which means they need
to be combined with other IaaS and so have similar problems around complexity.

How We Got Stuck in the Over-General Swamp | 7

The rise of the orchestration system Kubernetes is in many ways an admission that
both PaaS and IaaS have failed to meet enterprise needs. It is an attempt to simplify
the TaaS ecosystem by forcing applications to be “cloud native” and thus need less
infrastructure-specific glue. However, for as much as it standardizes, Kubernetes has
not been a complexity win. As an intermediary layer trying to support as many differ-
ent types of compute configurations as possible, it is a classic “leaky” abstraction,
requiring far too much detailed configuration to support each application correctly.
Yes, applications have more YAML glue and less Terraform glue,® but as we've dis-
cussed, a goal of platform engineering is to reduce the total amount of glue.

Kubernetes is also an example of the second source of complexity we mentioned.
Matching the rise of the cloud has been the rise of OSS ecosystems for all types of
software. Where once you paid a vendor for your development tools and middleware,
now there are thriving and evolving ecosystems for a wide array of development
tools, libraries, and even full independent systems like Kubernetes. The problem with
OSS is the proliferation of choice. Application teams with specific needs can usually
find an OSS solution that is optimal for them but not necessarily for anyone else
at the company. The bespoke choice that lets them quickly ship their initial launch
eventually turns into a burden, as they must independently manage the maintenance
costs that came with their “free, like a puppy”” OSS choice.

Change #2: Higher Operational Needs

In parallel with this explosion of infrastructure primitives and applications using
them came the question of who was going to operate them, and how. If you went back
to the 1990s, before the internet took off, and looked at how companies developed
and operated their in-house software applications, you would typically find two roles,
which in most cases were staffed in entirely separate teams:

Software developer
Responsible for architecture, coding, testing, etc., leading to software applica-
tions being delivered as monolithic distributions, handed off to someone else to
operate

Systems administrator
Responsible for all aspects of the production operation of software (in-house
applications as well as vendor software and OSS) on the company’s computers

As the internet took off and in-house software became more important to companies’
success, these roles started to mutate. The importance of 24/7 operational support

6 We will discuss what this looks like in Chapter 2.

7 As per former Sun Microsystems CEO Scott McNealy, alluding to the long-term cost of adopting either OSS
or puppies.

8 | Chapter 1: Why Platform Engineering Is Becoming Essential

https://oreil.ly/1xi1F

for an increasing number of applications initially led to the growth of operations
engineering teams, which tended to be filled with a lot of early-career systems admin-
istrators—this was the proving ground they had to face before graduating into a less
operational role.

You still see pockets of operations engineering in companies today, but the role is
declining. As the 2000s progressed, software developers adopted the “Agile” model of
regular releases of incremental functionality, as a better way to get feedback and so
ship a better product. Agile brought a challenge to the operations engineering model:
with one team taking on all the responsibility for making code changes and pushing
for fast release cycles and the other team taking on all the frontline responsibilities
when the code had problems, there was some tension. As anyone who lived through
it knows, “some tension” is putting it mildly; particularly after an outage caused by
something that had been “thrown over the fence,” there was usually a large amount
of finger-pointing about which side was to blame. The problem was that there was
generally no clear answer, because Agile had blurred the lines of responsibility.

This led to the creation and broad adoption of what the industry now calls DevOps.
DevOps was framed as a model to integrate application development and operations
activities, and it became associated as much with a culture change as a set of specific
technologies or roles to adopt. That being said, the operational work didn't go away,
and on the ground teams implemented it in two different ways:

Split
Keep the separation between operations and development teams, but have the
operations team do some amount of development, particularly around creating
glue for pushing code to production and integrating it with infrastructure. Thus,
the old operations team with operations engineers was now the DevOps team
with DevOps engineers.

Merged

Merge the operations and development teams into one. With this approach,
described as “you build it, you run it everyone who works on a system is on
the same team, with all of them sharing in the operational work (the most salient
aspect being part of the on-call rotation). While many teams succeeded with
100% software developers, others were more cross-functional, with specialists to
own the glue that pushed code to production and integrated with infrastructure.
At some companies, these engineers were also called DevOps engineers.®

In an act of parallel evolution, in about 2004 Google moved away from operations
engineering toward something they called site reliability engineering (SRE). In 2015,
during the upswing of DevOps popularity, Google published a book on its practices,

8 In other companies, they were called systems engineers or systems development engineers.

How We Got Stuck in the Over-General Swamp | 9

Site Reliability Engineering: How Google Runs Production Systems (O'Reilly). This
caused a lot of excitement, because while many companies had been adopting
DevOps, plenty were struggling with the practical complexities of making it work.
With its heavy emphasis on reliability-oriented processes and organizational respon-
sibilities, some thought SRE was the silver bullet the industry needed to finally
balance operational and development needs, enabling the creation of much more
reliable systems.

We would argue that SRE, as it was originally sold, has not been a widespread success
outside of Google. The processes were too heavyweight; their success relied too much
on the specific cultural capital and organizational focus that came from Google being
the world’s biggest search company. This was well summarized by former director of
SRE at Google, Dave O’Connor, who after a couple of stints outside Google wrote a
post in 2023 titled “6 Reasons You Don’t Need an SRE Team” that concludes, “The
next stage in removing our production training wheels as an industry is to tear down
the fence between SRE and Product Engineering, and make rational investments in
reliability as a mindset, based on specific needs.”

There is no getting away from the needs of operating software. Every company
that offers online software systems must have operational support for this software
during applicable usage times (which may be working hours, 24/7, or somewhere
in between). But how do you manage this in the most cost-effective yet sustainable
way possible? You want to limit the places where you must have dedicated operations
teams (or, using the terminology introduced earlier, “split” DevOps/SRE teams) and
make it as easy as possible for the developers of the software to deploy and operate it
themselves, achieving the initial vision of DevOps.

Result: Drowning in the Swamp

So you've got more application teams, making more choices, over a more complex
set of underlying OSS and cloud primitives. Application teams get into this situation
because they want to deliver quickly, and using the best systems of the day that fit the
problem (or the systems they know best) will help them do that. Plus, if they've gotta
own all the operational responsibility for this system themselves, they might as well
pick their own poison!

Add to this that application engineers with new features are not the only ones
wanting to ship as quickly as possible. The increasing surface of internet-accessible
systems has led to an escalation of cyberattacks and vulnerability discoveries, which
in turn means that infrastructure and OSS are changing faster to address these risks.
We've seen upgrade cycles for systems and components move from years to months,
and these changes mean work for application teams who must update their glue and
retest or even migrate their software in response.

10 | Chapter 1: Why Platform Engineering Is Becoming Essential

https://www.oreilly.com/library/view/site-reliability-engineering/9781491929117/
https://oreil.ly/FO2Zg

The pressure for change has created a swampy mess of glue mixed with the long-term
consequences of individual team decisions. Every new greenfield project adds more
choices and glue to this bog of complexity, and over time your developers get stuck in
the mire. It’s hard to navigate, slow to move through, and full of hungry operational
alligators (or worse, crocs!). How do you extract yourself from this morass? It’s no
surprise that we think the answer is platform engineering, and next we will cover the
ways in which it helps you do just that.

How Platform Engineering Clears the Swamp

If you've been stuck in the over-general swamp, you can appreciate the intellectual
appeal of platform engineering. Youre hiring more people in roles like infrastructure,
DevTools, DevOps, and SRE engineer, but you never seem able to keep up with the
new complexity arising from OSS and cloud systems. Your applications grow more
complex, your application developers become less productive, and you need a way
out. Building platforms to manage this complexity sounds great.

But building platforms takes significant investment. This includes the costs to build
and support them, as well as the overhead associated with limiting application teams’
choices of OSS and cloud primitives. Additionally, establishing a platform engineer-
ing team can incur organizational costs through reorganizations, role changes, and
the overhead of rolling out a new focus area for the company. In this section, we
explain how platforms and platform engineering will justify these investments and
deliver long-term value.

Limiting Primitives While Minimizing Overhead

The explosion of choice wasn't all bad: greenfield applications can ship much faster
now than in the past, and application developers feel more autonomy and ownership
when they have systems they enjoy using. These benefits often get forgotten when
companies start to focus on reducing the support burden and long-term costs that
arise from the diversity of choices. In this situation, the first instinct of leadership is
to prescribe a set of standards using appeals to authority. “Because I am the expert
in databases,” they say, “I will choose which databases you, the application teams, can
use” Or, “I am the architect, so I decide on all of the software tools and packages.”
Or, “I am the CTO, so I decide everything” Inevitably, these experts will struggle to
understand the business needs well enough to make optimal choices, and application
teams will suffer. Standardization via authority isn’t enough.

Platform engineering recognizes that modern engineering teams should have systems
that they enjoy using, provided by teams that are responsive to them as customers
and not just focused on cost reduction or their own support burden. Instead of pre-
scribing a set of standards based on appeals to authority, platform engineering takes a
customer-focused product approach that curates a small set of primitives able to meet

How Platform Engineering Clears the Swamp | 11

a broad range of requirements. This requires compromises in light of business reali-
ties, incremental delivery of good platform architecture, and a willingness to partner
directly with application teams and listen to what they need. When done well, you
can point to the demonstrated leverage of partnering to use the platform-provided
offerings instead of appealing to the authority of the architect, database administrator,
CTO, or platform VP. In this way, you can reduce the number of OSS and cloud
primitives used, without the worst consequences of top-down mandates.

Reducing Per-Application Glue

On top of reducing the number of primitives in use, platform engineering aims
to go one step further and reduce the coupling “glue” to those that remain. This
removes most of the application-level glue, by abstracting the primitives into systemic
platform capabilities that are able to meet broader needs. To illustrate this, we'll dive
into the common challenge of managing Terraform.

OSS and cloud offerings are complex in a lot of ways, with one of the most costly
ways being their configuration—the endless lists of parameters that, if not specified
correctly, will eventually lead to issues in production. Nowhere is this more of a
problem than in cloud configuration, for which the 2024 state-of-the-art tool is an
OSS infrastructure as code (IaC) system called Terraform that provides a perfect
illustration of how platform engineering addresses the downsides of glue.

When application engineering teams all started pushing hard for the smorgasbord
of the Taa$S cloud, most companies decided that the path of least friction was to give
each team the power and responsibility to provision their own individual cloud infra-
structure with their own configuration. In practice, that meant they became part-time
cloud engineering teams, versed in configuration management and infrastructure
provisioning. If you want infrastructure that is repeatable, rebuildable, and can be
secured and validated, you need a configuration management and provisioning tem-
plate like Terraform. So, the common approach was to have application development
teams learn Terraform. In our experience, this led to the following progression:

1. Most engineers don’t want to learn a whole new toolset for infrequent tasks.
Infrastructure setup and provisioning are not an everyday core focus—not even
for teams doing mature resiliency testing and regularly rebuilding the system
from scratch. So, over time the work would get shunted either to unsuspecting
new hires, or to the rare engineers who were interested in DevOps. In the best
case this would lead to one or two people evolving into infrastructure provision-
ing experts who could write Terraform and own all of this for the team. However,
most of the time these engineers didn’t stick around on application teams for
long, which pushed the work back onto new hires, who usually made a mess of it.

12 | Chapter 1: Why Platform Engineering Is Becoming Essential

2. The shortage, combined with people cobbling together their own Terraform all
over the company, often led leadership to centralize the work across multiple
teams (or even the whole company). But rather than centralizing with the goal of
building a platform, all the Terraform engineers were just pulled into a team that
provided Terraform-writing services.

3. These centralized Terraform-writing teams became trapped in a feature shop
mindset, taking in work requests and pumping them out. This meant no strong
developers (the type that can change the structure of the Terraform to provide
better abstractions) wanted to be part of it. Over time, the codebase devolved into
a spaghetti mess, which slowed down application teams who wanted something
slightly out of the norm and eventually created a security nightmare.

A better path is to realize that you need to do something more coherent than
offer centralized Terraform-writing support, and think about how to evolve this
group of experts from a “glue” maintenance center into an engineering center that
builds things—namely, a platform. This will require you to go one level deeper in
understanding your customers’ needs, to develop opinions about which solutions to
offer rather than just trying to make it easier for people to get access to whatever
they want, and to think about what you can build that takes you beyond just the
provisioning step.

As you move into new models for providing underlying infrastructure, it is important
to centralize expertise and create efficiencies. Instead of each engineering team hiring
their own DevOps and SRE engineers to support the infrastructure, a platform team
can pool these experts and expand their remit to identifying broader solutions for the
company. This not only supports the one-off changes but permits their expertise to be
leveraged to create platforms that abstract the underlying complexity. This is where
the magic starts to happen.

Centralizing the Cost of Migrations

We will mention migrations often in this book, as we believe managing migrations
is an important part of a platform’s value. Applications and primitives have long
but independent lifetimes, during which they each undergo many changes. The
combination of these changes creates high maintenance costs. Platform engineering
reduces these costs by:

Reducing the diversity of OSS and cloud systems in use
The fewer primitives you have, the less likely it is that you’ll need to do a
migration because of one.

How Platform Engineering Clears the Swamp | 13

Encapsulating OSS and vendor systems with APIs
While platform APIs are often imperfect at encapsulating all aspects of the OSS
and vendor systems they leverage, even “good enough” APIs that abstract a lot
of their implementation will allow the platform to protect its applications from
needing to change when the underlying systems change.

Creating observability of platform usage
Platforms can provide various mechanisms to standardize collection of metadata
around both their own use and that of underlying OSS and vendor systems.
This visibility into the dependency state of the applications using your platform
should allow you to ease the burden of upgrades when those dependencies need
to change.

Giving ownership of OSS and cloud systems to teams with software developers
When APIs are later shown to be imperfect, unlike traditional infrastructure
organizations, platform teams have software developers who can write the non-
trivial migration tooling that makes the migration transparent to most applica-
tion teams.

Allowing Application Developers to Operate What They Develop

The goal of mature DevOps was to simplify accountability through a “you build it,
you own it” approach. Despite this having been a popular idea for over a decade,
many companies have not managed to execute on this model. We believe that, for
those that have succeeded, a major contributor to this success is the leverage that
their platforms provide through abstracting the operational complexity of underlying
dependencies.

No one loves being on call. But when teams are only on call for issues caused by
their own applications, we have found that a surprising number are willing to take
on operational responsibility. After all, why wouldn't they stand behind the business-
critical systems they spend their days creating? For too many companies, however,
the operational problems caused by the infrastructure, OSS, and its glue completely
dominate the problems in the application code itself.

An example of this can be seen as applications seeking higher resiliency are deployed
across multiple availability zones, cloud regions, or data centers. This leaves applica-
tion teams exposed to intermittent cloud provider issues such as networking prob-
lems, and the 2 a.m. alerts that inevitably follow. Platform engineering addresses this
by building resilient abstractions that can handle application failover on behalf of the
application teams, reducing the number of late-night wakeup calls they receive.

When most of the underlying systems’ operational complexity is hidden behind
platform abstractions, this complexity can be owned and operated by your platform
team. This requires you to limit the options that you support, so that you can push

14 | Chapter 1: Why Platform Engineering Is Becoming Essential

the abstraction boundary upward into a core set of offerings, each handling a broad
set of application use cases. It also requires that you have high operational standards
within your platform team, so that application teams are comfortable relying on
them.

Yes, building and operating platforms that handle these issues is hard, especially
when it comes to getting application teams to accept limitations on their choices. But
the only alternatives are either directly exposing your entire organization to these
issues or perpetuating your use of operations teams (by any name), and so in turn
perpetuating the accountability problems, negative impact on agile development, and
finger-pointing.

Empowering Teams to Focus on Building Platforms

If you want to leverage OSS and vendor primitives but reduce the complexity that
slows progress later, you need teams that can build platforms to manage those
primitives and their complexity. There are four platform-adjacent approaches that
are popular today, all of which bring valuable skills to the organization, but none
of which are set up to have the combination of focus and skills needed for building
platforms. Table 1-1 summarizes these approaches and why they are not adapted to
this task.

Table 1-1. Platform-adjacent approaches and why they struggle to build platforms

Approach Focus Why they struggle to build platforms

Infrastructure Robust operation of Little focus on abstracting infrastructure to simplify applications, particularly
underlying infrastructure across multiple infrastructure components

DevTools Developer productivity up to Little focus on solving developer productivity challenges related to systems in
production delivery production running on complex infrastructure

DevOps Application delivery to Little focus on ensuring their automation/tools help the widest possible
production audience

SRE System reliability Little focus on systemic issues other than reliability, often delivering impact

through organizational practices instead of developing better systems

Individuals from each of these backgrounds might assert that they personally want
to build more platforms rather than glue, but their organization won't let them. We
empathize; we are not describing individuals, but rather how these approaches have
evolved within organizations and how organizations typically define the respective
teams” missions. However, the problem remains—individuals’ roles are limited by the
mission of their team, and changing a team’s mission is not easy when the greater
organization expects it to just do what it always has done.

Empowering Teams to Focus on Building Platforms | 15

Platform engineering asks each of these groups of engineers to come out of their silos
and work in teams with a broader mission to create platforms that provide balance.
This involves:

For infrastructure teams, balancing infrastructure capabilities with developer-
centered simplicity

For DevTools teams, balancing development experience with production support
experience

For DevOps teams, balancing optimal per-application glue with more general
software to support a lot more applications

For SRE teams, balancing reliability with other system attributes like feature
agility, cost efficiency, security, and performance

As a deliberate reset of organizational expectations, platform engineering gives you
the ability to create teams that focus on building the technologies to finally clear the
swamp.

Do Platforms Support Innovation?

As youre hopefully starting to see, platforms can cure all kinds of developer pain
points, make your systems faster and more secure, make your developers more
productive, deal with migrations automatically, and shorten the feedback loops for
getting things done. And while we recognize that it can take quite some time to
achieve all of these outcomes, we believe that this is an ideal worth striving for.

But what about the other good things that a platform might do? Were engineers,
after all, so it’s natural to expect our platforms to also support innovation and experi-
mentation, because we know that innovation is the growth engine of our companies.
Indeed, they can, but we want to clarify what this means, because platforms can get in
the way of innovation and experimentation as much as they can support it.

If we are speaking purely of business innovation that can be developed within the
context of the existing technology offerings, yes, platforms support that innovation.
After all, by making application developers more productive, and in particular ena-
bling them to push new features to production safely (such as through the use of
feature flags and A/B testing), platforms allow them to build more faster, and thus
support rapid experimentation with business ideas using the existing technology.

However, there will always be innovations that the platform by its nature does not
support, and even fights against. Most significant innovation involving technology
is going to require tools that don’t exist yet in the company to be brought to bear
on a problem. The data space is a great example, because it moves so quickly. You
may have an excellent platform that supports easy access to relational databases and
enables most of the engineers at the company to do their jobs well. But if a team

16

| Chapter 1: Why Platform Engineering Is Becoming Essential

realizes they need a storage option with very different performance characteristics
than your relational database offering in order to power a new, innovative business
opportunity, they are going to leave your platform, at least partially, to build out this
idea. If and when it comes to fruition, you may find that the new storage system is a
good thing to pull into the platform offerings—but the innovation here is not enabled
by the platform! That doesn’t mean you should try to cram every new idea into the
platform; rather, the best path is often to let these ideas develop independently, then
merge in only those that are successful and have widespread demand.

It's tempting for platform teams to seek to quash innovation and experimentation
that would take people off the platform. Much of the time, these ideas are a waste
of engineering effort, driven by the “not invented here” bias that drives software
engineers everywhere to build and create their own solutions to problems. But in
some cases, these teams are right that they need to do something outside of the norm.
If the platform team fights against all exceptions to using their offerings, or insists
that they be the ones to build all new offerings that the teams might need, they not
only push their systems to be too general but also risk inhibiting healthy innovation
along the way.

So, yes, your platform should support easy experimentation and innovation within
the bounds of the known, by making developers more productive and focused on the
application layer. But you will not be the be-all, end-all support of innovation, and in
fact, if you want to support innovation, you’ll need to let some teams go their own
way for a while to prove out new ideas. Making smart choices about when to push
people toward central offerings and when to let them spin out their own alternative
“shadow platforms™ is a key skill for platform engineering leaders, and one we will
discuss more in Chapter 10.

Wrapping Up

We're on a complexity collision course, and many of us are already hitting the wall.
Whether it’s with the challenge of making DevOps effective, dealing with a million
snowflake decisions, managing the increasing complexity of infrastructure as code, or
simply dealing with the required upgrades and migrations that come with all software
products, we need help. This is the reason that we believe platform engineering
is becoming more and more important for the industry. By combining a product
mindset with software and systems engineering expertise, you can build platforms

that give you the leverage to manage this complexity for your company.

9 This is the platform equivalent of “shadow I'T”—systems deployed by departments other than the central
department, to fill gaps or bypass limitations and restrictions that have been imposed by central systems.

WrappingUp |

17

CHAPTER 12
Your Platforms Are Trusted

Trust is like the air we breathe—when it’s present, nobody really notices; when it’s absent,
everybody notices.

—Warren Buffett

After the internal focus on building alignment within your team and its products,
the next area of success is external: earning the trust of everyone else. You may
ask, why should we put trust (a feeling or belief) ahead of results? Surely if you
deliver platforms that manage complexity and so deliver leverage to the organization’s
application teams, that is a more important signal than a second-order signal of trust?

When you get your platform team to a point where they are delivering value continu-
ously, trust will follow. However, you have platforms in production today. Features
and improvements for these platforms take time to deliver, and their delivery requires
customer trust, in the form of patience and partnerships for testing, validating, and
adoption. Without trust, a single unfortunate event can render your carefully crafted
product roadmaps useless, forcing you to scramble with throwaway work to manage
the crisis.

We have seen platforms lose trust in three main ways:

Operations
Not demonstrating operational ability at the scale customers need

Big investment buy-in
Not seeking buy-in on large investments before starting, under the assumption
that no one outside the platform team should care

Being a bottleneck
Becoming a bottleneck to business initiatives, and so reducing rather than creat-
ing business leverage.

19

In this chapter, we'll discuss how you can avoid losing trust in each of these areas.

A Success Red Herring: Thinking Trust in a Leader
Is Trust in the Platform

One of the worst management mistakes in any type of engineering is when the
team leader oversteps their role as facilitator for collaborative decisions and instead
acts as a benevolent dictator, personally making all the calls—be they management,
engineering, or product decisions. It might seem easier to trust a single person
who understands how product, stakeholder, engineering, and management decisions
intersect, who can short-circuit conflicts by dictating solutions, and who is most
accountable for the team’s success. However, this approach undermines trust in the
long term by failing to foster trust in any other members of the team.

It’s true that the benevolent dictator setup can be efficient, especially when the leader
is a strong communicator and decision maker with a small team and few users and
stakeholders to wrangle. In these scenarios, the leader can use 1:1 meetings with all
of these individuals to understand the nuts and bolts around any conflict, personally
commit to the needed action, and provide directions to their team, thereby avoiding
lengthy documents detailing trade-offs and contentious deliberation meetings.

The problem with this situation is that what makes it efficient also makes it brittle.
It only works because you have one person with deep expertise in the platform
who (right now) has the time to have regular conversations with all types of users
and stakeholders to maintain their personal trust. Once the number of customers
becomes too big for one person to handle, or that person moves on (often burned out
from trying to work too many hours a week), you are left with a situation where not
only do you no longer have a decision maker, but you also don’t have any trust.

Now the platform team will have to start from scratch, building up inherently slower
group mechanisms around trust and decision making. It can take months, if not
years, for the product teams to figure out how to negotiate decisions and establish
trust with one another and their stakeholders. With hindsight, it becomes clear that it
would have been far more efficient for the decision maker to delegate and share some
of that responsibility earlier, to build trust within the team.

Does this mean you should never allow someone to take on the benevolent dictatorial
role? No. In fact, a lot of the agility at the scrappy and scalable stages comes from
having someone with a pioneer or settler mindset in this sort of leadership role,
making fast decisions with a small team and a small number of customers. However,
this approach is not sustainable and does not scale to larger team sizes or customer
numbers. If you are such a leader, you need to challenge yourself to start delegating.
This will be hard on you and the stakeholders, because it will slow down the decision-
making process in the short term. But it’s worth it, because you'll be building your
stakeholders’ trust in the whole team for the long term.

20

| Chapter 12: Your Platforms Are Trusted

Trustin How You Operate

You're probably thinking this is going to be a rehash of Chapter 6: put in some
practices around on-call and support rotations, backed by some SLOs, change man-
agement, and operational reviews, and you deserve trust, right? As usual, things are
not so simple.

We believe all these practices are essential to ensure rigor and hold platform leader-
ship accountable. However, you can tick all the boxes and still lack the operational
trust of many senior engineers in application teams. Before they migrate to your
platform, this lack of trust may show up as standoffs, prolonged timelines, and
demands for vague “proofs of concept.” Even after adoption, it can cause issues—for
instance, when some operational hiccup leads customers to pressure leadership into
letting them build a “simpler” shadow platform that suits their needs better.

We get it. Earlier in our careers we were those senior application engineers who
didn’t want to adopt shiny new platforms, or who inherited an application on a
shaky general-purpose platform that we wanted to change out for something simpler.
Beyond the seeming lack of control over our fate, the most frustrating part of being
on the application engineering side of things was when the platform team seemed to
underestimate how much impact we felt due to their critical failures. It was a double
trust problem: “Not only are they bad at operating things, they have no idea they are
bad at operating things!”

The root of the challenge is that you only get good at operating foundational systems
at scale by operating foundational systems at scale. When Ian was at Amazon, this
was such a recurring problem that they developed a saying: “There is no compression
algorithm for experience. You can’t learn certain lessons without going through the
curve” Where does this put you as a leader of a platform team, if you see that your
senior users don't really trust your team operationally? You still have two levers:

1. Accelerate the curve by hiring and empowering leaders with operational experi-
ence at scale.
2. Optimize the curve by ordering new use cases based on tolerance for operational

risk.

Let’s look at both, with examples from our backgrounds.

Accelerate Trust by Empowering Experienced Leaders

When Camille started her first head of platform engineering job, much of the team
she inherited was struggling with operational stability. The engineering team and the
systems had been built in a scrappy fashion, and theyd grown a lot over the prior few
years without much investment in system improvements, let alone rearchitectures.

Trustin How You Operate | 21

The team had some new managers who had come from operational roles at bigger
companies, and they were confident they knew what was needed to stabilize the
systems, but they needed help—cover to focus on this work in light of customer
demands for features, and help inspiring their teams of mostly software engineers to
see the value of doing it.

Looking back, Camille considers herself quite lucky. There was a problem, yes, but
all of the ingredients to solve the problem were already there: talented, experienced
managers; strong engineers; support from the CTO. With the hiring side taken care
of, Camille’s contribution was providing empowerment—taking the trust problem
seriously, setting a broad cultural mandate about how they would approach opera-
tions as an organization, and communicating this in a way that both the team as a
whole and the stakeholders/customers would understand.

To do this, she used what is now a key tool in her management toolkit—the opera-
tional excellence OKR. OKRs were a well-established practice at the company, but
historically theyd always been focused on new capabilities. Camille established an
objective of improving operational stability, and got each of her leaders to commit
to measurable key results their teams would deliver against this objective. She then
shared this broadly to all of engineering as part of their OKR town hall, to her
organization in detail in the team all-hands, and even to the executive management
team (her peers and so major stakeholders) in quarterly reports.

Creating measurable goals enabled managers to explain to their stakeholders why
they were focusing on operational stability work instead of features, and what they
could expect to see from the work. Calling this out as an organization-wide focus area
made the team take the work more seriously, and as time went on Camille assigned
ownership of this objective to key up-and-coming leaders in the organization, which
gave them the chance to lead cross-organization initiatives. Tracking this OKR also
provided evidence for the impact of operational initiatives. This evidence was useful
for explaining the value of the work during promotion conversations as well, which
had in the past only looked at new feature delivery as evidence of promotability.

The work delivered meaningful outcomes. Customer satisfaction surveys for these
systems showed measurable improvements. The on-call burden for the systems
became more manageable, which improved the happiness of the engineering teams.
And the conversations at a senior level moved away from blaming the platforms for
their constant operational failures and toward more collegial discussions about new
opportunities and features.

Optimize Growth in Trust by Ordering Use Cases

Part of gaining trust means waiting to push adoption until youre confident that the
systems can support the application’s business needs. This reminds us of another
lesson from our time working together, when many of the compute and storage

22 | Chapter 12: Your Platforms Are Trusted

platforms were new, and their teams wanted to drive adoption to prove their value.
But the teams hadn’t done enough performance testing to understand the actual
(rather than theoretical) performance SLOs of their platforms. The result was that
when an application would try to migrate, the system would struggle to meet its
performance needs, causing latency problems and occasional brownouts. Even when
this was done as a controlled proof-of-concept trial, the failures fed into a lack
of trust, giving the impression that the platforms weren’t ready, and the platform
engineers could not understand operational demands like application engineers did.

In this case, there was also an opportunity that was being ignored. Many of the
potential use cases for the platforms were supporting internal users in their day-to-
day workflows. These workflows were important, but could tolerate some amount
of latency and downtime. With the new attention to stability, Camille’s leaders used
the lens of performance sensitivity to think about whether they were moving the
right use cases onto their offerings. They started to evaluate based not just on the
platform features but also on how confident they were that the platform could meet
the customers’ operational and performance demands.

This changed the way they thought about their roadmaps and features. Instead
of thinking of an offering as done the minute they got one customer successfully
onboarded, the teams took a staged approach, starting by onboarding less critical
applications. These applications provided data they could use for performance tuning
and ironing out other bugs. Once they had these improvements in hand, they used
them to gain the trust of the next tranche of more critical use cases, and so on.

There are no shortcuts to scaling up a team’s operational ability, but by empowering
the right leaders who put trust ahead of adoption, you will move faster up the curve.

Trust in Your Big Investments

Big investments, whether in a new platform or a major rearchitecture, require an
enormous amount of faith ahead of demonstrated value. Not only do they take a long
time to fully deliver (usually years), but they pull developers away from delivering
faster value on the current platforms. As a result, customers waiting on the results of
this big investment are prone to criticize the motivation behind the project. They may
accuse the platform team of prioritizing “resume-driven development,” putting fancy
new technologies ahead of more mundane work that they believe would provide
more immediate business value. Engineers love to grumble about each other, and you
can’t avoid all such feedback. Success means that your key stakeholders understand
and trust the rationale behind the investment.

If you skip this and initiate the work by saying “Trust me, this is important; its
my team, and I'm responsible,” you are headed for trouble. When users come to
you with pain points and you respond that you can't address their needs because

Trust in Your Big Investments | 23

the platform is undergoing a rearchitecture, you can expect that they will start to
complain upward. If you haven't already gotten buy-in, these user complaints will
result in pressing questions from senior stakeholders about your strategy: Why are
we funding this work when the current users aren’t getting what they need? Why are
they using technology X? Who signed off on this? Unless the new project is going
perfectly (and when does that happen?), you can find your entire roadmap flipped
over. To avoid this, you need to get the trust up front.

Seek Technical Stakeholder Buy-in for Trust of Rearchitectures

When rearchitecting, it’s critical to spend time explaining to stakeholders what you're
doing and why before you start the work. This is why in Chapter 8 we suggest a
formal decision-making process to guide these investments, which generates a record
that shows not just the justifications for the decision to fund the project, but that your
teams are held to high standards for such justifications.

While management stakeholders might be satistied with evidence that you have gone
through a strict vetting of these investments, senior ICs (staff engineers and the like)
will want to see more, particularly around technical decisions. That is why even if
your company doesn't have a standard “design review” or REC process, you should
still produce a yearly project proposal, similar to what we discussed in Chapter 7. In
the spirit of Amazon’s “Have Backbone; Disagree and Commit” leadership principle,
if you don’t let senior engineers in customer teams give their feedback before you
start, you should not expect them to “shut up and commit” when you later push for
their teams’ adoption.

Seek Executive Sponsorship for Trust of New Products

When proposing a new product, you have an opportunity to get more than baseline
technical and investment buy-in. This is a chance to get executive sponsorship from
more senjor stakeholders who can bring a bigger-picture perspective of what might
be most meaningful to the business. Platform leaders often get focused on the techni-
cal goals: can we scale, can we operate, can we reduce costs, and so on. They can
end up focusing on these goals in a vacuum, forgetting that platforms are expensive
to build and have a high opportunity cost for the business; after all, these engineers
could be building other things for the company. Furthermore, sometimes platform
engineers (and leaders) confuse the platform itself with the outcomes they’re trying to
drive—the existence of a new platform isn’t an outcome.

Bringing in other leaders to hear about what matters to their areas of the business can
help you avoid blind spots in the platform design. It’s easy to assume that everyone
cares about costs, or performance, or 24x7 availability, but often when you dig in
you realize that the real problem is not what you thought. They can also provide
guidance as to whether youre aligned to their technology strategy; you might think

24 | Chapter 12: Your Platforms Are Trusted

that a core application or architecture pattern is critical, while they are planning to
cut that investment in favor of another area of business growth.

Maintain Old Systems to Retain Trust

Even with stakeholder buy-in, big investments are high-risk activities. Executive
sponsorship lasts only so long; if youre working on a 12-month or longer project,
you want to get out of the mindset that legacy improvements are pointless throwaway
work, because your users won't see the new system for a long time yet. We don't just
mean doing basic KTLO work here. You need to keep investing in system improve-
ments until load on the old system is significantly falling. Further, as we discussed in
Chapter 10, sometimes you need to add new features as well, either to accommodate
urgent business needs or just to mollify your customers and their stakeholders.

No matter how confident you are in the big investments, others will have reasonable
doubts; if you don’t give some ground to maintaining their old systems in the mean-
time, you will lose their trust.

Gaining Trust Requires Flexibility on What Is “Right”

In the following example, we return to the time when Ian was working as a compute
platform leader. One of his teams was in the process of digging themselves out of a lot
of operational instability. While they had put the right leadership in place to improve
the operational practices, there was still mistrust from important stakeholders—espe-
cially one of the most business-critical teams, which we’ll call Icicle.

The Icicle team had a workload that was very sensitive to performance latency, and
they had historically solved that problem by running their workload only on highly
customized bare-metal servers. The problem with this was that these servers had low
utilization and high cost. Their own business leadership wanted to improve their cost
efficiency, but they trusted the judgment of their engineering team over that of the
platform team. And the Icicle engineers saw that the current platform’s approach to
reducing costs (oversubscription of the servers) was causing unpredictable latency
problems, which they were not willing to tolerate.

By treating this as a technical problem, the two teams had reached a stalemate over
what was the “right” next step. The compute team wanted the Icicle engineers to
provide “hard SLOs” that would allow the compute team to design and test a solu-
tion. The Icicle team wanted the compute engineers to build an extensive “stress test
engine” to prove that their platform would perform under real-world conditions. The
result of the stalemate was low trust, to the point that the Icicle engineers proposed to
staff up their own shadow platform team to meet their special needs.

To resolve this stalemate, Ian and his leadership team changed not only their road-
map but also their product strategy. They put together a new offering that ripped

Trust in Your Big Investments | 25

out all of their platform’s oversubscription features. Yes, the new offering was more
expensive than the older offering, but it was still a substantial improvement over the
bare metal the Icicle team was using.

Even with this concession, the Icicle engineering team was unconvinced it would be
operated to their standards. As a result, the platform team first shipped it for data
science users, delivering improved performance to a highly visible business group
and building confidence in the system design through this effort. Only after six
months of demonstrated operational success did they earn enough trust to get the
Icicle engineering team to commit to moving to the platform.

By being flexible in finding a solution that would meet the needs of both technical
and business stakeholders, and showing that they were committed to operating that
solution to high standards, the team was able to move past a stalemate that was
fundamentally about a lack of trust.

Trust to Prioritize Delivery

Finally, you need trust that your platform will not slow business delivery. It doesn’t
matter how much you manage complexity or make developers productive in the
longer term; platforms that are a bottleneck to delivering business value clearly
have questionable leverage in that moment. Even when the initiative is something
understood to be difficult, like standing up your platforms on a new cloud vendor,
people outside of the platform team tend to underestimate the complexity of the
work. As the bottleneck drags on, they lose trust and start questioning every aspect
of the platform team’s decision making, sometimes even questioning the utility of the
platform entirely.

In this section we bring together three activities that are critical to avoiding these bot-
tlenecks: velocity of delivery, prioritization, and challenging assumptions of product
scope.

Create a Culture of Velocity

When they hear complaints that the platform team is a bottleneck, it is common for
stakeholders and your executives to blame a lack of planning. And it is true that if
you have not done any of the planning work we discuss throughout this book, they
may have a point. If you're prioritizing big rearchitectures or building new platforms
when the business demands are not being met by your existing platforms, you may
very well have a planning and prioritization problem to solve.

But in the face of an agile and dynamic business, it’s a mistake to think that planning
solves all trust issues. Circling back to Chapter 1, there is a reason Agile won over
waterfall—there is enough uncertainty about the business value of most features that
it is far higher-leverage to build something fast, get feedback, and make it better.

26 | Chapter 12: Your Platforms Are Trusted

If that’s a two-week iteration cycle for application teams, momentum is absolutely
destroyed by a platform team saying “this needs to wait until next quarter’s OKRs”
That is why planning—by your team or by your customer teams—cannot be the only
solution to delivery bottlenecks. Not only do you waste their time seeking clarity of
value that the business cannot provide, but you also create a culture that insists that
the business not providing perfect roadmap requirements is a fault, as opposed to a
fact of life.

When Ian led a platform organization that often found itself crucial to an application
organization’s dynamic new feature needs, he shaped its culture to uphold the value
of velocity: balancing the throughput that came with planning via a responsive, agile
approach to unplanned application demands. There were two goals to this:

o To stress to his team that it was not acceptable to resist a new application team
ask just because it wasn’t in their earlier plans

o To remind his stakeholders that not telling his team early about their needs
would result in higher costs, because the plan would have to change to accommo-
date the new work

Prioritize Projects to Free Up Team Capacity

We asked Diego Quiroga, a senior platform engineering leader, to describe his experi-
ence of turning around a team that was on the brink of becoming a bottleneck to the
business. What follows is from Diego.

PLATFORM PERSPECTIVES

As I stepped into the engineering leader role for our platform team, I began to learn
about our domain and look for interesting problems to solve. One team reporting to
me was a small platform team with the critical responsibility of managing an array of
foundational services powering an enterprise social network. Application teams relied
on this platform’s diverse capabilities to craft customer-facing features.

The platform team remained integral to the development of these features. During
each quarterly planning cycle, application teams would articulate their requests for
new capabilities or enhancements of existing ones. Due to the team’s limited band-
width, several of these asks inevitably fell below the line, and the backlog continued to
grow.

While the organization valued our efforts, there was mounting concern over the
team’s ability to manage the growing backlog, especially as a delay in certain features
would jeopardize the organization’s objectives for business growth. Previously, in an
attempt to tackle this dynamic above all others, the team had compromised their
investment in operations, leading to not just an increased on-call burden, but also
negative perceptions regarding the platform’s operational stability.

Trust to Prioritize Delivery | 27

With fixed headcount as a constraint, I worked with the team to understand the
nature of our customers’ requests, seeking patterns that might reveal opportunities
for efficiencies elsewhere. Looking back over a year’s worth of data, we identified
several recurring requests, such as configuration changes across a complex chain of
services required to establish new feeds. This presented an opportunity to package
these requests in a self-service manner that would minimize future workload for the
team.

In the face of being an active bottleneck, making the case for an investment in team
efficiency presented challenges. Balancing the immediate value of tangible features
against a promise of increased team throughput was a tough sell. To maintain the
trust of leadership that allowed us to sustain the effort, it was critical for us to
demonstrate the impact of the investments with clear visuals and metrics.

Following the completion of the project, we introduced this new “self-serve” capabil-
ity to our portfolio. Customer requests that had previously demanded the undivided
attention of a platform engineer for an entire month now required only a few con-
sulting sessions, allowing us extra capacity to dedicate to other pieces of work. In a
scenario where a long-term roadmap from the application teams was not available,
relying on past trends for investment decisions was a calculated bet. This one paid off
well and set a precedent for seeking out similar opportunities in subsequent planning
cycles.

We adopted a similar strategy to enhance our team’s response time to support
requests. Application teams regularly sought the team’s assistance for code reviews,
guidance on utilizing platform capabilities, and resolving operational issues. As the
engineering organization expanded, the team fielded an average of 30 weekly support
requests. Despite having a dedicated engineer to manage triage, the pressure mounted
for quicker responses, especially toward the end of each quarter. To address this,
we allocated capacity to develop new troubleshooting dashboards and self-diagnosis
tools, offloading noncritical workloads to the application teams. Implementing “can-
ned responses” that directed users to documentation also was effective in reducing the
volume of such requests.

With the bottlenecks addressed, the team’s projects evolved into more interesting,
impactful, and high-leverage work, increasing the engagement of the engineers.
Customers benefited too—with the newfound surplus capacity, we were able to
consistently address performance and reliability issues and establish a reputation
for operational excellence. Overall, while the analysis was not cheap and the projects
somewhat of a risk in returning value, they were absolutely critical in transitioning us
from being a bottleneck for the business to being its trusted foundation instead.

28

| Chapter 12: Your Platforms Are Trusted

Challenge Assumptions About Product Scope

Prioritizing delivery for platforms is a constant give and take; ideally, we build
broadly useful offerings that meet the majority of our customers’ needs, and we
aren’t under constant pressure to quickly add features as part of the critical path for
an application team. But there are some cases where the key characteristics of the
platform give it a scope that leads to inherent bottlenecks—namely:

1. The platform is trying to expose a large surface area of functionality.
2. The platform is trying to support a diverse set of applications.

3. The platform is developed in such a way that it cannot trust its own users to
unblock themselves.

A classic example of this occurs at companies that put responsibility for all public
cloud adoption on a centralized cloud enablement team, and charge them with
ensuring not only that developers can get access to the cloud offerings they need
quickly, but also that there is significant security vetting of the offerings and the way
teams can use them. This case almost perfectly hits the three characteristics we just

described:

1. The surface area of the public cloud offerings that developers might want to use
is huge and, worse, changes pretty quickly.

2. Unless the company is very small, the team is going to be supporting a wide set of
applications and developers who probably have many divergent opinions about
which of the public cloud offerings they want to use for their applications.

3. The best way to resolve this would be to let application teams resolve it for
themselves, but they can't trust these developers with the superuser access to do
whatever they want for security reasons, so they are stuck trying to prioritize and
negotiate what will be enabled, with new requests coming in all the time.

To reduce the bottleneck in situations like this, we have had some success with
diminishing the scope, by supporting fewer application types and providing more
curated, higher-level product offerings. Instead of unlocking cloud primitives for
everyone, we built platforms that orchestrate compute and storage for major use
cases, providing a smaller but focused surface area that allowed the platform team to
make the right choices about the underlying management of the cloud infrastructure.
This may seem like introducing an unnecessary middleman, but it allowed for a
platform that integrated core company concepts around identity management and
security, handled the complexity of the cloud on behalf of users, and drove major
leverage for the company.

Even this solution was imperfect; for cases where teams wanted access to cloud
products outside of those wrapped in the platform, there was still a bottleneck to

Trust to Prioritize Delivery | 29

evaluate, secure, and enable the new product. But limiting that to edge cases by
building rich platforms for the common 80% meant that the team was able to clear
these bottlenecks more quickly.

Where you are building platforms to enable your users without granting them too
much trust, it’s important to think about the platform features with an eye toward
how you will manage or avoid these bottlenecks:

» Have you considered limiting the scope by supporting only certain types of
applications?

 Have you iterated and identified the right abstraction that will support customers
without exposing such a large surface area?

» Have you designed a system where users can contribute to unblocking them-
selves by limiting the control points that might require a security/compliance
review?

» Have you included extensibility mechanisms for some platform features to be
augmented by your users themselves?

You may need all four of these approaches to solve your biggest challenges: a limited
scope with good abstractions to cover the common cases, and better practices for
extensibility and user-driven contributions for the edges.

Tying It Together: The Case of the Overcoupled Platform

We'll call this story from our past “The Case of the Overcoupled Platform” The
problems started with a two-year push to build platforms that were “batteries
included” This was in reaction to a prior generation of platforms whose benevolent
dictators were all thinking in silos as they built their individual platforms, and so
nothing worked together. “Batteries included” was used to convey the vision of a
heavily aligned approach to product strategy going forward. The vision painted was
much less about platforms being “products” and more about platforms enabling
“workflows,” so customers would be able to use the platforms without having to
build things themselves, and without being troubled by the operations of what was
underneath. In many ways, this sounds like an ideal “glueless” platform—isn’t this

type of end-to-end focus the reason people love Apple products?

So what was the problem with applying it to these internal platforms? Unfortunately,
the high bar of “batteries included” meant that the platform teams needed to design
the end-to-end workflow impact for every use case before they could start writing
code. This was hard enough that the initial offerings took shortcuts, and as new fea-
ture sets developed over time everything became deeply coupled. This deep coupling
made rearchitectures especially hard, leading to the platform teams deciding they
needed to rewrite everything into v2s that would deliver architectural improvements

30 | Chapter 12: Your Platforms Are Trusted

with feature innovations. Of course, these ambitious scopes caused massive delays
and increasing customer frustration.

These platform teams were caught in their own swamp, offering end-to-end work-
flows that were always not quite done, not quite ready, not quite reliable, and not
quite what the customers wanted. This meant that while “batteries included” had
been a great trust unifier in the early days of close collaboration and progress, as
the platform organization’s delivery ground to a halt due to the coupling, and the
solution was seemingly only to build v2s, trust had very much dissipated; more than
one stakeholder gave the feedback that “your organization builds new platforms for
the sake of building new platforms.”

To correct for this, Camille needed to switch up the approach, and she knew she
had to address not just the cultural aspect but the product side as well. Thus, she set
forward an OKR objective of “building blocks, not batteries included” (as mentioned
in Chapter 11). This metaphor was based on the following three concepts:

Treat building blocks as foundational.

In their efforts to quickly create the first version of the batteries-included work-
flows, the team had integrated different platforms at the component level, as
opposed to using well-defined APIs. As workflow features grew, these compo-
nents were often not operationally stable—poorly defined interfaces led to sys-
tems that were difficult to change, difficult to test, and difficult to monitor. To
address this, the team paused on some of the workflow features to make sure the
building blocks of those workflows were solid.

Blocks are composable.

Component-level coupling was not just a problem for stability, it was a problem
for improving the “batteries included” workflows that crossed platforms. That
coupling meant changes in one platform sometimes had unexpected side effects
in other parts of the workflow, greatly slowing down feature delivery. Worse,
fixating on platform use as workflows rather than abstractions completely pre-
cluded advanced customers unblocking themselves by building their own work-
flows. The building blocks approach recognized that, even while the team would
still provide end-to-end wrappers for common workflows, they also needed indi-
vidual platform abstractions to isolate side effects. This allowed platform teams
to debug and manage their systems more easily, and it allowed trusted customers
to “pierce” the workflow abstraction' and unblock themselves.

1 See Will Larson’s article “Providing Pierceable Abstractions” for a larger writeup of this idea.

Tying It Together: The Case of the Overcoupled Platform | 31

https://oreil.ly/w-p3o

Blocks can be switched out incrementally.

As we mentioned in Chapter 11, the whole platform organization went through
an alignment process that picked out some big initiatives to pause so that the
team could focus on the most important ones and still have time to deliver
solutions for more immediate demands. It was not enough to promise that a big
v2 would revolutionize the platform and solve all the users’ problems eventually;
proposals were now evaluated based on (1) whether they could be delivered
incrementally as rearchitectures, (2) their migration costs, and (3) executive
support for the potential business value.

This approach meant that, in some places, the team backtracked on usability in
order to stabilize, decouple, and remove bottlenecks. Camille built senior stakeholder
support through incremental unblocking, including our earlier example of Ian’s team
delivering a better offering for the high-performance users. Going back to the Apple
analogy, the platform offerings became a lot more like early Android devices—not
as polished, but allowing a lot more options. You can argue your preference there,
but we are confident that for internal engineering platforms the value of stability and
future flexibility for platform customers cannot be sacrificed in the name of ideal
usability.

Wrapping Up

Trust takes much longer to build than it does to destroy. Many events outside of
your control can erode trust: black swan operational issues, major business changes
that you can’t keep up with, team turnover that leaves you unable to execute despite
thorough planning. Knowing that these risks are ever-present, leaders must work
hard to shore up trust through everything they do.

We see this as one of the most common ways that platform leaders fail their com-
panies. Through their own hubris, they believe that they know better, they don’t
bother to communicate with adequate transparency, and they trust their teams to
the exclusion of listening to their customers and stakeholders. When you accept
that success in the job requires building and maintaining trust, you take the steps
necessary to deliver trustworthy platforms that can keep up with business demands.

32 | Chapter 12: Your Platforms Are Trusted

CHAPTER 13
Your Platforms Manage Complexity

We must design for the way people behave, not for how we would wish them to behave.
—Donald A. Norman, Living with Complexity

We started this book by describing the “why” behind platform engineering. What
is the problem to be solved? The rapid increase of complexity in technology is
slowing application engineering teams down, and the business is getting less value
per developer over time. Why do we need platform engineering? Because it takes
a holistic approach to the problem of complexity, allowing a team of software and
systems experts to reduce the drag of complexity on the application teams.

This does not mean that platforms remove all complexity. Platforms generate leverage
by effectively managing complexity, not eliminating it; as a leader of a platform team
you must become very comfortable addressing complexity in everything you do.

In this chapter, we'll highlight four areas where complexity needs to be managed to
ensure you are on a successful path:

o Accidental complexity, where attempts by a platform to address complexity in fact
just move the problem somewhere else, often creating new work for humans

o Shadow platforms, which are a delicate game of letting application organizations
be agile, without ending up with a complex outcome of many similar shadow
platforms

o Uncontrolled growth, where the only way a platform organization manages com-
plexity is under an assumption it can hire new engineers tomorrow to deal with
the tech debt created today

33

o Product discovery, or understanding that, for some problems, it will take iterative
attempts at delivery to discover the product that actually reduces complexity for
both the customer and the platform team

As this chapter’s introductory quote points out, we must be realistic about human
behavior when designing solutions. A technology approach is necessary but not
sufficient; leverage comes when we combine technology with an understanding of
human and organizational dynamics to tackle all aspects of complexity.

A Success Red Herring: The Single Pane of Glass

The idea of bundling everything into a “single pane of glass” is a popular concept in
tech UX these days. Many open source and vendor tools promise to give you a single
UI to control your whole system, manage your whole development experience, or
streamline all of your communication. Reducing cognitive load for users by providing
one Ul for everything seems like a smart way to remove unnecessary complexity, and
many teams invest heavily in building unified Uls, betting that they will solve their
UX problems. These initiatives usually start off strong and deliver value for some
common use cases, but in our experience, this early success does not sustain itself
over time.

Camille saw this firsthand when a DevEx platform team she managed decided that
developers had too many different places to go to find information about their work:
one for code reviews, one for build progress, one for tickets, one for code search,
and, of course, their chosen editor for writing code and the command line for various
other activities. To address this complexity, the team brought some of these activities
together into a single pane of glass web UI to improve flow and protect people from
context switching.

This seemed like a good idea at first, but over time the team realized that in order
to keep everyone in their in-house interface, they would have to re-create all of the
workflows from each of the underlying vendor tools they were using.' These vendors
in turn were themselves each trying to become the single pane of glass by providing
hooks and integrations with one another. Over time, the team realized that their
“single pane of glass” was becoming either an extra stop between the developer and
the UI they needed to get to or a worse version of the real thing.

They also hit another complication that’s common when building tools and platforms
for developers: the developers didn’t want to use the interface. Developers are picky
about the way they work. Many want nothing to do with Uls, and prefer to do
as much as possible on the command line; others want everything integrated with
their IDE; still others want ChatOps integrations (but only when theyre on-call).

—

This is reminiscent of the challenges in wrapping vendor/OSS APIs for internal use, only arguably worse, as
you not only have to keep up with API changes but also must keep up with UI/UX changes.

34 | Chapter 13: Your Platforms Manage Complexity

The platform’s single pane of glass would only work for one persona; not only do
different humans have different personas, but the same human may operate with the
same tools as different personas depending on the role (support engineer, software
developer, project manager) they are playing that day. The team ultimately realized
that it was better to rely on the integrations available in GitHub, Slack, Jira, etc.,
and integrate their platform into these common offerings to account for the different
personas and their demands.

As this example shows, the single pane of glass concept is often best generalized to
something else. While we might build these experiences for certain scenarios, the
goal is not so much the pane of glass itself but the ergonomics of a setup where
everything a user needs is within reach. Recognizing that your systems will need
to accommodate different personas using different tools at different times, the basic
building block of your ergonomic environment is the API and the corresponding data
model. By starting not with the single pane of glass but with the APIs that will power
that interface, you leave yourself room to develop different experiences depending on
the persona. You can create an easy UI for basic use cases, but allow developers who
prefer the command line to integrate there (and rely on the existing Uls for your tools
where possible as these are likely to be better than anything you can provide).

Uls are inherently complex and hard to build right, so if your goal is to reduce
complexity, we recommend you start by ensuring your products have accessible,
documented, coherent API access. Follow REST standards for your APIs, as closely
as is possible. Name things consistently; do one thing per call and don’t require
stateful sequences of calls to do one thing; plan for backward-consistency and try not
to change your APIs too often once they are released. From here, you can explore
integrations with command-line tools, chatbot-type interfaces, IDE support, and yes,
web interfaces. It’s still hard to reduce the complexity of your API layer, but if you
neglect that, it’s unlikely a UI will solve the problem.

Managing the Accidental Complexity of
Human Coordination

A key measure of success in managing complexity is evaluating how much glue
application teams still need to build to work with your platforms. As introduced
in Chapter 1, “glue” refers to the code, automation, configuration, and tools that
these teams build to hold things together. Glue is a response to the complexity of
managing the underlying systems, and platforms should aim to create abstractions
that eliminate the need for each application team to build their own. Less overall glue
is a sign that you have reduced the infrastructure complexity for application teams.

There is another type of glue that we didn’t talk about in Chapter 1: human glue.
This is the “glue work” that Tanya Reilly so eloquently describes in her talk and blog
post “Being Glue”: all of the manual workarounds, documentation, and coordination

Managing the Accidental Complexity of Human Coordination | 35

https://noidea.dog/glue

needed to resolve gaps between the things a team needs to do and what they are
actually doing. In a quest to limit the technical glue from Chapter 1, some platform
teams end up creating a new “accidental” complexity by over-relying on human glue.

Imagine a platform that hasn’t bothered with operational tooling for its application
teams. It’s like trying to drive an old car with the hood welded shut—you don’t expect
most drivers to know how to fix their engine, but they still need to know where the
smoke is coming from. When an incident happens and the platform hasn’t provided
enough diagnostic tools, the application team is stuck. Instead of handling the issues
themselves, they have to get on a call with the platform team to figure out if the
platform is the culprit, which is frustrating for both teams. As we covered in Chapter
6, exposing platform metrics and using synthetic monitors is key to avoiding these
escalations. Complex outages will still sneak up on you, but with proper tooling, you
can stop using platform engineers and DevOps/SREs as human dashboards.

If you're looking for a rule of thumb to know whether you're doing enough to manage
complexity, ask yourself how often you rely on “human glue” to resolve issues. Do
you rely on manual processes to coordinate open source software upgrades, or to
drive fixes for common application outages? As engineers, we believe that humans
should be reserved for managing the truly complex scenarios, and we should apply
software to resolve the merely complicated. In the following sidebar, we give an
example for the case of migrations; in general, the less you need to rely on humans to
coordinate programs across your platform and the application teams that use it, the
better you are at removing complexity from your users’ lives.

Managing Migration Complexity

We covered one of our migration success stories in Chapter 9: in the face of a major
operating system version upgrade, Camille challenged her team to do everything they
could to complete the migration without human project management support. The
team responded by first writing a small piece of code that tracked each host, whether
it needed to be upgraded, and by whom. This was run daily to produce a report that
showed how the migration was progressing. The report was then fed into Jira, which
automatically created and assigned tickets with details about what needed to be done
to complete the migration.

Of course, this wasn't as simple as it sounds. A key element for success was the
ownership metadata registry mentioned in Chapter 12, which provided tracking of
which code belonged to which team. That data was used to bootstrap the process
of figuring out where to assign the tickets. The team then wrote code to apply
heuristics to various identifiers associated with the system resources in order to find
the most likely person to assign the tickets to, and thus minimized the churn of
incorrect assignments. This turned into a useful system for tracking and maintaining
ownership data more broadly, which could then power other migrations.

36 | Chapter 13: Your Platforms Manage Complexity

This changed the way most migration exercises were approached across the company,
reducing the complicated human-driven processes into more predictable machine-
driven ones. Instead of defaulting to project managers tracking spreadsheets and
endless status update meetings, the team spent time making the tool more powerful
through more nuanced dependency mappings and smart reminders, and they put
more time into automating common elements of the migrations so there was less
migration work for the customer teams. Over time, the biggest challenge we had with
this process was that too many groups wanted to use it to drive migrations before they
had thought through the details of the migration process.

We did not completely eliminate the need for TPMs, but their role evolved from
doing hand-to-hand combat with each team in the migration path to acting as
overseers and ambassadors. They scaled to support more migrations because there
was less manual work for them to track in each migration, and they could focus on
the weird 20%. If, for example, we saw that to complete a migration we needed to get
a big customer storage system upgraded and that work required a lot of coordination
with the customer team, we could deploy TPM support at this point to enable the
unblocking of another automatable tranche.

The goal of all of this is to treat TPMs as the rare specialists you bring in when you
can’t think of any other engineering-driven tricks that could make the migrations
either automatic or self-service on the part of the customer. In our experience this will
still mean you need to have folks with this skill set on staff, but they should be the few
that you all admire for their discipline, attention to detail, and organizational savvy.

Managing the Complexity of Shadow Platforms

We discussed shadow platforms in Chapter 10, but as a reminder, they are the
duplicative platforms that application engineering teams sometimes build for them-
selves. In general, shadow platforms increase the overall complexity of the company’s
software; however, they are usually built to reduce the complexity for a particular
area. Because of this local view, there will always be some amount of platform work
happening outside of your platform team. The goal is not to restrict all of it, but to be
aware of it.

Trying to stop every application engineering team from ever building something
that could be considered part of the platform remit is a fool’s errand. At scale, it’s
impossible. Moreover, it’s simply ill-advised to try to halt all platform-related experi-
mentation and innovation happening in teams outside of your organization. These
teams, as experts on their own needs, will take a pioneering mindset to knocking
down their problems. When your platform fits their needs they will probably use it,
but when there’s an advantage for them to build their own thing, sometimes they will
do just that. In doing so, they might build the first draft of the next valuable platform
offering.

Managing the Complexity of Shadow Platforms | 37

To wrangle those shadow platforms, you need to build on the trust that we discussed
in the previous chapter—that’s what keeps you in the loop. Being informed gives you
the chance to prepare for whatever comes your way, whether by embedding one of
your engineers into the project, getting regular updates from the team, or even setting
up expectations about what would need to happen in the future if this team decided
they wanted you to take over the project.

If and when you decide to take over a shadow platform, it's important to realize
that you are inevitably going to create some new complexity in the process. After
all, youre aiming to make it useful beyond the scope of its original team, which
usually means expanding its surface area. The trick at this point is to reduce the
pioneer-driven complexity while corralling the new complexity within your platform
team, rather than letting it leak out to the users.

An Example of Managing a Shadow Platform

In our experience, a successfully dealt-with shadow platform looks more like a well-
managed mess than a black-and-white picture of great execution. The following story
illustrates just how iterative and messy success can turn out to be.

About six months after Ian took over the second of five in-house compute platforms,
the CTO started pushing for Al for data science, giving significant headcount to one
of the business-facing technology executives to execute this strategy. This executive
then hired a leader for the initiative who was a type that platform engineering
leaders often cross swords with: a pioneering visionary eager for radical change. This
new leader believed that the barrier to AI innovation was the coupling to existing
flawed (in his mind) in-house platforms, which hindered data scientists from quickly
adopting cutting-edge public cloud and OSS systems. He aimed to create a platform
where each data scientist could have their own cloud account, using whatever IaaS
infrastructure primitives and OSS they wanted, like they were at a small startup.

In handling this, Tan’s first mistake was assuming that everyone could see how
complex this would be, and that the pioneer would get this feedback and quickly
change course. After all, most of the data scientists could barely administer their
own development workstations, so individual cloud environments were going to be a
mess. Furthermore, most data scientists were going to need an incredible amount of
platform integration for their existing workflows to be usable, and that was the work
Ian’s org already had planned. It was just going to take a while to do it “right” and
avoid unnecessary glue.

38 | Chapter 13: Your Platforms Manage Complexity

The pioneer, however, remained stubbornly on course and hired a team to drive this
effort, planning to build shadow platforms wherever Ian’s team wouldn't cooperate
with his vision. He justified this by pointing out that about 10% of the data scientists
came from engineering backgrounds and could handle the complexity of administer-
ing their own environments and writing their own platform glue. Since this platform
was only for experimental work, which would need a rewrite to go into production,
both the pioneer’s team and the early users believed it would be fine to deliver a
system that didn’t provide the same operational foundation as the broader ones Ian’s
team was providing. They figured they could deal with those architectural issues later.

Once Ian realized that the original plan was going to stick, he began holding regular
meetings with the pioneer leader and his team. The goal was to get serious about what
it would take to increase the coverage of this platform beyond the 10% of advanced
users to include everyone else. These meetings exposed the places where the pioneer-
ing team was overlooking the complexity of scaling their offering. For example, they
hadn’t thought about how to migrate users off of existing systems (which would
take hundreds of developer years), or how to manage the administration for the
nontechnical users.

However, it was clear that the need to “make progress on AI” meant the effort had
backers up to and including the CTO. So, Ian had a choice: he could let the pioneer
team build a complex shadow platform without his support, or he could figure out
a compromise that would let him influence the work to avoid some of the inevitable
complexity.

The compromise he landed on was to shake up one of his teams’ roadmaps, freeing
up two developers to support this initiative. This was the upside of the CTO’s atten-
tion—when other stakeholders questioned the changes, Ian could tell them this was
coming from the CTO’s priorities. The developers he chose were settler types, and he
gave them a difficult remit: “Your job is to not slow this project down, but to find the
places where you can build the right long-term’ components and use the opportunity
to build those earlier than we would have”

In practice, they succeeded about halfway; keeping the project moving quickly was
always going to mean creating some amount of glue that wouldn’t scale. But even the
half success was a positive thing, especially because as the system became real, two
things happened:

1. The 10% of data scientists who had previously been blocked could now success-
fully access the cloud for iterative experimentation.

2. Now that they had something real to play with, some of the remaining 90%
of data scientists were able to try the system, and lans teams’ earlier concerns
around the complexity of operations, administration, and integration became
obvious to everyone.

Managing the Complexity of Shadow Platforms |

39

This didn’t immediately solve the standoff, and it took a couple of years of reconci-
liation before the whole thing was sunset in favor of an integrated platform. Still,
in those two years the company was able to benefit from a lot of innovation that
otherwise would not have been possible. This became a case study to show how
the platform organization could partner with application engineering teams without
slowing them down, as opposed to always being left out of the “scrappy” part of the
cycle. All told, it was a successful example of partnering to create a better (and more
sustainable) product, as described in Chapter 5.

Managing Complexity by Controlling Growth

Growth is addictive. When you have scaled out a platform team from its early days
to a stable organization, it can be tempting to think that the only way to accomplish
more is by adding more people to the mix. How else will you ever close the gaps in
the product offerings? You need a full set of engineers to cover both development and
the on-call rotation, a product manager, and all of the supporting apparatus that a
new team might need. The only way to provide all of that is to grow and grow and
SIOW.

The danger in this mindset is that unchecked growth contributes to the complexity
that youre trying to avoid by building a platform. First, it reduces appetite for
managing complicated stuff: there’s a strong temptation to throw bodies at problems
instead of investing in automation or rethinking the work. This then creates the kind
of work that software engineers don’t want to do: tedious on-call rotations where you
are constantly doing manual fixes, migrations that require human follow-up across
the company, and provisioning requests that take dozens of steps to complete. The
longer you go without investing in automation, the more likely you are to end up in
situations where automation can’t do enough to manage the complexity, and you’re
stuck in a nonscalable staffing model just to keep up with support.

Growth also encourages complexity by removing the pressure to be smart about what
you build and where you invest. When engineers can justify any pet project, they
will often build without regard to what the customers need. Managers and product
managers in turn realize that it’s easier to build their own empire rather than getting
alignment with their peers on how to solve problems. Growth gives everyone an
excuse for why things aren’t quite going well: another person to point the finger
at, a newcomer who doesn't yet know how things work around here. In the worst
case, you end up with a sprawling portfolio of half-baked ideas and products that
don’t quite fit together well; a complex swamp of offerings for your customers to
navigate. And frankly, we’re not sold on platform teams being the originators of many
new initiatives. As we said in Part I, we expect most innovation to come from the
application teams building what they need, not the platform team itself.

40 | Chapter 13:Your Platforms Manage Complexity

Even considering all of this, those of you who have spent your careers in growing
companies might think were off base to suggest slowing growth when you aren’t
being forced to do so. Why would you even pretend to do new things when you’re
barely keeping up with the rapid growth and scaling of the company itself? And why
would we push platform teams to reduce growth when application engineering teams
are just as guilty of indulging in it?

Remember, though, that there is a difference between platform teams and application
engineering teams: a platform team is more likely to be seen as a “cost center”
and therefore an area where efficiency is expected, rather than a revenue-generating
organization. Guiding a culture of smart efficiency is part of the mandate for leaders
in this space, and complexity is the enemy of efficiency. The platform engineering
mandate is not driving efficiency through any means (say, outsourcing to manage
the cost of manual approaches). You achieve efficiency by strategically simplifying
through software engineering and product discovery.

We know that there are times when you need to grow, and entering new product
areas can be one of these times. If you have run your organization so efficiently that
you cannot pull from existing teams to cover a new offering, you will need to grow.
And of course, there are times of scaling and company growth where expansion is
sensible. But good platform leaders understand that their platforms deliver leverage,
and that means they shouldn’t need to grow at the same rate as the overall engineer-
ing team, once that leverage point is established.

As a guardrail, we recommend this rule of thumb: most of the new work in estab-
lished areas should be funded by existing people on those teams. This forces manage-
ment to sharpen their focus; if their KTLO workload has gotten out of hand, can they
find ways to reduce that cost? Do they have a strong sense of the most important
areas to work on, and are they divesting from adding to features that either are “good
enough” or, worse, haven’t shown their promised value?

Managing complexity implies not only that your platforms can support far more
users than the number of developers of the platform but also that, once you have
achieved baseline coverage for a product area, you do not need to linearly scale the
number of platform engineers for every new thing you want to do in that space. This
doesn't mean you should cut yourself to the bone and have no slack in your organiza-
tion. This is why the measurement of KTLO + mandates + operational improvements
is so important: knowing the minimum number of people you need to handle that
workload gives you the absolute bottom of your potential team size (which is proba-
bly that number + 20% so everyone doesn’t immediately quit). Above that baseline,
you can exercise discretion and think about investments. Being thoughtful about
the next set of work, incorporating customer demand, team demand, and your own
strategic insights, and getting the most out of the team you have before you go and
ask for growth is a sign of mature platform planning and leadership.

Managing Complexity by Controlling Growth | 41

Managing Complexity Through Product Discovery

Product discovery is the work of understanding customer demands and creating, in
the words of Silicon Valley Product Group, “a product solution to this problem that
is usable, useful, and feasible” Product discovery is not just needed for the products
you build from scratch; it is also an important exercise to go through when you are
creating platforms that are based heavily on open source systems. If you want to
create curated product offerings, discovery is key. Yet under constant pressure of new
potential shadow platforms, many teams take customer demands literally, providing
whichever open source system the customer asks for without taking the time to
determine whether it is the right product solution for the overall platform.

This leads to a common predicament, where teams that have provided (or, more
commonly, inherited) these open source systems are stuck with operational complex-
ity that grows linearly with the number of users and use cases. You can reduce the
coefficient of linearity with investments in automation, but from a design perspective,
most major open source products have too wide a surface area exposed to the
users. This is most evident in distributed OSS for data processing, such as RDBMSs
(PostgreSQL, MySQL), Cassandra, MongoDB, and Kafka. These systems are highly
complex by nature, and the OSS vendor model drives them to compete with one
another by adding more and more features, which means they have very broad
interfaces.

Some leaders immediately jump to the conclusion that they have to standardize and
limit choices in order to manage this challenge. That’s a great idea, but how do you
do it? In our experience, while application developers on the whole may agree that
fewer infrastructure choices would make their lives easier, they rarely agree on what
the limited set of choices should be. If you're disciplined (and have senior leadership
support), you may be able to establish standards early enough to avoid annoying your
customers by taking away features they’re already using and forcing migrations to
reduce duplication. But this can backfire if it slows application teams down much,
and it’s politically unpopular. Most of the time standardization happens only when
the platform team hits a breaking point, where the support burden of so many OSS
offerings prompts the question of why you need so many in the first place.

There’s an option in between “let a thousand flowers bloom, until you can’t stand
it anymore™ and “offer a strict platform that allows for very little variation,” and,
as you might have guessed, it involves your product culture. To do this, you need
to take the time to understand your customers. Explore why teams are using their
chosen tools, whether it’s out of habit or for specific must-have features. Through an
iterative process of product discovery, you can develop the insight needed to curate

2 See Peter Siebels article “Let a 1,000 Flowers Bloom. Then Rip 999 of Them Out by the Roots”.

42 | Chapter 13:Your Platforms Manage Complexity

https://oreil.ly/slEdD
https://oreil.ly/N5Icw

your offerings, reduce complexity, and better meet your customer needs. In our final
story, we will walk through just such an exercise and the many iterations that led to
success.

Tying It Together: Balancing Internal and
External Complexity

In this story, Ian had a team of about 10 people who owned a collection of OSS
systems (PostgreSQL, Kafka, and Cassandra). The team followed a data reliability
engineering (DRE) approach,® which meant they offered a “platform” that provided
all of the support and provisioning for these systems, with the team’s proactive
engineering spent on automation, particularly around resilience and autoscaling.

Burning Out on 0SS Operations

As we predicted in Part I, this approach to platform delivery wasn’t scaling. Each
OSS system had a large feature surface area, and the complexity of operating that
as a company foundation led to constant operational strain. Even with two pager
rotations, the number of high-severity incidents a week was much closer to 50 than
5, and this was only somewhat ameliorated by the fact that rotations could follow
the sun. The DRE team had reached the limits of efficiencies that could come from
automation alone.

Unfortunately, the application teams weren’t seeing this pain; indeed, they were happy
with the flexibility provided by the OSS systems’ extensive feature set. Their primary
demand was that the DRE teams should expand their portfolio with more offerings.
But when the DRE leaders tried to explain that they needed twice as many engineers
to sustainably manage the existing workload before they could even think of adding
more offerings, they were met with disbelief. The DRE team could continue to grow
only by agreeing to support more systems and configurations, which they knew
would quickly arrive at the same unsustainable scaling point.

Trying (and Failing) to Change the Game

This impasse prompted the team to make several attempts at reducing the complexity
they had to manage. The first attempt to change the model was trying to get out of
the game altogether and move to vendor “hosted open source” IaaS implementations,
where application teams would own their own operations. In another company,
putting the operational load on the vendor might have solved the problem. But due
to the multicloud requirements of this company, the differences across vendors made

3 See Database Reliability Engineering by Laine Campbell and Charity Majors (O’Reilly).

Tying It Together: Balancing Internal and External Complexity | 43

https://www.oreilly.com/library/view/database-reliability-engineering/9781491925935/

it too hard for the application teams to operate themselves. This was only truly
appreciated after the vendor offerings were rolled out, when the DRE team was still
constantly being paged to handle acute operational issues because the application
teams lacked the depth to debug them. At this point, they realized “get out of the
game” really meant “stay in the game, but as an operations team.

The next tactic was to take a page from the SRE book and try to improve things
through SLA documentation. The idea was to provide clear documentation of what
the team could and could not support within its SLA; this would help application
teams understand that their bespoke configurations couldn’t be supported by the
DRE team alone and lead to a shared operational model. The DRE team saw this as a
rational compromise, balancing customers’ needs for customization with their ability
to manage these at scale. But it sounded like a lawyerly abdication of responsibility
to those customers, who saw the team as using rules and processes to position
themselves as advisors and evangelists rather than owners. Ian brokered a top-down
handover for one of the biggest customers, forcing trade-offs on both sides, but it was
clear that this approach wasn't going to be sustainable without constant conflict and
politics.

The team turned next to a software-based approach: full encapsulation. We described
this in Part I: creating a service API layer that fully encapsulates the open source
APIs, which allows the platform team full control over what they support/operate.
The users were not particularly interested in giving up their direct access to the data
stores in favor of this option, but the team hit on the idea of tying this to a feature
supporting multiregion reads and writes with simple (key, value) semantics. Early
customers were satisfied, but as the platform team looked for the next tranche of
potential customers, they realized that no one else was interested in the multiregion
use cases in the short term, and instead they wanted a full SQL interface. So the
team started creating a plan for adding secondary indices, with a view to eventually
supporting SQL semantics. At this point Ian stepped in, noting that the idea of
building their own in-house global SQL database was less thinking big and more of
an impossible dream.

Shadow Platforms Force a Reset

During the time these three attempts were being made, frustrated application teams
had started building shadow platforms to get the features they needed, such as Mon-
goDB for document support and FoundationDB for transactional write semantics
that could horizontally scale. These had the usual characteristics: when the applica-
tion team was growing rapidly they were happy to own all the operations, but as the
initial engineers moved on and the operational load kept growing, the application
teams were eager to offload them onto the platform team. Adding more OSS to the
portfolio was the opposite direction of where the team wanted to go, but there was

44 | Chapter 13:Your Platforms Manage Complexity

https://oreil.ly/p5cFs

something here that the company needed, and Ian challenged his team to figure out
how to meet those needs.

At this point, the team did a reset by bringing in some managers who had experience
building product-oriented infrastructure. These managers started by doing product
discovery, looking across the collection of offerings and, using their prior experience
to guide them, investigating what the application teams actually needed from these
systems. That is, they attempted to discover what the teams specifically required, as
opposed to just preferred, in Cassandra, MongoDB, PostgreSQL, Kafka, and Founda-
tionDB. With this understanding, the platform team sought to identify a narrower
surface area of common needs that could be used to remove one or two of the
broader offerings. Through this effort, they found two major opportunities:

Simplification
There was a lot of demand for a cross-application configuration platform for
which (key, value) semantics were fine. Here, the team leveraged the shadow
platform investment in FoundationDB to power a managed service focused only
on solving this use case.

Coupling multiple primitives
There was still a demand for something schema-aware, but product discovery
revealed that this requirement was as much about caching and search as it was
about ACID transactions. The team realized if they combined PostgreSQL with
searchability and caching functionality, they could offer a more limited SQL
system that would satisfy most customers.

They also realized that if they could succeed on these two projects, then both a
platform (Cassandra) and a shadow platform (MongoDB) could be sunset.

Executing on the Reset

To create these new platforms, the team collaborated closely with application teams
that had pressing demands for the offerings. The result was rapid development of
platforms that, while scrappy, satisfied these customers and turned them into advo-
cates for the work throughout the company. Thanks to the early successes, a long list
of application teams signed up to onboard as the platforms matured.

In all, it took about four years of iteration to identify the right product offering
that would meet the major application needs while limiting the complexity for the
platform team, meaning their growth could be controlled without ceding all future
feature development to shadow platforms.* You may be wondering whether a process
that involved three false starts and a multiyear migration is really a success. But this

4 We would be remiss not to be honest about the cost of this change: at the time of writing, the team is in the
second year of a five-year plan to fully deprecate the MongoDB and Cassandra offerings.

Tying It Together: Balancing Internal and External Complexity | 45

is the reality of delivering platforms that manage your company’s unique complexity:
they will evolve, trade-offs are hard, and sometimes the best solution isn't even viable
at the time you identify the problem. Don't be afraid to keep iterating.

Wrapping Up

Alignment and trust are challenging but achievable goals for your platform team.
Managing complexity, on the other hand, is a North Star that youll use to guide
your organization, but it’s unlikely you will ever fully accomplish this task. There are
things you can do to detect complexity, and practices you can use to help control it,
but complexity will always be there. That doesn’t mean you should throw your hands
up and give up on the task entirely. When you find complexity in excessive human
coordination or shadow platforms, see it as an opportunity to develop new ways to
automate, simplify, and understand the needs of your customers. As your platform
organization develops and matures, use this North Star to remind yourself that too
much growth too fast can make it that much harder to keep complexity in check,
and that the iterative process of product discovery is critical to finding the simplest
scalable solution among the sea of more complex options. The more time you are
able to spend thinking about and driving down complexity for your users, the more
mature your platform will become.

46 | Chapter 13:Your Platforms Manage Complexity

About the Authors

Camille Fournier is a technology executive with leadership experience ranging from
early-stage startups to Fortune 50 corporations. She was a founding member of the
CNCF Technical Oversight Committee and currently serves on the board of ACM
Queue. She has published two other books with O'Reilly, The Manager’s Path: A Guide
for Tech Leaders Navigating Growth and Change and 97 Things Every Engineering
Manager Should Know.

Ian Nowland has been in the software industry for 25 years, most recently spending
4 years at Datadog, where he was the SVP of core engineering. Prior to this, he was at
AWS in their early days (2008-2016), where he was the lead engineer on the launch
of Amazon EMR and the leader of the first five years of the EC2 Nitro project. He is
currently a cofounder at a stealth mode startup.

Colophon

The animal on the cover of Platform Engineering is a marbled newt (Triturus mar-
moratus), a striking amphibian native to Western Europe, specifically France and
the Iberian peninsula. Its name is derived from its distinctive appearance: its dark
brown or black body is adorned with irregular, marbled patterns of green. This
coloration provides excellent camouflage in the newts natural habitat of woodlands
and meadows. Female marbled newts also have an orange stripe running along their
back. While females are larger, these newts range from about 5 to 6.5 inches long.

The marbled newt’s diet consists mainly of insects, worms, and other small inverte-
brates, which it hunts both on land and in water. Though this animal is primarily
terrestrial, as an amphibian it requires access to water for breeding and tends to
remain in ponds during colder times of year. During breeding season each February,
males develop a striking, feathery crest on their back and attract mates by spreading
pheromones through a tail-lashing motion. Female newts deposit eggs individually,
first smelling and inspecting the leaves of aquatic plants before selecting a leaf to wrap
around the egg. Scientists have determined that marbled newts rely on celestial clues
such as geomagnetic fields and constellations to locate familiar breeding ponds.

The marbled newt is listed as vulnerable by the IUCN due to habitat loss. Many of the
animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Jose Marzan, based on a black-and-white engraving from
Lydekker’s Natural History. The series design is by Edie Freedman, Ellie Volckhausen,
and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro and the heading font is Adobe Myriad Condensed.

https://www.oreilly.com/library/view/the-managers-path/9781491973882/
https://www.oreilly.com/library/view/the-managers-path/9781491973882/
https://www.oreilly.com/library/view/97-things-every/9781492050896/
https://www.oreilly.com/library/view/97-things-every/9781492050896/

	Cover
	Coder
	Copyright
	Table of Contents
	Foreword from Coder
	Chapter 1. Why Platform Engineering Is Becoming Essential
	Defining “Platform” and Other Important Terms
	The Over-General Swamp
	How We Got Stuck in the Over-General Swamp
	Change #1: Explosion of Choice
	Change #2: Higher Operational Needs
	Result: Drowning in the Swamp

	How Platform Engineering Clears the Swamp
	Limiting Primitives While Minimizing Overhead
	Reducing Per-Application Glue
	Centralizing the Cost of Migrations
	Allowing Application Developers to Operate What They Develop

	Empowering Teams to Focus on Building Platforms
	Wrapping Up

	Chapter 12. Your Platforms Are Trusted
	Trust in How You Operate
	Accelerate Trust by Empowering Experienced Leaders
	Optimize Growth in Trust by Ordering Use Cases

	Trust in Your Big Investments
	Seek Technical Stakeholder Buy-in for Trust of Rearchitectures
	Seek Executive Sponsorship for Trust of New Products
	Maintain Old Systems to Retain Trust
	Gaining Trust Requires Flexibility on What Is “Right”

	Trust to Prioritize Delivery
	Create a Culture of Velocity
	Prioritize Projects to Free Up Team Capacity
	Challenge Assumptions About Product Scope

	Tying It Together: The Case of the Overcoupled Platform
	Wrapping Up

	Chapter 13. Your Platforms Manage Complexity
	Managing the Accidental Complexity of Human Coordination
	Managing the Complexity of Shadow Platforms
	Managing Complexity by Controlling Growth
	Managing Complexity Through Product Discovery
	Tying It Together: Balancing Internal and External Complexity
	Burning Out on OSS Operations
	Trying (and Failing) to Change the Game
	Shadow Platforms Force a Reset
	Executing on the Reset

	Wrapping Up

	About the Authors
	Colophon

