
Tom Taulli

 AI-Assisted
Programming
Better Planning, Coding, Testing, and Deployment

Ta
ulli

A
I-A

ssisted
 Prog

ra
m

m
ing

Safely deploy AI coding
agents at enterprise scale

CLOUD DEVELOPMENT
ENVIRONMENTS

https://coder.com/solutions/ai-coding-agents?utm_campaign=25Q2GC_O%27Reilly_AI-Assisted_Programming&utm_source=oreilly&utm_medium=pdf&utm_content=ebook&utm_term=

This excerpt contains Chapters 1, 8, and 9. The complete
book is available on the O’Reilly Online Learning Platform

and through other retailers.

Tom Taulli

AI-Assisted Programming
Better Planning, Coding, Testing,

and Deployment

978-1-098-16456-0

[LSI]

AI-Assisted Programming
by Tom Taulli

Copyright © 2024 Tom Taulli. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Guerin
Development Editor: Shira Evans
Production Editor: Kristen Brown
Copyeditor: Paula L. Fleming
Proofreader: Emily Wydeven

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2024: First Edition

Revision History for the First Edition
2024-04-10: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098164560 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AI-Assisted Programming, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Coder. See our statement of editorial independ‐
ence.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098164560
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

1. New World for Developers. 1
Evolution and Revolution 2
Generative AI 5
The Benefits 6

Minimizing Search 6
Your Advisor 8
IDE Integration 9
Reflecting Your Codebase 10
Code Integrity 11
AI-Powered Documentation Generator 11
Modernization 12

Drawbacks 15
Hallucinations 15
Intellectual Property 15
Privacy 16
Security 17
Training Data 17
Bias 18

A New Way for Developers 18
Career 19
10x Developer? 19
Skills of the Developer 20

Conclusion 20

8. Coding. 21
Reality Check 21
Judgment Calls 23
Learning 24

iii

Comments 25
Modular Programming 26
Starting a Project 27
Autofill 28
Refactoring 30

Ninja Code 30
Extract Method 31
Decomposing Conditionals 32
Renaming 32
Dead Code 33

Functions 34
Object-Oriented Programing 35
Frameworks and Libraries 36
Data 37
Frontend Development 39

CSS 40
Creating Graphics 40
AI Tools 41

APIs 44
Conclusion 45

9. Debugging, Testing, and Deployment. 47
Debugging 47
Documentation 48
Code Review 50

Unit Tests 51
Pull Requests 54

Deployment 55
User Feedback 57
The Launch 58

Conclusion 59

iv | Table of Contents

CHAPTER 1

New World for Developers

While juggling dense neural network architectures and pixel-wrangling computer
vision at Stanford from 2011 to 2016, Andrej Karpathy also moonlighted at Google.
Over there, he tinkered around and whipped up a feature-learning system for You‐
Tube videos. Then he decided to become a founding member of OpenAI and later the
senior director of AI at Tesla, where he led a team to create the Autopilot system.

It’s safe to say he’s one the world’s top coders. He is also a skilled wordsmith with a
massive Twitter—or X—following of nearly 800,000 followers. When ChatGPT cata‐
pulted onto the scene, he tweeted:

The hottest new programming language is English.

He wasn’t kidding. This wasn’t just a poetic ode to coding but a nod to a future where
typing out natural language prompts could conjure up computer code in seemingly
any language. It’s like having a bilingual genie in your computer, ready to transcribe
your English wishes into code commands.

Then there came a tweet that echoed the sentiments of many developers:

Copilot has dramatically accelerated my coding, it’s hard to imagine going back to
“manual coding”. Still learning to use it but it already writes ~80% of my code, ~80%
accuracy. I don’t even really code, I prompt. & edit.

Karpathy was tipping his hat to Microsoft’s GitHub Copilot, a fresh brew of AI-
assisted programming. But it wouldn’t be long until many other tools sprouted up.
The pace of innovation was breathtaking.

Now, for all the coders out there, the landscape might look like a dense jungle. What’s
this brave new world of AI tools? Where do they dazzle, and where do they fizzle?
And how do you wade through all this to become a savvy AI-assisted programmer?

1

https://oreil.ly/m4fFk
https://oreil.ly/9kBmX
https://oreil.ly/a_jg1

Well, this book will be your guide to help answer these questions—and many more.
The spotlight will be on harnessing these tools to code not just faster but smarter, and
with a sprinkle of fun. So, let’s roll up our sleeves and jump into this AI-assisted pro‐
gramming journey.

Evolution and Revolution
A key theme of the evolution of programming languages is abstraction. This is a fancy
way of describing how systems get easier for developers to use. When the tedious
details are handled in the background, developers can focus on what matters most.
This has been a driving force of innovation, allowing for breakthroughs like the inter‐
net, cloud computing, mobile, and AI.

Figure 1-1 highlights the evolution of abstraction over the decades.

Figure 1-1. The abstraction of programming languages and tools has evolved over the
decades

2 | Chapter 1: New World for Developers

Let’s go into more detail, starting from the 1940s:

Machine language to assembly language
At the dawn of the computer age, programmers had to wrestle with 0s and 1s to
bend machines to their will. But then, assembly language came onto the scene.
It offered alphanumeric instructions, which made coding easier and less
error-prone.

High-level languages
The 1950s brought us Fortran and COBOL, languages that let programmers code
using somewhat plain English like DISPLAY, READ, WRITE, and IF/THEN/
ELSE. A compiler would convert these into the 0s and 1s that a computer could
understand. At the same time, people without a technical background could gen‐
erally read the code well enough to understand the workflow. The emergence of
high-level languages would be a huge catalyst for the computer revolution.

Procedural programming
Languages like C and Pascal introduced procedural programming, essentially
packing complex tasks into neat little boxes called functions. This abstraction
allowed for reusability and maintainability, and it made managing colossal soft‐
ware projects less of a Herculean task.

Object-oriented programming (OOP)
Some of the stars of this type of computer language include C++ and Java.
Object-oriented programming brought a whole new level of abstraction, allowing
programmers to model real-world entities using classes and objects, encapsulat‐
ing both data and behavior. This promoted modularity and allowed for more
intuitive problem solving.

Scripting languages and web development
Python, Ruby, and JavaScript abstract many of the lower-level tasks associated
with programming. They offer extensive libraries and built-in data structures,
simplifying common programming tasks and reducing the amount of code
needed to accomplish them.

Machine learning and AI
With the rise of AI and machine learning, specialized libraries and frameworks
like TensorFlow and PyTorch have abstracted away many intricate mathematical
details of programming. This has enabled developers to focus on model architec‐
ture and training processes.

Evolution and Revolution | 3

AI-assisted programming
Of course, the latest entrant to this abstraction narrative is AI-assisted program‐
ming, á la GPT-4 and other massive large language models (LLMs). These are
like your backstage crew, ready to pitch in with code generation at your
command.

Let’s look at a simple example. For this, we’ll use ChatGPT, which has a robust ability
to gin up code. We will use a prompt to ask what we want the system to do. Suppose
we give it the following prompt:

Prompt: In Python, write a program that checks if a given integer is even or odd and
print the result.

Figure 1-2 shows the response from ChatGPT.

Figure 1-2. When asked to create code, ChatGPT’s response will include not only a list‐
ing but an explanation

4 | Chapter 1: New World for Developers

We get the code listing, which even comes with helpful comments. Then there is also
an explanation of how the program works. You can press the Copy code button at the
top right to include the code in your IDE and run it.

Generative AI
Before we go deeper into how AI-assisted programming tools work, let’s get an over‐
view of generative AI. This is the foundation of these systems.

Generative AI is a branch of artificial intelligence (AI), which allows for the creation
of new and unique content. Figure 1-3 provides a visual of how the different parts
relate to each other.

Figure 1-3. There are different types of AI, and they can be represented as nested subsets,
with generative AI and finally large language models at the center

AI is the big umbrella: it includes all systems that can pull off tasks with the flair of
human intelligence. Tucked within AI is machine learning (ML). Instead of marching
to the beat of explicit instructions, ML systems come up with insights based on heaps
of data. ML is generally based on complex algorithms, which allow for making pre‐
dictions or decisions without hardcoding.

Take a step deeper, and you get deep learning (DL), a tighter slice of ML that rolls
with neural networks stacked with hidden layers—hence the deep tag. These stacked
models have shown standout results in areas like image and speech recognition.

Within the corridors of deep learning, you’ll find generative AI (or GenAI). GenAI
models create new data that reflects their training data.

In the innermost circle sits LLMs, such as GPT-4, Gemini, Claude, and LLaMA 2.
These powerful models—often called “foundation models”—churn out human-esque
text based on cutting-edge algorithms and training on huge amounts of data.

Generative AI | 5

But generative AI is more than just LLMs. GenAI also has multimodal capabilities,
meaning the ability to create images, audio, and video.

In the next chapter, we’ll dive deeper into how generative AI works. But next, let’s
now take a look at the pros and cons of AI-assisted programming tools.

The Benefits
AI-assisted programming tools are crafted to enhance developers’ abilities, enabling
them to zero in on advanced problem solving and innovations instead of being
ensnared in monotonous tasks or complex code details. This is why GitHub’s use of
the word copilot is spot on. It’s about having that reliable buddy in the cockpit, navi‐
gating through the intricate and often tedious aspects of coding, allowing you to focus
on what matters.

In the upcoming sections, we’ll spotlight the benefits and practical applications of
these powerful systems.

Minimizing Search
Developers often find themselves playing digital detectives, hunting down pesky bugs
or wrapping their heads around cryptic codes. When they bump into a snag, their
first instinct is to hit up Google or pay a visit to Stack Overflow. A quick search, a
snippet of code, and voilá, they’re back to their IDE (integrated development
environment).

But sometimes this can turn into an ordeal. The discussion on Stack Overflow may
wind up being a dead end. You search some more—but nothing seems to be on point.
However, there’s one discussion that somewhat helps, and you do further research on
some related topics. You even search YouTube for a video. After chewing on the prob‐
lem for more than 30 minutes, you finally solve it.

Yes, all developers have experienced this. Interestingly enough, the 2022 Developer
Survey from Stack Overflow, which included responses from more than 70,000 devel‐
opers, highlights this frustration. It found that 62% of the respondents spent more
than 30 minutes a day searching for answers, and 25% spent over an hour a day.
According to the survey, “For a team of 50 developers, the amount of time spent
searching for answers/solutions adds up to between 333–651 hours of time lost per
week across the entire team.”

Now, what if there was a way to slice through this thicket of time-consuming searches
and get to the solution pronto? Enter AI-assisted programming, our knight in shining
algorithm. Research from Microsoft supports this: it shows that more than 90% of
developers who used GitHub Copilot managed to race through their tasks at a faster
clip.

6 | Chapter 1: New World for Developers

https://oreil.ly/WQ6De

Microsoft even put this to the test in a coder showdown. The company recruited 95
professional developers and split them into two groups. The task was to write an
HTTP server in JavaScript. Those who used GitHub Copilot completed the job 55%
faster than those who did not.

And it’s not just Microsoft singing praises. McKinsey & Company also conducted a
research study. More than 40 developers from across the United States and Asia par‐
ticipated, with varying degrees of experience and backgrounds. Over several weeks,
they completed three common software tasks: code generation, refactoring, and doc‐
umentation.

The results? When it came to documentation for keeping the code neat and tidy, AI-
assisted tools were the standouts, cutting the time spent by half, and AI tools per‐
formed nearly the same on drafting new code and refactoring.

However, for complex tasks, the AI tools didn’t hit the high notes. The time trimmed
was shy of 10%.

Interestingly, the research also showed that reducing the time spent did not negatively
impact the overall quality of the code, as reflected in, for example, bugs, readability,
and maintainability. In fact, the AI-assisted programming tools provided marginal
improvements. But this often was due to the fact that developers iterated with the
tools.

The McKinsey study provides the following takeaways:

Easing routine chores
The tools are great at tackling mundane tasks like autofilling code functions, aid‐
ing in real-time code completion, and autodocumenting code. By handling these
tasks, they free up developers to dive into complex business issues and speedily
deploy software features.

Producing smoother code drafts
Staring at a blank canvas can be daunting, but with generative AI tools, develop‐
ers can nudge the creative process along by fetching code suggestions with a sim‐
ple prompt, right within their IDE or separately. Many developers found these
AI-based suggestions invaluable, as they helped the humans overcome the “blank
screen problem” and get into the coding “zone” with a quicker pace.

Accelerating tweaks to existing code
With effective prompts, developers can adapt and improve existing code more
swiftly. For instance, they can snag code from online libraries, pop it into a
prompt, and then make iterative requests for AI-finessed adjustments based on
specified criteria.

The Benefits | 7

https://oreil.ly/TtsA0
https://oreil.ly/TtsA0
https://oreil.ly/xOLj3
https://oreil.ly/c_7sx

Enhancing developers’ prep for new challenges
The technology acts like a fast-track introductory course and helps developers
get acquainted with unfamiliar coding environments or languages. When tack‐
ling something new, these tools step in like a seasoned buddy, shedding light on
fresh concepts, dissecting various code bases, and dishing out comprehensive
guides on framework usage.

Harnessing multiple tools
The research indicates that bringing multiple tools into play is more effective.
Picture this: a developer swings one tool for prompts or chats, and another tool
jumps in as part of the codebase, dishing out autocomplete options and sugges‐
tions. Developers found the first tool to be a whiz at fielding queries during code
refactoring, thanks to its conversational finesse. On the flip side, the second tool
showed effectiveness in conjuring up new code that was integrated smoothly with
the development environment. When these AI tools teamed up for a task, devel‐
opers saw a time efficiency surge of 1.5 to 2.5 times.

Your Advisor
With ChatGPT, you can ask for advice on many types of development activities.
Here’s a prompt:

Prompt: Please provide detailed tips and best practices for minimizing search time and
enhancing productivity when programming. Include strategies related to code organi‐
zation, documentation, tools, and mindset.

Figure 1-4 shows the response.

ChatGPT provides three main areas to consider. It recommends using a modular
design, maintaining consistent naming, and organizing files logically. It also advises
prioritizing clear documentation with comments, docstrings, and READMEs.
ChatGPT then goes on to mention using the search functions of an IDE, using tools
like Git, and bookmarking key resources.

8 | Chapter 1: New World for Developers

Figure 1-4. You can get useful advice on programming tasks from ChatGPT

IDE Integration
Seamless integration with the IDE is crucial for AI-assisted programming. It keeps
the momentum of the development process going strong, without the heavy lifting of
mastering a new platform. This means less time scrambling up the learning curve and
more time coding and—let’s not forget—less switching between different platforms
or tools means less friction and makes for a smoother coding journey.

Then there is the advantage of real-time feedback. As developers knit together or
tweak code, integrated tools are right there to spotlight errors, offer up corrections, or
suggest a better way to get things done. This instantaneous back-and-forth of writing,
feedback, and tweaking is like having a friendly coach by your side. You’ll be guided
toward cleaner, more efficient code without the hassle of manual reviews or external
checks.

The Benefits | 9

AI-assisted systems can also amp up an IDE by tuning into the broader coding narra‐
tive. The AI gets the gist of variable types, method signatures, and even the project’s
structural blueprint to churn out relevant code suggestions. It’s not just about spitting
out code, though.

Table 1-1 introduces some of the top AI-assisted programming tools and the IDEs
they support.

Table 1-1. IDEs supported by popular AI-assisted programming tools

AI-assisted
programming tool

IDEs

GitHub Copilot Visual Studio Code, Visual Studio, Vim, Neovim, JetBrains suite, Azure Data Studio 1
Tabnine Visual Studio Code, WebStorm, PyCharm, Eclipse, IntelliJ Platform, PhpStorm, CLion, Neovim,

JupyterLab, Rider, DataGrip, AppCode, Visual Studio 2022, Android Studio, GoLand, RubyMine,
Emacs, Vim, Sublime Text, Atom.AI, Jupyter Notebook 2

CodiumAI Visual Studio Code, JetBrains (IntelliJ, WebStorm, CLion, PyCharm)
Amazon
CodeWhisperer

Visual Studio Code, IntelliJ IDEA, AWS Cloud9, AWS Lambda console, JupyterLab, Amazon
SageMaker Studio, JetBrains (IntelliJ, PyCharm, CLion, GoLand, WebStorm, Rider, PhpStorm,
RubyMine, DataGrip)

A research study from Microsoft showed that 88% of users of Git‐
Hub Copilot felt less frustrated and more focused. A key reason
was that staying within the IDE meant spending less time search‐
ing. This allowed for the developer to remain in the “flow state.”

Reflecting Your Codebase
Certain AI-assisted programming tools are tailored to mesh well with specific devel‐
opment environments. Developers have the leeway to fine-tune them, allowing the
tool to understand a project’s internal libraries, APIs, best practices, and architectural
blueprints. This ensures that the suggestions thrown your way not only are techni‐
cally solid but also dovetail with your project’s unique needs.

This customization helps to align the generated code suggestions with your organiza‐
tion’s established coding standards, quality markers, and security protocols. The focus
on fostering high-quality code means that teams can avoid stumbling into deprecated
or undesirable code snippets.

Moreover, this tailored approach is a big benefit for newcomers to a development
team. Traditionally, getting them acclimated to a new codebase requires a hefty time
investment as they may need months of exploring code, reviewing documentation,
and learning the ropes of coding protocols. However, an AI-assisted programming
tool can significantly shave time off this learning curve.

10 | Chapter 1: New World for Developers

https://oreil.ly/3e2sI

Code Integrity
Code integrity is a hallmark of sound software development. It highlights the sturdi‐
ness and trustworthiness of the source code in executing its intended function. Think
of it as a lens through which the completeness, accuracy, consistency, and fortification
of the code are examined. A hiccup in code integrity lays out a welcome mat for bugs
and potential security blind spots, which, in turn, could usher in system crashes and
data breaches.

The various factors that engender code integrity include its precision, thoroughness,
uniformity, and security provisions as well as the ease with which it can be main‐
tained. Developers can ramp up code integrity through a medley of approaches like
unit and integration testing, peer code reviews, static code analysis, and stringent
security assessments.

It’s worth noting that a growing roster of AI-assisted programming tools are rolling
out features aimed at bolstering code integrity. They delve into the finer points of the
code, paving the way for the generation of pertinent and sharp unit tests and edge
cases.

Some of these tools come with “fix-it” recommendation features. These are vetted in
advance to ensure they don’t lead to new problems before they land in front of devel‐
opers. Then developers can review and assimilate these suggestions right within their
IDE.

An added perk of these tools is their ability to swiftly analyze pull requests and spin
up succinct summaries of code alterations. They also have a knack for automating the
chore of generating release notes, which comes in handy for documenting the evolu‐
tion in software versions.

AI-Powered Documentation Generator
Documentation is the unsung hero in the software development process. It helps to
ensure that the codebase remains legible, maintainable, and scalable, especially as
teams morph and projects bloat in complexity. But let’s face it, creating and refreshing
this documentation often feels like a trek through a bureaucratic bog—it can be a
time-guzzler and, occasionally, gets shoved to the backburner.

Now, cue the entrance of AI-assisted programming tools. These digital scribes can
whip up extensive documentation in a fraction of the time—and with a hefty dose of
quality and clarity to boot. This is done by leveraging the power of LLMs, which are
particularly strong at dealing with language.

The Benefits | 11

Modernization
Marc Andreessen’s 2011 bold statement in the Wall Street Journal, “Software Is Eating
the World”, has aged like a fine wine. Andreessen, known for his knack for spotting
tech trends from miles away and his stellar track record as a successful entrepreneur
and venture capitalist, pointed out a ripe moment in tech history.

He underlined how the infrastructure had come of age and primed global industries
for a metamorphosis. The rise of cloud platforms like Amazon Web Services and the
widespread growth of broadband internet were game changers. They had knocked
down the traditional hurdles of server costs and network know-how. This had cleared
the stage for disruptors like Uber, Netflix, and a slew of social media platforms to
rewrite the rulebook of their respective industries.

When we fast forward from Andreessen’s insightful piece, we see that the innovation
express has only picked up steam. However, it has also brought along a threat of dis‐
ruption, especially for large corporations. Many of these behemoths are anchored to
legacy systems that are not only pricey but also a gamble to modernize. Their hier‐
archical setup can interpose speed bumps in decision making, and their expansive
scale adds layers of complexity to embracing change. Plus, their workforce might not
always be on the same page with the latest tech innovations.

Enter IBM, eyeing this scenario as a goldmine of opportunity and channeling its hefty
resources to craft AI-assisted programming tools for its customers. In October 2023,
it unveiled the watsonx Code Assistant for Z. This system can translate COBOL to
Java on mainframe systems, with the code output elegantly object oriented.

IBM’s Watsonx.ai model understands 115 coding languages based on 1.5 trillion
tokens. The model has about 20 billion parameters. This is one of the largest AI sys‐
tems for code development.

The fact is that there are hundreds of billions of lines of COBOL. But migrating this
language to modern ones is no easy feat. It’s common for the COBOL to be decades
old and have little or no documentation. If the conversion is not handled properly,
the consequences could be severe. Keep in mind that much of the world’s credit card
processing is handled with mainframes. The same goes for Uncle Sam’s system for
handling school loans.

Unfortunately, there are many examples of failed migration projects. Consider the
California Department of Motor Vehicles, which, despite pouring $208 million into
the effort, had to pull the plug within a few years. Ouch.

Given the high stakes, mainframe developers generally earn higher salaries. But com‐
panies still are challenged in recruiting talent. Younger developers are trained on
modern languages and perceive mainframe development as a dead end. In the mean‐
time, a growing number of seasoned mainframe developers are retiring.

12 | Chapter 1: New World for Developers

https://oreil.ly/RW8e8
https://oreil.ly/RW8e8
https://oreil.ly/cfJMO
https://oreil.ly/cfJMO
https://oreil.ly/_U1zG

IBM realized that AI is essential to solve this massive problem. It’s true that code
transpilers or translators have been around for decades. In fact, they have often been
used for mainframe projects. However, what they have mostly been doing is taking
COBOL’s spaghetti code, giving it a quick translation, and, well, you have Java spa‐
ghetti code. It’s a modest facelift with barely a hint of improvement or innovation.
The Java code still needs a good amount of elbow grease, explaining why many
projects stumbled or flat-out face-planted.

But by using generative AI, IBM says that it has been able to improve the results of a
project by as much as tenfold.

Other companies are exploring this modernization opportunity. Thomas Dohmke,
who is the CEO of GitHub, posted: “COBOL still running on main frames is a much
bigger societal problem than we think.” In an interview with Fortune, he noted that he
had heard more about COBOL in 2023 than during the past three decades. He also
said that companies have been asking how to use GitHub Copilot for their migration
projects.

Keep in mind that ChatGPT is also proficient with legacy programming languages.
Table 1-2 shows which languages it supports.

Table 1-2. Common legacy programming languages

Language Description Development era
COBOL Developed for business data processing Late 1950s to early 1960s
Fortran Designed for scientific and engineering calculations 1950s
Pascal Developed to encourage good software engineering practices Late 1960s to early 1970s
BASIC Created as an easy-to-learn language for students and beginners Mid-1960s
ALGOL Influenced subsequent languages like Pascal, C, and Java Late 1950s to early 1960s
Assembly
language

Corresponds to the architecture of the CPU it’s designed for, dating back to
early programmable computers

Early computing era

PL/I Used for scientific, engineering, business, and system programming Early 1960s

To see how AI-assisted programming can help with legacy languages, let’s suppose
you need to work on the following code snippet:

MODULE ComplexModule
 IMPLICIT NONE
 TYPE :: ComplexType
 REAL :: real, imag
 CONTAINS
 OPERATOR(+) (a, b) RESULT(c)
 TYPE(ComplexType), INTENT(IN) :: a, b
 TYPE(ComplexType) :: c
 c%real = a%real + b%real
 c%imag = a%imag + b%imag
 END OPERATOR

The Benefits | 13

https://oreil.ly/a21Lt
https://oreil.ly/sqsti/

 END TYPE ComplexType
END MODULE ComplexModule

You do not know what language it is or how it works. The syntax does not lend itself
to an intuitive understanding of the workflow.

Now let’s say you go to ChatGPT and enter the following:

Prompt: What language is this written in? What does this code snippet do? Also,
explain how it works.

Figure 1-5 shows part of the response.

Figure 1-5. ChatGPT responds to a request to interpret legacy code

ChatGPT accurately identifies this as Fortran code. It also explains that the code
defines a module named ComplexModule, which contains a derived type ComplexType
for representing complex numbers, along with an overloaded addition operator + for
adding two complex numbers together. Then there is a step-by-step explanation of
the code.

14 | Chapter 1: New World for Developers

Drawbacks
Now let’s take a look at the not-so-rosy aspects of AI-assisted programming tools.
Like any fledgling technology—hey, even the first iPhone was a bit clunky—AI comes
with its share of hiccups, issues, and hurdles. The path of innovation is littered with
room for polish and fine-tuning.

Let’s take a look at some of the drawbacks.

Hallucinations
For LLMs, hallucinations are instances in which the model outputs data that appears
accurate but is factually incorrect or not grounded in the input data on which the
model was trained. This can pose a significant challenge for software development.
Hallucinations can lead to inaccurate code suggestions, generate misleading docu‐
mentation, and create erroneous testing scenarios. Additionally, they can render
debugging inefficient, mislead beginners, and potentially erode trust in AI tools.

On a positive note, there has been notable progress in reducing the occurrence of hal‐
lucinations. A substantial amount of academic research has been dedicated to this
issue, and AI companies have been employing effective strategies like reinforcement
learning from human feedback (RLHF) to mitigate this problem.

However, given the intrinsic complexity of LLMs and the enormous amount of data
they are based on, completely eradicating hallucinations appears to be a tall order—if
not impossible.

Another aspect to consider is that certain programming languages exhibit higher
accuracy rates when AI-assisted tools are used. Languages such as Python, JavaScript,
TypeScript, and Go tend to have better performance in this regard. This is attributed
to these languages being well represented in public repositories and thus providing a
richer dataset for the AI to learn from. The better trained AI, in turn, offers more
accurate and robust suggestions.

Intellectual Property
Matthew Butterick boasts a diverse background, embodying roles as a programmer,
designer, and lawyer, with a particular penchant for typography. His journey has seen
him authoring books on typography, designing fonts, and crafting programs aimed at
document editing and layout. However, his encounter with GitHub Copilot in June
2022 didn’t spark joy. Rather, it spurred him to pen a blog post titled “This Copilot Is
Stupid and Wants to Kill Me”.

His discontent didn’t end with blogging. It quickly escalated to launching a class
action lawsuit against Microsoft, GitHub, and OpenAI. The bone of contention was

Drawbacks | 15

https://oreil.ly/qjHL6
https://oreil.ly/qjHL6
https://oreil.ly/MOqYc
https://oreil.ly/MOqYc

an alleged breach of GitHub’s terms of service and privacy policies, with a potential
extension to copyright infringement charges.

This legal tangle underscores a broader gray area concerning intellectual property
rights with respect to code engineered from AI-assisted programming tools. Given
that the output is a cocktail of countless lines of preexisting code, the question of
ownership is a big question mark.

One argument is based on the idea of “fair use.” However, this legal doctrine is murky
and does not extend a clear pathway for AI-generated content. To resolve this matter,
there will likely need to be federal legislation or a Supreme Court ruling.

In the meantime, Microsoft has maneuvered to build a legal firewall for GitHub
Copilot customers. It has pledged to defend users against legal claims, granted certain
prerequisites are satisfied.

Adding another layer of the legal quagmire is the intersection of AI-assisted pro‐
gramming and open source software methods. Copyleft licenses, like the General
Public License (GPL) versions 2 and 3, require that any derivative work use the origi‐
nal code’s license terms. This helps to promote a stream of innovation. Yet, it could
spell trouble for developers, because it could potentially strip them of the rights to
shield their application’s intellectual property—or even require that they make their
entire codebase open source.

Privacy
The use of AI-assisted programming tools, often housed in the cloud, begs many data
privacy and confidentiality questions. How is the data safeguarded within the com‐
pany? Is there a chance it might be used as training data?

The clarity of the answers might vary from one vendor to another. Thus, some devel‐
opers may opt to steer clear of AI-assisted programming tools altogether.

This has been the approach of Anthony Scodary, the cofounder and cohead of engi‐
neering at Gridspace. This enterprise, with roots tracing back to Stanford University,
develops voice bots adept at navigating complex phone conversations. Their techno‐
logical foundation rests on speech recognition, speech synthesis, LLMs, and dialog
systems.

Rather than hitching a ride on existing AI-assisted programming platforms, Grid‐
space chose the road less traveled. It engineered its own AI-assisted programming
platform, which is based on Docker services within a Kubernetes cluster. Deployed as
an IDE plugin, this bespoke system is fine-tuned for its own codebase. “This has
allowed us to avoid sending our IP and data to other companies,” he said. “It has also
meant that we have a model that is smaller, more efficient, and specialized to our
style.”

16 | Chapter 1: New World for Developers

https://oreil.ly/x_Ml4

This is not to imply that this is the best approach. Each organization has its own
views and preferred methods. But when it comes to evaluating AI-assisted program‐
ming, it’s important to understand the privacy implications.

Security
In a research paper entitled “Security Weaknesses of Copilot Generated Code in Git‐
Hub”, authors Yujia Fu et al. highlighted the security issues with GitHub Copilot.
They scrutinized 435 AI-generated code snippets from projects on GitHub, and
35.8% had Common Weakness Enumeration (CWE) instances.

These weren’t limited to just one programming language. They were multilingual
missteps spanning 42 different CWE categories. Three of these categories were the
usual suspects—OS Command Injection, Use of Insufficiently Random Values, and
Improper Check or Handling of Exceptional Conditions. But here’s the kicker: 11 of
these CWEs had the dubious honor of making it to the 2022 CWE Top 25 list.

This is not to imply that AI-assisted programming tools are a huge security risk. Far
from it. The fact is that vendors are continuing to work on ways to improve the
guardrails. However, as with any code, a solid dose of security mindfulness is the
name of the game.

Training Data
The training data for LLMs of AI-assisted programming tools may have notable gaps,
which can affect the performance and usefulness of these tools in real-world scenar‐
ios. Let’s break down some of these:

Representation gaps
If certain areas of a programming language or library are not well represented—
or are nowhere to be seen—in open source projects, the AI may lack enough
knowledge about them, leading to less accurate suggestions. The quality of the
AI’s output depends heavily on the quality and scope of the training data.

Quality inconsistency
To borrow a movie analogy, the open source code in an LLM is a bit like a box of
chocolates—you never know what you’re gonna get. Some projects are the crème
de la crème, while others are...let’s say, the burnt toast of the code world. This
mishmash can lead to our AI-assisted programming being inconsistent in the
quality of suggestions it throws your way.

Knowledge cutoff date
LLMs have a cutoff date on their training, so in a way they are like a snapshot in
time. This poses challenges when there are new releases, updates, or deprecations
in programming languages or libraries.

Drawbacks | 17

https://oreil.ly/ibD3D
https://oreil.ly/ibD3D

Generalization gap
The generalization gap, the difference between the AI’s performance on the train‐
ing data and unseen data, can also pose challenges. Of course, the closer the per‐
formance of the two, the better. This is the conclusion of a research paper by Rie
Johnson and Tong Zhang entitled “Inconsistency, Instability, and Generalization
Gap of Deep Neural Network Training”.

Contextual understanding
AI can give you suggestions based on what it has seen before. But if it hasn’t seen
a scenario quite like yours, it might miss the mark. This is why it’s important not
to make assumptions when creating prompts.

Bias
Developers often don’t have a solid grasp of AI ethics, likely because this topic isn’t
usually part of computer science courses or intensive bootcamp programs. This gap
in understanding can lead to algorithms unintentionally applying biases and the
potential misuse of data.

This issue carries over to AI-assisted programming tools as well. They can uninten‐
tionally perpetuate the biases present in the data they were trained on. For example, if
asked to create a list of names, they might mainly suggest English names due to the
heavy presence of English-centric datasets in their training datasets. This bias can
sometimes lead to harmful or inappropriate outputs. There was an instance where,
when given the prompt “def race(x):”, the AI filled in a limited and fixed set of race
categories. In another troubling case, when tasked with writing code comments for
the prompt “Islam,” the AI was found to access words like terrorist and violent more
frequently than when other religious groups were mentioned.

A New Way for Developers
The McKinsey study suggests that the dawn of AI-assisted programming tools is
likely to change how we approach software development. According to the authors,
success might hinge on good training, emphasizing best practices and diving into
hands-on exercises on things like prompt engineering, coding standards, and quality.
It’s also smart to shine a light on the risks associated with generative AI.

For newbie developers, especially those with less than a year of experience under their
belts, it’s a good idea to dive into extra coursework that covers the basic principles of
programming to ramp up productivity.

As developers fold these tools into their daily routine, it’s vital to keep the skill-
building momentum going with some guidance from the seasoned pros on the team
and engagement in community activities. This could mean hanging out in dedicated
online forums or having regular team huddles to share practical examples. Such

18 | Chapter 1: New World for Developers

https://oreil.ly/bdS-T
https://oreil.ly/bdS-T
https://oreil.ly/p5w5o

actions can foster a culture of continuous learning, spread the word on best practices
across the board, and help spot issues early on.

With the uptick in developer productivity, managers might want to stir the pot a bit
when it comes to roles, zeroing in on tasks that pack more value. Upskilling will be on
the menu, too, to fill in any existing gaps.

Sure, these pointers aren’t gospel. The realm of AI-assisted programming is still
pretty fresh and is changing at a brisk pace. Above all, being ready to roll with the
punches is key.

Career
While there’s no hard proof that using AI-assisted programming will boost your
career outlook, a handful of signs suggest that this expertise might become a hot
ticket in the job market:

Job listings
The job boards on sites like Indeed are starting to buzz with more listings seeking
candidates with experience in AI-assisted programming tools. The call is out for
all ranks, from junior developers to the senior hotshots.

Productivity boosts
AI-assisted programming tools are turning heads because they’re improving pro‐
ductivity without sacrificing quality. For a developer, this could be a way to move
up the ranks in an organization.

Thumbs-ups from developers
The chatter among developers is that AI-assisted programming tools are catching
on. For example, GitHub Copilot is boasting a strong rating of 4.5 out of 5 stars
on G2.com, an independent software review site.

10x Developer?
The 10x developer has the power of 10 programmers. They’re the Usain Bolt of cod‐
ing, zipping through problems and churning out solutions before you can say “bug
fix.”

So you might be thinking: Could I become a 10x developer with the help of AI-
assisted programming tools? Well, sorry to say, but probably not. While these tech‐
nologies can make a significant difference, improvements are usually not in orders of
magnitude.

Besides, the concept of a 10x developer can stir up stereotypes and biases, making the
tech scene feel like an exclusive club. Not to mention, the pressure to be this super

A New Way for Developers | 19

https://oreil.ly/khAln
https://oreil.ly/khAln

coder could lead you straight into the arms of burnout. So while being a 10x devel‐
oper might sound great, remember it’s probably closer to a fantasy.

Skills of the Developer
According to the McKinsey study, the effectiveness of AI-assisted development tools
often depends on the expertise of the developer. Here are some of the considerations:

Fixing errors
Even though generative AI can be your trusty sidekick, it can goof up too. It falls
upon the developer’s shoulders to spot and fix these blunders. Some developers
have found themselves playing a loop of corrections with the AI to get to a sweet
spot of accuracy, while others have had to spoon-feed the tool to get it to debug
accurately. This can certainly be time-consuming. But a veteran developer will
know how to avoid going down the rabbit holes.

Getting the office vibes
AI-assisted programming tools are fairly solid when it comes to coding but might
miss the beat when dealing with the unique flavor of individual projects or com‐
pany quirks. Again, this is where veteran developers are key. They’ll know how to
guide these tools to get the results that best align with organizational goals, per‐
formance targets, and security.

Tackling the tough stuff
Assisted AI-programming tools are great with tasks like polishing code, but toss
in some complex challenges like blending different coding frameworks, and the
AI might just trip over itself. In these moments, it’s the experienced developers
who have to roll up their sleeves.

Conclusion
AI-assisted programming tools are certainly the shiny toys in the software creation
sandbox. As this technology keeps marching forward, these systems will crank up
efficiency, handle boring tasks, and let developers dive into the areas that are most
important, like high-level problem solving.

But there are downsides—tangled intellectual property issues, maze of open source
software licensing, potential for bias, and security risks to name a few.

For the most part, these tools are your virtual assistants, not a replacement for your
knowledge, skill, and experience. At the same time, while they might not be superher‐
oes, they’re shaping up to be powerful additions to the developer’s toolkit.

20 | Chapter 1: New World for Developers

CHAPTER 8

Coding

In this chapter, we’ll dive into some handy coding techniques. We’ll start with the
bread and butter of coding—playing around with functions and classes. Then, we’ll
get our hands dirty with a bit of refactoring, tidying up messy code and making it run
smoother. We’ll also show how to work with and create data. Then we’ll check out
some AI tools that can help create fancy frontends without breaking a sweat.

Reality Check
AI-assisted programming tools are pretty cool, right? But let’s not kid ourselves.
They’re not the magic wand that can solve all our coding problems. Why? Well, these
tools are like those students in class who only learn from public notes. They’re trained
on a mishmash of code from all over the internet, and let’s be honest, not all of it is
top-notch. What does this mean for you? Sometimes, you might get code that’s more
bloated than a Thanksgiving turkey or as maintainable as a house of cards. And
sometimes the code is just plain wrong, doesn’t do what you need, or, even worse,
leaves your front door wide open for hackers or the hogging of your network
resources.

Let’s look at an example where ChatGPT produced messy code. Figure 8-1 shows
code for merging two sorted lists into a single sorted list.

21

Figure 8-1. When asked to merge two sorted lists, ChatGPT created some messy code

This AI-generated code does correctly merge two lists, but it takes a verbose
approach. It separately handles the cases of empty lists and uses two additional while
loops to append the remaining elements from each list.

This is where your coding smarts really come into play. You’ve got to know the funda‐
mentals. You need to know what questions to ask and where to poke around when
something isn’t quite right.

Figure 8-2 shows a better approach.

22 | Chapter 8: Coding

Figure 8-2. With some human help, we’ve achieved a better approach to the merging of
the sorted lists

So don’t worry about all the doom and gloom you may hear about robots taking over
developer jobs. Granted, these AI models are getting better all the time. They’re learn‐
ing and growing. Yet they are still far from being the be-all and end-all of program‐
ming. Programmers are still very much in the game. AI-assisted programming tools
are extremely helpful, but they’re not about to replace the savvy and know-how of
real, live engineers.

When you’re jamming with these systems, remember: it’s a collaboration, not a hand‐
over. Stay sharp, stay curious, and don’t forget to double-check everything these AI
tools serve up. They’re helpers, not heroes.

Judgment Calls
Sometimes, it’s simpler to just do the coding yourself instead of using an AI-assisted
programming tool. After all, it can take a bunch of tries to get the AI to catch on to
what you need. But as you keep using these AI tools, you’ll get the hang of figuring
out when they’re useful or when you’re better off flying solo.

Take the experience of Dmitrii Ivashchenko, a lead software engineer at MY.GAMES,
an Amsterdam-based game company with over 1 billion registered users worldwide.
According to him:

An example would be the prompt “Write a method in Python to add a default time‐
zone to the datetime object.” However, you should be prepared that many aspects will
be omitted and you will either have to finalize the handling of corner cases yourself or
have a long correspondence with ChatGPT pointing out its errors. The main thing
here is to initially gauge the time it takes to explain a task versus what it will take for
you to implement it yourself.

Judgment Calls | 23

Learning
Using something like ChatGPT to pick up a new language, framework, or library can
be a big help. It may be faster than the old-school ways like taking a course, endlessly
Googling, or watching a bunch of YouTube videos.

You can use ChatGPT to get the lowdown on all the basics and syntax of the code.
Plus, if you’re more of a learn-by-doing type, you can ask for code examples to see
how everything clicks together. If you already know one programming language,
ChatGPT can make learning a new one easier by comparing the two. Suppose you’re
good with Python but just diving into JavaScript; it can explain the main differences
in Python terms. If you need more resources, ChatGPT can scour the internet and
recommend some solid learning materials for you.

Here are some prompts to consider:

Prompt: For someone who does not know Python, what should I learn first?
Prompt: What are some beginner-friendly projects I can try to improve my skills in
React?
Prompt: Can you suggest resources for learning advanced SQL queries?
Prompt: How would you implement a basic “to-do list” app in both Python and Java‐
Script to highlight their differences?
Prompt: I know how to use loops in C++. Can you show me how loops work in Python
for comparison?
Prompt: Find 5 useful YouTube videos that show how to learn Rust.

Let’s now see how Ivashchenko approaches this:

If you want to quickly master a new language or framework, you can immediately start
making a new project on that technology. Let’s say you want to learn Django. Let’s
choose a project that we will implement on this technology—let it be an online store.
To begin with, just ask ChatGPT how to start developing a new project on Django. It
will tell you what dependencies you need to install, how to set up the initial configura‐
tion of the project, and what related technologies you will need to deal with. Then we
move on to more specific requests such as “How is a model organized in Django?”
“How to add a new section in the admin panel?” and “How to migrate the database?”
By gradually gaining new knowledge and asking more and more detailed questions,
you can realize almost any project on any previously unfamiliar technology. This is
how I mastered Django literally through a weekend of fruitful work.

You can have ChatGPT create useful study guides as well. Here’s a sample prompt:

Prompt: Create a study guide for JavaScript. Focus on a beginner level.

24 | Chapter 8: Coding

You can then follow this up with:

Prompt: Please create a study schedule for me. What topics should I study? What about
practice exercises or quizzes? Coding problems? Links to resources?

ChatGPT can even help you to remember new concepts. One way is to use a
mnemonic device, such as acronyms. For example, suppose you want to remember
the key elements of DevOps, which include continuous integration, continuous deliv‐
ery, microservices, and infrastructure as code. This is what ChatGPT suggests:

ChatGPT: CI-CD-MI (pronounced “Ci-Ci-D-Mi”)

Finally, you can use ChatGPT to get help with LeetCode. Picture it: you’re sitting in
the interview room, maybe with a whiteboard or a laptop in front of you, and then
they hit you with this brain-teasing algorithm or data structure question. It’s more
than just coding. They’re sizing up how quickly you think, how well you explain your
thoughts, and your problem-solving style.

If you want to get a leg up, think about signing up for LeetCode. It’s $35 a month. But
of course, ChatGPT can lend a hand whenever you need it. Here’s a simple prompt:

Prompt: Suggest 3 common LeetCode interview questions.

ChatGPT then came up with challenges like two sum, longest substring without
repeating characters, and valid parentheses. You can then dive deeper, such as by get‐
ting longer explanations or examples.

Comments
When you’re racing against a deadline, it’s easy to skimp on code comments or ditch
them altogether. But AI-assisted tools can have your back. You’ll often find code sug‐
gestions with comments already included.

Funny enough, because of AI technologies, having comments may feel somewhat
retro. If code’s got you scratching your head, you could just ask the tool to break it
down for you, right? This is certainly true.

Something else: writing prompts is becoming the new way to comment. After all,
most tools include the prompts in the comment lines.

Of course, if you want to add comments to some code, you can use a simple prompt
like:

Prompt: Add comments that are clear and according to best coding practices.

Comments | 25

Whether or not to comment is your call. There’s no one-size-fits-all rule here. It’s all
about what works for you and your team. But one thing’s for sure—slapping com‐
ments onto your code is a breeze with AI-assisted tools.

Modular Programming
Modular programming is a cornerstone of efficient and effective software develop‐
ment. With modular programming, coding is more organized, easier to understand,
and easier to keep up with. It also makes teaming up with other coders a lot less of a
headache because everyone’s not tripping over each other. Plus, modules are reusable;
reusability is a massive time-saver, keeps things consistent, and makes it less likely
you’ll goof up.

The value of modular programming certainly applies to how you work with AI-
assisted tools. They will not whip up an advanced application from a simple prompt.
They’re not wizards. But if you break your task down into clear, specific pieces, these
tools shine. Otherwise, you might end up with a code jumble that’s way off track.

According to Titus Capilnean, the cofounder and chief product officer at Private
Market Labs:

After I started using AI tools, I could focus on the problem and my approach to get a
solution, not the minutiae of the actual code I need to write. When I have a technical
problem, I start by breaking it down into smaller pieces, where the inputs and outputs
are clear. The reason for this is that the context window of the AI tool I’m using might
not be sufficient to come up with a good solution in one shot. I found that it’s easier to
debug and build if I ask the model to deliver code that uses a simple input, does one
single job and provides an output I can verify. If I’m not happy with the intermediate
output, I describe my issue to ChatGPT and attempt to run the updated code it deliv‐
ers. Once I’m happy with the solution, I can add extra processing steps, either inside
the existing function or that takes the output of the previous step and refines it further,
closer to my desired solution.
AI tools also improved my productivity by allowing me to check whether a snippet of
code I built is actually correct before even sending it to a compiler or deploying a cloud
function and consuming resources on an error. I just paste the part of the code in the
ChatGPT window and ask whether it is correct, assuming I initialized/provided the
correct context for the snippet to function (e.g., imports, variables, constants, custom
functions being called, etc.). This allows me to produce solutions that run well and
faster.

26 | Chapter 8: Coding

Starting a Project
At the start of a coding project, you may hit the “cold start problem” or “blank page
problem.”

Here’s a scenario: you’re staring at an empty screen, no code, no data, not even a clear
path forward. No doubt, it’s as overwhelming as it sounds. The first big headache is
selecting your project’s architecture, design patterns, and what technology to use.
These decisions are huge because you’ll be living with them for the long haul, so you
want to nail them from the get-go as much as possible.

And let’s not forget the people factor. Getting your team on the same page, figuring
out how to communicate effectively, and setting up a workflow from scratch—these
can be just as challenging as the technology. It’s not just about slapping down those
first lines of code. It’s about laying a solid foundation for everything that comes next.
Tackling this phase needs a mix of smart planning, technical know-how, and solid
teamwork.

AI-assisted programming tools can be a big help. You can use them to set up the basic
scaffolding of your app. You’ll figure out a customized starting point that aligns with
your vision. The tools save you from the nitty-gritty of initial setup and let you jump
straight into the more interesting parts of your project.

You can come up with a particular task and then prompt the LLM to generate boiler‐
plate or starter code.

This is a sample prompt:

Prompt: Generate starter code for a web app that aggregates a user’s social media feeds
from multiple platforms into a single dashboard interface. What do you suggest I use
for the language and frameworks? What about the general file structure?

With this, ChatGPT starts off by suggesting React for creating a smooth, single-page
application (SPA). It also suggests using Redux to maintain strongly styled and reusa‐
ble components. It then says to use Node.js to run the application and Express.js for
the API endpoints. It goes on to recommend Passport.js for the logins and MongoDB
and Mongoose for the database and model building. As for the file structure,
Figure 8-3 shows the layout.

Starting a Project | 27

Figure 8-3. ChatGPT suggests a file structure for a new web app

Autofill
You know when you’re deep in the coding zone, setting up those constants for time
units, and it’s just line after repetitive line? Here’s where GitHub Copilot jumps in.
You can have it provide autofill.

Let’s take an example. Suppose you are creating an app that you want to make respon‐
sive. This means you will need to have constants for the breakpoints for a CSS-in-JS
styled-components library.

28 | Chapter 8: Coding

You can first write this:

breakpoints = {
 'xs': '320px', # Extra small devices

Then in the inline chat, you can use this prompt:

Prompt: Create constants for other screen sizes.

Figure 8-4 shows the result. It provides other screen sizes and variables that have a
similar style.

Figure 8-4. This is output from Copilot that suggests different constants for screen sizes

You can go further with this. Copilot can help with autofill by looking at open files in
your project.

According to Capilnean:

I found that Copilot is especially useful if you have parts of the code that are similar
when it comes to data structures. If you have defined an object in another file that’s
part of the code repository you’re working with, then when you are trying to define a
similar object, it can reliably pre-fill the code for you as you type. For example, an
object for a common API call, like a Sendgrid email, works well here.
However, this autocomplete can hallucinate if you’re not careful. On imports, for
example, it won’t always get the folder structure right, especially if you designed your
own code shape, or if the framework you’re using is fairly new and not well docu‐
mented yet. In that case, I have to go in and manually check where the component is
coming from and whether the directory that Copilot suggested was correct.

Autofill | 29

Refactoring
Refactoring is like spring cleaning for your code. It’s all about tidying up, reorganiz‐
ing, and sometimes sprucing things up. It’s not about adding new features or fixing
bugs.

Refactoring keeps the codebase healthy, less cluttered, and more intuitive. This means
when you or someone else jumps back in later, it’s easier to understand what’s going
on, which cuts down on headaches and, well, swearing at the screen. Plus, cleaner
code is usually more efficient and less buggy, so it’s a win-win for everyone involved.

Refactoring is one of those areas where AI-assisted tools shine. With a prompt or two,
you can slice through the complexity of your code, trim the fat, and reorganize your
code into something that’s not just functional but elegant. With AI in your corner,
refactoring becomes less of a chore and more of a secret weapon for staying ahead of
the curve.

In the next few sections of this chapter, we’ll take a look at some examples of refactor‐
ing.

Ninja Code
Think of ninja code as one of those over-the-top action movie stunts. It’s flashy and
complex, and it leaves you thinking, “Whoa, how’d they do that?” But here’s the catch:
it’s a beast to figure out once the awe wears off. Imagine code so sneaky and tangled
that even the person who wrote it can’t make heads or tails of it after their “ninja”
phase passes. Sure, pulling off that ninja move feels epic in the moment, but when
you or someone else needs to jump back in and make changes, it’s less “hi-ya!” and
more “uh-oh.” The truth is, while ninja code might show off some serious program‐
ming chops, it often goes against the grain of good coding practices, which are all
about keeping things clean, simple, and understandable.

Regardless, ninja code is common. But refactoring with an AI-assisted tool can help
sort things out. Here’s an example:

console.log((function(n, a = 0, b = 1) { while (--n) [a, b] = [b, a + b];
return a; })(10));

Make any sense? Well, you’d probably need to take quite a bit of time to figure this
out. Instead, make ChatGPT do the work:

Prompt: Can you explain this code in a step-by-step process? Also, can you write this in
a simpler way that is more maintainable?

ChatGPT determines that this is a function to calculate the nth Fibonacci number. It
goes on to describe it in six steps and then provides a simplified version, as seen in
Figure 8-5:

30 | Chapter 8: Coding

ChatGPT: In this version, the calculateFibonacci function clearly shows the process of
iterating through the Fibonacci sequence. It’s more verbose but much easier to under‐
stand and maintain, especially for other developers who might read this code in the
future.

Figure 8-5. ChatGPT has provided a simpler version of what was ninja code

Extract Method
You apply the extract method when you have a long method or function. You’ll pick
out a chunk of the code that’s focused on a certain task—say data checking or a spe‐
cific calculation—and you’ll turn this into a new method.

This approach isn’t just about making things look neat and tidy. It’s practical, too. It
helps you keep your code easy to read and understand. When you need to do that
same task again, you can call up your new method instead of rewriting the code. And
if there’s ever a glitch, it’s easier to sort out when your code is nicely split up into these
focused, bite-sized pieces. It’s about making your life easier and keeping your code
clean and organized.

Here are some prompts for the extract method:

Prompt: Are there any common pitfalls to avoid when extracting methods in functional
programming languages?
Prompt: I’ve attached a piece of my C# code. Could you suggest which sections would
be good candidates for extract method refactoring?
Prompt: Can you compare my original function and the refactored version with extrac‐
ted methods? Which is more efficient?

Refactoring | 31

Decomposing Conditionals
Decomposing conditionals is about breaking down big, gnarly if-then-else statements
into something a lot more digestible. You know the kind—those lengthy, twisty con‐
ditions that make you squint at your screen trying to figure out what’s going on.

Let’s say you have an if statement with a complex condition that checks multiple
variables and perhaps calls other functions. Instead of trying to decipher this every
time, you can extract this condition into a method with a name that clearly describes
what the condition is checking. For instance, a condition like if (user.isActive()
&& user.hasSubscription() && !user.isBlocked()) can be refactored into a
method named canUserAccessContent(). This not only makes your main method
cleaner but also instantly makes the code self-explanatory.

Similarly, the code within the then and else blocks can be extracted into distinct
methods. This makes the main flow of your program much more readable. Instead of
wading through lines of detailed logic, a reader can now understand the flow at a
high level: if this condition is true, do this; otherwise, do that. Each part of the logic
lives in its own neatly named method, making it easier to test and modify in isolation.

Here are some prompts:

Prompt: Can you explain how to decompose conditionals in Java code for better read‐
ability?
Prompt: How can I break down complex if-then-else statements using the decompos‐
ing conditional technique?

Renaming
Renaming functions, variables, and classes might seem like a small change, but it can
have a significant impact on the readability and maintainability of code. This is par‐
ticularly useful in situations where code has evolved over time and original names no
longer accurately describe what the code does. For instance, a method initially named
processData might become more specialized. Renaming it to something more
descriptive, like filterInvalidEntries, can instantly clarify its functionality.

Writing a prompt for renaming is fairly simple:

Prompt: What would be a good name for a variable that holds the total number of users
in a database in my SQL script?
Prompt: Here’s a snippet of my JavaScript code. Can you review the variable and
method names and suggest improvements?
Prompt: I’m not sure if the names in my Java class are clear enough. Can you propose
better names for clarity?

32 | Chapter 8: Coding

But you need to be cautious, such as when you’re using a tool like Copilot. If you
change a name, this can break parts of the code that are still using the old name.

Dead Code
As the name implies, dead code is not being used for anything. These are the forgot‐
ten lines of code from features that got scrapped or updates that made some parts
redundant.

Scrubbing this dead code from your project makes everything neater and more man‐
ageable. It also makes it less confusing for anyone new jumping into your project.
They don’t have to scratch their heads over why something’s there if it doesn’t seem to
be doing anything.

Here are some helpful prompts:

Prompt: Can you help me identify potential dead code in this JavaScript snippet?
Prompt: Here’s a piece of my Python project. Could you point out any code that seems
unused or redundant?
Prompt: Could you take a look at these SQL procedures and confirm if any of them are
safe to delete?

Note that using an LLM for this can be risky. Sometimes what looks like an old, dusty
corner of code might actually be important for those rare, just-in-case scenarios.
Then there’s the domino effect: removing one piece might mess up something else
that was relying on it, especially if it’s part of complex logic or setup. So just be
cautious.

The other problem is that the generative AI may not truly understand the relation‐
ships. So until AI systems get more sophisticated, it’s probably best to avoid using
them for rooting out dead code.

When it comes to dealing with dead code, alternative tools may be a better option. An
example is a linter. Think of this as your code’s tidy-up crew. If you’re working with
JavaScript, there’s ESLint. Or for Python fans, there’s Pylint, and the Ruby folks can
turn to RuboCop. These tools are like the grammar checkers of coding. They’re awe‐
some at picking up on those pesky syntax mistakes, potential bugs, and, of course,
even those sneaky bits of code that aren’t doing anything.

You’ve also got the heavy-duty inspectors: the static code analysis tools. Top providers
are SonarQube, Code Climate, and Coverity. These tools are like detectives. They dig
through your code without even running it, sniffing out complicated patterns that
might be troublemakers down the line, including dead code.

Refactoring | 33

Functions
Functions are the bread and butter of coding, playing a huge role in any kind of soft‐
ware program, no matter what programming language is used. They’re chunks of
code that do wonders for keeping your programs tidy and easy to read since they let
you easily reuse code—a lifesaver for any developer. They can also take a big task and
break it down into smaller, more manageable bits. This makes dealing with complex
software a whole lot easier, especially when you need to fix bugs, make updates, or
just try to wrap your head around what the code is doing.

It’s key to nail functions right from the get-go. Making them work is one thing, but
you also need to make sure they play nice with the rest of your code. You want your
functions to be clear, easy to keep up with, and efficient. You’ll need to think about
what to call each function so that it makes sense, how you’re going to set it up, how it
will deal with the data coming in and going out, and how it handles any hiccups.

To help out, here are some guidelines to keep in mind:

Think of the single responsibility principle
Your function needs to be a specialist in one job—that’s it. This makes it a lot
simpler to figure out what it’s doing, check if it’s working right, and fix it if it’s
not.

Name it clearly
Give your function a name that tells you exactly what it does. If it calculates the
total price, call it calculateTotalPrice. This makes your code much more
readable.

Keep it short and sweet
A good rule of thumb is that you should be able to see the whole function on
your screen without scrolling. Short functions are easier to handle and less likely
to have bugs.

Parameters are key
Use parameters for inputs and return values for outputs. This makes your func‐
tions predictable and self-contained.

Stay consistent
Follow the coding conventions and style guidelines of your language or project.
This helps keep your code uniform and easy for others to read.

When you keep these tips in mind, you can whip up some really effective prompts for
functions, and ChatGPT can help. Check out these example prompts:

Prompt: Write a Python function named calculate_area that takes two integers as
parameters, length and width, and returns the area of a rectangle. Include a docstring

34 | Chapter 8: Coding

explaining the function’s purpose and ensure the function handles non-integer inputs
by raising a TypeError.
Prompt: I need a JavaScript function called filterAndTransform. It should take an array
of objects as input. Each object has properties name (string) and age (number). The
function should return a new array containing the names of people who are 18 years or
older, converted to uppercase. Include comments explaining the logic.
Prompt: Create a C++ function named efficientSort that sorts an array of integers in
ascending order. The function should be optimized for time complexity. Provide com‐
ments within the function explaining the choice of sorting algorithm and its time com‐
plexity.
Prompt: Can you generate a Java function called safeDivide that takes two double
parameters, numerator and denominator, and returns their division? The function
should handle division by zero by returning a custom error message. Include Javadoc
comments explaining the function and its error handling.

Object-Oriented Programing
Object-oriented programming, or OOP for short, is a way of writing computer pro‐
grams using the idea of “objects” to represent data and methods. Think of it like cre‐
ating a bunch of small, self-contained boxes, each with its own set of tools and
information. These boxes, called classes, are like blueprints for creating different
objects. A class defines the structure and behaviors of objects—similar to a template.
Then from this class, you can create individual objects, each with its own specific
details but following the same basic structure.

Diving into the world of OOP can feel as if you’re stepping into a maze of complex
concepts like abstraction, inheritance, encapsulation, and polymorphism. They can
feel like they’re written in an alien language.

This is where ChatGPT can be your translator. It breaks down these complex ideas
into bite-sized, easy-to-digest explanations. Struggling with what encapsulation really
means? Just ask, and you’ll get an answer that actually makes sense, minus the tech
jargon.

Here are some prompts:

Prompt: Can you create a simple class in <your preferred programming language> that
demonstrates encapsulation?
Prompt: What are some real-world examples of encapsulation in programming?
Prompt: Explain abstraction in OOP with an analogy from everyday life.
Prompt: Can you show me an example of inheritance in a programming scenario?
Prompt: How does inheritance promote code reuse in OOP?
Prompt: How does polymorphism enhance flexibility in a program?
Prompt: In what scenarios is polymorphism particularly useful, and can you provide
examples?

Object-Oriented Programing | 35

AI-assisted programming tools can also be helpful in coming up with the initial
structures for classes. Here are some example prompts:

Prompt: Design an Employee class with properties like employeeName, employeeID,
and department. Implement a method that displays the employee’s details. Also,
include a constructor to set these properties.
Prompt: I need a BankAccount class in Java. It should have private properties like bal‐
ance and accountNumber. Can you add methods for deposit(), withdraw(), and check‐
Balance() that modify or access these properties safely?
Prompt: Could you show me how to create a Vehicle class in C# and then a Truck class
that inherits from it? Make sure to include properties like wheels and fuelType and
demonstrate the use of different access modifiers.
Prompt: In C++, how would I write a FileHandler class that opens a file in its construc‐
tor and closes it in its destructor? Also, include methods for writeToFile() and read‐
FromFile().

Frameworks and Libraries
Diving into software development without frameworks and libraries is like trying to
bake a fancy cake from scratch without a recipe or premixed ingredients. It’s possible,
but it’s a whole lot harder and takes more time. Frameworks and libraries are the
secret sauce that makes a developer’s life easier. Instead of reinventing the wheel every
time you need to make a web request or manipulate a DOM element, you just tap
into what’s already there.

AI-assisted programming tools can certainly help. First of all, they can be useful for
learning the basic features and workflows. They can also tell you when it’s best to use
a framework or library.

But take their help with a grain of salt. Here’s what Capilnean has to say:

Given the large number of updates React gets—as well as other frameworks and libra‐
ries—and the fact that we use specific versions of frameworks, I had to provide these as
system prompts to my ChatGPT instance in order to optimize my results. Sometimes,
GPT provided solutions that were more academic than production-grade, so I tend to
rely on working with our senior developers to get the job done for more complex
issues. For React, I find myself asking GPT to check my syntax and my method of pro‐
cessing a specific data type more than actually build a full feature for me.
The same goes for NodeJS. I have to take into consideration our internal APIs and
methods of working with our data before I can go to ChatGPT and ask for a code snip‐
pet for a feature. Once I am able to describe the output of one of our functions as the
input for the feature I am building, it usually is able to provide me with stable code. I
use the same process here if the output isn’t good or it errors out. I provide it with the
issue and ask for a code update in the right direction.

36 | Chapter 8: Coding

Data
Data is the lifeblood of every application, truly. It’s what keeps an app alive and kick‐
ing. Just like blood carries oxygen and nutrients to keep our bodies functioning, data
flows through an application, giving it the information and insights it needs to work
its magic.

But creating sample data can be a slog. Picture this: you’re excited to test your shiny
new app, but first, you need a bunch of data to see how it actually works in the real
world. You start typing in rows and rows of data—names, dates, numbers, whatever it
takes. But then, it just keeps going. And going.

What’s more, you have to be careful about making it realistic enough so your tests are
valid, but not so detailed that you’re writing a novel for each entry. And if you need a
large dataset? Forget it: you’re basically signing up for a marathon of copy-pasting,
tweaking, and double-checking.

An AI-assisted programming tool can be handy for this. But first, you need to select a
database and spin up the schema and tables. The tool will also need to be given the
relationships, say, among the tables. Then you will need to do the configuration and
setup. But then the AI can begin to help.

Here are some prompts to get help evaluating databases:

Prompt: What type of database would be best suited for handling <specific data types or
functions, e.g., user interactions, product inventory, etc.>?
Prompt: For an app expecting <high/low> traffic with <type of data, e.g., images, text,
real-time data>, which database should I consider?
Prompt: I’m on a tight budget. Can you suggest a cost-effective database solution for a
small <type of app, e.g., local delivery service app>?
Prompt: I’m relatively new to database management. Which databases are user-friendly
and easy to maintain for a beginner?

Here are some prompts to ask for help with a database schema:

Prompt: Can you help me design a basic database schema for a <type of application, e.g.,
online store, blog>? I need to know what tables I should create and the primary rela‐
tionships between them.
Prompt: What would be an efficient table structure for managing <specific type of data,
e.g., customer orders, inventory> in a relational database? What fields and data types
should I include?
Prompt: How should I define the relationships between tables in a relational database
for an application that deals with <describe the application’s functionality, e.g., event
management, course enrollment>? Specifically, I need help with understanding foreign
keys and join tables.

Data | 37

Prompt: I’m working on a relational database schema for <describe the project>. Could
you guide me on setting up primary and foreign keys effectively for data integrity?
Prompt: What normalization strategy would you recommend for a database handling
<type of data or application function>? How can I avoid data redundancy and ensure
data integrity?
Prompt: I’m using a NoSQL database for a <type of project, e.g., social media app>. How
should I design the document structures to store <specific data types, e.g., user profiles,
posts, comments>?
Prompt: In designing my database schema, what indexing strategies should I consider
for optimizing query performance, especially for <type of queries or operations, e.g.,
full-text search, frequent updates>?
Prompt: I need to migrate an existing database to a new schema. What are the key con‐
siderations and steps for redesigning the database structure without losing data
integrity?

And here are some prompts for setting up the initial database environment:

Prompt: Can you provide step-by-step instructions for installing <a specific database
server, e.g., MySQL, PostgreSQL> on <a specific operating system, e.g., Windows, Linux>?
Prompt: After installing <name of database>, what are the essential configuration set‐
tings I should initially set up for optimal performance?
Prompt: What are the best practices for securing a <specific database> server? I’m par‐
ticularly interested in user authentication and protecting sensitive data.
Prompt: How can I optimize the performance of <a specific database> for an applica‐
tion that will handle <describe the nature of the data and expected load, e.g., large data‐
sets, high transaction volumes>?

Now, let’s look at how we can use AI to create sample data. Here are some example
prompts:

Prompt: Create demo data for 100 IDs and email data and save this to a CSV file.
Prompt: Create demo data for 50 products, including product ID, name, price, and cat‐
egory.
Prompt: Create a demo dataset of 150 order records, each with an order ID, customer
ID, order date, and total amount.
Prompt: Generate sample data for 100 employees, including employee ID, full name,
department, and email address.
Prompt: Create sample data for 80 customer feedback entries, including feedback ID,
customer ID, comments.

With the data, you can then create SQL statements for it. You can use something like
this for the customer feedback entries:

Prompt: Generate a SQL insert statement to populate the Feedback table with the data.

38 | Chapter 8: Coding

ChatGPT can be a lifesaver when it comes to the nitty-gritty task of data conversion.
If you’re a developer, you know that converting data between different formats like
XML, SQL, JSON, CSV, and TOML is common. But let’s be honest, it can be a tedious
and sometimes error-prone process. That’s where ChatGPT comes in handy.

Here are some sample prompts:

Prompt: Here’s a CSV row: ‘John Doe, 35, New York’. Can you convert this into an XML
format for me?
Prompt: I have a JSON array like this: [{‘name’: ‘Alice’, ‘job’: ‘Engineer’}, {‘name’: ‘Bob’,
‘job’: ‘Designer’}]. How would I represent this in a SQL table format?
Prompt: I need to convert this TOML configuration: ‘title = “My Project” owner =
“Sara”’ into an equivalent YAML format. How would you convert this?

Frontend Development
Frontend development involves making websites look great and navigate smoothly.
At its core, it uses HTML to set up the basic structure of web pages, CSS to make
things look nice and lay out everything, and JavaScript to make it interactive. Nowa‐
days, frontend developers often use frameworks like React and Vue. These frame‐
works offer features like reusable components and ways to make data update in real
time, which allows for building websites and apps that are dynamic and engaging.

Frontend development can be challenging, even for experienced developers. First of
all, there is the unpredictable nature of web browsers and user interactions. You need
to deal with different browsers, devices, screen sizes, and user preferences. It’s like
trying to make a one-size-fits-all T-shirt that looks good on everyone. Next, the front‐
end world changes fast. Framework updates pop up frequently.

Another thing about frontend development is that it’s not just about coding. It’s also a
lot about good user experience (UX) and user interface (UI) design. This is a unique
skill set that many programmers don’t have. UX and UI design involves understand‐
ing how people interact with technology, what makes a design visually appealing, and
how to create a smooth, logical flow in an app or website. It’s like being part artist,
part psychologist. For a lot of traditional programmers, who might be wizards at
things like algorithms and data structures, the world of colors, layouts, and user jour‐
neys can be unfamiliar territory.

Regardless, there are ways that AI-assisted programming tools can help out. We’ll
look at some of these in the next few sections.

Frontend Development | 39

CSS
Writing CSS for websites can be tricky, especially when you’re working on big, com‐
plex sites. It’s challenging to make sure everything looks good across different brows‐
ers and devices. You’ve got to know all the weird browser-specific quirks. It’s also easy
to accidentally mess things up so that one part of your style steps on the toes of
another, making things look wonky. Plus, traditional CSS doesn’t let you use variables
or functions, which means you end up repeating yourself a lot in your code (though
tools like SASS and LESS help with that). Even something as simple as centering a
<div> can be an ordeal.

Here are some prompts for common CSS tasks:

Prompt: Can you provide me with a CSS snippet for a responsive navigation bar that
collapses into a hamburger menu on mobile devices?
Prompt: I’m having trouble with a flexbox layout in CSS where items are not aligning
properly. Can you suggest what might be going wrong?
Prompt: I need to add a hover effect to buttons on my website. Can you show me a CSS
example to make the button change color when hovered over?
Prompt: I’d like to add a fade-in animation to my website’s homepage. Could you pro‐
vide a CSS code snippet for this?

Creating Graphics
Creating professional graphics for websites or apps requires an extensive background
in design, along with understanding sophisticated tools like Photoshop. But there are
many powerful text-to-image generative AI systems that can help you create standout
images. Some of these systems include:

• Canva
• Stable Diffusion
• DALL·E 3 (which is built into ChatGPT)
• Adobe’s FireFly
• Midjourney

With these systems, you can create many types of assets, including hero images, but‐
tons, and logos.

Let’s look at an example. We’ll have ChatGPT create a logo:

Prompt: I’m creating a website for my home bakery business named “Sweet Whisk.” I
want a logo that’s warm and inviting. The main products are cakes and cookies, so
maybe those could be incorporated into the design. I like pastel colors, especially light
pink and mint green. The style should be simple and modern, with a touch of
playfulness.

40 | Chapter 8: Coding

Figure 8-8 shows what ChatGPT created.

Figure 8-8. ChatGPT created a logo when given some guidelines

If you want to make changes to the output, you can continue to prompt ChatGPT.
Other AI image tools, like Firefly, have more features than ChatGPT for designing
images, but ChatGPT can still create compelling images—without much work.

AI Tools
There are some excellent AI tools that can whip up websites just from a prompt or a
picture of what you want the frontend to look like. They’ll handle all the coding for
you. This even includes making conversions to frameworks like React, Angular, and
Vue. What’s more, an AI tool will also usually be able to import a wireframe, say from
Figma.

After the code is created, you can jump in and tweak things to get it just right. Using
AI is an effective shortcut for speeding up the whole website-building process.

Here are some of the AI tools available:

• TeleportHQ
• Anima
• Locofy
• v0 by Vercel

Let’s take a closer look at v0 by Vercel, which is easy to use. In fact, the interface is
similar to that of ChatGPT, as you can see in Figure 8-7.

Frontend Development | 41

Figure 8-7. This is the interface for v0 by Vercel

You can either enter a prompt for the type of interface you want the system to create
or upload an image. For this example, I will use a prompt:

Prompt: An ecommerce dashboard with a sidebar navigation and a table of recent
orders.

This will take you to a design studio, which will look like Figure 8-8.

Figure 8-8. The design studio that v0 by Vercel comes up with when you enter a prompt

The AI will create three versions of the dashboard. You can create additional ones,
too. Then, with a prompt, you can make changes, such as to the text size, colors, and
so on.

When you are finished, you can click Code at the upper right. You’ll see a listing of
clean React code that’s based on the shadcn/ui and Tailwind CSS.

There are also several open source systems that use AI to generate frontends. Con‐
sider Screenshot to Code. The creator of this project is Abi Raja, who is the CEO and
founder of Pico. His prior startup was acquired by Yahoo! in 2013.

42 | Chapter 8: Coding

https://oreil.ly/31Rjd

Raja spent six months creating the initial codebase for Screenshot to Code. “Frontend
developers often convert designs and mock-ups into code,” said Raja. “Much of this
work is repetitive. But my software can help automate this process, achieving about
90% of the task.”

Currently, Screenshot to Code supports exports to React, Bootstrap, and HTML/Tail‐
wind CSS. The project has over 31,000 stars on GitHub.

With ChatGPT, you can also convert an image to code. Suppose you want to create a
calculator app and you want it to look like the version on the iPhone. Figure 8-9
shows the image.

Figure 8-9. You can input an image of the iPhone calculator app to ChatGPT to
generate code

First, we’ll ask ChatGPT to identify the image, which it does correctly. Then we can
use this prompt:

Prompt: Suggest code for this image

Figure 8-10 shows the calculator.

ChatGPT created code for Python. True, the styling is off, but this is still fairly good.
Of course, if you want it to look more like the iPhone version, you can be more spe‐
cific with the prompt, such as by telling ChatGPT to use something like React.

Frontend Development | 43

Figure 8-10. ChatGPT created code for the calculator based on an image of Apple’s
iPhone app

APIs
Getting the hang of a new API can be a challenge. First off, you’ve got to wade
through the documentation, which may be dense and technical. And it’s hit or miss
with these docs—some are clear and easy to follow, while others...not so much. Then
there’s the deal with logging in and getting access, like using API keys or OAuth
tokens. Plus, trying to figure out the data structures and response formats the API
spits back at you can be overwhelming. Then there is error handling as well as having
to keep up with any updates or changes in the API.

Fortunately, using ChatGPT can make tackling these challenges a bit easier.

To see how, let’s take a simple example. Suppose you want to use an API to get infor‐
mation about the weather. You can ask ChatGPT for API suggestions:

Prompt: What are good weather APIs?

One that ChatGPT recommends is OpenWeather API. Next, ask the following:

Prompt: How do I start using the OpenWeather API?

ChatGPT describes the main steps.

You can then ask it to show how to make a request:

Prompt: How do I create a request using the OpenWeather API? How do I do this
using Python?

44 | Chapter 8: Coding

ChatGPT will go through the process, providing details on these steps:

• Import the requests library.
• Define the API key.
• Create the API request URL and use the current weather data endpoint.
• Execute the request and handle the response.
• Check to see if the request was successful.

Conclusion
In this chapter, we dug into modular programming, functions, and object-oriented
programming. We also explored how to use AI to learn new languages and frame‐
works on the fly as well as how to use it to work more efficiently with data. Then we
saw how to create compelling frontends.

But it’s important to repeat: AI-assisted programming tools are far from perfect.
That’s why it’s important to keep your eyes peeled and double-check everything.

Conclusion | 45

CHAPTER 9

Debugging, Testing, and Deployment

This chapter is about the parts of software development that often do not get enough
love: debugging, testing, and deployment. It’s a guide to everything from spotting dif‐
ferent bugs, to writing docs that people can actually understand, to making sure your
code does what it’s supposed to. We’ll also dive into how to merge changes without a
hitch, make your software run smoothly and safely, take in what users say, and even
how to make a splash when you launch.

Debugging
When creating code, a developer will spend around 35% to 50% of their time on
debugging. This is not just a time sink. It also eats up a big chunk of the budget in a
software project.

There are two main types of bugs. First, there are syntax errors. These pop up when
your code doesn’t play by the rules of the structure of a language. It can be as simple
as forgetting to add a colon at the end of a for loop. A modern IDE like VS Code
should detect and fix many of these types of errors.

Next, there are logical errors. These are trickier because they happen when something
in your logic is off. For example, suppose you have created a program to filter out
adult users from a list based on their age. The only problem is, instead of excluding
everyone aged 18 and above, your code mistakenly excludes those under 18. So, you
end up with a list full of adults instead of teens. This mix-up is a prime example of a
logical error. Your code is doing the exact opposite of what you intended. Pinpointing
why it’s flagging the under-18 crowd, instead of those 18 and above, can be quite the
puzzle. The fix can range from making a quick adjustment in the age condition to
having to rethink the whole logic.

47

https://oreil.ly/vci4A
https://oreil.ly/vci4A

Regardless, using an AI-assisted programming tool is not something you should start
off with when debugging. Often, traditional approaches should be fine. VS Code pro‐
vides powerful debugging features that can detect and resolve problems. After all, you
can easily set up breakpoints to inspect variable values, walk through the code line by
line, and see what’s exactly happening. These are a lifesaver, especially in large
programs.

But of course, some bugs can be real head-scratchers. Modern software is often a
complex puzzle with many layers and parts that have to work together. Sometimes a
bug pops up because these parts interact in unexpected ways, and figuring out
what’s actually going wrong can be a real challenge. Then there’s the issue of
documentation—or the lack of it. When software doesn’t come with clear instructions
or explanations, it’s tough to understand how it’s supposed to work, which makes
finding and fixing bugs even harder. Your software will usually rely on external libra‐
ries or services, and if something goes wrong there, the bugs in your software can be
maddening.

So this is where you can turn to AI. For example, one scenario is deciphering cryptic
or long error messages. These may be stack traces, for instance, which are snapshots
of what the program was doing when everything went haywire. You might also get
detailed information about the interactions among various frameworks and libraries.

What you can do is copy-and-paste the error message into a prompt and include
something simple like:

Prompt: What does this mean? {error message}

Or, suppose you have code and there is a logic error. The program simply will not do
what you want it to do. In this case, you can copy-and-paste the code into the
prompt. Then include this:

Prompt: This program is supposed to allow users to upload photos and display them in
a gallery. However, when it is executed, the photos are not appearing. What is the
problem with this program? {code}

If ChatGPT finds the problem, it will often suggest a solution. But if it does not, you
can add this instruction to the prompt.

Documentation
Documentation is the glue that keeps everything from falling apart, but sadly, it’s usu‐
ally shoved to the back burner. We’ve all seen it—working with code without a guide
is like wandering in a maze, and it’s a pain, especially for new folks or anyone trying
to figure things out.

48 | Chapter 9: Debugging, Testing, and Deployment

Good documentation helps to prevent guessing games and keeps everyone on the
same page. A survey from Stack Overflow says that 68% of developers bump into
these knowledge roadblocks every week. Plus, GitHub’s report from 2021 showed that
sharing information in documentation can make teams up to 55% more productive.

But it’s not just about making developers’ lives easier. Good documentation is the
backbone of a smooth-running development process. It’s akin to a map that shows
you where to go and what to watch out for. Without it, you’re often flying blind, and
that’s when costly mistakes happen.

With ChatGPT, you can create any type of documentation, such as:

• User manuals
• README files
• API documentation
• FAQs
• Troubleshooting guides

When developing prompts for creating effective documentation, here are some fac‐
tors to keep in mind:

Know your audience
Think about who’s going to use your docs. Are they newbies looking for a guide
to get started quickly, or are they tech wizards needing the nitty-gritty details like
API docs and code snippets? Getting a bead on what your readers need is key to
hitting the mark with your content.

Keep it simple
Nobody likes to wade through jargon or tech-speak that needs a decoder ring.
Keep your words straightforward and to the point. If your grandparent couldn’t
get it, you’re probably not there yet.

Stick to the plan
Keep your docs looking familiar. Use the same style, headings, fonts...you name
it. Consistency is your friend. It’s like having a good rhythm in a song. It just
flows better.

Show, don’t just tell
People understand things faster when they see it in action. So, throw in real-life
examples or scenarios. If you’re talking to coders, some code examples are gold.
For others, screenshots or step-by-step walkthroughs can be helpful.

A picture is worth a thousand words
Sometimes, text just doesn’t cut it. Use diagrams, screenshots, or even videos to
get your point across, especially when you’re dealing with complex stuff.

Documentation | 49

https://oreil.ly/tWiy4
https://oreil.ly/q6QO8

The why matters as much as the how
Don’t just lay out the steps. Tell your readers why they’re doing what they’re
doing.

With all this in mind, you could use a prompt like the following:

Prompt: Can you suggest how I might explain the concept of version control in Git to a
non-technical audience? I need to keep it simple and avoid technical jargon. Also,
explain the importance of version control and suggest any visuals or diagrams.

ChatGPT has deep capabilities for language translation. You can
certainly leverage this with your documentation or any other
content.

Microsoft has been cooking up a system called GitHub Copilot for Docs, which is for
the enterprise edition. It’s not your average, run-of-the-mill tool for digging through
docs. For example, the search results and responses are based on a user’s coding back‐
ground and experience. It is also updated with the latest on GitHub’s repositories. It
even gives you the ability to add private documentation. Essentially, this is a highly
sophisticated knowledge base that can greatly boost your coding.

Code Review
Think of a code review as your code’s test drive before it gets a pull request in the
codebase. You make sure everything’s running smoothly, fits in just right, and won’t
go kaput down the road.

But the process is about more than just looking for clunky bits or glitches. It’s helpful
for everyone to huddle around, bat ideas back and forth, and learn from each other.
You’ll see different ways to tackle a problem and get a better grip on the whole
project.

In the meantime, a code review can help enforce an organization’s coding style and
guidelines. Then there’s the security check. You see, automated tools don’t always
catch everything. Sometimes, it takes a human eye to spot those sly security risks.

As for ChatGPT, it can be a key part of this process. Here’s an example prompt:

Prompt: Write a code review for the code below. Keep a focus on the maintainability of
the code, potential security issues, and performance flaws. {code}

50 | Chapter 9: Debugging, Testing, and Deployment

I intentionally gave ChatGPT a poorly written function, yet ChatGPT did a good job
with its review. It suggested numerous areas for improvement, such as that the func‐
tion could benefit from not having hardcoded database connections. ChatGPT also
detected the potential for a SQL injection due to the direct concatenation of the user
ID in the SQL query and a lack of user input validation. It then found a performance
issue with the construction of the SQL.

Unit Tests
In a way, unit tests are mini evaluations for parts of your code, say for a few functions
or methods. Developers often do this testing themselves using cool tools like JUnit
for Java, NUnit for .NET, or pytest for Python. These tools help write and run tests,
and tell you the results. They usually play nice with other software tools you’re using.

Doing unit testing is helpful because it makes your software better, cuts down on
pesky bugs, and makes it easier to tweak and fix problems later. Each test focuses on
just one thing, so if something goes wrong, you know exactly where to look. These
tests are usually automated, which means they can be run fast and often. This is
important for keeping everything smooth and up-to-date.

Unit tests are usually straightforward to write. Since they focus on small parts of the
code, they shouldn’t be too complicated. Plus, they’re like a guide to your software. By
checking out the unit tests, other developers can get how certain parts are supposed
to work. If you change your code, unit tests are great for making sure you haven’t
messed up something that was working fine before.

Let’s take a look at an example. Suppose you have created a tip calculator program
like this one:

def tip_calculator(bill_amount, tip_percentage):
 tip_amount = bill_amount * (tip_percentage / 100)
 total_amount = bill_amount + tip_amount
 return total_amount

bill_amount = float(input("Enter the bill amount: "))
tip_percentage = float(input("Enter the tip percentage (e.g., 20 for 20%): "))
total_amount = tip_calculator(bill_amount, tip_percentage)
print(f"Total amount including tip: {total_amount:.2f}")

This has a function that calculates the total bill amount including a tip and takes two
parameters, bill_amount and tip_percentage. The function will find the value for
total_amount.

Code Review | 51

For code like this, unit tests check all sorts of scenarios. For instance, they can help
verify that the function correctly calculates the total amount, including tips, for a
range of inputs. This is important because even a small error can lead to significant
discrepancies. Unit tests can cover typical cases, such as standard bill amounts and tip
percentages, as well as edge cases, like a zero or negative bill amount or unusually
high tip percentages. They also help to ensure that the function handles wonky
inputs, such as non-numeric or null values, gracefully.

Here’s a sample prompt:

Prompt: For this program, suggest unit tests to correctly calculate the total amount,
check the typical and edge cases, such as zero and negative bill amounts and high tip
values. Also check for invalid inputs. For the unit tests, you can have console logs.

Figure 9-1 shows the code that ChatGPT created for the unit tests.

If you want to use a testing framework, to allow for a more structured and compre‐
hensive approach, you can ask ChatGPT for this:

Prompt: Create unit tests that use a testing framework.

ChatGPT suggests using unittest. It shows how to set it up, develops the tests, and
demonstrates how to run the unit tests.

Or, if you already have a file with unit tests, you can evaluate them. Here’s a prompt:

Prompt: Below is the file for unit tests for a program that <explain what it does or point
to the code>. Any other tests I should have? What is missing here?

While ChatGPT or an AI-assisted programming tool can be useful with creating
these, the tools are far from foolproof. For more advanced use cases or larger codeba‐
ses, the results can be off.

Consider the following advice from David Lee, who is a founder, senior engineer, and
AWS-certified solutions architect:

However, when dealing with tests involving real database interactions and Docker, the
dynamics change significantly. It becomes another level of sophistication that ChatGPT
4.0 may not be able to comprehend to some extent, and you probably need to write a
few tests manually first, especially the database connection part so that it can learn how
to write others.

52 | Chapter 9: Debugging, Testing, and Deployment

Figure 9-1. ChatGPT created code for unit tests on a tip calculator program

Code Review | 53

Pull Requests
A pull request, or PR for short, is like a golden ticket in the coding world, especially
when you’re working with others. You wrap up your code, push it to somewhere like
GitHub or GitLab, and send out a PR. It’s not just a “please add my code” request,
though. It’s also a nudge to your teammates to check out what you’ve done, give it a
thumbs up, or maybe throw in some pointers to make it even better. It’s all about
making sure that when your code joins the rest of the project, it’s the best it can be.
What’s more, PRs are a neat way to keep track of who did what and when, which is
certainly helpful in big projects.

No doubt, writing a solid PR description really makes a difference. You want to lay
out the what, why, and how of your changes. Start with a quick rundown of the prob‐
lem you’re tackling. Then dive into how your changes fix this. Don’t forget to throw
in details like which files got a makeover or any tests you ran. If there’s something
specific you’re unsure about or need a second opinion on, mention that too.

An effective PR description is a lifesaver for your reviewers. It speeds up the whole
process and keeps everyone on the same page. Moreover, detailed PR descriptions are
like a treasure trove of information for the future.

And yes, ChatGPT can be your sidekick in nailing those PR descriptions. Need to
kickstart a draft? Tell ChatGPT what you did, and it will help you structure it into
something clear and to the point. If you’ve already written a description, ChatGPT
can check it out for clarity and grammar and suggest ways to make it even better.
ChatGPT can also help you figure out the best way to lay out your PR, like starting
with a summary and then getting into the nitty-gritty. And if there are technical
details that need simplifying, it’s got your back in making the PR more understanda‐
ble for everyone in your team.

Let’s take a look at some helpful prompts:

Prompt: I added a new search feature to the application that filters results based on user
input. Can you help me write a PR description for this?
Prompt: I fixed a bug where the app crashed when a user entered special characters in
the text field. How should I describe this in a PR?
Prompt: I refactored the authentication module to improve performance and read‐
ability. What should I include in the PR description?
Prompt: I updated the user interface to make the navigation more intuitive and added
new icons. Can you help me draft a PR description?
Prompt: What’s a good way to phrase this in a PR description?
Prompt: I added new unit tests for the payment-processing module. Can you assist me
in writing a PR description that highlights these changes?
Prompt: I resolved merge conflicts that arose due to recent changes in the main branch.
What should I mention in the PR description about this?

54 | Chapter 9: Debugging, Testing, and Deployment

Keep in mind that Microsoft has added a feature in Copilot that allows for creating
PR descriptions. It’s called Generated Commit Message. To use it, you’ll need to make
sure you have a connection to the repository on GitHub. Then you’ll just need to
click the sparkle button, as you can see in the lefthand panel in Figure 9-2.

Figure 9-2. Copilot can create PR descriptions based on the repository that is loaded into
your project

Copilot will then write up a useful PR description.

Finally, there are numerous startups that are creating their own systems based on
LLM technologies. One is called What The Diff. According to the company’s
cofounder and CEO, Sebastian Schlein:

There are two main features of What The Diff: 1) Making pull requests easier to review
by summarizing them into plain English and giving reviewers and easy-to-understand
overviews about the changes within the PR. 2) WTD can also write summaries that are
completely non-technical and that get sent to other stakeholders like product manag‐
ers who don’t have GitHub access. That makes it easy for them to see if the change in
the pull request actually matches their specifications.

Deployment
You’ve been grinding away on your software, and now it’s go-time—the big launch.
It’s a thrilling moment. You’re about to see real people using your software, telling you
what rocks and what could use a tweak or even more. That kind of feedback? Price‐
less for a developer.

If you’re in the business of selling your software, this is the moment you’ve been wait‐
ing for—when the cash starts rolling in. Nailing the launch can be a real game-
changer for your bank balance.

But let’s be real: deploying software is like holding your breath and hoping for the
best. There’s always this sneaky feeling that something might not go as planned.

You know how things seem perfect in your test setup, but then in the real world, they
get a bit wobbly? It could be different hardware, some funky network systems, or just
odd settings that mess things up.

Deployment | 55

https://oreil.ly/LriIB

Security is a big deal, too. Once you’re live, you must be on your toes to keep the bad
guys out and play nice with privacy rules.

Also, your software has to be tough enough to handle the crowd. It’s got to stay quick
and smooth, no matter how many people jump into it or how big your business gets.

And then there’s the whole CI/CD thing. It’s all about making deployments smooth
and automatic to dodge mistakes. Sounds great, but getting it up and running, and
keeping it that way, is a bit of a hustle.

Then what to do? You can definitely check out ChatGPT. The following are just a few
of the prompts to consider:

Prompt: Can you guide me in creating a deployment checklist for my team to follow?
Prompt: What are some good learning resources for getting started with Docker for
deployment purposes?
Prompt: Can you provide best practices for zero-downtime deployment in a web appli‐
cation?
Prompt: I’m encountering a “server timeout” error during deployment. What are some
common causes and solutions for this?
Prompt: Could you help me write a bash script for automating the deployment of my
Python web app?
Prompt: What are the essential configuration settings I should check before deploying
an app in a production environment?
Prompt: How do I plan a rollback strategy for a failed deployment in a cloud environ‐
ment?
Prompt: What security measures should I consider during the deployment of a finan‐
cial application?
Prompt: How can I optimize the performance of a deployed Node.js application?

While not perfect, ChatGPT can be helpful with complex DevOps. Here are some
thoughts from Titus Capilnean, who is the cofounder and chief product officer at Pri‐
vate Market Labs:

Cloud logs are not the easiest things to work with, especially as I’m not a devops engi‐
neer, but we have to deal with them, given that we are running processes on AWS and
Google Cloud on a regular basis.
One time, I had to set up tracking for a SQS + Lambda process, based on the output of
a large-scale function deployment. My function was essentially printing a status in the
logs and I planned to use that status to generate a report of that process—in our case,
deal aliveness. I asked ChatGPT to provide an AWS CloudWatch query script and
tuned it to the point where I could just run it at the end of each process to get my
results. Reading the documentation in detail for this task would have taken probably
5–6 hours, so I saved a ton by going the GPT route.

56 | Chapter 9: Debugging, Testing, and Deployment

Similarly, I had to set up some alerts in Google Cloud, and I worked with ChatGPT to
create a query that excluded some system-level errors we weren’t actually responsible
for and were not user-facing. It saved me hours of reading and work, and it provided
me with the custom metric I needed to set up a useful alert system for our team.

User Feedback
User feedback is key to making your software rock. When your users see you’re tun‐
ing in and making changes based on their thoughts, they’re more likely to stick
around and be all smiles. It’s smarter to iron out the kinks early with their help, rather
than try to clean up a big mess later when a lot of (increasingly unhappy) folks are
using your app.

Even with all the testing, some bugs are sneaky, only showing their faces when your
software hits the real world. Your users are like your own personal detectives, spot‐
ting the stuff that might have slipped past you.

Sometimes your users get really inventive with your software, using it in ways you
never dreamed of. Their wild ideas can light the spark for new features, or even
brand-new products.

Of course, there’s a whole toolbox to boost customer service. Just some of the tools
include Zendesk, Freshdesk, Drift, and Salesforce. They are handy with everything
from live chat that lets you talk to customers in real time to feedback forms that
gather insights on what your users think. Automated ticketing systems keep track of
customer issues, ensuring that nothing slips through the cracks. And don’t forget
about customer relationship management (CRM) systems, which keep all customer
interactions in one place. These tools can really make a difference in providing effi‐
cient, responsive customer service.

Generative AI can definitely add value on top of all this. It is particularly good at pro‐
cessing large amounts of unstructured data like user feedback.

For example, suppose you have a file that includes lots of emails, IMs, and contact
form information from users. You can then go to ChatGPT and use this prompt:

Prompt: Identify the common themes and categories, such as usability, performance,
features, bugs, and customer service. Also, do sentiment analysis on this file. Based on
the frequency and severity of issues mentioned, help prioritize which bugs to fix first
or which features to consider adding. With all this, create a report that includes charts.

Another way ChatGPT can help is with response drafting. If you’re dealing with cus‐
tomer feedback, it can help you write better responses, such as by creating templates
for answers to common questions. This way, you’re always on point and professional
when you’re chatting with users or customers.

Deployment | 57

Or, you can use ChatGPT for more personalized responses. You can cut-and-paste
user email and use a prompt like this:

Prompt: Write a reply to the user email, focusing on a calm and understanding tone.
Make sure the response is friendly and helps to ease any concerns without escalating
the situation. {email}

In some cases, you can create your own LLM-based application to handle user feed‐
back. This is what Warp did. The company had a developer spend less than a week—
at half-time—to create the app. It was built using the OpenAI API.

“The app has made a huge difference,” said Noah Zweben, who is a product manager
at Warp. “Before, it was difficult to categorize and prioritize the incoming feedback.
But the generative AI has been able to do this extremely well.”

The Launch
Several years before ChatGPT became a big deal, generative AI was already making
an impact on important activities like sales and marketing. The trailblazer was Jasper.
The company grew at a staggering rate. Then again, generative AI is ideal for whip‐
ping up catchy and creative content—fast.

But you don’t need Jasper for your software launch. ChatGPT should work just fine.
First of all, you can start mapping out a killer marketing plan with it. Here’s a sample
prompt:

Prompt: You have created an app to help people plan healthy meals. It creates custom
meal plans based on dietary preferences, health goals, and nutritional needs. It can also
generate shopping lists, offer recipe suggestions, and track nutritional intake. For this
app, put together a marketing plan. The company is an early-stage startup and does
not have much resources for a marketing budget.

ChatGPT first recommends that you identify your target audience. It suggests that the
primary users are “health-conscious individuals, fitness enthusiasts, people with spe‐
cific dietary needs (e.g., gluten-free, vegan), busy professionals, etc.” It then covers
various strategies, such as leveraging social media, content marketing, community
engagement, email marketing, and partnerships.

Here are some other helpful ChatGPT prompts:

Prompt: Write an engaging introduction for a blog post announcing the launch of the
new health planner app, highlighting its unique features and benefits.
Prompt: Craft a series of social media posts for announcing our new health planner
app, focusing on its user-friendly interface and how it helps in managing health goals.
Prompt: Compose a product announcement email for our health planner app, empha‐
sizing its ability to track and improve users’ health routines.

58 | Chapter 9: Debugging, Testing, and Deployment

Prompt: Create a persuasive sales email targeting gym instructors and health coaches,
promoting our health planner app as a tool for their clients.
Prompt: Generate a list of catchy and relevant names for a new health planner app that
conveys a sense of wellness and organization.
Prompt: Develop ad copy for Facebook and Instagram ads promoting our health plan‐
ner app, highlighting its ease of use and personalization options.
Prompt: Formulate a template to request testimonials from early users of our health
planner app, to be used in marketing materials.
Prompt: Create an invitation for a virtual launch event of our health planner app,
detailing the agenda and special guests.

Conclusion
This chapter is like a behind-the-scenes look at the things in software development
that don’t always get the spotlight. Sure, creating new software is thrilling, but it’s the
less flashy tasks like debugging, testing, and documentation that really make or break
your app. We’ve talked about how AI tools, like ChatGPT, can make these jobs a lot
smoother. These AI buddies aren’t magic fixes, but they’re pretty awesome at sifting
through tons of data, giving advice, whipping up content, spotting problems, and
speeding up the whole process. This means developers get to focus on the really
tricky stuff. By bringing generative AI and some smart strategies into every step, from
squashing bugs to launching, developers can build better software that really hits the
mark for users—and do it quicker too.

Conclusion | 59

About the Author
Tom Taulli (@ttaulli) is a consultant to various companies, such as Aisera, a venture-
backed generative AI startup. He has written several books like AI Basics and Genera‐
tive AI, which cover ChatGPT, GPT-4, and other large language models. Tom has also
taught IT courses for O’Reilly, UCLA, and Pluralsight. For these, he has provided les‐
sons in using Python to create deep learning and machine learning models. He has
also taught on topics like natural language processing.

Colophon
The animal on the cover of AI-Assisted Programming is a reef triggerfish (Rhinecan‐
thus rectangulus). The animal is also referred to as humuhumunukunukuapua’a, or
simply humuhumu. Following a popular vote and the approval of the Hawaiian state
legislature, the reef triggerfish was selected as the official state fish of Hawaii in 1984.

The reef triggerfish is found in shallow outer reef habitats in the Indo-Pacific and
Hawaii. Its diet consists of algae and reef invertebrates, such as sea urchins and snails,
which the triggerfish finds by swimming close to the bottom of reefs.

Although the triggerfish tends to keep its distance from onlookers, its distinctive
charging, territorial behavior and appearance—a plump mouth, blue top lip, and size
of up to 10 inches—make it easier to observe.

There are approximately 40 species of triggerfish, and the reef triggerfish’s current
conservation status is “Least Concern.” Many of the animals on O’Reilly covers are
endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique engraving from
Oeuvres du Comte De Lacépede. The series design is by Edie Freedman, Ellie Volck‐
hausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Chapter 1. New World for Developers
	Evolution and Revolution
	Generative AI
	The Benefits
	Minimizing Search
	Your Advisor
	IDE Integration
	Reflecting Your Codebase
	Code Integrity
	AI-Powered Documentation Generator
	Modernization

	Drawbacks
	Hallucinations
	Intellectual Property
	Privacy
	Security
	Training Data
	Bias

	A New Way for Developers
	Career
	10x Developer?
	Skills of the Developer

	Conclusion

	Chapter 8. Coding
	Reality Check
	Judgment Calls
	Learning
	Comments
	Modular Programming
	Starting a Project
	Autofill
	Refactoring
	Ninja Code
	Extract Method
	Decomposing Conditionals
	Renaming
	Dead Code

	Functions
	Object-Oriented Programing
	Frameworks and Libraries
	Data
	Frontend Development
	CSS
	Creating Graphics
	AI Tools

	APIs
	Conclusion

	Chapter 9. Debugging, Testing, and Deployment
	Debugging
	Documentation
	Code Review
	Unit Tests
	Pull Requests

	Deployment
	User Feedback
	The Launch

	Conclusion

	About the Author
	Colophon

