
Increasing Developer
Velocity in the Cloud
Operating Model

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 2

Executive summary

Success for modern enterprise development teams can be measured in the time it takes to develop

and ship. The objective of any modern enterprise development team is to ship more value to more

customers more quickly than before.

To maximize the scale and availability of experiences to customers, trends such as microservices and

cloud nativism has increased the complexity of delivering apps owing to the highly distributed and

service-based architectures those trends enforce. This in turn has increased the need for developers to

automate infrastructure operations to increase velocity with which they can deploy new applications.

Throughout this, development and operations teams desire one consistent workflow to achieve the

delivery of any application in the portfolio: delivering value more rapidly, while maintaining process

cohesion and efficiency, with less risk of failure.

As enterprises start to scale in a multi-cloud environment, the Continuous Integration and Continuous

Deployment (CI/CD) process is no longer just a developer specific workflow. It is a DevOps workflow

that involves both developers and operators. Developers are the inner loop of the process and are able

to modify and iterate on code multiple times a day while operators are the outer loop, pushing software

on demand at any time of the day.

In order to properly implement this workflow, operators need to provision and maintain infrastructure at

the same speed as developers. In this paper, we explore how GitHub and Terraform combine to provide

a powerful CI/CD solution that makes this a reality.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 3

The powerful combination of GitHub and HashiCorp are working together to enable organizations to

unlock the Cloud Operating Model for enterprise development teams to accelerate value delivery to

their users.

Application deployment in the multi-cloud world

In the past, application deployments were a fairly straightforward process. Developers would create

the code on their own machines and test it using pre-configured virtual machines (VMs) provided to

them by the operations team. These VMs would adhere to organizational requirements for operating

system, size, and other specifications. Once the code was finalized, it was packaged and then sent to

production. Teams would work through standard - albeit slow - processes such as ITIL.

Cloud’s on-demand capabilities have created significant opportunities for development teams to

create applications faster and better than ever before. Now environments can be created in a matter

of seconds and are accessible from any machine. Application and infrastructure code is stored in a

shared repository and pushed to cloud-based environments that can be located anywhere.

This world of self-service for development teams creates new challenges for operations teams and

organizational controls. As a result, organizations need to have a centralized way to efficiently and

securely manage cloud infrastructure that scales with developer demand.

The multi-cloud reality

According to a July 2018 study by Forrester and Virtustream, 86% of the companies surveyed

described their current cloud strategy as multi-cloud. When asked further the reasons for this, the

answer was simple; there is not one cloud platform that meets all of their enterprise requirements.

Combine this with a desire to use multiple clouds for disaster recovery and that companies may inherit

additional cloud environments through mergers and acquisitions, having a multi-cloud strategy is

logical, and inevitable, for the majority of large-scale enterprises.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 4

The HashiCorp Cloud Operating Model is a blueprint for how organizations migrate to, and address

the challenges of, a multi-cloud reality, to take advantage of a computing model that scales

dynamically, on demand. Each cloud vendor has specific offerings to assist with application delivery,

but none match the need for a single consistent workflow and the advantages that brings to people

and processes. Enterprises should plan and build workflows for consistent automation at every layer

infrastructure, security, networking, and runtime.

Details of the process and challenges can be seen in HashiCorp’s ‘Unlocking the Cloud Operating

Model’ white paper, but here we instead drill down into the layers of provisioning infrastructure, secrets

management, and service-based networking and examine how they align to the application lifecycle.

Managing this lifecycle is critical to ensure consistent and secure deployments across multiple clouds,

to deliver on the Cloud Operating Model.

Figure 1: Static to dynamic shift

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 5

Increasing developer velocity

Development teams are capitalizing on the ability to self-serve environments in the cloud, and shifting

to increasingly rapid deployment cycles. This shift enables teams to more quickly address customer

feedback, apply new innovation and constantly improve the customer experience in a space where

expectations are growing quickly. Core to supporting this approach to software development is a

strong DevOps foundation that enables developer collaboration and limits the manual work that is

required to support developer workflows. Workflow automation across the software development

lifecycle reduces the transactional cost of software development and reduces the time between ships

as developers are able to spend more time focusing on writing code than managing process.

GitHub, through GitHub Actions with built in CI/CD, has developed a powerful automation solution

that allows for collaboration across the SDLC harnessing many of the same collaboration principles

that have helped drive innovation in the Open Source Community. Through the ability to share actions

and workflows teams can quickly build on industry and internal best practices to establish workflows

built around accelerating velocity and deliver code to production faster. Seamless integration

of environment provisioning as part of workflow automation is a critical component of enabling

rapid iteration cycles. According to a recent Forrester Total Economic Impact study, organizations

leveraging GitHub for DevOps save 45 minutes of time per developer per day allowing them to spend

more time coding.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 6

HashiCorp and GitHub manage infrastructure and
application lifecycles

Provision: HashiCorp Terraform and GitHub

Terraform and GitHub’s integrations form the foundation for aligning the goals of operations and

developers to create a DevOps workflow that moves at the speed organizations desire. As we

mentioned earlier, GitHub increases developer velocity by enabling them to automatically integrate

changes to code from anywhere and then deploy those changes in any environment on demand. This

presents a challenge for operations teams to have the infrastructure ready at the time that it’s needed.

One possible solution is to leave instances active at all times. While this solves the challenge of having

environments available, it introduces new concerns like cost and resource pressures. The better

solution is to make the infrastructure a part of the versioning process and be able to add or remove

resources on-demand. By tying application development to underlying infrastructure, GitHub and

Terraform solve the provisioning challenge to keep developer velocity up and cloud costs down.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 7

Both Terraform Cloud and Enterprise support GitHub as a first class software development platform.

This means that as changes are committed to a repository that affect the attached Terraform

organization, Terraform will initiate a run and make the necessary changes to accommodate the

change. Operators can also use this integration to version their various environments. If more VMs are

required for a specific event or test, these changes can be made to the Terraform configurations stored

in GitHub. After the event has completed or if an issue arises from the deployment, operators can roll

back the infrastructure to a previous, stable version.

Terraform can also be used for maintaining GitHub itself. The Terraform GitHub provider enables

operators to create and manage repositories, teams, and organizations. For example, if a new

development team is being onboarded and needs access to certain environments, Terraform can

be used to create the new organization, assign new team members, and enable access to their

infrastructure environment. This ensures there is a consistent workflow for operators to enable

developers at the pace they are looking for.

Figure 2: How it works

Ensuring compliance and governance with policy as code.

Utilizing Terraform Cloud or Terraform Enterprise and GitHub together also enables organizational

governance for managing infrastructure. Sentinel, HashiCorp’s policy as code framework, can be

used to ensure that any infrastructure that is created follows organizational policy. As an example, an

organization might require that any new cloud instance has tags indicating whether it is a development

or a test instance for compliance purposes. Using Sentinel, an administrator could set a hard fail policy

that prevents the instance from deploying if a user commits a change without the proper tags. This

could be extended to ensuring that the instance type, region or even cloud provider are consistent

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 8

across all teams.

Secure: HashiCorp Vault and GitHub

Once an organization has established the proper provisioning workflow that matches the speed

organizations desire, the next major consideration is how is the organization controlling access to these

systems and protecting credentials. Using static credentials creates vulnerabilities. It’s very difficult to

keep track of how old a password is, where it is being used, and who has access to it. This becomes

increasingly problematic in the cloud landscape because traditional security methods become harder

to enforce, and there are many more credentials across distributed services. Infrastructure no longer

has a defined perimeter and protecting each individual service inhibits the scalability of that service.

If organizations treat these environments as a “zero-trust” network and instead use identity-based

security for authentication coupled with well-defined policies, this challenge of system access lessens.

Through an integration with Vault, GitHub can be used as that source of identity. GitHub’s native token

scanning capabilities helps organizations keep track of credentials that may have been exposed in a

public repo and eliminate them.

The GitHub auth method enables developers to use their GitHub ID to authenticate access to Vault

and generate tokens for accessing systems. What systems these developers are able to access is

based on policies and defined by the Vault administrator. The policies are uploaded directly to Vault

and can apply to either individual users or entire paths. For example, imagine a developer is writing a

service that requires access to a specific database. They need the application to be able to access the

information, but do not need to have the ability to alter the information that is stored in this database.

Rather than providing the users with a username and password, the security team could instead enable

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 9

access via their GitHub ID. Now when that developer requires access to the database, they make the

request to Vault directly. Vault then ensures it is a valid request and returns a token for accessing the

database. These tokens will have a preset Time to Live (TTL) and will be revoked once that time period

has elapsed. Using this workflow, the developer is able to access the database information they require

on demand without creating a potential vulnerability in the process.

This workflow is the foundation for how GitHub and HashiCorp are enabling developers to move at the

speed they require while providing peace of mind to the security team. Looking forward, there are more

integration points between Vault and GitHub which will further enable organizations to protect their

multi-cloud environments. In the future, GitHub and HashiCorp will look towards implementing easier

ways to integrate a GitHub organization with Vault. Some of the possible solutions include the ability to

attach a new or existing Vault server to an organization upon creation. This would provide more control

to what credentials are being created or used by developers and restricting system access.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 10

HashiCorp Consul is a service-based networking tool capable of keeping a centralized registry for any

new or existing services in any environment. Developers can add a Consul configuration as part of their

deployments without having to alter their existing GitHub workflow. When the changes are pushed live,

a Consul agent will be deployed as well. If configured properly, the Consul agent will do two things. First,

it will seek to join an existing Consul cluster. Once it has done that, the Consul agent will then register

any of the services within its environment and then communicate its existence to the rest of the cluster.

Now any of the other agents, and by extension their services, are capable of discovering that new

service.

This shared registry enables a crucial aspect of modern application delivery: Service Discovery. In

order for developers to be able to move quickly in cloud environments, they need to be able to identify

the necessary services for their applications on-demand.

Connect: HashiCorp Consul and GitHub

Having defined solutions for Infrastructure provisioning and identity-based security, the last piece to

focus on is in the service-based networking layer. A difficult challenge for organizations to overcome

when making the leap to cloud is managing the connections between services. A modern application

can easily consist of dozens, perhaps hundreds of individual services, each working at scale with a

need to authenticate and connect with each other. The previous system for managing traffic between

these services was to assign each a specific IP and manually make the connections. This method is

untenable in a world of continuous delivery where IP addresses change as often as code is released.

Developers need a single, centralized registry for keeping track of all the existing services by their

identity and as the organization shifts more towards a microservice environment, automate connections

between new and existing services.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 11

Filing a ticket with a networking team and

waiting for updated firewall rules slows

down deployments. By deploying Consul

with each application, developers can

trust Consul to both identify and automate

the process of connecting those services.

Similarly services can have rules to allow

or deny these connections, to maintain

integrity of the portfolio design.

With these agents up and running, Consul

is also capable of providing telemetry

data (health checks, network data, and

updates on the cluster, etc.) to Application

Performance Monitoring (APM) solutions

like Datadog, AppDynamics, and

SignalFX. This data enables developers

to get greater granularity into application

performance and overall network health.

Beyond just discovering new services,

automating the connecting process for

microservices using a service mesh is quickly becoming a goal for organizations. As is the case above,

the ideal workflow for a developer would be to push the changes to their code, deploy the application,

and have it automatically connect to the services that it needs access to. Consul Connect’s service

mesh capabilities can do exactly that. Developers can set the idea of intentions and enable any instance

of a specific service to talk to another type of service and encrypt that communication using mTLS. This

is an emerging space for developers and is further aligning the goals of the application teams with the

networking teams.

WHITEPAPER | INCREASING DEVELOPER VELOCITY IN THE CLOUD OPERATING MODEL 12

Conclusion

Operating in multi-cloud operating model offers enterprises a broader reach and scale than traditional

datacenters. The potential to reduce standard lead time for delivering applications and capabilities can

go from weeks to a matter of minutes with the right automation across every layer: from the inner loop

of development, to the outer loop of infrastructure provisioning, identity-based security, and service-

based networking.

Developers and operators need to collaborate to enable a centralized workflow for both adopting the

cloud and increasing delivery speed.

GitHub and HashiCorp have created a common blueprint for consistent workflows for CI/CD in a

multi-cloud environment that are adaptable to the needs of any enterprise, as well as being integrated

with other core technology that enterprise development teams rely upon.

