BARRASON'S ENGINEERS Structural and Civil Consultants

Building Act 1993 Section 238(1)(a) **Building Regulations 2018** Regulation 126

CERTIFICATE OF COMPLIANCE FOR PROPOSED BUILDING WORK

This certificate is issued to:

TBA

This certificate is issued in relation to the proposed building work at:

Non-site-specific design

Nature of proposed building work:

Construction of a generic slab for a portable spa of maximum dimensions 3500 x 3500 x 1100.

Building classification as per NCC 2022

Part of building: non-residential slab BCA Classification: 10b

Prescribed class of building work for which this certificate is issued:

Design or part of the design of building work relating to *Structural matter*

Documents setting out the design that is certified by this certificate:

Document no.	Document date	Type of document	No. pages	Prepared by	
2104201	10/05/21	Computations	3	Barrason's Engineers	
2104201	10/05/21	Drawings	2	Barrason's Engineers	

The design certified by this certificate complies with the following provisions of Building Act 1993, Building Regulations 2018, National Construction Code Volume 2 or Australian Standard:

Act, Regulation, Code or Standard	Section, Regulation, Part, Performance Requirement or other provision
NCC 2022 Volume 2	Part 3.2, 3.4 & 3.11 of Volume 2
AS/NZS 1170.0	Structural Design Actions – General Principles
AS/NZS 1170.1	Structural Design Actions – Permanent, imposed and other actions
AS/NZS 1170.2	Structural Design Actions – Wind Actions
AS 3600	Concrete Structures
AS 4100	Steel Structures

BARRASON'S ENGINEERS

Structural and Civil Consultants

CCAA T48 Industrial Floors and Pavements
--

I prepared the design, or part of the design, set out in the documents listed above.

I certify that the design set out in the documents listed above complies with the provisions set out above.

I believe that I hold the required skills, experience and knowledge to issue this certificate and can demonstrate this if requested to do so.

Engineer:

Full Name: Andrew Barraclough

Registrations: FIEAUST, CPEng, NER, RBP

Qualifications: BEng MEng PhD

Address: Lvl 2, 2 Pacific Promenade, Pakenham, VIC 3810

Email: admin@barrasons.com.au

Endorsed building engineer area of engineering: Structural

Endorsed building engineer registration no.: PE0000600, RPEQ 22822

Building practitioner registration category and class: C

Signed:

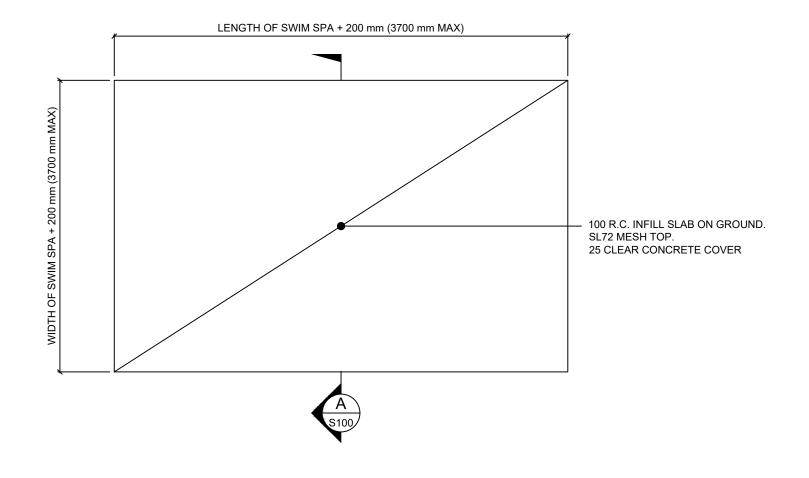
Andrew Barraclough Date of issue of certificate: 14/11/2022

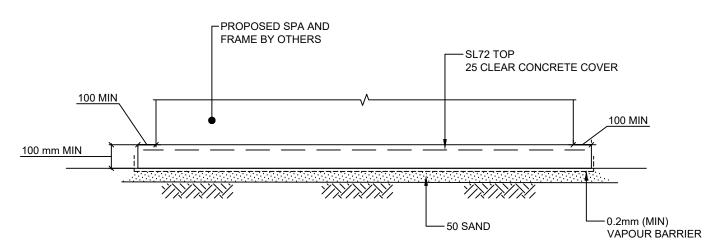
PORTABLE SPA GENERIC SLAB

CONSTRUCTION DRAWNGS

Sheet Index

Layout ID	Layout Name			
S000	Title Sheet			
S001	General Notes			
S100	Portable Spa Slab			


TITLE:


TITLE SHEET

FOR
CONSTRUCTION

CLIENT: SPA WORLD			REVISION	AMENDED DESCRIPTION	DRAWN BY	DATE
			A	FOR CONSTRUCTION	B.E.	10/05/21
JOB No: 2104201 DRAWING No:						
· · · · · · · · · · · · · · · · · · ·						
SCALE:						

NOTES:

- THIS GENERIC SLAB DESIGN IS <u>ONLY</u> FOR SPA WORLD PORTABLE SPA MODELS OF MAXIMUM DIMENSIONS: **3500 x 3500 x 1100.**
- FOR SPA MODELS EXCEEDING THESE DIMENSIONS USE THE SPA WORLD SWIM SPA SLAB DESIGN OR CONTACT THIS OFFICE FOR GUIDANCE
- SLAB DESIGN BASED ON POINT LOAD TRANSFERAL FROM PORTABLE SPA AT FULL CAPACITY.
- SLAB TO BE FOUNDED ON SOIL WITH A MINIMUM ALLOWABLE BEARING CAPACITY OF 50 kPa AND A MINIMUM 2% CBR SUBGRADE. THIS OFFICE TO BE CONTACTED IF DIFFERS.
- TREE EFFECTS, PROXIMITY OF ASSETS, ABNORMAL MOISTURE CONDITIONS, UNCONTROLLED FILL & AGGRESSIVE SOIL TYPES HAVE NOT BEEN TAKEN INTO CONSIDERATION. THIS OFFICE TO BE CONTACTED FOR SITE SPECIFIC DESIGN IF THESE CONDITIONS EXIST OR SITE IS CLASSIFIED 'P'
- SWIMMING POOL AND SPA SAFETY TO FOLLOW THE GUIDELINES OF PN-05-2018 PUBLISHED BY VBA.

TITLE:

PORTABLE SPA SLAB PLAN

FOR

CONSTRUCTION

PROJECT: PORTABLE SPA SLAB

CLIENT: SPA WORLD			REVISION	AMENDED DESCRIPTION	DRAWN BY	DATE
			A	FOR CONSTRUCTION	B.E.	10/05/21
JOB No: 2104201 DRAWING No: S100						
SCALE:						

Portable Spa Slab Spa World Australia Engineer

Page: Project No.: 2104201 Designed: BE

Floor Slab SL01
Barrasons Engineers

INDUSTRIAL FLOOR SLABS V5.02

Slab: (Floor Slab SL01) 100mm thick slab, f'c = 25MPa, SL72 Top

Subgrade: Subgrade Modulus (K) = 17kPa/mm (2.0% CBR)

Position: Edge condition

 Post loads:
 No post loading
 OK (0.00)

 Wheels:
 No wheel loading
 OK (0.00)

 UDL's:
 23kPa floor UDL
 OK (0.88)

Concrete Parameters

Normal density concrete

Concrete strength (f'c) = 25 MPa Slab thickness (h) = 100 mm

Concrete density (p) = 2400 kg/m³ Normal density = 2400kg/m³

cmi = 27.9 MPa AS 3600 - Table 3.1.2

Modulus of elasticity (Ec = $p^{1.5}*0.043*Vfcmi$) = 26700 MPa \pm 20% AS 3600 - Cl 3.1.2

Method for flexural strength = A (C)&CA,(T)48,(A)S 3600,(O)ther

90 day flexural tensile strength (f'ct.f = $0.6*\sqrt{f'c}$) = 3.00 MPa

 $\begin{array}{ll} \mbox{Section modulus (Z) =} & 1666667 \ mm^s \\ \mbox{Poissons ratio (μ) =} & 0.15 \end{array}$

Radius of relative stiffness ($I = [E^*h^3/(12^*(1-\mu^2)^*K)]^{1/4} = 605 \text{ mm}$

Point under consideration = E (I)nternal, (C)orner, (E)dge

Consider load transfer between slabs at a joint = Y (Y)es, (N)o (Applicable - Corner and edge only)

Corner transfer multiplier = 0.70 Chandler (Load transfer between slabs)

Edge transfer multiplier = 0.85 Chandler (Load transfer between slabs)

Consider distance reduction to edge of radius = N (Y)es, (N)o

Soil Parameters

Modulus of subgrade reaction (K) = 17 kPa/mm

Geotechnical report = N/A

Recommend nominal subbase thickness = 200 mm T48-2009 - Table 1.5

Conversions (Valid for CBR's between 2 & 30):

California Bearing Ratio (CBR) = 2 %

Modulus of subgrade reaction (K) = 16.9 kPa/mm

Modulus of subgrade reaction (K) = 17 kPa/mm

California Bearing Ratio (CBR) = 2.0 %

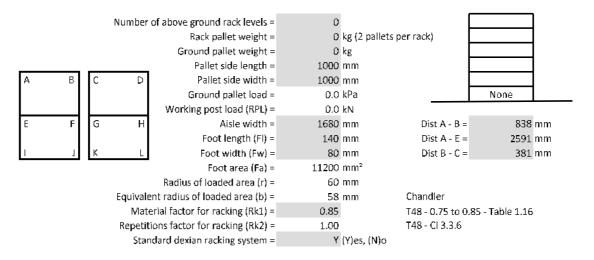
Bound sub-base thickness = 100 mm (100, 125, 150)

California Bearing Ratio (CBR) = 2.0 % (max 12%)

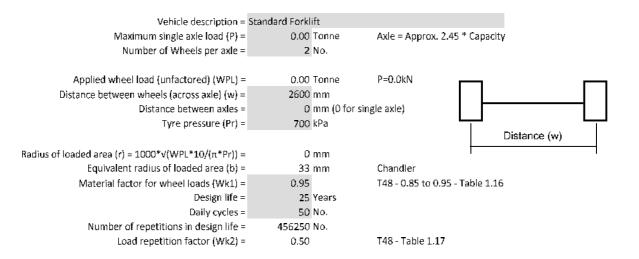
Equivalent design CBR = 10.2 % (35% max.) T48-2009 - Figure 1.26

Modulus of subgrade reaction (K) = 55 kPa/mm

Portable Spa Slab Spa World Australia Engineer


Page: Project No.: 2104201 Designed: BE

Floor Slab SL01


INDUSTRIAL FLOOR SLABS V5.02

Barrasons Engineers

Rack Loadings with Floor Pallets (Standard Dexian layout)

Wheel Loadings (Single Axle - 2 wheels per axle)

Uniform Floor Loading

Number of pallets on the floor =	1	
Ground pallet weight =	2288	kg
Pallet side length =	1000	mm
Pallet end length =	1000	mm
Ground Pallet load (q) =	22.9	kPa
Aisle width =	2000	mm
Material factor for UDL (Uk1) =	0.85	T48 - 0.75 to 0.85 - Table 1.16
Repetition factor for UDL (Uk2) =	0.75	T48 - CI 3.3.6

Portable Spa Slab

Spa World Australia Engineer

1 of 1 Page: **Project No.:** 2104201 Designed: BE

> Floor Slab SL01 Barrasons Engineers

INDUSTRIAL FLOOR SLABS V5.02

(Floor Slab SL01) 100mm thick slab, f'c = 25MPa, SL72 Top Slab:

Subgrade Modulus (K) = 17kPa/mm (2.0% CBR) Subgrade:

UDL's: 23kPa floor UDL OK (0.88)

Position: **Edge condition**

Uniform Loading

UDL Loading (q) = 22.9 kPa

Uniform stresses - Variable Storage Layout - C&CA CI 5.6.3

Limiting stress (f'ct.f) = 3.000 MPa

Use FOS = N (Y)es, (N)o - No uses Uk1 & Uk2

Reduction = Uk1 * Uk2 = Factored limiting stress (fca = fct.f * Reduction) = 1.913 MPa

Total allowable UDL (W = 0.33*fca*v(h*K)) = 26.0 kPa (C&CA CI 5.6.3)

OK (0.88)

Uniform stresses - Patterned - M Hetenyi

Critical conditions

 $\lambda = [3*k/(E*h^3)]^{1/4} =$ 0.001176

> $a = \pi/(4*\lambda) =$ 668 mm b = 5*a = 3340 mm

1336 mm wide Critical when aisle (2*a) =

 $Mc (max) = 5.313*q*V(E*h^3/3K) =$ 2.78 kNm/m

Stress (σu) = $6*M/h^2$ = 1.669 MPa

Factored UDL stress (σ uf = σ u / (Uk1 * Uk2)) = 2.618 MPa

> Limiting stress (f'ct.f) = 3.000 MPa OK (0.87)

Actual conditions

2000 mm Aisle width =

 $\lambda = [3*k/(E*h^3)]^{1/4} =$ 0.001176 a = Aisle width/2 = 1000 mm

b = 5*a = 5000 mm

 $Mc = q/(2*\lambda^2)*[e^{(-\lambda^*a)}*sin(\lambda^*a)-e^{(-\lambda^*b)}*sin(\lambda^*b)] =$ 2.37 kNm/m

Stress (σ u1) = 6*Mc/h² = 1.420 MPa

Stress ($\sigma u2$) = 0.031387*q/h²* $V(E*h^3/(3*K))$ = 1.643 MPa

> Stress (σ u) = Max(σ u1, σ u2) = 1.643 MPa

Factored UDL stress (σ uf = σ u / (Uk1 * Uk2)) =

OK (0.86) Limiting stress (f'ct.f) = 3.000 MPa

2.577 MPa