
The Ultimate

CSS SELECTORS
Cheatsheet

BASIC SELECTORS & COMBINATORS

* The Universal Selector - select all elements h1 p p ul p

h1 + p The Adjacent Sibling Combinator - select all <p>
elements that immediately follow a <h1>

h1 p p ul p

h1 ~ p The General Sibling Combinator - select all <p>
elements that follow (and are siblings of) a <h1>

h1 p p ul p

.list > li The Child Combinator - select all elements
that are direct children of .list

<ul class=”list”>
 One
 Two

 Sub Item

ATTRIBUTE SELECTORS - Target through HTML Attributes

button[disabled] Target button elements if they have the disabled attribute applied

input[type=”submit”] Target input elements if they have a type attribute with an exact value of submit

a[href̂=”http://”] Target <a> elements that have a href value that starts with http://

a[href$=”.de”] Target <a> elements that have a href value that ends with .de

a[href*=”twitter”] Target <a> elements that have a href value that contains the word “twitter”

PSEUDO-ELEMENTS - These target elements that do not exist in the HTML (as opposed to pseudo-classes)

div:before {
 content: “”;
}

div:after {
 content: “”;
}

The :before and :aȅer pseudo-elements allow you to insert
content before or aȅer any HTML element that isn’t self closing
(like and <input>).

The content property is required but can be leȅ blank.

These pseudo-elements can be treated and styled like any
other element.

:before div

:afterdiv

Pseudo-elements continued...

1Stephen Greig /

PSEUDO-ELEMENTS CONTINUED

p:first-line Target the first line of text p:first-letter Target the first letter

The following pseudo-elements are not in the specification and currently have varying implementations in the different browsers.
They also require the double colon pseudo-element syntax.

p::-moz-selection
p::selection

Style sections that have been
highlighted by the user

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Aliquam in pharetra ligula, eget maximus leo. Aenean
pretium mi et mauris mollis malesuada.

Placeholder Text

input::-webkit-input-placeholder
input::-ms-input-placeholder
input::-moz-placeholder
input::placeholder

Style an input element’s
placeholer text
These don’t work when comma
separated at the moment.

STATE BASED PSEUDO-CLASSES (The boring pseudo-classes)

:link Selects all unvisited links

:hover Selects elements on mouse hover

:visited Selects all visited links

:active Selects an element whilst it is being activated by the user, for example, when the user is mid-click

:focus Selects elements (typically form elements) that have been focused on via a click or keyboard event

FORM & VALIDATION PSEUDO-CLASSES (More mostly boring pseudo-classes)

:default Selects form elements that are in their default state

:disabled Selects form elements that are in a disabled state

:enabled Selects form elements that are not in a disabled state

:in-range

:out-of-range

Applies to elements that have range limitations; e.g.
<input type=”number” min=”0” max=”5”>

A value of 4 would match :in-range
A value of 6 would match :out-of-range

4

6

Form & Validation pseudo-classes continued...

2Stephen Greig /

FORM & VALIDATION PSEUDO-CLASSES CONTINUED

:valid

:invalid

Selects form elements whose contents are
valid or invalid according to their type; e.g.
<input type=”email”>

steve.greig@adtrak.co.uk

steve:greig@adtrak

:required Selects form elements that have the “required” HTML attribute

:optional Selects form elements that don’t have the “required” HTML attribute

:read-write Selects elements that are user-editable, such as form input elements or
elements that have the “contenteditable” HTML attribute

:read-only Selects elements that are not user-editable (anything that doesn’t match :read-write)

:indeterminate Selects form elements that are in an indeterminate state; e.g. radio buttons can
usually be checked or unchecked, but can sometimes be neither

:checked
Targets radio buttons, checkboxes and select menu <option> elements when
they have been selected by the user. This can be particularly powerfuly,
enabling what has come to be known as “The Checkbox Hack” (see page 6).

STRUCTURAL PSEUDO-CLASSES (The more fun pseudo-classes... but they get funner)

:first-child Selects the first child, regardless of type h1 p p ul p

p:first-of-type Selects the first of a specific type of element h1 p p ul p

:last-child Selects the last child, regardless of type h1 p p ul p

p:last-of-type Selects the last of a specific type of element h1 p p ul p

:only-child Selects an element if it is the sole child and has
no other siblings

pul ul p

p:only-of-type Selects a specific type of element if it is the sole
child and has no other siblings

pul ul p

:nth-child(2) Selects the 2nd child, regardless of type h1 p p ul p

p:nth-of-type(2) Selects the 2nd of a specific type of element h1 p p ul p

:nth-last-child(2) Selects the 2nd child, regardless of type, but
counting from the end

h1 p p ul p

p:nth-last-of-type(2) Selects the 2nd of a specific type of element,
but counting from the end

h1 p p ul p

3Stephen Greig /

:root

:lang(en)

:empty <div></div> /* Empty */
<div> </div> /* Not empty */

p:not(:first-child) p p p p p

:target

<div id=”Lorem”>A</div>

div { color: black; }
div:target { color: red; }

url.com

url.com#Lorem

:nth-child(2n+1)
1 2 3 4 5

6 7 8 9 10

:nth-child(-n+3) 1 2 3 4 5

:nth-last-child(-n+3) 1 2 3 4 5

:nth-child(n+2):nth-child(-n+4) 1 2 3 4 5

:nth-child(4n+2),
:nth-child(4n+3)

:nth-child(8n+2),
:nth-child(8n+4),
:nth-child(8n+5),
:nth-child(8n+7)

1 2

3 4

5 6

7 8

9 10

1 2

5 6

9 10

13 14

17 18

3 4

7 8

11 12

15 16

19 20

CSS IF STATEMENTS?! (The mental stuff)

li:nth-child(7):last-child {
 width: 100%;
}

Target the last item if total items = x
This example targets the last child only if there
are 7 items in total

1 2 3

4 5 6

7

li:nth-child(4):nth-last-child(4),
li:nth-child(4):nth-last-child(4) ~ li {
 width: 25%;
}

1 2 3

4 5 6 7

li:first-child:nth-last-child(3),
li:first-child:nth-last-child(3) ~ li {
 background: orange;
}

1 2

1 2 3

1 2 3 4

li:first-child:nth-last-child(n+3),
li:first-child:nth-last-child(n+3) ~ li {
 background: orange;
}

1 2

1 2 3

1 2 3 4

li:first-child:nth-last-child(-n+3),
li:first-child:nth-last-child(-n+3) ~ li {
 background: orange;
}

1 2

1 2 3

1 2 3 4

li:first-child:nth-last-child(n+2):nth-last-child(-n+4),
li:first-child:nth-last-child(n+2):nth-last-child(-n+4) ~ li {
 background: orange;
}

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

These selectors will work in IE9+. Kudos to Heydon Pickering and Lea Verou for making me aware of these techniques.

5Stephen Greig /

BONUS CONTENT

The Checkbox Hack - In its simplest form, it can enable easy custom form controls

<input type=”checkbox” id=”abc”>
<label for=”abc”>Option 1</label>

input {
 opacity: 0;
 position: absolute;
}

input + label {
 background: black;
}}

input:checked + label {
 background: orange;
}

When the input and label have corresponsing “id”
and “for” attributes, the label becomes clickable
on behalf of the checkbox input.

We can then hide the actual checkbox input and
style the label however we want.

We We can use the :checked pseudo-class and the
adjacent sibling combinator (+) to style the
currently selected option however we want.

Option 1

Option 2

Option 3

Option 4

The “Lobotomised Owl Selector” - Made famous by Heydon Pickering

* + * {
 margin-top: 1.5em;
}

.sidebar > * + * {
 margin-top: 1.5em;
}

margin-top: 1.5em;

margin-top: 1.5em;

Using Pseudo-elements to Output Attribute Values

p:after {
 content: attr(datetime);
}

a:after {
 content: " ("attr(href)")";
}

Pseudo-elements are all the rage, but less mainstream is their ability to
output the value of a HTML attribute on the selected element.

This example would output an <a> element’s href value in brackets aȅer
the link; which could be particularly useful for print stylesheets.

6Stephen Greig /

	1 CSS Selectors Cheatsheet
	2 CSS Selectors Cheatsheet
	3 CSS Selectors Cheatsheet
	4 CSS Selectors Cheatsheet
	5 CSS Selectors Cheatsheet
	6 CSS Selectors Cheatsheet

