
Service Mesh
and Microservices
Networking

WHITEPAPER

2WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

Service mesh and
microservice networking

As organizations adopt cloud infrastructure, there is a concurrent change in application

architectures towards microservices. These two trends are both part of a larger goal—to

increase developer efficiency and enable faster delivery of new features and capabilities.

There are many success stories around these practices, such as Netflix’s move to a

cloud native infrastructure, but people often forget that there are new networking

and operational challenges that come with this approach. This white paper covers the

traditional, static approach to networking and why we need a different, dynamic approach

with cloud-based microservices.

Contents

Traditional networking with monolithic applications

Cloud & microservice challenges

What is service mesh?

Introduction to HashiCorp Consul

Competitive differentiation

03

04

05

06

09

3WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

Traditional networking with monolithic
applications

When discussing traditional networking we also need the context of traditional application

architecture. Prior to microservices, the main pattern was the monolithic application. This

is a single large application that consists of multiple discrete sub-systems or capabilities.

As an example, a desktop banking application that contains a login portal, balance viewing,

transfers, and foreign exchange capabilities compiled and deployed as a single application.

Due to the interdependence of development teams, monolithic applications are harder

to update, and many organizations could only manage to update these applications a few

times annually.

This application architecture was supported by a networking architecture that reflected

that slow update rate and limited number of unique applications. There are several key

challenges the network had to help solve:

• Routing: Requests coming from the Internet need to reach front-end servers, which

need to reach back-end servers. This is the north-south traffic flow.

• Segmentation: To secure connected systems, networks need to segment traffic

between logical zones.

To solve the request routing problem, traditional networks used load balancers. These

were either hardware appliances or software load balancers. Traffic would flow north-

south using multiple tiers of load balancers—one tier for each application or back-end

system. Load balancers performed basic health checks to mitigate failures and balance

traffic between multiple machines, enabling horizontal scalability.

Segmentation was solved by using a combination of firewalls and virtual networks.

Firewalls were typically hardware appliances that were placed in critical network junctions

to constrain traffic. Virtual networks were constructed using Virtual LAN (VLAN) to provide

Quality of Service (QoS) and bulkheads between different groups. This approach allowed a

network perimeter and IP-based access to be enforced between machines.

4WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

Cloud & microservice challenges

With the shift to microservices applications, a single large monolith may be decomposed

into dozens of individual services. This decouples the development teams so that each

service can be developed and deployed independently. By reducing the coordination

required for a release, development velocity is improved. But this introduces the new

challenge of having many more applications being updated more frequently than before.

Microservices applications also change the traffic flow. With monolithic applications, traffic

was from primarily north-south. Microservice applications communicate with each other

to compose and re-use functionality, adding more east-west traffic. This service-to-service

traffic still needs to be routed, and typically load balancers are paired with each service.

This results in a proliferation of load balancers, increasing cost and request latency.

As the infrastructure becomes larger and more dynamic, this puts pressure on networking

and security teams to keep pace with more changes to load balancers and firewall rules.

These teams often cannot keep up with the increasing demand, and change tickets

can take weeks or months to complete, restricting the agility of application teams.

Cloud infrastructure abstracts the underlying data center and promotes an on-demand

consumption model. This abstraction removes our control of the underlying network,

prevents the use of hardware devices, and restricts us to a limited set of capabilities. This

means traditional hardware load balancers and firewalls cannot be used, and we cannot

leverage segmentation techniques such as VLAN. The network topology is defined by API

calls, not a physical layout, making it much harder to preserve the network perimeter with

a limited number of ingress and egress points.

To simulate the controls of the traditional network, many organizations have very complex

cloud networks. Virtual networks are recreated using hundreds of accounts or VPCs, to

substitute for VLANs. Traffic flows are enforced via complex peering arrangements or VPN

topologies. This creates a management challenge for operations teams who need to set up

and administer the network and applications being deployed into the appropriate networks.

All these challenges point to a mismatch between the application architecture, cloud

infrastructure, and traditional approaches to networking.

5WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

What is service mesh?

A service mesh is a software-driven approach to routing and segmentation. The goal is

to solve the networking and security challenges of operating microservices and cloud

infrastructure. Service mesh solutions bring additional benefits such as failure handling,

retries, and network observability.

When we consider the traditional networking approach, it solved both routing and

segmentation using hardware that was manually managed. Instead, we can solve these

problems in software with automation.

A service mesh has two key components:

• Control Plane: The control plane holds the state of the system and plays a

coordination role. It provides a centralized registry of where services are running, and

the policies that restrict traffic. It must scale to handle tens of thousands of service

instances, and efficiently update the data plane in real time.

• Data Plane: The data plane is distributed and responsible for transmission of data

between different services. It must be high-performance and integrate with the

control plane.

The distributed nature of a service mesh allows us to push routing and segmentation to

the edges of the network, rather than controlling the topology and imposing them through

middleware. The network topology can be dramatically simplified, since the network is

only responsible for connecting all the endpoints. We can also remove firewalls and load

balancers from east-west traffic, since the data plane provides routing between services

and enforces network policies.

A service mesh is an abstract concept that solves multiple service networking challenges in

an integrated way. To make this concrete, we introduce HashiCorp Consul.

6WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

Introduction to HashiCorp Consul

HashiCorp Consul is a service mesh that provides a solution to service discovery,

segmentation, and configuration:

• Service discovery: Consul provides a centralized catalog of

all the nodes and services, along with their health status. The

catalog is automatically populated and kept up-to-date. An

API allows the catalog to be used for automation and dynamic

routing between services.

• Service segmentation: Consul defines rules governing which

services can communicate. Instead of IP-based rules, Consul

uses a logical service as the source and destination. This

enables dynamic infrastructure: services can scale up and

down without waiting for static firewall rules. Service identity is

provided with TLS certificates that are generated and managed

by Consul’s built-in certificate authority (CA) or other CA

providers, such as HashiCorp Vault. This provides cryptographic

identity and encrypts all traffic over the network.

•	 Service	configuration: Consul provides a hierarchical key/

value store. The K/V store can be used to store application

configuration such as runtime configurations, maintenance

modes, and feature flags. This allows configurations to be

centrally managed and updated in real time.

https://www.consul.io/
https://www.hashicorp.com/blog/consul-1-2-service-mesh
https://www.consul.io/discovery.html
https://www.consul.io/segmentation.html
https://www.consul.io/configuration.html

7WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

To provide these features, Consul has a client-server architecture and is the “control plane”

for the service mesh. Multiple servers are deployed for high availability, and clients run on

every host. Clients integrate with the proxies that provide the “data plane” for the service

mesh. The clients are critical for scalability, as they cache policies and configurations and

distribute the work of policy enforcement and health checking.

The diagram shows an architectural overview. The centralized servers hold the service

catalog and access policies, which are efficiently transferred to the distributed clients

in real time. The clients manage certificates for the applications and configure the local

proxies. Applications communicate with the local proxies, that communicate directly with

the destination services. The data plane is kept fully distributed, using end-to-end TLS and

pushing enforcement to the edges for scalability and availability.

Consul provides a number of advantages for microservices and cloud infrastructure.

There is no need for firewalls or load balancers in the service-to-service path. Instead,

CONSUL
SERVER

CONSUL
SERVER

CONSUL
SERVER

CONSUL
CLIENT

PROXYAPP A

CONSUL
CLIENT

PROXY APP B

CONTROL
PLANEVIRTUAL

MACHINE
CONTAINER

POD

OPTIONAL

DATA
PLANE

CONTROL PATH

DATA PATH

https://www.consul.io/docs/connect/proxies.html
https://www.consul.io/docs/internals/architecture.html

8WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

the proxies manage dynamic routing and enforcement. This avoids any manual updates

and allows services to be deployed and receive traffic in real time. The network needs to

ensure traffic flows between services, but authorization is done on the edge, avoiding the

need for complex network topologies simulating network segments. Applications can be

frequently deployed and dynamically scaled, and Consul allows for end-to-end automation

of the required service networking.

Using local proxies enables simple application integration, since they are transparent

to the application. Instead of communicating with a static load balancer, applications

communicate with the local proxy, which dynamically routes traffic, imposes mutual TLS

to provide service identity and encryption of traffic over the wire, and enforces network

policies to restrict traffic. For low-latency or throughput-sensitive applications, native

integration is possible to avoid the overhead of network proxies. Natively integrated

applications use a Consul SDK to fetch TLS certificates and verify that incoming TLS

connections are authenticated against a trusted CA and authorized by network policies.

9WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

Competitive	differentiation

The adoption of microservices architectures and cloud infrastructure is forcing new

approaches to networking. There are many different vendors and tools, each attempting

to solve the problem in different ways. Consul makes no assumptions about the

underlying network and uses a pure software approach with a focus on simplicity and

broad compatibility.

Scalable Distributed Architecture

Consul was designed to scale to data centers with tens of thousands of machines and

support a multi-data center topology with hundreds of sites. This is done by ensuring a

completely distributed data path and minimizing churn in the control plane. Data flows

directly between proxies or applications without interacting with the central control plane.

This avoids creating a scalability bottleneck.

The network policies managed by the control plane use a source and destination service

based on logical identity. This unit is scale independent, unlike an IP or MAC address.

As an example, suppose a rule authorizes “web server can reach the database.” With 50

web servers and 5 databases, that would mean 250 individual rules for a firewall, but for

Consul, it’s just one. As services scale up and down, the Consul rule remains static, unlike

firewall rules which need to be updated.

Using the service as the logical management unit significantly reduces churn on the

control plane and allows for very large clusters.

Multi-Data Center and Multi-Cloud

Consul supports multi-data center and multi-cloud topologies. The architecture is client/

server, with 3-5 servers and potentially thousands of clients per data center. The servers

in each data center can be federated together to form a larger cluster. These data centers

can be in either public or private clouds, allowing for a multi-cloud topology.

Consul models each data center as a failure domain, meaning the system is designed to

allow a data center to fail without impacting other data centers. This ensures high availability

of the entire cluster and allows us to scale globally by spanning additional data centers.

https://www.hashicorp.com/resources/hashidays-2018-full-keynote-armon-mitchell
https://www.consul.io/docs/guides/datacenters.html

10WHITEPAPER | SERVICE MESH AND MICROSERVES NETWORKING

Multi-Platform Support

The network has long been the “common denominator” that allows various generations of

technology to interconnect. Containers can interact with mainframes because they speak

common networking protocols. Consul is designed to operate on bare metal, virtualized,

and containerized environments, including all major operating systems. For environments

that cannot run a Consul agent, either because they are legacy or black boxes, additional

tooling is provided to integrate them. This allows containerized applications to discover

and securely communicate with any legacy system.

Universal Protocol Compatibility

Network policies in Consul use a logical source and destination service. This allows

Consul to enforce policy at Level 4 traffic, such as TCP. The advantage of focusing on L4

is universal protocol compatibility because application-level protocols, such as HTTP,

do not need to be parsed. This allows both greenfield and legacy applications to be

easily integrated and secured without needing to re-tool the applications to use specific

protocols or extend Consul to be protocol aware.

Network Observability vs APM

Consul aims to provide a control plane for service networking, managing routing, and

segmentation. For observability, Consul allows telemetry to be exported to best of breed

monitoring and application performance management (APM) tools. Consul will provide

basic integrated metrics such as the number of connections, bandwidth, and latency

between services. Integration with external monitoring and observability tools allows

existing solutions to be used, which provide fine-grained data retention, querying,

alerting, and visualization.

