

Building Act 1993 Section 238(1)(a) Building Regulations 2018 Regulation 126

CERTIFICATE OF COMPLIANCE FOR PROPOSED BUILDING WORK

This certificate is issued to:

TBA

This certificate is issued in relation to the proposed building work at:

Non-site-specific design

Nature of proposed building work:

Construction of a generic concrete slab for a Spa World swim spa of maximum 6000 mm length.

Building classification as per NCC 2022

Part of building: BCA Classification: 10b

Prescribed class of building work for which this certificate is issued:

Design or part of the design of building work relating to *Structural matter*

Documents setting out the design that is certified by this certificate:

Document no.	Document no. Document date Ty		No. pages	Prepared by
2004093	30/11/2022	Drawings REV C	3	Barrason's Engineers
2004093	30/11/2022	Computations	1	Barrason's Engineers

The design certified by this certificate complies with the following provisions of Building Act 1993, Building Regulations 2018, National Construction Code Volume 2 or Australian Standard:

Act, Regulation, Code or Standard	Section, Regulation, Part, Performance Requirement or other provision
NCC 2022 Volume 2	Part 3.2, 3.4 & 3.11 of Volume 2
AS/NZS 1170.0	Structural Design Actions – General Principles
AS/NZS 1170.1	Structural Design Actions – Permanent, imposed and other actions
AS/NZS 1170.2	Structural Design Actions – Wind Actions
AS 2870	Residential Slabs and Footings
AS 3600	Concrete Structures
AS 4100	Steel Structures

I prepared the design, or part of the design, set out in the documents listed above.

I certify that the design set out in the documents listed above complies with the provisions set out above.

I believe that I hold the required skills, experience and knowledge to issue this certificate and can demonstrate this if requested to do so.

Full Name: Andrew Barraclough

Registrations: FIEAUST, CPEng, NER, RBP

Qualifications: BEng MEng PhD

Address: Lvl 2, 2 Pacific Promenade, Pakenham, VIC 3810

Email: admin@barrasons.com.au

Endorsed building engineer area of engineering: Structural **Endorsed building engineer registration no.:** PE0000600, RPEQ 22822

Building practitioner registration category and class: C

Signed:

Andrew Barraclough

Date of issue of certificate: 30/11/2022

Bart

GENERIC SLAB FOR SWIM SPA

Sheet Index

Layout ID	Layout Name
S000	Title Sheet
S001	General Notes
S100	Spa Slab Plan

TITLE:

	REVISION	AMENDED DESCRIPTION	DRAWN BY	DATE
	A	FOR CONSTRUCTION	B.E.	15.04.20
DDAM/IN/O No.	В	AMENDED NOTES & DIMENSIONS	B.E.	17.04.20
DRAWING No:	С	AMENDED NOTES & DIMENSIONS	B.E.	30.11.22

GENERAL:

- G1. ALL WORK AND MATERIALS TO CONFORM TO THE DRAWINGS, THE SPECIFICATION AND CURRENT BUILDING CODE OF AUSTRALIA AND AUSTRALIAN STANDARDS
- G2. THESE DRAWINGS SHALL BE READ IN CONJUNCTION WITH THE ARCHITECTURAL AND OTHER CONSULTANTS' DRAWINGS, THE SPECIFICATION AND ALL OTHER WRITTEN INSTRUCTIONS ISSUED DURING THE CONSTRUCTION.
- G3. THE BUILDER SHALL CONFIRM ALL RELEVANT DIMENSIONS BEFORE COMMENCING CONSTRUCTION AND/OR FABRICATION. DO NOT SCALE STRUCTURAL DRAWINGS.
- G4. ALL DISCREPANCIES SHALL BE REFERRED TO THE ARCHITECT/ENGINEER FOR RESOLUTION BEFORE PROCEEDING WITH THE WORKS
- G5. ALL DIMENSIONS ARE IN MILLIMETRES U.N.O. ALL LEVELS ARE EXPRESSED IN METRES.
- G6. SUBSTITUTIONS SHALL BE MADE WITH THE ENGINEER'S WRITTEN APPROVAL, BUT NOT AN AUTHORISATION FOR AN EXTRA. ANY CLAIM FOR AN EXTRA MUST BE APPROVED BY THE ENGINEER, ARCHITECT AND/OR OWNER BEFORE COMMENCEMENT OF THE WORK.
- G7. THE BUILDER SHALL MAINTAIN THE WORKS IN A SAFE, STABLE CONDITION AND ENSURE THAT NO PART IS OVER-STRESSED DURING CONSTRUCTION
- G8. ALL PROPS AND FORMWORK TO A BEAM OR SLAB SHALL BE REMOVED BEFORE CONSTRUCTING MASONRY WORKS.
- G9. ALL NON-LOADBEARING WALLS SHALL BE CONSTRUCTED 20mm CLEAR OF SLAB AND BEAM SOFFITS U.N.O.
- G10.NO HOLES, RECESSES OR CHASES OTHER THAN THOSE SHOWN ON THE STRUCTURAL DRAWINGS SHALL BE MADE WITHOUT THE ENGINEERS WRITTEN APPROVAL
- G11.THE ENGINEER ACCEPTS NO RESPONSIBILITY FOR THE THE WORKS CARRIED OUT ON SITE UNLESS INSPECTED AND APPROVED IN WRITING BY THE ENGINEER.
- G12. THE STRUCTURAL WORKS HAVE BEEN DESIGNED FOR THE FOLLOWING LOADS BASED ON MAXIMUM SIZE SWIM SPA MODEL SOLD BY SPA WORLD AT FULL CAPACITY

DEAD LOAD	LIVE LOAD
100 kN	5 kN

WIND CLASSIFICATION N/A TO SLAB WIND DESIGN LOAD PRESSURE 0.8 kPa

- G13.WHERE ADDITIONAL CONSTRUCTION LOADS EXCEED THE AN ALLOWABLE LIVE LOAD, THE BUILDER TO NOTIFIED THIS OFFICE BEFORE COMENCING WORKS.
- G14. BEFORE STARTING WORKS ON SITE. IT IS THE BUILDER'S RESPONSIBILITY TO ENSURE THE EXISTING UNDERGROUND SERVICES WILL NOT AFFECT THE WORKS. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY FOR ANY SITE DESCREPANCIES TO THE DRAWINGS, EXISTING LEVELS ARE TO BE VERIFIED ON SITE.
- G15 ALL PROPRIETARY PRODUCTS ARE TO BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS SPECIFICATIONS
- G16.ALL REQUIRED TESTS AND/OR SITE INSPECTION ARE TO THE CONTRACTORS EXPENSE.

FOOTINGS AND SLAB ON GROUND

- F1. ALL WORK AND MATERIALS TO COMPLY WITH AS2870 F2. ALL FOOTINGS SHALL BE FOUNDED ON SOIL WITH A
- MINIMUM ALLOWABLE BEARING PRESSURE OF 50 kPa. PRIOR TO COMMENCING WORK, THE BUILDER IS TO FAMILARISE THEMSELVES WITH THE CONTENT OF ANY SOIL REPORT.
- F3. FOOTING DEPTHS SPECIFIED ON THE DRAWINGS ARE MINIMUM DIMENSIONS ONLY. IF NOT SHOWN, REFER TO THE SOIL REPORT FOR THE REQUIRED FOUNDING DEPTH. STRIP / PAD FOOTINGS ARE TO BE FOUNDED ON ORIGINAL UNDISTURBED GROUND WITH AN ALLOWABLE BEARING CAPACITY OF 100 kPa.
- F4. EDGE BEAMS AND LOAD BEARING RIBS SHALL BE FOUNDED ON UNDISTURBED GROUND WITH AN ALLOWABLE BEARING CAPACITY OF 100kPa, THE INTERNAL SLAB & NON-LOAD BEARING RIBS SHALL BE FOUNDED ON SOIL WITH MINIMUM BEARING CAPACITY OF 100 kPa

- F6. ALL ORGANIC MATERIAL SHALL BE REMOVED FROM THE AREA BENEATH THE SLABS ON GROUND. THE GROUND SHALL BE PROOF ROLLED WITH A 3 TONNE ROLLER PRIOR TO PLACING COMPACTED FILL. IF SPACE IS CONFINED, A LIGHT WEIGHT DEFLECTOMETER MAY BE APPROPRIATE FOR THE SOIL CONDITIONS. THIS OFFICE SHOULD BE CONTACTED FOR ADVICE. ANY SOFT SPOTS SHALL BE DUG OUT AND REPLACED WITH COMPACTED CRUSHED ROCK OR 15MPa BLINDING CONCRETE. IN ACCORDANCE WITH AS2870 AND AS3798.
- F7. UNLESS OTHERWISE SPECIFIED IN THE SOIL REPORT. FILLING USED IN THE CONSTRUCTION OF THE SLAB EXCEPT WHERE THE SLAB IS SUSPENDED SHALL CONSIST OF CONTROLLED FILL OR ROLLED FILL AS FOLLOWS:
 - a. CONTROLLED FILL IS MATERIAL THAT HAS BEEN PLACED AND COMPACTED IN LAYERS BY COMPACTION EQUIPMENT WITHIN DEFINED DENSITY REQUIREMENT. EXCEPT AS PROVIDED BELOW, CONTROLLED FILL SHALL BE PLACED IN ACCORDANCE **WITH AS 3798**

SAND FILL UP TO 0.8m DEEP, WELL COMPACTED IN NOT MORE THAN 0.3m THICK LAYERS BY A VIBRATING PLATE OR VIBRATING ROLLER. SHALL BE DEEMED TO COMPLY WITH THIS REQUIREMENT. A SATISFACTORY TEST FOR SAND FILL NOT CONTAINING GRAVEL SIZED MATERIAL IS THE ACHIEVEMENT OF A BLOW COUNT OF 7 OR MORE PER 0.3m USING THE PENETROMETER TEST DESCRIBED IN AS 1289.6.3.3. NON-SAND FILL UP TO 0.4m DEEP, WELL COMPACTED IN NOT MORE THAN 0.15m LAYERS BY A MECHANICAL ROLLER OR EQUIVALENT SHALL BE DEEMED TO COMPLY WITH THIS REQUIREMENT. CLAY FILL SHALL BE MOIST DURING COMPACTION. b. ROLLED FILL CONSISTS OF MATERIAL COMPACTED IN LAYERS BY REPEATED ROLLING WITH AN EXCAVATOR. ROLLED FILL SHALL NOT EXCEED 0.6m COMPACTED IN LAYERS NOT MORE THAN 0.3m THICK FOR SAND OR 0.3m COMPACTED IN LAYERS NOT MORE THAN 0.15m THICK FOR OTHER MATERIAL c. THE EXTENT OF CONTROLLED FILL AND ROLLED FILL REQUIRED SHALL BE DETERMINED ON SITE IN ACCORDANCE WITH SECTION 6 OF AS2870 AND SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR & BUILDER

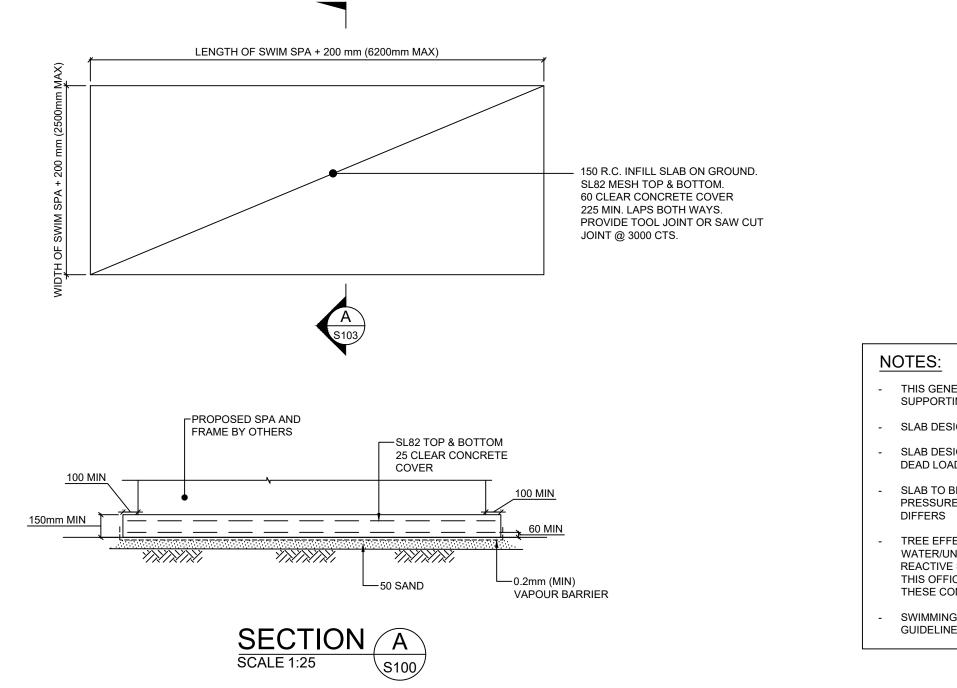
- F8. WHERE DEPTH OF CONTROLLED FILL IS THICKER THAN THAT SPECIFIED ABOVE, FILL MATERIAL SHALL BE SPREAD AND COMPACTED IN UNIFORM LAYERS NOT EXCEEDING 0.15m THICK. TOP SURFACE LAYER SHALL BE COMPACTED TO MINIMUM 98% STANDARD DRY DENSITY DETERMINED BY METHODS IN ACCORDANCE WITH AS1289. LOWER LAYERS SHALL BE COMPACTED TO 95% STANDARD DRY DENSITY. THE MOISTURE CONTENT OF THE FILL MATERIAL SHALL BE ADJUSTED TO WITHIN 2% OF THE OPTIMUM MOISTURE CONTENT DURING COMPACTION TO ENSURE THAT THE SPECIFIED COMPACTION IS OBTAINED. COMPACTION TESTS SHALL BE CARRIED OUT AT A RATE OF ONE TEST PER LAYER PER 100 SQUARE METRES OF FILL. TESTS ARE TO BE CARRIED OUT BY INDEPENDENT NATA REGISTERED LABORATORIES SUBMIT REPORT TO THIS OFFICE FOR APPROVAL
- F9. FOUNDATIONS SHALL BE INSPECTED AND APPROVED BY THE ENGINEER OR BUILDING INSPECTOR BEFORE LAYING MEMBRANES AND POURING CONCRETE. IF AN UNUSUAL GROUND CONDITION IS ENCOUNTERED DURING THE SITE EXCAVATION, REPORT TO THIS OFFICE FOR RESOLUTION.
- F10. NO EXCAVATION IS TO BE TAKEN BELOW THE BASE OF ADJACENT / EXISTING FOOTINGS. IF IT IS UNAVOIDABLE, FOR THE CASE OF NEW FOOTINGS, BLINDING CONCRETE GRADE 15MPa SHALL BE PROVIDED BENEATH THE NEW FOOTING AND FOUNDING BELOW ANGLE OF REPOSE. FOR THE CASE OF EXISTING FOOTINGS, UNDERPINNING IS REQUIRED. REFER TO THIS OFFICE FOR DETAILS.
- F11. ALL FOUNDATIONS ARE TO BE FREE OF WATER AND LOOSE MATERIAL
- F12. OVER EXCAVATION IS TO BE FILLED TO THE UNDERSIDE OF FOOTINGS WITH 15MPa BLINDING CONCRETE
- F13. TERMITE PROTECTION SHALL BE PROVIDED AS REQUIRED BY AUSTRALIAN STANDARD AND THE LOCAL STATUTORY AUTHORITY.
- F14. A 0.2mm POLYTHENE MEMBRANE SHALL BE CONTINUOUS UNDER SLAB AND RIBS LAPPED 200mm MINIMUM WHERE REQUIRED AND TAPED AT ALL SERVICE PENETRATIONS, LAPS AND PUNCTURES. THE MEMBRANE IS TO EXTEND UNDER AND TO THE SIDES OF SLABS, BEAMS AND THICKENINGS.

Т	N SUCH A MANNER TO PREVENT RE O THE FOUNDATIONS YMBOLS ON THE DRAWING FOR RE			C8 C9	SLABS AND BEAMS ARE U.N.O. AND FINISHED WI MINIMUM COVER TO ALL	TH A STEEL FLOA	AT.	Y
	S FOLLOWS :				FITMENTS SHALL BE AS			
Y N	TO AS 1302.	REINFORCING BARS,			ELEMENT	FORMED AND NOT EXPOSED TO WEATHER	FORMED ON GROUND & EXPOSED TO	NOT FORMED. CAST AGAINST GROUND
R		FORCING BARS				-	WEATHER	
ТІ	TO AS 1302 M HARD-DRAWN STEEL TREN DUCTILITY CLASS L TO AS 4	,			INSITU BEAMS FOOTINGS	40	50 50	65 75
R					PIERS SLABS ON GROUND	- 20	50 30	75 65
SI	DUCTILITY CLASS L TO AS 4 L SQUARE RIB MESH GRADE 5 DUCTILITY CLASS L TO AS 4	500			SUSPENDED SLABS UNDERPINNING	20 -	30 50	65 75
F17. F/	ABRIC SHALL BE PLACED NEAR THE					1	1	
	ND SHALL HAVE A NOMINAL COVER			C10	REINFORCEMENT IS SHO		ATICALLY AND	
	EINFORCEMENT FABRIC SHALL BE ACH PAIR OF TRANSVERSE WIRES				NOT IN TRUE PROJECTION SYMBOLS ON THE DRAW		RCEMENT ARE	AS FOLLOWS:
	HEET OVERLAPS EACH CORRESPO			C11		DEFORMED REIN		
	RANSVERSE WIRES OF THE SHEET					DEFORMED REIN	FORCING BAR	S,
	EINFORCEMENT SHALL BE SUPPOF O CONCRETING COMMENCING ON I				DUCTILITY CLAS R GRADE 250MPa	S N TO AS 4671 PLAIN REINFORC	ING BARS TO A	AS1302
	ONCRETE SPACER BLOCKS OR BAI					TEEL REINFORC		
	ALVANIZED STEEL DISHES (EITHER				DUCTILITY CLAS			
	AMAGE THE MEMBRANE) AT 900mm RAMPING IN FABRIC IS NOT PERMIT		CH WAY		TM HARD-DRAWN S DUCTILITY CLAS	TEEL TRENCH M	ESH, GRADE 50	0
	EAM AND STRIP FOOTING REINFOR					RIB MESH GRAD	E 500	
Α	NOMINAL COVER OF 50mm.				DUCTILITY CLAS			
	RENCH MESH SHALL BE LAID CONT		0		SL SQUARE RIB ME DUCTILITY CLAS			
	E SPLICED WHERE NECESSARY WI RENCH MESH SHALL BE OVERLAPP		umm	C12	ALL REINFORCEMENT AN		L BE SUPPORT	ſED
	F FABRIC AT CORNERS AND INTER				AND HELD IN THE DESIG			र
	F TRENCH MESH SHALL TERMINAT				CHAIRS, SPACERS OR TI PLACED AT MINIMUM 100			SUNO
	ROVIDE 2N12 x 1200 BARS OR EQUI 2000 LONG DIAGONALLY ACROSS F			C13	WELDING AND THREADIN			
	F SLAB AND TIED TO UNDERSIDE O				PERMITTED WITHOUT TH	IE APPROVAL OF	THE ENGINEER	२.
	ONCRETE STRENGTH IS TO BE fc =	,		C14	REINFORCEMENT SHALL THE WIDTHS SHOWN U.N		FRIBUTED OVE	R
	5 MAX. SLUMP, COMPACTED USING IBRATION. SLAB & RIBS ARE TO BE			C15	PROVIDE 2-N12 x 1200 BA		ACROSS	
	ONTINUOUS POUR AND THE SLAB I		NISHED		RE-ENTRANT CORNERS	OF SLABS, TIED	JNDER THE TO	Р
	LL CONCRETE IS TO BE CONTINUO	USLY WET-CURED		C16	FABRIC. U.N.O. AT SLAB EDGES INCLUDI			D
	OR 7 DAYS. HE GROUND SURROUNDING SLABS	SHALL HAVE THE		010	JOINTS, AT LEAST ONE R			
	URFACE AT LEAST 150mm LOWER 1				WIRE SHALL BE LOCATE	D PARALLEL TO A		
	E SLOPED AWAY FROM THE SLAB E			C17	75mm OF THE SLAB EDG CONSTRUCTION JOINTS			
	ATER WILL DISCHARGE TO SUITAB ND NOT FLOOD THE SLAB SURFACI			017	AND USED ONLY WHERE			
	OT WATER HEATING PIPES MAY BE				THE ENGINEER.			
	LAB PROVIDED THAT THE SLAB THI			C18	SAWN JOINTS SHALL BE TO THE CONCRETE MIX			
B	Y 25mm AND LAID ON ADDITIONAL S	SL52 MESH.			GENERALLY BETWEEN 1			HE
CO	NCRETE:				CONCRETE.			
	-			C19	STRIPPING OF FORMS AI SHALL TAKE PLACE IN A			
C1 C2	ALL WORK AND MATERIALS SHA UNLESS OTHERWISE SHOWN TH				AGREED TO BY THE ENG		H A PROCEDUI	
02	STRENGTH OF CONCRETE SHAL		FREGOIVE	C20	CONCRETE MUST BE SE	PARATED FROM	SUPPORTING	
					MASONRY WORK BY TWO		UITABLE	
	ELEMENT	CONC. STRENGTH (f'c) MPa	SLUMP	C21	DE-BONDING MEMBRANE SUSPENDED SLABS SHA		JPWARD MID-	
		wira	mm		SPAN CAMBER OF 3mm F	PER 1000mm U.N.		LL
	FOOTINGS	25	75	000	BE AS SHOWN ON DRAW			
	SLAB-ON-GROUND	25	65	C22	SPLICES IN REINFORCEM POSITIONS SHOWN ON T			ISE
	SUSPENDED SLABS & BEAMS MASS CONCRETE	32 15	80 -		APPROVED BY THE ENGI			-
		.0		C23	HOLDING-DOWN BOLTS			
		Y AN APPROVED METHOD			CONCRETOR FOR CASTI	NG INTO THE CO	NURETE AND S	HALL

ELEMENT	CONC. STRENGTH (fc) MPa	SLUMP mm	(
FOOTINGS	25	75	C
SLAB-ON-GROUND	25	65	
SUSPENDED SLABS & BEAMS	32	80	
MASS CONCRETE	15	-	

- CONCRETE SHALL BE COMPACTED USING MECHANICAL VIBRATION. C4
- C5 VIBRATION OF FORMS IS NOT ACCEPTABLE AND CONCRETE SHALL NOT BE SPREAD BY VIBRATING.
- C6 CONCRETE SECTIONS SHOWN ARE MINIMUM SIZES AND DO NOT INCLUDE FINISHES. SIZES SHALL NOT BE REDUCED IN ANY WAY OR HOLES FORMED OR MADE IN

Barrason's Engineers E: admin@barrasoner T:(03) 5940 2639 W: www.barrasonengineers.com


TITLE:

GENERAL NOTES

	REVISION	AMENDED DESCRIPTION	DRAWN BY	DATE
	A	FOR CONSTRUCTION	B.E.	15.04.20
	в	AMENDED NOTES & DIMENSIONS	B.E.	17.04.20
AWING No: S001	С	AMENDED NOTES & DIMENSIONS	B.E.	30.11.22

STEP, SETDOWN & FALLS REFER TO THE ARCHITECT'S DRAWINGS FOR FINISHED FLOOR LEVELS, SIZE AND EXACT LOCATIONS OF STEPS AND SETDOWNS. FALL IN EXTERNAL SLABS MAY BE REQUIRED.

							1			
ason's Engineers		FOR	PROJECT:	CLIENT: SPA WORLD		RE	VISION	AMENDED DESCRIPTION	DRAWN BY	DATE
	TITLE:	I FUR					A F	FOR CONSTRUCTION	B.E.	15.04.20
nin@barrasonengineers.com	SPA SLAB PLAN			IOD No. 2004002	DRAWING No: S100		в /	AMENDED NOTES & DIMENSIONS	B.E.	17.04.20
5940 2639	SFA SLAD FLAN	CONSTRUCTION		JOB No: 2004093	DRAWING NO: 5100		C /	AMENDED NOTES & DIMENSIONS	B.E.	30.11.22
			GENERIC SPA SLAB							
w.barrasonengineers.com				SCALE:						
				-						

THIS GENERIC DESIGN IS <u>ONLY</u> FOR THE CONCRETE SLAB SUPPORTING ANY SPA WORLD SWIM SPA MODEL

SLAB DESIGN AND MATERIALS TO COMPLY WITH AS 2870

SLAB DESIGN BASED ON DISTRIBUTED LIVE LOAD 5 KN AND DEAD LOAD 100 KN. AS PER AS/NZ 1170.1

SLAB TO BE FOUNDED ON SOIL WITH ALLOWABLE BEARING PRESSURE 50kPa MIN. THIS OFFICE TO BE CONTACTED IF

TREE EFFECT, PROXIMITY OF ASSETS, GROUND WATER/UNUSUAL MOISTURE CONDITIONS AND CHEMICALLY REACTIVE SOIL HAS NOT BEEN TAKEN INTO CONSIDERATION. THIS OFFICE TO BE CONTACTED FOR SITE SPECIFIC DESIGN IF THESE CONDITIONS EXIST

SWIMMING POOL AND SPA SAFETY TO FOLLOW THE GUIDELINES OF PN-05-2018 PUBLISHED BY VBA.

Generic Swim Spa Slab Client: Spa World Page: Project No.: 2004093 Designed: BE

PAD FOOTING V5.03

teinf't: Column: Geometry	f'c = 25MPa, Bearing = 11kPa < 12k 2-SL82 (main wires in main directi 5950mm long x 2300mm wide, P* (Designing moment at face of colur	on), 2-SL82 (r = 213kN	nain wires ir	n main direction)) (BLL bars in I	L dir.) , 60mm	OK (0.88) (OK (0.01,0	0.01,0.01)
Column:	5950mm long x 2300mm wide, P*	= 213kN	nam wires ir	main direction,	/ (DLL Dars in	L uii.) , oumm	UN (U.UI,	
	_							
Geometry		(Designing moment at face of column)						
		,						
	Concrete strength (f'c) =	25 M	' a		Colum	n length (CL) =	: !	5950 mm
	Pad length (L) =	6200 mr	n		Colum	n width (CW) =	- 2	2300 mm
	Pad width (W) =	2500 mr	n		Column ar	rea reduction =	: 1	4.40 m²
	Pad depth (D) =	150 mr	n					
C	Design moment at column face =	Y (Y)	es,(N)o		Outstand	in L direction =	=	125 mm
					Outstand ir	n W direction =		100 mm
	Method =	E (E)	lastic/(P)last	ic		Pad Area =	: 1	5.50 m²
oading								
		400 1.0	(= 1); (
	Dead load (Pdl) =		(Excluding for	ooting S.Wt)				
	Live load (PII) =	5 kN					Area igno	ored for
		0					punching	shear
	Eccentricity (EccL) =	0 mr						
	Eccentricity (EccW) =	0 mr	n	d=ds	11			
	C W/t donsity (a) -	25.0 kN	/m ³	'				
	S.Wt. density (ρ) = S.Wt. = ρ *L*W*D =	25.0 KN 58.1 kN			V* d			
	S.wt. = p*L*W*D = P* = 1.35*(Pdl+SWt) =	213 kN			v, u			
	$P^{+} = 1.35^{+}(Pul+Swit) =$	213 KN						
	Allowable bearing pressure =	12 kP	h	C	DK (0.88)			
	Max. bearing pressure (Bp) =	12 KP			$te B.P.(Bp^*) =$	1/	↓ kPa	
					е в.г.(вр) –	14	нкга	
Reinforcement		ring elasticall [,]	/ ueterminet	1)				
lemoreciment				-				
	Unreinforced =	N (Y)	es, (N)o					
	Extreme bottom bars in =		/), (L) dir	No. R	einf't layers =	2	2	
С	Cover to bottom layer of reinf't =	60 mr			uctility class =			(L)ow,(A)uto
	· · · · · · · · · · · · · · · · · · ·				uctility class =		(N)ormal,	
	BLL (in L dir.) = 2-SL	82 (main wire	es in main dir	rection) BUI	L (in W dir.) =	2-SL82 (main		
	Bar size =	7.6 mr	n		Bar size =	7.6	5 mm	
	Bar cts/No. per m =	200 mr	n	Bar cts	s/No. per m =	200) mm	
	Steel Strength (fsy) =	500 MF	' a	Steel St	rength (fsy) =	500) MPa	
	Area steel (Ast) =	454 mr	n²/m	Area	a steel (Ast) =	454	↓ mm²/m	
	Depth to steel (ds) =	86 mr	n	Depth t	to steel (ds) =	79) mm	
Ast.m	nin = 0.19*(D/ds) ² *f'ct.f/fsy*ds =	298 mr	n²/m		Ast.min =	326	5 mm²/m	
Design capaciti	es							
					0.055			2(1)
	Bending - Cl 8.1 & Cl 15.4.2		• •	00-0.003*f'c) =		$(0.67 \le \alpha 2 \le 0.60)$		
		ga	••)5-0.007*f'c) = 9-13*kuo/12 =		$(0.67 \le \gamma \le 0.8)$ $(0.60 \le \phi \le 0.6)$		
	Mamont (M1 *) -	0.1 64				$(0.60 \le \emptyset \le 0.6$ kNm/m	,	2.2 IUI L CIASS
	Moment (ML*) = Moment (MW*) =	0.1 kN 0.1 kN	-	øMuo.L = øMuo.W =		•	OK (0.01)	
	woment (www) =	U.I KN		-		kNm/m Table 2.2.2	OK (0.01)	
			Pidl	n concrete ø =		kNm/m		
	One-way shear - Cl 8.2 & Cl 15.4.3		fou -	øMuo.ur = f'c¹′³ ≤ 4MPa =	3.0 2.92	-		
	Gile-way siledi - Ci 0.2 & Ci 15.4.3			th factor (ϕ v) =	0.70	IVIFO	Table 2.2.	2
	1-way shear (VL*) =	0.5 kN	-	øVu.L =		kN/m	OK (0.01)	4
	β 1.L = shear (VW*) =	0.3 kN	-			kN/m	OK (0.01) OK (0.01)	
				øVu.W =			OK (U.UI)	
	1.665 Bunching shoor - CL 9 2 8 CL 15 4 3	β1.W = 1.6		øVu.ur =		kN/m		
	Punching shear - Cl 9.2 & Cl 15.4.3		Shear P	Perimeter (u) =	16814.4			
	Dad load (D*) -	212 1.41		ρ <u>μ</u>	2 2 2			
	Pad load (P*) =	213 kN		βh = fov =	2.6 1.51	MPa	Cl 9.2.1.5	
	Pad load (P*) = Column load reduction = Punching shear (Vp*) =	213 kN 198 kN 15 kN		βh = fcv = øVp =	2.6 1.51 1394.3		Cl 9.2.1.5 Cl 9.2.3 OK (0.01)	