The Ultimate

CSS SELECTORS

Cheatsheet

BASIC SELECTORS & COMBINATORS

hl + p

.list > 11

The Universal Selector - select all elements n n n
The Adjacent Sibling Combinator - select all <p> n n n
elements that immediately follow a <h1>

The General Sibling Combinator - select all <p> n n n
elements that follow (and are siblings of) a <h1>

<ul class="1list”>

<1i>0
The Child Combinator - select all elements <11>T:2

that are direct children of list
Sub Item

ATTRIBUTE SELECTORS - Target through HTML Attributes

button[disabled] Target button elements if they have the disabled attribute applied

input[type="submit”] Targetinput elements if they have a type attribute with an exact value of submit
alhref*="http://"] Target <a> elements that have a href value that starts with http://
a[href$=".de”] Target <a> elements that have a href value that ends with .de
a[href*="twitter”] Target <a> elements that have a href value that contains the word “twitter”

PSEUDO-ELEMENTS - These target elements that do not exist in the HTML (as opposed to pseudo-classes)

div:before |

content: ; (like and <input>).

div:after {

content:

Stephen Greig /

MW/
r

The :before and :after pseudo-elements allow you to insert
content before or after any HTML element that isn’t self closing

The content property is required but can be left blank.

These pseudo-elements can be treated and styled like any
other element.

PSEUDO-ELEMENTS CONTINUED

Target the first line of text Target the first letter

The following pseudo-elements are not in the specification and currently have varying implementations in the different browsers.

They also require the double colon pseudo-element syntax.

: . L i dolor sit t
p::selection [

highlighted by the user pretium mi et mauris mollis malesuada.

input::-webkit-input-placeholder Style an input element’s
input::-ms-input-placeholder placeholer text
input::-moz-placeholder These don’t work when comma
input: :placeholder separated at the moment.

STATE BASED PSEUDO-CLASSES (The boring pseudo-classes)

:link Selects all unvisited links

:hover Selects elements on mouse hover

:visited Selects all visited links

:active Selects an element whilst it is being activated by the user, for example, when the user is mid-click

: focus Selects elements (typically form elements) that have been focused on via a click or keyboard event

FORM & VALIDATION PSEUDO-CLASSES (More mostly boring pseudo-classes)

:default Selects form elements that are in their default state

:disabled Selects form elements that are in a disabled state

:enabled Selects form elements that are not in a disabled state

T Applies to elements that have range limitations; e.g. "

. s <input type="number” min="0"” max="5"> 4 -

; Avalue of 4 would match :in-range .

:out-of-range 6 =
Avalue of 6 would match :out-of-range

Form & Validation pseudo-classes continued...

Stephen Greig / 2

FORM & VALIDATION PSEUDO-CLASSES CONTINUED

:valid Selects form elements whose contents are steve.greig@adtrak.co.uk
valid or invalid according to their type; e.g.
:invalid <input type="email”’> steve:greig@adtrak
‘required Selects form elements that have the “required” HTML attribute
:optional Selects form elements that don’t have the “required” HTML attribute

. Selects elements that are user-editable, such as form input elements or
:read-write . .
elements that have the “contenteditable” HTML attribute

:read-only Selects elements that are not user-editable (anything that doesn’t match :read-write)

Selects form elements that are in an indeterminate state; e.g. radio buttons can

:indeterminate . N
usually be checked or unchecked, but can sometimes be neither

Targets radio buttons, checkboxes and select menu <option> elements when
they have been selected by the user. This can be particularly powerfuly,
enabling what has come to be known as “The Checkbox Hack” (see page 6).

:checked

STRUCTURAL PSEUDO-CLASSES (The more fun pseudo-classes... but they get funner)

:first-child Selects the first child, regardless of type

p:first-of-type Selects the first of a specific type of element

:last-child Selects the last child, regardless of type

p:last-of-type Selects the last of a specific type of element
-only-child Selects an.el.ement if it is the sole child and has i : ii ii
no other siblings | ;! | : I

R Se!ects a specific type of el.ement if itis the sole i n : i i i n i
child and has no other siblings i ;o i ! i

:nth-child(2) Selects the 2nd child, regardless of type

p:nth-of-type (2) Selects the 2nd of a specific type of element

Selects the 2nd child, regardless of type, but

:nth-last-child(2))
counting from the end

Selects the 2nd of a specific type of element,
but counting from the end

o)
=}
o
d

3 last-of-type(2)

Stephen Greig / 3

MISCELLANEOUS PSEUDO-CLASSES

:root Selects the highest parent element in a document, typically the html element

:lang(en) Selects an element with the “lang” HTML attribute applied

. <div></div> /* Empty */
:empty Selects an element that is completely empty PEY

<div> </div> /* Not empty */

<div id="Lorem”>A</div>
soucsncomert [I (<) [A

:target whose id value is
currently being targeted div { color: black; }
viaa#inthe URL div:target { color: red; }

The Negation Pseudo-class - Targets elements
except for a specified variant of that element

p:not(:first-child)

[url.com#Lorem ’ I\

NTH-CHILD EXPRESSIONS (The fun stuff)

inth-child(2n+1) Target an infinite sequence
R
Best way to memorise this is:
The first number is the sequence (every 2 elements) n “ n

The second number is where the sequence starts (the 1st element)

: Using negative numbers to select the first
:nth-child(-n+3
i i) x amount of items 1 2 3 : 2
nth-last-child (-n+3) TeEEENE numbers to select the last
x amount of items

Combining nth-child
:nth-child (n+2) :nth-child(-n+4) expressions to select an

isolated range of items
B B
Using multiple selectors for more

obtactsequences B I
BE

:nth-child (8n+2) ,
SR o R

:nth-child (8n+5) ,
el ETET

:nth-child (4n+2),

:nth-child (4n+3)

'_\

Stephen Greig / 4

CSS IF STATEMENTS?! (The mental stuff)

1li:nth-child(7)
width: 100%;

:last-child {

li:nth-child(4) :nth-last-child((4),
li:nth-child(4) :nth-last-child(4) ~ 1i {
width: 25%;

li:first-child:nth-last-child(3),
li:first-child:nth-last-child(3) ~ 1li {
background: orange;

li:first-child:nth-last-child(n+3),
li:first-child:nth-last-child(n+3) ~ 1li {
background: orange;

li:first-child:nth-last-child(-n+3),
li:first-child:nth-last-child(-n+3) ~ 1li {
background: orange;

li:first-child:nth-last-child(n+2) :nth-last-child(-n+4),
li:first-child:nth-last-child(n+2) :nth-last-child(-n+4) ~ 1i {

background: orange;

Target all items if total items is between x and y

This example targets the items if there are between 2 and 4 items in total

Target the last item if total items = x
This example targets the last child only if there
are 7 items in total

Target the last few items if total
items = x

This example targets the last 4 items
but only if there are 7 items in total

Target all items if total items = x
This example targets the items if there
are exactly 3 items in total

HE
HEEB
HHED

Target all items if total items =x

or greater

This example targets the items if
HEBRn

there are 3 items or greater in total

HE
HER
HEBn

Target all items if total items =x
or fewer

This example targets the items if
there are 3 items or fewer in total

B

HE
HBEEB
HEED
HE BB

These selectors will work in IE9+. Kudos to Heydon Pickering and Lea Verou for making me aware of these techniques.

Stephen Greig /

BONUS CONTENT

The Checkbox Hack - In its simplest form, it can enable easy custom form controls

<input type="checkbox” id="abc”>
<label for="abc”>Option 1</label>

Option 1
Option 2

input { Option3 v

When the input and label have corresponsing “id”
and “for” attributes, the label becomes clickable
on behalf of the checkbox input.

We can then hide the actual checkbox input and

opacity: 0; style the label however we want.

position: absolute;

Option 4

We can use the :checked pseudo-class and the
adjacent sibling combinator (+) to style the

input + label { currently selected option however we want.

background: black;

input:checked + label {
background: orange;

The “Lobotomised Owl Selector” - Made famous by Heydon Pickering

* + *x

essaRe s 9. Beg The lobotomised owl selector targets anything

that follows anything.

| margin-top: 1.5em;
Heading

By combining with more combinators, its most i
practical use is to apply consistent vertical 0 AT st T £ M PR, Autrigian
margins to specific sections of your layout. e

.sidebar > * + * {
margin-top: 1.5em;

] margin-top: 1.5em;

This example would target anything that follows Heading
anything and is a direct child of the .sidebar =il e s
element, and then apply a margin-top of 1.5em. Pl A N, i g

Using Pseudo-elements to Output Attribute Values

:after {

. Pseudo-elements are all the rage, but less mainstream is their ability to
content: attr (datetime) ;

output the value of a HTML attribute on the selected element.

:after {

" This example would output an <a> element’s href value in brackets after
content:

the link; which could be particularly useful for print stylesheets.

("attr (href)")";

Stephen Greig / 6

	1 CSS Selectors Cheatsheet
	2 CSS Selectors Cheatsheet
	3 CSS Selectors Cheatsheet
	4 CSS Selectors Cheatsheet
	5 CSS Selectors Cheatsheet
	6 CSS Selectors Cheatsheet

