
X

Application Delivery
with HashiCorp

X

01. Application Delivery Lifecycle

02. Principles of Infrastructure Management

03. People and Roles

04. Pipeline View

05. Where to Start

06. Conclusion

At HashiCorp we are focused on providing the tools that allow organizations to
adopt the cloud and automate their infrastructure, with the end goal of accelerating
application delivery. This means we have a wide span on concerns, including
provisioning, securing, running, and connecting applications. Our approach applies
a set of infrastructure management principles to the application delivery lifecycle
delivered through a suite of products. In this document, we describe the application
delivery lifecycle and the HashiCorp approach to modern application delivery.

Application Delivery

X

Application
Delivery Lifecycle

01

X

Software is never finished, and instead evolves to add new features, fix bugs, and
solve new problems. This means software delivery is a continuous lifecycle and not
a one time event. We believe this lifecycle has seven steps which are necessary
and sufficient for most organizations:

4
01

Application Delivery
Lifecycle

Test

Write

Package

Provision

Secure

 Connect &
Monitor

 Deploy

X

01

Application Delivery
Lifecycle

5

Write
Every application needs to be written and modified, regardless of language, framework, or OS.

Test
Every application should be tested, with various levels of granularity from
unit, integration, and acceptance testing.

Package
Source code and configuration management are transformed into a compiled artifact suitable for
production environments. This can be a static binary, JAR file, DEB/RPM package, Docker container,
or VM image.These artifacts are typically versioned and stored.

Provision
Applications require infrastructure to run on. This can be low level storage, compute, and
networking provided by an Infrastructure-as-a-Service (IaaS) provider, or it could be a higher level
service abstraction provided by a Platform-as-a-Service(PaaS). In any case, that underlying
infrastructure has a lifecycle that requires acquiring and configuring initially, managing throughout the
lifecycle, and destroying or releasing when no longer needed.

Deploy
The process of mapping artifacts to underlying infrastructure is deployment. This step can be tightly
coupled with provisioning if applications are baked into machine images, but typically is a distinct step
which is done more often than provisioning. Configuration management tools often "specialize" a
machine after provisioning to deploy an application while schedulers dynamically place applications on
infrastructure out of band from provisioning.

Connect & Monitor
Once an application is deployed, we want to ensure it continues running and connect it to other
applications. Monitoring includes an entire spectrum including health checking, logging, application
performance monitoring, request tracing, and more. Connecting includes service discovery, load
balancing, and more. The goal is to ensure applications and infrastructure systems are healthy and
performing within a service level objective (SLO), while providing observability tooling to diagnose
issues as they arise.

Security
Throughout this entire lifecycle we must be concerned with security. While other steps can be
considered in isolation without regard to the entire process, security demands a wholistic approach. If
security is bolted on a single step, an attacker will target the other unprotected steps, forcing
practitioners to adopt a "weakest link" mentality.

Together these steps are both necessary and sufficient for delivering most applications.
Depending on the organization additional steps may be required between these anchor points, but
often times they can be integrated into these steps. These steps are technology agnostic and
reflect the workflow challenges in delivering an application, regardless of the underlying
technology choices.

X

Principles of
Infrastructure

02

X

The continuous evolution of software means application delivery is naturally
modeled as a continuous process as well; the infrastructure that supports an
application must continuously evolve to meet the changing requirements of the
application. For teams building, managing, or supporting applications and
infrastructure, we are tasked with two critical responsibilities:

Managing Complexity
As an application gains new features and functionality or inherits constraints such as compliance
requirements, it typically becomes more complex. Over time, a simple two tier application has N-tiers of
frontends, backends, storage, and middleware that are tightly integrated. This is a natural reflection of
the essential complexity of the application. The goal is to minimize accidental complexity and the
creation of a Rube Goldberg machine. By minimizing complexity, we make it simpler to reason about the
system and reduce the friction of evolving the application.

Managing Risk
As an application becomes increasingly business critical, there is an increased sensitivity to risk. There
is no way to entirely eliminate risk, especially when applications and infrastructure are changing and co-
evolving. Instead, we can implement various controls and processes to reduce risk. For example, as a
simple application matures we should demand more regression testing, automate more tasks, perform
canary or blue/green deploys, and invest in more monitoring. By reducing risk, we make it cheaper
to experiment and iterate on the application.

While managing complexity and risk are the guiding principles of infrastructure
management, there are a number of techniques we can apply to achieve them:

Workflows over Technology
Many tools are focused on solving application lifecycle problems in a technology specific way,
such as deployment for JBoss applications. This forces us to adopt unique management tools for
each technology. Instead by focusing on the fundamental workflows, and making them technology
agnostic, we can unify the management tooling. This reduces the overall complexity by moving
technology-specific tooling, and makes it simpler to test and adopt new technologies without
requiring new management tooling reducing risk of experimentation or lock in.

Infrastructure as Code
Traditional approaches to infrastructure have relied on point-and-click interfaces or manual
operator configuration, however these approaches are prone to human error. Treating infrastructure as
code allows us automate execution and apply the best practices of software development, including
code review and version control. This technique helps manage complexity by reusing code, providing
up-to-date documentation, and allows for modular decomposition of the problem. It reduces risk by
allowing code review, versioning, and automated execution.

02

Infrastructure Management

7

X

Policy as Code
This is a closely related approach to Infrastructure as Code, but instead focuses on codifying the
business policies and automating enforcement. Traditionally, compliance and security teams would
define policies in plain language documents and enforce them manually through a ticketing flow. By
turning policies into code, we benefit from version control, code review, code reuse, regression testing,
and automation. This allows enforcement to be decoupled from the definition of policy, and to be
automated. Policy as Code allows a "sandbox" to be defined to minimize the risks associated with
Infrastructure as Code. Additionally, it reduces the burden of compliance, and minimizes the risk of
human error or oversight.

Immutability
Often times servers are provisioning and subsequently evolved manually by operators or by
configuration management tools. As servers are evolved generation over generation, any variations or
errors cause a fragmentation of versions. This can be caused by human operators performing different
steps or automated steps failing silently. This means servers are not running version 5, but a continuous
set of versions from version 4,…, 4.63,.., 5. Immutability instead pushes for golden images and discrete
versions. This means a server is either running version 4 or 5, without an in between state. This reduces
complexity because we can more easily reason about a small number of well known versions instead of
a distribution of many unknown versions. It reduces risk because we can test and certify versions,
perform rollbacks, and avoid transient failures.

Modular and Composable
By decomposing a problem into smaller sub-problems we make it easier to reason about each problem
in isolation. By taking a modular approach and composing various tools and systems together, we make
it easier to understand how things work and simpler to iterate on. Monolithic approaches tightly couple
concerns, such that changing a small part of the system forces considering much larger scope. This
increases the complexity of the overall system, and introduces a large amount of systemic risk to
making changes.

Service Oriented Architecture
In order to support a composable approach, a service oriented or micro-services architecture can be
used. This prescribes autonomous, well scoped, and loosely coupled applications communicating over
the network. By allowing each service to encapsulate implementation details behind an API, we can
work on problems in isolation and iterate on each service independently. This reduces the complexity
of solving sub-problems and reduces the risk of making changes to the application.

02
8

X

What Cloud Changes

The application delivery lifecycle and principles of infrastructure management are
fundamental and apply to any technology. However, there are several properties
of the cloud which affect the tools and techniques we use:

API driven
The biggest difference between Public and Private Clouds from the previous generation of
infrastructure is the API driven nature. Instead of a manual ticket driven process, the entire lifecycle of
infrastructure is now managed programmatically. This enables richer automation that runs orders of
magnitude faster and more efficiently.

Elasticity
The API abstraction of clouds is an "infinite" resource pool of compute. Instead of Rack- and-
Stack with upfront CapEx, resources are provisioned on demand and treated as OpEx. This means
instead of provisioning for peak capacity, the API driven nature allows the server fleet to expand and
contract to accommodate load and "right size" the capacity. This requires automation of
provisioning and application deployment, made simpler by infrastructure as code and
declarative models.

Failures
Cloud service providers offer minimal to no SLAs around the failure rate of machines. Instead,
customers are expected to architect their applications to tolerate failures. This encourages service
oriented architectures to built resiliency against failures at the application layer, and drift correction at
infrastructure layer again made simpler by infrastructure as code and declarative models.

No Network Perimeter
The API contract of the cloud means that we lose the simpler "four walls" abstraction of a
physical datacenter with fixed ingress and egress points. Any machine can be programmatically setup
to ingress or egress traffic to the Internet. Instead of assuming an impregnable network that is trusted,
a more practical and secure assumption is that the network has been or will be compromised. Under
this model, centralized security middleware becomes less effective as an attacker is assumed to be
inside the trusted segments. When assuming zero trust, applications must encrypt data in transit and
at rest while enforcing authentication and authorization of clients. This increases the demand for
tooling and automation to make this simpler for developers.

Multiple Providers
Lastly there are many viable cloud service providers. Each provider offers a roughly similar abstraction
at an IaaS layer, but the non-standard APIs and semantic differences make it increasingly important to
adopt tooling that provides a common workflow to avoid increasing the complexity of tooling and
process while avoiding the risk of vendor lock in.

02
9

X

03

People and

X

03

People and Roles

There is a deep amount of domain knowledge for each step in the application
delivery process, making it impractical for an individual to be an expert every
area. Instead, there is a natural specialization of knowledge and a process
which allows all the domain experts to collaborate together. Typically the
following groups are involved:

Developers
The developers are knowledgable in programming languages, frameworks, and application design.
Their productivity is limited by the feedback loop between writing code and testing, which are their
primary concerns. They can be further empowered with self-service deployments and observability
tooling to diagnose application issues.

Operators
The operators are knowledgeable about cloud service providers, infrastructure automation, and
networking. They support developers and the infrastructure for applications. Typically they are
responsible for system stability and uptime, and focus on maturing the infrastructure to increase
the mean time to failure (MTTF) and reduce mean time to recovery (MTTR).

Security Analysts
The security team is knowledgeable about threat modeling, vulnerability management, secret
management, and privileged access. They act as consultants to developers and operators, and
ensure compliance targets are met and risk is appropriately managed.
Each of these roles have a different set of knowledge and expertise, and there are many ways in which
these teams can work together. The Waterfall methodology is the most common, while the DevOps
approach is being broadly adopted.

11

X

04

Pipeline View

X

In many traditional software organizations, Waterfall is the dominant model
used to deliver applications. This approach prioritizes managing risk, sequentially
flowing work between various groups. This tends to be very slow and reflects the
challenges of delivering desktop applications that could not be easily updated.

Instead, organizations adopting a DevOps approach create "APIs" between teams,
such that the details of each role can be encapsulated, and each group can work
independently. This prioritizes agility, allowing things to be done in parallel. This
reflects the lower cost of updating software, especially for online applications, which
don't need stringent controls over risk.

Waterfall vs DevOps Process

03
13

OPERATIONS

SECURITY

RELEASE

 MONITOR

 DEVELOPMENT

 DEVELOPMENT RUN

APPLICATIONS

OPERATIONS PROVISION INFRASTRUCTURE

SECURITY DEFINES POLICY

ENABLE

ENABLE

ENABLE

X

 Pipeline View
If we integrate all the people and application delivery steps into a pipeline,
we get the following:

14

Dev

App

Continuous
Integration

Nomad

Packer

Load
Artifact

Artifact
Registry

 Configuration
Management

VCS

Vagrant

Build
Commit

Deploy Schedule

InvokeTrigger

Write

Sec

VCS

Vault

VaultCommit

 Define Secrets

Write

 Provision InfrastructureTrigger

Ops

VCS

Terraform

TerraformCommit

 Apply Changes

Write

Apps

App

Consul

Nomad Artifact
Registry

Alerting

Schedule

Trigger

Vault Fetch Secrets

 Monitor

Discover
Upstream Services

X

 Where HashiCorp Fits
In the pipeline view there are a number of HashiCorp products, each
of which serves a specific function:

Vagrant
Vagrant provides a development environment that closely mimics production. This dev/prod parity
avoids the "it worked on my machine" class of bugs and allows developers to have a fast feedback
loop between development and testing. By codifying the setup of a Vagrant environment new
developers can quickly and reliably be on boarded.

Packer
Packer is used to build artifacts, ranging from Docker containers, to AWS AMI's, to VMDK's. It is used
to take source code, configuration management, and other provisioning information to build artifacts.
These artifacts are usually immutable and versioned.

Terraform
Terraform provides a consistent way to provision and manage resources across hundreds of
providers and thousands of resource types. This includes low level storage, compute, and network
from cloud service providers, to higher level services like DNS, Content Distribution Networks (CDN).
It uses an Infrastructure as Code approach to manage infrastructure and lets operators take a
modular and composable approach to managing complex fleets. Terraform Enterprise provides
centralized collaboration, coordination, and governance, similar to GitHub for developers.

Nomad
Nomad is a cluster manager and application scheduler. It pools together the resources of many
machines and dynamically schedules applications based on declarative job files. Job files give
developers an infrastructure as code way to deploy applications abstracted from hardware, while
decoupling operators who are managing the underlying fleet.

Consul
Consul provides a toolkit to support service oriented architectures. Applications broadcast their
availability and register health checks for monitoring. Applications can discover their upstream
services via DNS or by querying Consul with a RESTful HTTP API. Consul provides load balancing
and uses health checks to route around failures. Consul provides a Key/Value store which can be
used for application configuration and high availability via leader election.

Vault
Vault provides a centralized service for brokering access to credentials and secrets. Security teams
can manage policies, delegate access, publish secrets, and audit access. Developers, operators, and
applications can access the secret material they need in a secure fashion. Vault also provides key
management and cryptographic offload to encrypt PII or other sensitive data. Higher level features
include brokering SSH access, dynamic credential generation, and PKI.

04
15

X

Where Other Tooling Fits
Aside from the HashiCorp tools, there are other pieces in the pipeline view where
existing tools and technologies are leveraged:

04

Version Control
Version Control systems come in many different flavors, including Git, Mercurial, SVN, CVS, Perforce
and more. These systems provide a versioned history of configuration. Paired with an
Infrastructure as Code approach to management, they provide a granular view at how infrastructure has
been evolved.

Continuous Integration
There are many common CI systems, including Travis, Jenkins, Hudson, and Bamboo. These
systems allow code to be tested, running a battery of unit, integration, and acceptance testing. They also
can be used to compile source code and invoke tools like Packer which build production worthy artifacts.

Configuration Management
Configuration management tools like Puppet, Chef, and Ansible provide an Infrastructure as Code
approach to setting up machines. These tools are invoked by Packer to configure artifacts and make
them production worthy.

Artifact Registry
CI systems and Packer produce production worthy artifacts. These artifacts need to be versioned
and stored so that they can be deployed. Feature rich registries like Artifactory can be used, or simpler
solutions like an AWS S3 bucket can work depending on the needs of an organization.

Deployment Portal
Often times a deployment portal is used as a wrapper around various systems to shield developers from
the underlying complexity. These portals often integrate with CMDB's, artifact registries, and deployment
tools like Nomad. They provide self-service ways for developers to deploy new versions, rollback, and
scale up/down applications.

Monitoring

Monitoring is a rich space, that includes centralized logging (Splunk, ELK), telemetry (Datadog,
InfluxDB), Application Performance Monitoring (NewRelic, AppDynamics), tracing (ZipKin), and more.
Applications usually integrate with these systems and stream data to them. These systems are used to
diagnose any issues and trigger alerting systems when service level objectives (SLO) are
compromised.

Alerting
Alerting systems are usually triggered off monitoring systems when a service level objective (SLO) is
compromised and systems like Consul which provide a consistent view of where applications are running
and their current health. Services like PagerDuty are used to get developers and/or operators to react
and respond.

16

X

05

Where to Start

X

05

Where to Start

While HashiCorp has many products, getting started is easy because of the
modular approach which allows for incremental adoption. We recommend starting
with a well scoped project, both to minimize risks and define a clear success
criteria. Below are some recommended projects:

Manage Secrets with Vault
Many organizations suffer from secret sprawl, where privileged material like credentials, API tokens,
and TLS certificates are stored in many different systems in plaintext including source code, shell
scripts, or configuration management. Instead, secrets should be managed in Vault, where they are
encrypted in transit and at rest, with central authentication, authorization, and auditing. Organizations
can start by standing up a Vault cluster, moving existing secrets, and integrating applications.

Enable Service Discovery with Consul
As micro-services or Service Oriented Architectures (SOA) are adopted, services need the ability to
discover and route to their upstreams. For example, web servers needs to communicate with backend
API servers. Consul provides a toolkit of features to enable SOA. Organizations can start by standing
up a Consul cluster, registering a few services, and using DNS or consul-template to begin integration
with downstream services.

Provision Cloud Infrastructure with Terraform
Cloud adoption provides an opportunity to experiment with new tools without changing
existing processes. Terraform supports all the major Cloud Service Providers, and there exists
rich documentation and examples on using it to provision cloud resources. Organizations can start by
provisioning cloud resources for greenfield projects with Terraform. As more comfort is gained, existing
applications can be brought under management and the scope of Terraform usage increased.

Build Images with Packer
HashiCorp tools generally push for an immutable model of management, allow it's not a prerequisite.
Packer allows for machine images to be easily created across dozens of targets including container and
cloud VM images. Building immutable images with Packer is a good starting point to leverage existing
configuration management and provisioning tools while adopting a more immutable approach, reducing
operational complexity and risk of provisioning time failures.

Run a Container with Nomad
Containers are a convenient way to package applications regardless of language or framework, and
provide a standard unit to ship around. Nomad provides a simple way to schedule a single container,
all the way up to a million. Organizations can start playing with container schedulers by setting up a
Nomad cluster and running Docker containers. This can be extended using Consul for service
discovery and load balancing, and Vault for managing and distributing secrets.

18

X

 Identifying the
Value

We have discussed the various challenges in application delivery, along with the
principles HashiCorp applies in solving them, but often the value in our approach
is implicit. There are several tangible and intangible values, including:

Cloud Adoption
HashiCorp provides a product suite which enables organizations to adopt a single cloud or multiple
clouds, both public and private. The workflow-centric view allows the platform specific differences to be
accommodated without many cloud-specific workflows.

Infrastructure Automation
Applying an Infrastructure as Code approach across our product suite enables automation of the entire
application delivery process. This increases the agility of all teams involved, reduces human errors, and
improves security.

Empowering Developer, Operator, and Security Teams
Delineating the application delivery challenge into the sub-problems and using tools instead of tickets
to coordinate between teams provides individuals more autonomy via self-service for developers and a
decoupling of concerns for operators and security teams.

Technology Flexibility
A workflow-centric approach to application delivery allows heterogeneous technologies to be used
easily. This simplifies hybrid cloud adoption, but also enables simpler experimentation and adoption of
new tools and services without changing workflows.

Modern Security
Integrating security into each step of the application delivery process and placing zero trust in the
network is required for the security challenges of today. HashiCorp Vault provides a security foundation
and integrates with other HashiCorp and industry products to provide a wholistic security solution.

Reduced Complexity and Risk
Solving application delivery in a principled way is the difference between working and working well.
Empowering individuals to be more effective and organizations to be more productive, avoiding failures
and security breaches, and enabling a focus on core competencies.

Simplify Compliance
Adopting a Policy as Code approach can remove compliance as a bottleneck in the application delivery
process. Instead of filing tickets and manually enforcing business policies, compliance checks can be
codified and automatically enforced. This provides a "sandbox" that developers and operators can
work in without needing to wait for a slow approval process.

05
19

X

06

Conclusion

X

06

Conclusion

HashiCorp approaches infrastructure with a principled but pragmatic
approach. Software and Infrastructure both evolve to solve new challenges and
incorporate the latest best practices. For organizations adopting cloud, HashiCorp
provides the products necessary to make the transition from traditional data centers
in an incremental way without rewriting applications or adopting complex
platforms. For organizations adopting DevOps, HashiCorp provides the products to
automate infrastructure and empower developers, operators, and security teams.

Our open source tools are used by millions of users in every geography and
industry sector. Our Enterprise products are focused on solving the organizational
challenges of the Global 10K, including collaboration, governance, and compliance
and customers include many of the Fortune 500 such as Capital One, Comcast,
Salesforce, Verizon, and SAP.

X

